1
|
Tee HK, Crouzet S, Muliyil A, Mathez G, Cagno V, Dal Peraro M, Antanasijevic A, Clément S, Tapparel C. Virus adaptation to heparan sulfate comes with capsid stability tradeoff. eLife 2024; 13:e98441. [PMID: 39714930 PMCID: PMC11717363 DOI: 10.7554/elife.98441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Simon Crouzet
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Arunima Muliyil
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Matteo Dal Peraro
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
2
|
Cheng CC, Chu PH, Huang HW, Ke GM, Ke LY, Chu PY. Phylodynamic and Epistatic Analysis of Coxsackievirus A24 and Its Variant. Viruses 2024; 16:1267. [PMID: 39205241 PMCID: PMC11359322 DOI: 10.3390/v16081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Coxsackievirus A24 (CV-A24) is a human enterovirus that causes acute flaccid paralysis. However, a Coxsackievirus A24 variant (CV-A24v) is the most common cause of eye infections. The causes of these variable pathogenicity and tissue tropism remain unclear. To elucidate the phylodynamics of CV-A24 and CV-A24v, we analyzed a dataset of 66 strains using Bayesian phylodynamic approach, along with detailed sequence variation and epistatic analyses. Six CV-A24 strains available in GenBank and 60 CV-A24v strains, including 11 Taiwanese strains, were included in this study. The results revealed striking differences between CV-A24 and CV-A24v exhibiting long terminal branches in the phylogenetic tree, respectively. CV-A24v presented distinct ladder-like clustering, indicating immune escape mechanisms. Notably, 10 genetic recombination events in the 3D regions were identified. Furthermore, 11 missense mutation signatures were detected to differentiate CV-A24 and CV-A24v; among these mutations, the F810Y substitution may significantly affect the secondary structure of the GH loop of VP1 and subsequently affect the epitopes of the capsid proteins. In conclusion, this study provides critical insights into the evolutionary dynamics and epidemiological characteristics of CV-A24 and CV-A24v, and highlights the differences in viral evolution and tissue tropism.
Collapse
Affiliation(s)
- Chia-Chi Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Pei-Huan Chu
- Department of Cardiology, Wei-Gong Memorial Hospital, Miaoli 351498, Taiwan;
| | - Hui-Wen Huang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan;
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| |
Collapse
|
3
|
Weng KF, Tee HK, Tseligka ED, Cagno V, Mathez G, Rosset S, Nagamine CM, Sarnow P, Kirkegaard K, Tapparel C. Variant enterovirus A71 found in immune-suppressed patient binds to heparan sulfate and exhibits neurotropism in B-cell-depleted mice. Cell Rep 2023; 42:112389. [PMID: 37058406 PMCID: PMC10590055 DOI: 10.1016/j.celrep.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease outbreaks with neurological complications and deaths. We previously isolated an EV-A71 variant in the stool, cerebrospinal fluid, and blood of an immunocompromised patient who had a leucine-to-arginine substitution on the VP1 capsid protein, resulting in increased heparin sulfate binding. We show here that this mutation increases the virus's pathogenicity in orally infected mice with depleted B cells, which mimics the patient's immune status, and increases susceptibility to neutralizing antibodies. However, a double mutant with even greater heparin sulfate affinity is not pathogenic, suggesting that increased heparin sulfate affinity may trap virions in peripheral tissues and reduce neurovirulence. This research sheds light on the increased pathogenicity of variant with heparin sulfate (HS)-binding ability in individuals with decreased B cell immunity.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Stéphane Rosset
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
4
|
Xie Y, Hu Q, Jiang W, Ji W, Chen S, Jin Y, Duan G. Laboratory Indicators for Identifying Hand, Foot, and Mouth Disease Severity: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:1829. [PMID: 36366337 PMCID: PMC9694715 DOI: 10.3390/vaccines10111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The purpose of this study is to study laboratory indicators for the identification of hand, foot, and mouth disease (HFMD) severity. METHODS We searched PubMed, Embase, and the Web of Science for literature that was published before May 2022. The main results are presented as forest plots. Subgroup analyses, sensitivity analyses, and publication bias were also performed. RESULTS Our study indicated that white blood cells (WBC) (95%CI: 0.205-0.778), blood glucose (95%CI: 0.505-0.778), lymphocytes (95%CI: 0.072-0.239), creatinine (95%CI: 0.024-0.228), interleukin (IL)-2 (95%CI: 0.192-1.642), IL-6 (95%CI: 0.289-0.776), IL-8 (95%CI: 0.499-0.867), IL-10 (95%CI: 0.226-0.930), interferon-γ (IFN-γ) (95%CI: 0.193-2.584), tumor necrosis factor-α (TNF-α) (95%CI: 1.078-2.715), and creatine kinase MB isoenzyme (CK-MB) (95%CI: 0.571-1.459) were associated with an increased risk of HFMD severity, and the results of the sensitivity analysis of these indicators were stable and free of publication bias. CONCLUSIONS Our results suggest that various deleterious immune and metabolic changes can increase the risk of HFMD severity, which can provide a basis for predicting the prognosis and useful evidence for clinicians to manage patients efficiently.
Collapse
Affiliation(s)
- Yaqi Xie
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanman Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
He F, Rui J, Deng Z, Zhang Y, Qian K, Zhu C, Yu S, Tu J, Xia W, Zhu Q, Chen S, Chen T, Zhou X. Surveillance, Epidemiology and Impact of EV-A71 Vaccination on Hand, Foot, and Mouth Disease in Nanchang, China, 2010-2019. Front Microbiol 2022; 12:811553. [PMID: 35069515 PMCID: PMC8770912 DOI: 10.3389/fmicb.2021.811553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
After the first national-scale outbreak of Hand, foot, and mouth disease (HFMD) in China, a national surveillance network was established. Here we described the epidemiology and pathogenic profile of HFMD and the impact of EV-A71 vaccination on pathogen spectrum of enteroviruses in the southeastern Chinese city of Nanchang during 2010–2019. A total of 7,951 HFMD cases from sentinel hospitals were included, of which 4,800 EV-positive cases (60.4%) were identified by real-time RT-PCR. During 2010–2012, enterovirus 71 (EV-A71) was the main causative agent of HFMD, causing 63.1% of cases, followed by 19.3% cases associated with coxsackievirus A16 (CV-A16). Since 2013, the proportion of other enteroviruses has increased dramatically, with the sub genotype D3 strain of Coxsackievirus A6 (CV-A6) replacing the dominance of EV-A71. These genetically diverse native strains of CV-A6 have co-transmitted and co-evolved in Nanchang. Unlike EV-A71 and CV-A16, most CV-A6 infections were concentrated in autumn and winter. The incidence of EV-A71 infection negatively correlated with EV-A71 vaccination (r = −0.990, p = 0.01). And severe cases sharply declined as the promotion of EV-A71 vaccines. After 2-year implementation of EV-A71 vaccination, EV-A71 is no longer detected from the reported HFMD cases in Nanchang. In conclusion, EV-A71 vaccination changed the pattern of HFMD epidemic, and CV-A6 replaced the dominance of EV-A71 over time.
