1
|
Bathla A, Younis SA, Kim KH, Li X. TiO 2-based catalytic systems for the treatment of airborne aromatic hydrocarbons. MATERIALS HORIZONS 2023; 10:1559-1579. [PMID: 36799148 DOI: 10.1039/d2mh01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among diverse strategies to manage air quality, catalytic oxidation has been a widely used option to mitigate diverse pollutants such as aromatic volatile organic compounds (VOCs), especially benzene, toluene, and xylene (BTX). For such applications, TiO2-based catalysts have drawn significant research attention for their prominent photo/thermal catalytic activities and photochemical stability. This review has been organized to elaborate on the recent developments achieved in the thermocatalytic, photocatalytic, and photothermal applications of metal/non-metal doped TiO2 catalysts towards BTX vapors and their reaction mechanisms. The performance of the reported TiO2-based catalysts has also been analyzed based on multiple computational metrics such as reaction rate (r), quantum yield (QY), space-time yield, and figure of merit (FOM). At last, the research gap and prospects in the catalytic treatment of BTX are also discussed in association with the feasibility and utility of TiO2-based catalysts in air purification applications.
Collapse
Affiliation(s)
- Aadil Bathla
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Noureen L, Wang Q, Humayun M, Shah WA, Xu Q, Wang X. Recent advances in structural engineering of photocatalysts for environmental remediation. ENVIRONMENTAL RESEARCH 2023; 219:115084. [PMID: 36535396 DOI: 10.1016/j.envres.2022.115084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis appears to be an appealing approach for environmental remediation including pollutants degradation in water, air, and/or soil, due to the utilization of renewable and sustainable source of energy, i.e., solar energy. However, their broad applications remain lagging due to the challenges in pollutant degradation efficiency, large-scale catalyst production, and stability. In recent decades, massive efforts have been devoted to advance the photocatalysis technology for improved environmental remediation. In this review, the latest progress in this aspect is overviewed, particularly, the strategies for improved light sensitivity, charge separation, and hybrid approaches. We also emphasize the low efficiency and poor stability issues with the current photocatalytic systems. Finally, we provide future suggestions to further enhance the photocatalyst performance and lower its large-scale production cost. This review aims to provide valuable insights into the fundamental science and technical engineering of photocatalysis in environmental remediation.
Collapse
Affiliation(s)
- Laila Noureen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Humayun
- School of Optical and Electronics Information, Wuhan National Laboratory for Optoelectronic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Almaie S, Vatanpour V, Rasoulifard MH, Koyuncu I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. CHEMOSPHERE 2022; 306:135655. [PMID: 35817187 DOI: 10.1016/j.chemosphere.2022.135655] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
Collapse
Affiliation(s)
- Soudeh Almaie
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
4
|
Balakrishnan A, Sillanpää M, Jacob MM, Vo DVN. Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods. ENVIRONMENTAL RESEARCH 2022; 213:113613. [PMID: 35697083 DOI: 10.1016/j.envres.2022.113613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 05/20/2023]
Abstract
Metformin is a wonder drug used as an anti-hypoglycemic medication; it is also used as a cancer suppression medicament. Metformin is a first line of drug choice used by doctors for patients with type 2 diabetes. It is used worldwide where the drug's application varies from an anti-hypoglycemic medication to cancer oppression and as a weight loss treatment drug. Due to its wide range of usage, metformin and its byproducts are found in waste water and receiving aquatic environment. This leads to the accumulation of metformin in living beings and the environment where excess concentration levels can lead to ailments such as lactic acidosis or vitamin B12 deficiency. This drug could become of future water treatment concerns with its tons of production per year and vast usage. As a result of continuous occurrence of metformin has demanded the need of implementing and adopting different strategies to save the aquatic systems and the exposure to metformin. This review discuss the various methods for the elimination of metformin from wastewater. Along with that, the properties, occurrence, and health and environmental impacts of metformin are addressed. The different analytical methods for the detection of metformin are also explained. The main findings are discussed with respect to the management of metformin as an emerging contaminants and the major recommendations are discussed to understand the major research gaps.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000 Aarhus C, Denmark
| | - Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Aluminium foil-assisted NaBH4 reduced TiO2 with surface defects for photocatalytic degradation of toxic fuchsin basic dye. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo DVN, Kushwaha OS. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. CHEMOSPHERE 2022; 301:134635. [PMID: 35447212 DOI: 10.1016/j.chemosphere.2022.134635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, P.O. Box 75169-13817, Bushehr, Iran; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
7
|