Collapse
Affiliation(s)
- Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhiqiang Deng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yanxia Zhang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ke Qian
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Shanshan Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Junling Tu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Wen Xia
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Qingxiong Zhu
- Department of Pediatrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xianfeng Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
6
|
Analysis of the Complete Genomes of Enterovirus 71 Subtypes in China. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2021; 2021:5564099. [PMID: 34484496 PMCID: PMC8416384 DOI: 10.1155/2021/5564099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV-A71) is one of the most pathogens to hand, foot, and mouth disease (HFMD) as well as neurological complications in young children. Molecular characteristic of EV-A71 is important to prevent the virus outbreak. Here, the complete genomes of EV-A71 from China between 1998 and 2019 were downloaded from GenBank. The phylogenetic trees were developed by MEGA7.0 software, and the complete genetic epidemiological characteristics and amino acid mutations of EV-A71 from China were also analysed. The results showed that major epidemic EV-A71 subtype was C4b before 2004, while it turned to C4a after 2004 in mainland China, and C4 and B5 were major subtypes in Taiwan. VP1, VP4, 2C, 3C, 3D, and complete genome sequence can be used for virus genotyping, and VP1, VP4, and complete genomes have obvious advantages over other segments. There were many significant mutations in the viral complete genome sequence. This study indicated that the major C4 and B5 subtypes will contribute to the development of vaccines and drugs of EV-A71 for prevention and monitoring of EV-A71-associated HFMD in China.
Collapse
|
7
|
Jiang Z, Zhang Y, Lin H, Cheng Q, Lu X, Liu W, Zhou R, Zhong B, Tian X. A 10-Day-Old Murine Model of Coxsackievirus A6 Infection for the Evaluation of Vaccines and Antiviral Drugs. Front Immunol 2021; 12:665197. [PMID: 34054834 PMCID: PMC8155526 DOI: 10.3389/fimmu.2021.665197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus A6 (CVA6) is recognized as a major enterovirus type that can cause severe hand, foot, and mouth disease and spread widely among children. Vaccines and antiviral drugs may be developed more effectively based on a stable and easy-to-operate CVA6 mouse infection model. In this study, a wild CVA6-W strain was sub-cultured in newborn mice of different ages (in days), for adaptation. Therefore, a CVA6-A mouse-adapted strain capable of stably infecting the mice was generated, and a fatal model was built. As the result indicated, CVA6-A could infect the 10-day-old mice to generate higher levels of IFN-γ, IL-6, and IL-10. The mice infected with CVA6-A were treated with IFN-α1b at a higher dose, with complete protection. Based on this strain, an animal model with active immunization was built to evaluate antiviral protection by active immunization. The three-day-old mice were pre-immunized with inactivated CVA6 thereby generating IgM and IgG antibodies within 7 days that enabled complete protection of the pre-immunized mice following the CVA6 virus challenge. There were eight mutations in the genome of CVA6-A than in that of CVA6-W, possibly attributed to the virulence of CVA6 in mice. Briefly, the CVA6 infection model of the 10-day-old mice built herein, may serve as an applicable preclinical evaluation model for CVA6 antiviral drugs and vaccine study.
Collapse
Affiliation(s)
- Zaixue Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Yaozhong Zhang
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Huayuan Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qingqiu Cheng
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Xiaomei Lu
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Baimao Zhong
- Dongguan Institute of Paediatrics, Dongguan Children's Hospital, The Eighth People's Hospital of Dongguan City, Guangdong Medical University, Dongguan, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Huang B, Chen H, Zheng Y. MiR-103/miR-107 inhibits enterovirus 71 replication and facilitates type I interferon response by regulating SOCS3/STAT3 pathway. Biotechnol Lett 2021; 43:1357-1369. [PMID: 33796959 DOI: 10.1007/s10529-021-03115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Enterovirus71 (EV71), the major cause of hand, foot, and-mouth disease (HFMD), has increasingly become a public health challenge. Type I interferons (IFNs) can regulate innate and adaptive immune responses to pathogens. MicroRNAs (miRNAs) play regulatory roles in host innate immune responses to viral infections. However, the roles of miR-103 and miR-107 in EV71 infection remain unclear. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of miR-103, miR-107, suppressor of cytokine signaling 3 (SOCS3), VP1, IFN-α, and IFN-β. Virus titers were measured by 50% tissue culture infectious dose (TCID50) assay. Western blot assay was conducted to detect the protein levels of VP1, IFN-α, IFN-β, SOCS3, signal transducer and activator of transcription 3 (STAT3), and phospho-STAT3 (p-STAT3). Immunofluorescence assay was used to detect the protein level of VP1. The concentrations of IFN-α and IFN-β were examined by Enzyme-linked immunosorbent assay (ELISA). The interaction between SOCS3 and miR-103/miR-107 was predicted by starBase and verified by dual-luciferase reporter assay and RNA pull-down assay. RESULTS MiR-103 and miR-107 were downregulated and SOCS3 was upregulated in serum from patients with EV71 and EV71-infected cells. Overexpression of miR-103 and miR-107 repressed EV71 replication by inhibiting EV71 titers and VP1 expression. Moreover, upregulation of miR-103 and miR-107 enhanced EV71-triggered the production of type I IFNs. In addition, miR-103 and miR-107 directly targeted SOCS3, and SOCS3 upregulation reversed the effects of miR-103 and miR-107 on EV71 replication and type I IFN response. Importantly, miR-103 and miR-107 increased STAT3 phosphorylation by targeting SOCS3 after EV71 infection. CONCLUSION MiR-103 and miR-107 suppressed EV71 replication and increased the production of type I IFNs by regulating SOCS3/STAT3 pathway, which might provide a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Baizhi Huang
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China.
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, No. 111 Humen Avenue, Humen Town, Dongguan City, 523900, Guangdong Province, China.
| | - Haiping Chen
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Yanbing Zheng
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
9
|
Molecular epidemiology and recombination of Enterovirus A71 in mainland China from 1987 to 2017. Int Microbiol 2021; 24:291-299. [PMID: 33608776 PMCID: PMC7895512 DOI: 10.1007/s10123-021-00164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
Enterovirus A71 (EV-A71) is an important pathogen of severe hand, foot, and mouth disease (HFMD) in young children. This study aimed to retrospectively analyze the molecular epidemiology and recombination of EV-A71 in mainland China during 1987–2017. Phylogenetic tree showed that besides the previously reported subgenotypes A, B5, C0, C2, C3, and C4, a new subgenotype C6 emerged in mainland China. Recombination analysis indicated that C4 EV-A71 was derived from a common ancestor as a “double-recombinant” virus by intertypic recombination between C EV-A71 and CVA4, CVA5, CVA14, and CVA16 strains in P3 region and intratypic recombination between C and B EV-A71 strains in P2 region. The B5 EV-A71 shared high similarity with C EV-A71 in P1 region while it contained an unidentified sequence in P2 and P3 regions with two possible recombination patterns: one occurred between C4 EV-A71 and CVA3, CVA5, CVA6, CVA10, and CVA12 stains with one breakpoint in 3C, and the other occurred between C1, C2, C3, and C5 EV-A71 and CVA4, CVA5, CVA14, and CVA16 strains with two breakpoints in the 2A/2B junction and 3C. The C2 EV-A71 was probably a recombinant virus between C4 EV-A71 and CVA8 strains with two breakpoints located in the 5′UTR and 2A/2B junction. Moreover, an incredible recombination of C6 EV-A71 occurred between C4 and C2 EV-A71 with multiple breakpoints. Thus, continuous studies on EV-A71 genome characteristics are still useful and essential for monitoring emergence of new viruses and preventing HFMD outbreaks.
Collapse
|
10
|
Xu L, Qi M, Ma C, Yang M, Huang P, Sun J, Shi J, Hu Y. Natural intertypic and intratypic recombinants of enterovirus 71 from mainland China during 2009-2018: a complete genome analysis. Virus Genes 2021; 57:172-180. [PMID: 33575934 PMCID: PMC7877514 DOI: 10.1007/s11262-021-01830-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Surveillance of recombinant enterovirus 71 (EV71) and subgenotype replacement is vital for preventing and controlling hand, foot, and mouth disease (HFMD) outbreaks. Despite this, data on recombinant variants and phylogeny of circulating EV71 strains in mainland China are limited. In this study, recombinant variants of EV71 were identified in mainland China from 2009 to 2018. Phylogenetic analysis indicated that except for individual strains (CQ2014-86/CQ/CHN/2014 and EV71/Xiamen/2009 (B5)), almost all of the EV71 strains in mainland China belonged to the subgenotype C4a. Analysing complete genome sequences of 196 EV71 isolates, 3 intertypic recombination strains (VR1432, 30-2/2015/BJ, and Guangdong-2009) and 5 intratypic recombination strains (EV71/P1034/2013, VR1432, Henan-ZMD/CHN/2012, Hubei-WH/CHN/2012, and EV71/P868/2013/China) were identified among naturally circulating EV71. The breakpoints of these recombinant strains were located within the P1, P2, and P3 encoding regions. Notably, a double recombinant (VR1432) resulting from recombination between EV71 subgenotype C4a and C4b strain SHZH98 and a CA8 strain Donovan was identified. This study reports these specific intertypic and intratypic recombination events for the first time highlighting the importance of genetic recombination in the emergence of new enterovirus variants.
Collapse
Affiliation(s)
- Liangzi Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Mengdi Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Chunli Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Mengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Pu Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China.
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China.
| |
Collapse
|
11
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
12
|
Meng T, Wong SM, Chua KB. Sulfonated azo dyes enhance the genome release of enterovirus A71 VP1-98K variants by preventing the virions from being trapped by sulfated glycosaminoglycans at acidic pH. Virology 2021; 555:19-34. [PMID: 33422703 DOI: 10.1016/j.virol.2020.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Enterovirus A71 (EV-A71) is a causative agent of hand, foot and mouth disease and occasionally causes death in children. Its infectivity and pathogenesis, however, remain to be better understood. Three sulfonated azo dyes, including acid red 88 (Ar88), were identified to enhance the infectivity of EV-A71, especially isolates with VP1-98K, 145E (-KE), by mainly promoting viral genome release in vitro. Enzymatic removal of sulfated glycosaminoglycans (GAGs) or knockout of xylosyltransferase II (XT2) responsible for biosynthesis of sulfated GAGs weakened the Ar88 enhanced EV-A71 infection. Ar88 is proposed to prevent the -KE variants from being trapped by sulfated GAGs at acidic pH and to facilitate the viral interaction with uncoating factors for genome release in endosomes. The results suggest dual roles of sulfated GAGs as attachment factors and as decoys during host interaction of EV-A71 and caution that these artificial dyes in our environment can enhance viral infection.