Type-II heterojunction-based magnetic ZnFe2O4@CuFe2O4@SiO2 photocatalyst for photodegradation of toxic dyes from wastewater. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Nano Metal-Containing Photocatalysts for the Removal of Volatile Organic Compounds: Doping, Performance, and Mechanisms. NANOMATERIALS 2022; 12:nano12081335. [PMID: 35458043 PMCID: PMC9027785 DOI: 10.3390/nano12081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
Volatile organic compounds (VOCs) in indoor air are considered a major threat to human health and environmental safety. The development of applicable technologies for the removal of VOCs is urgently needed. Nowadays, photocatalytic oxidation (PCO) based on metal-containing photocatalysts has been regarded as a promising method. However, unmodified photocatalysts are generally limited in applications because of the narrow light response range and high recombination rate of photo-generated carriers. As a result, nano metal-containing photocatalysts doped with elements or other materials have attracted much attention from researchers and has developed over the past few decades. In addition, different doping types cause different levels of catalyst performance, and the mechanism for performance improving is also different. However, there are few reviews focusing on this aspect, which is really important for catalyst design and application. This work aims to give a comprehensive overview of nano metal-containing photocatalysts with different doping types for the removal of VOCs in an indoor environment. First, the undoped photocatalysts and the basic mechanism of PCO is introduced. Then, the application of metal doping, non-metal doping, co-doping, and other material doping in synthetic metal-containing photocatalysts are discussed and compared, respectively, and the synthesis methods, removal efficiency, and mechanisms are further investigated. Finally, a development trend for using nano metal-containing photocatalysts for the removal of VOCs in the future is proposed. This work provides a meaningful reference for selecting effective strategies to develop novel photocatalysts for the removal of VOCs in the future.
Collapse
|
9
|
Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip B, Othman N, Hossain S, Vo DVN, Alduais N. Inactivation of fungal spores from clinical environment by silver bio-nanoparticles; optimization, artificial neural network model and mechanism. ENVIRONMENTAL RESEARCH 2022; 204:111926. [PMID: 34461120 DOI: 10.1016/j.envres.2021.111926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 μL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 μl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.
Collapse
Affiliation(s)
- Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, Taiz, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000, Panchor, Johor, Malaysia
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Balkis Talip
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000, Panchor, Johor, Malaysia.
| | - Norzila Othman
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malayisa (USM), 11800, Penang Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Nayef Alduais
- Faculty of Computer Science and Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| |
Collapse
|
10
|
Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. ENVIRONMENTAL RESEARCH 2022; 203:111858. [PMID: 34389352 DOI: 10.1016/j.envres.2021.111858] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 05/22/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Collapse
Affiliation(s)
- Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Shreyas Pansambal
- Department of Chemistry, Shri Saibaba College Shirdi, 423 109, Savitribai Phule Pune University, Maharashtra, India.
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India; Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India
| | - Nguyen Thi Thanh Hai
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| |
Collapse
|
11
|
Kumar A, Thakur PR, Sharma G, Vo DVN, Naushad M, Tatarchuk T, García-Peñas A, Du B, Stadler FJ. Accelerated charge transfer in well-designed S-scheme Fe@TiO 2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO 2 greenhouse gas into CH 4 fuel. CHEMOSPHERE 2022; 287:132301. [PMID: 34826945 DOI: 10.1016/j.chemosphere.2021.132301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Designing and fabrication of smart hybrid multifunctional materials for energy/fuel production and environmental detoxification is indeed of great significance for sustainable development. Herein, we synthesized a new well-structured S-scheme heterostructure Fe@TiO2/Boron Carbon nitride (FT/BCN) with high performance tetracycline degradation and selective CO2 photo-reduction to CH4. Under visible light irradiation, 96.3% tetracycline was degraded in 60 min using best performing FT30/BCN sample with a high 83.2% total organic carbon removal in 2 h. The tetracycline degradation rate for FT30/BCN composite catalyst was ∼7 times than bare boron carbon nitride (BCN). The impact of reaction parameters as pH, presence of interfering electrolytes, light source and water matrix was also investigated. The FT30/BCN photocatalyst shows dramatic improvement in CO2 photoreduction as exhibited in 24.7 μmol g-1 h-1 CH4 and 2.4 μmol g-1 h-1 CO evolutions with optimal 91.1% CH4 selectivity. Pure BCN shows a poor 39.1% selectivity. Further, effect of alkali activation, CO2/H2O feed ratio, reducing agent and light source onto CH4 production and selectivity was also investigated. The CH4 evolution and selectivity was improved because of enhanced visible light absorption, high adsorption potential, charge carrier separation and high reducing power of photogenerated electrons induced by an effective S-scheme heterojunction between Fe@TiO2 and boron carbon nitride. An S-scheme (step-scheme) charge transfer mechanism is here operative both during tetracycline removal and CO2 reduction. The drug degradation route and photocatalytic mechanism for antibiotic removal and CO2 reduction was also predicted.