Collapse
Affiliation(s)
- Tao Meng
- Temasek Life Sciences Laboratory Limited, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Temasek Life Sciences Laboratory Limited, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Republic of Singapore; NUS Suzhou Research Institute, Suzhou, People's Republic of China.
| | - Kaw-Bing Chua
- Temasek Life Sciences Laboratory Limited, Republic of Singapore.
| |
Collapse
|
13
|
Sun H, Gao M, Cui D. Molecular characteristics of the VP1 region of enterovirus 71 strains in China. Gut Pathog 2020; 12:38. [PMID: 32818043 PMCID: PMC7427758 DOI: 10.1186/s13099-020-00377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background Enterovirus 71 (EV71) is the most commonly implicated causative agent of severe outbreaks of paediatric hand, foot, and mouth disease (HFMD).VP1 protein, a capsid protein of EV71, is responsible for the genotype of the virus and is essential for vaccine development and effectiveness. However, the genotypes of EV71 isolates in China are still not completely clear. Methods The VP1 gene sequences of 3712 EV71 virus strains from China, excluding repetitive sequences and 30 known EV71 genotypes as reference strains, between 1986 and 2019 were obtained from GenBank. Phylogenetic tree, amino acid homology, genetic variation and genotype analyses of the EV71VP1 protein were performed with MEGA 6.0 software. Results The amino acid identity was found to be 88.33%–100% among the 3712 EV71 strains, 93.47%–100% compared with vaccine strain H07, and 93.04%–100% compared with vaccine strains FY7VP5 or FY-23 K-B. Since 2000, the prevalent strains of EV71 were mainly of the C4 genotype. Among these, the C4a subgenotype was predominant, followed by the C4b subgenotype; other subgenotypes appeared sporadically between 2005 and 2018 in mainland China. The B4 genotype was the main genotype in Taiwan, and the epidemic strains were constantly changing. Some amino acid variations in VP1 of EV71 occurred with high frequencies, including A289T (20.99%), H22Q (16.49%), A293S (15.95%), S283T (15.11%), V249I (7.76%), N31D (7.25%), and E98K (6.65%). Conclusion The C4 genotype of EV71 in China matches the vaccine and should effectively control EV71. However, the efficacy of the vaccine is partially affected by the continuous change in epidemic strains in Taiwan. These results suggest that the genetic characteristics of the EV71-VP1 region should be continuously monitored, which is critical for epidemic control and vaccine design to prevent EV71 infection in children.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, 312000 Zhejiang China
| | - Min Gao
- Department of Laboratory Medicine, Huzhou Central Hospital, Huzhou, 313003 Zhejiang China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses 2020; 12:v12080883. [PMID: 32823486 PMCID: PMC7472116 DOI: 10.3390/v12080883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of human hand, foot, and mouth disease (hHFMD) and has evolved to use various cellular receptors for infection. However, the relationship between receptor preference and EV71 virulence has not been fully revealed. By using reverse genetics, we identified that a single E98K mutation in VP1 is responsible for rapid viral replication in vitro. The E98K mutation enhanced binding of EV71-GZCII to cells in a heparan sulfate (HS)-dependent manner, and it attenuated the virulence of EV71-GZCII in BALB/c mice, indicating that the HS-binding property is negatively associated with viral virulence. HS is widely expressed in vascular endothelial cells in different mouse tissues, and weak colocalization of HS with scavenger receptor B2 (SCARB2) was detected. The cGZCII-98K virus bound more efficiently to mouse tissue homogenates, and the cGZCII-98K virus titers in mouse tissues and blood were much lower than the cGZCII virus titers. Together, these findings suggest that the enhanced adsorption of the cGZCII-98K virus, which likely occurs through HS, is unable to support the efficient replication of EV71 in vivo. Our study confirmed the role of HS-binding sites in EV71 infection and highlighted the importance of the HS receptor in EV71 pathogenesis.
Collapse
|
15
|
Wang J, Zhou J, Xie G, Zheng S, Lou B, Chen Y, Wu Y. The Epidemiological and Clinical Characteristics of Hand, Foot, and Mouth Disease in Hangzhou, China, 2016 to 2018. Clin Pediatr (Phila) 2020; 59:656-662. [PMID: 32146823 DOI: 10.1177/0009922820910822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is most frequently caused by several serotypes of human enterovirus (EV) including Enterovirus 71 (EV-A71), coxsackievirus A16 (CV-A16), or other types of EV. The aim of this study was to determine the epidemiological characteristics of HFMD and to describe the epidemiologic characteristics of HFMD among severe and mild cases. We collected 4760 HFMD cases in Hangzhou from 2016 to 2018. Specimens from these cases were collected and tested for EV-A71, CV-A16, CV-A6, CV-A10, CV-A2, and CV-A5 by reverse transcriptase polymerase chain reaction. From 2016 to 2018, the prevalence of HFMD was seasonal each year. Among the 4760 probable HFMD cases, 3559 cases were confirmed (74.8%), including 426 cases of EV-A71 infections (8.9%), 249 cases of CV-A16 infections (5.2%), and 2884 cases of other EV infections (60.6%). The percentage of other EV infections was more than 80%, which increased year by year. Random selection of samples for detection of other EV infections in 2017 and 2018, among the 1297 cases, showed there were 835 (64.4%) cases of CV-A6 infections, 177 (13.6%) cases of CV-A10 infections, 100 (7.7%) cases of CV-A2 infections, 40 (3.1%) cases of CV-A5 infections, 3 (0.02 %) cases of mixed infections, and 11.0% untyped EV infections. Preschool children were still the primary population susceptible to HFMD. In severe cases, EV-A71 infection was the main cause. Characterizing the epidemiology and the relationship between severe and common cases of HFMD would provide relevant evidences for the prevention and treatment of HFMD.
Collapse
Affiliation(s)
- Jie Wang
- Hangzhou Children's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Zhou
- Hangzhou Children's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Guoliang Xie
- First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, People's Republic of China
| | - Shufa Zheng
- First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, People's Republic of China
| | - Bin Lou
- First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yu Chen
- First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yidong Wu
- Hangzhou Children's Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
TREM-1 activation is a potential key regulator in driving severe pathogenesis of enterovirus A71 infection. Sci Rep 2020; 10:3810. [PMID: 32123257 PMCID: PMC7052206 DOI: 10.1038/s41598-020-60761-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022] Open
Abstract
Hand, foot and mouth disease (HFMD), caused by enterovirus A71 (EV-A71), presents mild to severe disease, and sometimes fatal neurological and respiratory manifestations. However, reasons for the severe pathogenesis remain undefined. To investigate this, infection and viral kinetics of EV-A71 isolates from clinical disease (mild, moderate and severe) from Sarawak, Malaysia, were characterised in human rhabdomyosarcoma (RD), neuroblastoma (SH-SY5Y) and peripheral blood mononuclear cells (PBMCs). High resolution transcriptomics was used to decipher EV-A71-host interactions in PBMCs. Ingenuity analyses revealed similar pathways triggered by all EV-A71 isolates, although the extent of activation varied. Importantly, several pathways were found to be specific to the severe isolate, including triggering receptor expressed on myeloid cells 1 (TREM-1) signalling. Depletion of TREM-1 in EV-A71-infected PBMCs with peptide LP17 resulted in decreased levels of pro-inflammatory genes for the moderate and severe isolates. Mechanistically, this is the first report describing the transcriptome profiles during EV-A71 infections in primary human cells, and the potential involvement of TREM-1 in the severe disease pathogenesis, thus providing new insights for future treatment targets.
Collapse
|
17
|
Wang CR. Pathogenesis of hand-foot-mouth disease caused by enterovirus 71. Shijie Huaren Xiaohua Zazhi 2019; 27:1465-1472. [DOI: 10.11569/wcjd.v27.i24.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand-foot-mouth disease (HFMD) is a global infectious disease. The infected population is mainly infants and young children. Enterovirus 71 (EV71) is the main pathogen. In addition to HFMD, EV71 infection can also affect the nervous system and other organs, resulting in aseptic meningitis, brainstem encephalitis, and poliomyelitis-like paralysis, causing serious harm to children's health. At present, the pathogenesis of HFMD caused by EV71 is still unclear, and there is no effective treatment. In this paper, we discuss the factors influencing EV71 infection from the aspects of virus gene recombination and spontaneous mutation, host genes, and receptor sites, review the pathogenesis of HFMD caused by EV71 based on the study findings from animal infection models, and explore the main problems in the study of pathogenesis of this condition, in order to provide reference for the prevention and treatment of HFMD and for the development of new drugs or effective vaccines for EV71 infection.
Collapse
Affiliation(s)
- Chun-Rong Wang
- Institute for Viral Disease Detection, Jinan Center for Disease Control and Prevention, Jinan 250021, Shandong Province, China
| |
Collapse
|
18
|
Sun L, Tijsma A, Mirabelli C, Baggen J, Wahedi M, Franco D, De Palma A, Leyssen P, Verbeken E, van Kuppeveld FJM, Neyts J, Thibaut HJ. Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerg Microbes Infect 2019; 8:1076-1085. [PMID: 31339457 PMCID: PMC6711088 DOI: 10.1080/22221751.2019.1644142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology.
Collapse
Affiliation(s)
- Liang Sun
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Aloys Tijsma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Carmen Mirabelli
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Jim Baggen
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Maryam Wahedi
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - David Franco
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Armando De Palma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Pieter Leyssen
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Erik Verbeken
- c Department of Imaging & Pathology, KU Leuven , Leuven , Belgium
| | - Frank J M van Kuppeveld
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Johan Neyts
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Hendrik Jan Thibaut
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium.,b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
19
|
Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive enterovirus A71 virulence in mice. PLoS Pathog 2019; 15:e1007863. [PMID: 31730673 PMCID: PMC6881073 DOI: 10.1371/journal.ppat.1007863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71. Enterovirus A71 (EV-A71) is the primary cause of hand, foot and mouth disease, and it can also infect the central nervous system and cause fatal outbreaks in young children. EV-A71 pathogenesis remains elusive. In this study, we demonstrated that EV-A71 variants with strong affinity to heparan sulfate (heparin) have a growth advantage in cell culture, but are disadvantaged in vivo. When inoculated into one-day old mice, strong heparin-binding virus variants are more likely to be adsorbed to peripheral tissues, resulting in impaired ability to disseminate, and are cleared from the bloodstream rapidly. The lower viremia level resulted in no neuroinvasion. In contrast, weak heparin-binding variants show greater levels of viremia, dissemination and subsequent neurovirulence in mice. We also provide evidence that the EV-A71 heparin-binding pattern is mediated by electrostatic surface charges on the virus capsid surface. In mice, EV-A71 undergoes adaptive mutation to acquire greater negative surface charges, thus generating new virulent variants with weak heparin-binding ability which allows greater viral spread. Our study underlines the importance of electrostatic surface charges in shaping EV-A71 virulence.
Collapse
|
20
|
Novel infectious myonecrosis virus (IMNV) genotypes associated with disease outbreaks on Penaeus vannamei shrimp farms in Indonesia. Arch Virol 2019; 164:3051-3057. [PMID: 31531743 DOI: 10.1007/s00705-019-04408-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Infectious myonecrosis virus (IMNV) is one of the most pathogenic viruses that affect Penaeus vannamei shrimp. In 2018, IMNV was reported in grow-out ponds of P. vannamei in Situbondo, Indonesia. Diseased animals displayed clinical signs of infectious myonecrosis (IMN) characterized by white discoloration of skeletal muscle. Histopathology of affected shrimp revealed lesions that are pathognomonic of IMNV infection. The major capsid protein (MCP) gene was amplified and sequenced from representative samples showing IMN pathology. Multiple alignment of predicted amino acid sequences of the MCP gene with known IMNV genotypes in the GenBank database revealed three unique genotypes, SB-A, SB-B and SB-C,in Situbondo samples. The number of amino acid changes in SB-A, SB-B and SB-C compared to known IMNV genotypes ranged from 7-710, including the isolate SB-B, which contains deletion of 622 aa. A phylogenetic analysis using homologous sequences from Brazil and Indonesia showed that these three isolates represent new IMNV genotypes.
Collapse
|
21
|
In Vitro and In Vivo Inhibition of the Infectivity of Human Enterovirus 71 by a Sulfonated Food Azo Dye, Brilliant Black BN. J Virol 2019; 93:JVI.00061-19. [PMID: 31167919 DOI: 10.1128/jvi.00061-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD), a highly contagious disease in children, is caused by human enteroviruses, including enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus A6 (CVA6). Although HFMD is usually mild and self-limiting, EV71 infection occasionally leads to fatal neurological disorders. Currently, no commercial antiviral drugs for HFMD treatment are available. Here, numerous sulfonated azo dyes, widely used as food additives, were identified as having potent antiviral activities against human enteroviruses. Among them, brilliant black BN (E151) was able to inhibit all EV71, CVA16, and CVA6 strains tested. In rhabdomyosarcoma cells, the 50% inhibitory concentrations of the dye E151 for various strains of EV71 ranged from 2.39 μM to 28.12 μM, whereas its 50% cytotoxic concentration was 1,870 μM. Food azo dyes, including E151, interacted with the vertex of the 5-fold axis of EV71 and prevented viral entry. Their efficacy in viral inhibition was regulated by amino acids at VP1-98, VP1-145, and/or VP1-246. Dye E151 not only prevented EV71 attachment but also eluted attached viruses in a concentration-dependent manner. Moreover, E151 inhibited the interaction between EV71 and its cellular uncoating factor cyclophilin A. In vivo studies demonstrated that E151 at a dose of 200 mg/kg of body weight/day given on the initial 4 days of challenge protected AG129 mice challenged with 10× the 50% lethal dose of wild-type EV71 isolates. Taken together, these data highlight E151 as a promising antiviral agent against EV71 infection.IMPORTANCE Human enterovirus 71 (EV71) is one of the causative agents of hand, foot, and mouth disease in children and is responsible for thousands of deaths in the past 20 years. Food azo dyes have been widely used since the nineteenth century; however, their biological effects on humans and microbes residing in humans are poorly understood. Here, we discovered that one of these dyes, brilliant black BN (E151), was particularly effective in inhibiting the infectivity of EV71 in both cell culture and mouse model studies. Mechanistic studies demonstrated that these sulfonated dyes mainly competed with EV71 attachment factors for viral binding to block viral attachment/entry to host cells. As no commercial antiviral drugs against EV71 are currently available, our findings open an avenue to exploit the development of permitted food dye E151 as a potential anti-EV71 agent.