Collapse
Affiliation(s)
- Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India; School of Science and Technology, Glocal University, Saharanpur, India.
| | | | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
| | - Bing Du
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
12
|
He X, Zhu J, Tan L, Wang H, Zhou M. Phosphonium ionic liquid-promoted Ce-doped nitrogen-rich TiO 2for degradation gaseous pollutant under visible light irradiation. NANOTECHNOLOGY 2021; 33:075708. [PMID: 34666319 DOI: 10.1088/1361-6528/ac30ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Altering physicochemical properties of TiO2based on modifying the cation and anion structure of ionic liquids (ILs) is of great interests for environment. Up to date, the research involving IL-assisted synthesis of TiO2was focused on imidazolium IL, and much less attention was devoted to IL with other structures. Hence, strategy for preparation of TiO2in phosphonium IL is presented to control the growth of TiO2nanocrystals. The as-prepared noble cerium-doped nitrogen-rich phosphonium IL-TiO2photocatalyst with assisted by tributyl(propyl)phosphonium tetrafluoroborate exhibits a higher specific surface area and smaller crystallite size, which is conducive to the production of more and faster active substance, such as hydroxyl oxygen. When evaluated for photocatalysis of gaseous toluene under visible light irradiation, the sample manifests high degradation rate and efficiency, as well as excellent recycling performance due to the existence of superoxide radical produced by the Ce3+/Ce4+redox reaction. The introduction of phosphonium IL and Ce greatly enhanced charge separation efficiency and promoted production of active substances. Nitrogen also existed in the form of interstitial nitrogen and substituted nitrogen improves its response to visible light. This work shows promising application of phosphonium IL for highly enhanced TiO2photocatalytic performance.
Collapse
Affiliation(s)
- Xiaodong He
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jiamei Zhu
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Liang Tan
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Hongmin Wang
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Min Zhou
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
13
|
Oxygen-Deficient WO3/TiO2/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue. Catalysts 2021. [DOI: 10.3390/catal11111349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
At present, TiO2 is one of the most widely used photocatalytic materials. However, the narrow response range to light limits the photocatalytic performance. Herein, we reported a successful construction of self-doped R-WO3/R-TiO2/CC nanocomposites on flexible carbon cloth (CC) via electrochemical reduction to increase the oxygen vacancies (Ovs), resulting in an enhanced separation efficiency of photo-induced charge carriers. The photocurrent of R-WO3/R-TiO2/CC at −1.6 V (vs. SCE) was 2.6 times higher than that of WO3/TiO2/CC, which suggested that Ovs could improve the response to sunlight. Moreover, the photocatalytic activity of R-WO3/TiO2/CC was explored using methylene blue (MB). The degradation rate of MB could reach 68%, which was 1.3 times and 3.8 times higher than that of WO3/TiO2/CC and TiO2/CC, respectively. Furthermore, the solution resistance and charge transfer resistance of R-WO3/R-TiO2/CC were obviously decreased. Therefore, the electrochemical reduction of nanomaterials enabled a promoted separation of photogenerated electron–hole pairs, leading to high photocatalytic activity.