Collapse
|
22
|
A decade of sustained selection pressure on two surface sites of the VP1 protein of Enterovirus A71 suggests that immune evasion may be an indirect driver for virulence. Sci Rep 2019; 9:5427. [PMID: 30931960 PMCID: PMC6443798 DOI: 10.1038/s41598-019-41662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
Collapse
|
23
|
Zeng S, Meng X, Huang Q, Lei N, Zeng L, Jiang X, Guo X. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo. Int J Antimicrob Agents 2018; 53:362-369. [PMID: 30599241 DOI: 10.1016/j.ijantimicag.2018.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
Hand-foot-mouth disease (HFMD) is a common viral disease in young children, mainly caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Specific antiviral agents are not commercially available yet. Here we report that the macrolide antibiotics spiramycin (SPM) and azithromycin (AZM) possess antiviral activities against EV-A71 and CV-A16. SPM significantly reduced EV-A71 RNA and protein levels, most likely through interfering with viral RNA replication. The SPM-resistant EV-A71 variants showed similar resistance to AZM, indicating a similar anti-EV-A71 mechanism by which these two drugs exert their functions. The mutations of these variants were reproducibly mapped to VP1 and 2A, which were confirmed to confer resistance to SPM. Animal experiments showed that AZM possesses stronger anti-infection efficacy than SPM, greatly alleviated the disease symptoms and increased the survival rate in a mouse model severely infected with EV-A71. In all, our work suggests that AZM is a potential treatment option for EV-A71-induced HFMD, whose proved safety for infants and children makes it even more promising.
Collapse
Affiliation(s)
- Shinuan Zeng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou 514031, China
| | | | - Nanfeng Lei
- Meizhou People's Hospital, Meizhou 514031, China
| | - Lingbin Zeng
- Meizhou People's Hospital, Meizhou 514031, China
| | - Xinying Jiang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Meizhou People's Hospital, Meizhou 514031, China.
| |
Collapse
|
24
|
Zhu J, Chen N, Zhou S, Zheng K, Sun L, Zhang Y, Cao L, Zhang X, Xiang Q, Chen Z, Wang C, Fan C, He Q. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg Microbes Infect 2018; 7:205. [PMID: 30518755 PMCID: PMC6281673 DOI: 10.1038/s41426-018-0201-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Abstract
Enterovirus A71 (EV-A71) is a major etiological agent of human hand, foot and mouth disease, and it can cause severe neurological complications. Although several genotypes of EV-A71 strains are prevalent in different regions of the world, the genotype C4 has circulated in mainland China for more than 20 years. The pathogenicity of different EV-A71 clinical isolates varies and needs to be explored. In this study, hSCARB2 knock-in mice (N = 181) with a wide range of ages were tested for their susceptibility to two EV-A71 strains with the subgenotypes C4 and C2, and two infection routes (intracranial and venous) were compared. The clinical manifestations and pathology and their relationship to the measured viral loads in different tissues were monitored. We observed that 3 weeks is a crucial age, as mice younger than 3-week-old that were infected became extremely ill. However, mice older than 3 weeks displayed diverse clinical symptoms. Significant differences were observed in the pathogenicity of the two strains with respect to clinical signs, disease incidence, survival rate, and body weight change. We concluded that hSCARB2 knock-in mice are a sensitive model for investigating the clinical outcomes resulting from infection by different EV-A71 strains. The intracranial infection model appears to be suitable for evaluating EV-A71 neurovirulence, whereas the venous infection model is appropriate for studying the pathogenicity of EV-A71.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lina Cao
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Chenfei Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China.
- Department of Medical Microbiology and Immunology, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
25
|
Chen H, Cheng Y, Liang X, Meng JT, Zuo HJ, Su LY, Wang XX, Yang CB, Luan RS. Molecular characterization of enterovirus 71 sibling strains for thermal adaption in Vero cells with adaptive laboratory evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:44-50. [PMID: 30347249 DOI: 10.1016/j.meegid.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Enterovirus 71 is the main pathogen that causes severe and fatal hand-foot-mouth-disease (HFMD) cases. As the enterovirus virus mutation has implications for pathogenesis, vaccine development, antiviral therapy, and epidemiological disease management of the virus. In this study, we investigated the variations of enterovirus 71 in thermal adaption, using the method of adaptive laboratory evolution. The sibling virus strains were isolated from a 2-year-old severe case of HFMD (#100) and her symptomless close contact (#101). Both strains were cultured in Vero cells by serial passage of 36 generations at the temperatures of 28.0 °C, 33.0 °C and 39.5 °C to construct adaptive lineages. According to the comparative analysis of phenotypes between adapted strains and parental strains, differences in growth rate were observed in the sibling lineages and a larger plaque was found mainly in the hot adapted strains for lineage #101. Two sets of adaptive strains from six time points (parental, 12th 17th, 31st, 35th passage and endpoint) were sequenced and analyzed by both Sanger sequencing and Next Generation Sequencing. Several variations in most coding genes and one reverse mutation in 5'UTR was observed, along with the identity of 99.8% for complete genome for both lineages. Notably, thermal specific non-synonymous mutations were found in the gene of VP1\VP3\3A\2C\3C. Moreover, the concurrent mutations A292G, A434G and A355C/T of sibling lineages in VP1 showed quantificational trace with distinguishing patterns for different temperatures, which were suspected to be the thermo-sensitive mutation hotspots. These results highlight the possible rules of thermal adaption in enterovirus 71, produce a novel picture of genome evolution of the virus, and shed light on viral variation and evolution.
Collapse
Affiliation(s)
- Heng Chen
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Yue Cheng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Jian-Tong Meng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Hao-Jiang Zuo
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Yuan Su
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xi-Xi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Cai-Bin Yang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Rong-Sheng Luan
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
26
|
Dissecting complicated viral spreading of enterovirus 71 using in situ bioorthogonal fluorescent labeling. Biomaterials 2018; 181:199-209. [DOI: 10.1016/j.biomaterials.2018.07.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
|
27
|
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog 2018; 14:e1007190. [PMID: 30075025 PMCID: PMC6093697 DOI: 10.1371/journal.ppat.1007190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HES-SO/University of Applied Sciences, Geneva, Western Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
28
|
Kobayashi K, Sudaka Y, Takashino A, Imura A, Fujii K, Koike S. Amino Acid Variation at VP1-145 of Enterovirus 71 Determines Attachment Receptor Usage and Neurovirulence in Human Scavenger Receptor B2 Transgenic Mice. J Virol 2018; 92:e00681-18. [PMID: 29848584 PMCID: PMC6052303 DOI: 10.1128/jvi.00681-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Infection by enterovirus 71 (EV71) is affected by cell surface receptors, including the human scavenger receptor B2 (hSCARB2), which are required for viral uncoating, and attachment receptors, such are heparan sulfate (HS), which bind virus but do not support uncoating. Amino acid residue 145 of the capsid protein VP1 affects viral binding to HS and virulence in mice. However, the contribution of this amino acid to pathogenicity in humans is not known. We produced EV71 having glycine (VP1-145G) or glutamic acid (VP1-145E) at position 145. VP1-145G, but not VP1-145E, enhanced viral infection in cell culture in an HS-dependent manner. However, VP1-145G virus showed an attenuated phenotype in wild-type suckling mice and in a transgenic mouse model expressing hSCARB2, while VP1-145E virus showed a virulent phenotype in both models. Thus, the HS-binding property and in vivo virulence are negatively correlated. Immunohistochemical analyses showed that HS is highly expressed in vascular endothelial cells and some other cell types where hSCARB2 is expressed at low or undetectable levels. VP1-145G virus bound to tissue homogenate of both hSCARB2 transgenic and nontransgenic mice in vitro, and the viral titer was reduced in the bloodstream immediately after intravenous inoculation. Furthermore, VP1-145G virus failed to disseminate well in the mouse organs. These data suggest that VP1-145G virus is adsorbed by attachment receptors such as HS during circulation in vivo, leading to abortive infection of HS-positive cells. This trapping effect is thought to be a major mechanism of attenuation of the VP1-145G virus.IMPORTANCE Attachment receptors expressed on the host cell surface are thought to enhance EV71 infection by increasing the chance of encountering true receptors. Although this has been confirmed using cell culture for some viruses, the importance of attachment receptors in vivo is unknown. This report provides an unexpected answer to this question. We demonstrated that the VP1-145G virus binds to HS and shows an attenuated phenotype in an hSCARB2-dependent animal infection model. HS is highly expressed in cells that express hSCARB2 at low or undetectable levels. Our data indicate that HS binding directs VP1-145G virus toward abortive infection and keeps virus away from hSCARB2-positive cells. Thus, although the ability of VP1-145G virus to use HS might be an advantage in replication in certain cultured cells, it becomes a serious disadvantage in replication in vivo This adsorption is thought to be a major mechanism of attenuation associated with attachment receptor usage.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yui Sudaka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayako Takashino
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Imura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken Fujii
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
29
|
VP1 Amino Acid Residue 145 of Enterovirus 71 Is a Key Residue for Its Receptor Attachment and Resistance to Neutralizing Antibody during Cynomolgus Monkey Infection. J Virol 2018; 92:JVI.00682-18. [PMID: 29848582 DOI: 10.1128/jvi.00682-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.
Collapse
|
30
|
Mandary MB, Poh CL. Changes in the EV-A71 Genome through Recombination and Spontaneous Mutations: Impact on Virulence. Viruses 2018; 10:v10060320. [PMID: 29895721 PMCID: PMC6024729 DOI: 10.3390/v10060320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
31
|
Yang B, Liu F, Liao Q, Wu P, Chang Z, Huang J, Long L, Luo L, Li Y, Leung GM, Cowling BJ, Yu H. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. ACTA ACUST UNITED AC 2018; 22. [PMID: 29258646 PMCID: PMC5743100 DOI: 10.2807/1560-7917.es.2017.22.50.16-00824] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) is usually caused by several serotypes from human enterovirus A species, including enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). Two inactivated monovalent EV-A71 vaccines have been recently licensed in China and monovalent CV-A16 vaccine and bivalent EV-A71 and CV-A16 vaccine are under development. Methods: Using notifications from the national surveillance system, we describe the epidemiology and dynamics of HFMD in the country, before the introduction of EV-A71 vaccination, from 2008 through 2015. Results: Laboratory-identified serotype categories, i.e. CV-A16, EV-A71 and other enteroviruses, circulated annually. EV-A71 remained the most virulent serotype and was the major serotype for fatal cases (range: 88.5–95.4%) and severe cases (range: 50.7–82.3%) across years. Except for 2013 and 2015, when other enteroviruses were more frequently found in mild HFMD (48.8% and 52.5%), EV-A71 was more frequently detected from mild cases in the rest of the years covered by the study (range: 39.4–52.6%). The incidence rates and severity risks of HFMD associated with all serotype categories were the highest for children aged 1 year and younger, and decreased with increasing age. Discussion/conclusion: This study provides baseline epidemiology for evaluation of vaccine impact and potential serotype replacement.