Collapse
|
14
|
Soni V, Raizada P, Singh P, Cuong HN, S R, Saini A, Saini RV, Le QV, Nadda AK, Le TT, Nguyen VH. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. ENVIRONMENTAL RESEARCH 2021; 202:111622. [PMID: 34245729 DOI: 10.1016/j.envres.2021.111622] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
Conventionally utilized physical and chemical routes for constructing nanoparticles are not eco-friendly. They are associated with many shortcomings like the requirement of specially designed equipment, templates, extremely high temperature, and pressure. Biosynthesis seems to be drawn unequivocal attention owing to its upsurge of applications in different fields like; energy, nutrition, pharmaceutical, and medicinal sciences. To harness the biological sources, the present review describes an environment-friendly route to generate biogenic nanoparticles from the natural plant extracts and the followed mechanisms for their synthesis, growth, and stabilization. The present review summarizes the recent trends involved in the photosynthesis of metallic nanoparticles and their effective use in controlling malaria, hepatitis, cancer, like various endemic diseases. Also, various characterization approaches, such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy, are discussed here examine the properties of as-fabricated nanoparticles. Various plant parts like leaves, stems, barks, fruit, and flowers are rich in flavonoids, phenols, steroids, terpenoids, enzymes, and alkaloids, thereby playing an essential role in reducing metal ions that generate metallic nanoparticles. Herein, the uniqueness of phytofabricated nanoparticles along with their distinctive antibacterial, antioxidant, cytotoxic, and drug delivery properties are featured. Lastly, this work highlights the various challenges and future perspectives to further synthesize biogenic metal nanoparticles toward environmental and pharmaceutical advances in the coming years.
Collapse
Affiliation(s)
- Vatika Soni
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Rangabhashiyam S
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Adesh Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thi-Thu Le
- Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, D-21502, Geesthacht, Germany
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| |
Collapse
|
15
|
Dhiman P, Kumar A, Shekh M, Sharma G, Rana G, Vo DVN, AlMasoud N, Naushad M, ALOthman ZA. Robust magnetic ZnO-Fe 2O 3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection. ENVIRONMENTAL RESEARCH 2021; 197:111074. [PMID: 33798516 DOI: 10.1016/j.envres.2021.111074] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 05/22/2023]
Abstract
This work reports synthesis of a dual-function facile heterojunction and investigation of role of the charge transfer dynamism between individual semiconductor components for superior photocatalytic and electrochemical sensing application. The bio-benevolent and sturdy ZnO/Fe2O3 heterojunctions were utilized for visible light facilitated photo-degradation of sulfamethoxazole (SMX) antibiotic and electrochemical sensing of dopamine drug (DA). The fabricated heterojunction were characterized for structural, optical, and magnetic properties. Structural studies revealed the formation of nano heterojunction containing both phases. Magnetic studies confirmed the highly pure magnetic nature of photocatalysts. ZnO/30 wt%Fe2O3 heterojunction (S2) shows 95.2% SMX degradation under visible light and high retention of performance under solar light. The scavenging experiments infer that OH radicals are the active species responsible for degradation. A Z-scheme photocatalytic mechanism was predicted for higher performance with protection of high potential VB of ZnO and CB of Fe2O3 for high generation of reactive oxygen species. LC-MS was employed to predict a plausible degradation route. The sample modified glassy carbon electrodes (GCE) were used for electrochemical sensing of dopamine via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The S2 junction exhibited 0.18 μM limit of detection with concentration range of 1 μM-50 μM. The stability test was successfully carried out at room temperature for 15 days. In addition, the S2 modified electrodes were spiked in real urine samples and good results were obtained. DPV reveals that S2 modified electrode is best sensor for dopamine sensing among all synthesized heterojunctions. The detection mechanism was also discussed in detail. The in-built metal redox i.e Zn2+/Zn+ and Fe3+/Fe2+ facilitate the Z-scheme transfer, improve the charge transfer capacity and reduce the recombination. This study is beneficial because it reports utilization of popular and well-tested semiconductor metal oxides to form heterojunctions with dual capabilities of environmental detoxification and cost-effective electrochemical detection of biomolecules.
Collapse
Affiliation(s)
- Pooja Dhiman
- School of Physics and Materials Science, Shoolini University, Solan, Himachal Pradesh 173229, India; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; School of Science & Technology, Glocal University, Saharanpur, India.
| | - Mehdihasan Shekh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Garima Rana
- School of Physics and Materials Science, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mu Naushad
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|