Collapse
Affiliation(s)
- Bingyi Yang
- These authors contributed equally to this work.,WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China.,These authors contributed equally to this work
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China.,These authors contributed equally to this work
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Jiao Huang
- Department of Epidemiology and Statistics, Public Health School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Lu Long
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Li Luo
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yu Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- These authors are joint senior authors.,WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.,These authors are joint senior authors.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
An emerging and expanding clade accounts for the persistent outbreak of Coxsackievirus A6-associated hand, foot, and mouth disease in China since 2013. Virology 2018; 518:328-334. [PMID: 29587191 DOI: 10.1016/j.virol.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/23/2022]
Abstract
Enterovirus (EV)-A71 and Coxsackievirus (CV)-A16 have historically been the major pathogens of hand, foot, and mouth disease (HMFD) in China; however, CV-A6, which had previously received little attention, became the predominant pathogen in 2013, and has remained one of the common pathogens since then. In this work, we conducted a molecular epidemiology study of CV-A6-associated HFMD in Xiamen from 2009 to 2015. The data showed CV-A6 pandemics had a certain periodicity rather than occurring randomly. Evolution analysis based on near-complete VP1 nucleotide sequences showed subgenotype D5 lineage 4 strains account for the persistent outbreak of CV-A6-associated HFMD in China since 2013. Alignment analysis revealed eight candidate amino acid substitutions in VP1, which may provide useful information for the research of CV-A6 virulence enhancement. This study contributed to elucidating the circulation patterns and genetic characteristics of CV-A6 in China; however, further surveillance and intervention in CV-A6 epidemics is recommended.
Collapse
|
33
|
Midgley SE, Nielsen AG, Trebbien R, Poulsen MW, Andersen PH, Fischer TK. Co-circulation of multiple subtypes of enterovirus A71 (EV- A71) genotype C, including novel recombinants characterised by use of whole genome sequencing (WGS), Denmark 2016. ACTA ACUST UNITED AC 2017; 22:30565. [PMID: 28681718 PMCID: PMC6518347 DOI: 10.2807/1560-7917.es.2017.22.26.30565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
In Europe, enterovirus A71 (EV-A71) has primarily been associated with sporadic cases of neurological disease. The recent emergence of new genotypes and larger outbreaks with severely ill patients demonstrates a potential for the spread of new, highly pathogenic EV-A71 strains. Detection and characterisation of these new emerging EV variants is challenging as standard EV assays may not be adequate, necessitating the use of whole genome analysis.
Collapse
Affiliation(s)
- Sofie E Midgley
- Section for Virus Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Astrid G Nielsen
- Section for Virus Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ramona Trebbien
- Section for Virus Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mille W Poulsen
- Section for Virus Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter H Andersen
- Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea K Fischer
- Section for Virus Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark.,Center for Global Health, Department of Infectious Diseases, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
34
|
Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL. Characterization of significant molecular determinants of virulence of Enterovirus 71 sub-genotype B4 in Rhabdomyosarcoma cells. Virus Res 2017; 238:243-252. [PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 01/22/2023]
Abstract
One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Reham Ahmed Hashim Mohamed
- School of Science and Technology, Department of Biological Sciences, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Seng-Kai Ong
- School of Science and Technology, Department of Biological Sciences, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Kuan Onn Tan
- School of Science and Technology, Department of Biological Sciences, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
35
|
Yee PTI, Laa Poh C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology 2017; 506:121-129. [PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
36
|
Ren L, Yang D, Ren X, Li M, Mu X, Wang Q, Cao J, Hu K, Yan C, Fan H, Li X, Chen Y, Wang R, An F, An S, Luo M, Wang Y, Xiao Y, Xiang Z, Xiao Y, Li L, Huang F, Jin Q, Gao Z, Wang J. Genotyping of human rhinovirus in adult patients with acute respiratory infections identified predominant infections of genotype A21. Sci Rep 2017; 7:41601. [PMID: 28128353 PMCID: PMC5269714 DOI: 10.1038/srep41601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Human rhinovirus (HRV) is an important causative agent of acute respiratory tract infections (ARTIs). The roles of specific HRV genotypes in patients suffering from ARTIs have not been well established. We recruited 147 adult inpatients with community-acquired pneumonia (CAP) and 291 adult outpatients with upper ARTIs (URTIs). Respiratory pathogens were screened via PCR assays. HRV was detected in 42 patients, with 35 species A, five B and two C. Seventeen genotypes were identified, and HRV-A21 ranked the highest (9/42, 21.4%). The HRV-A21-positive infections were detected in four patients with CAP and in five with URTIs, all without co-infections. The HRV-A21 genome sequenced in this study contained 12 novel coding polymorphisms in viral protein (VP) 1, VP2 EF loop, VP3 knob and 3D regions. The infections of HRV-A21 virus obtained in this study could not be neutralized by antiserum of HRV-A21 prototype strain (VR-1131), indicating remarkable antigenic variation. Metagenomic analysis showed the HRV-A21 reads were dominant in bronchoalveolar lavage fluid of the three HRV-A21-positive patients with severe CAP, in which two dead. Our results highlight an unexpected infection of genotype HRV-A21 in the clinic, indicating the necessity of precise genotyping and surveillance of HRVs to improve the clinical management of ARTIs.
Collapse
Affiliation(s)
- Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | | | - Xinlin Mu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, P. R. China
| | - Jie Cao
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Ke Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Chunliang Yan
- Department of Respiratory &Critical Care Medicine, Beijing Aerospace General Hospital, Beijing, 100076, P. R. China
| | - Hongwei Fan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100730, P. R. China
| | - Xiangxin Li
- Department of Respiratory Medicine, Beijing Changping Hospital, Beijing, 102200, P. R. China
| | - Yusheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P. R. China
| | - Ruiqin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Tsinghua University, Beijing, 100016, P. R. China
| | - Fucheng An
- Department of Respiratory Medicine, Mentougou District Hospital, Beijing, 102300, P. R. China
| | - Shuchang An
- Department of Respiratory Medicine, The First Affiliated Hospital of Tsinghua University, Beijing, 100016, P. R. China
| | - Ming Luo
- Beijing Center for Disease Prevention and Control, No. 16, Hepingli Middle Avenue of Dongcheng district, Beijing, 100013, P. R. China
| | - Ying Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Yan Xiao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Li Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, No. 16, Hepingli Middle Avenue of Dongcheng district, Beijing, 100013, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
37
|
Zhou B, Chu M, Xu S, Chen X, Liu Y, Wang Z, Zhang F, Han S, Yin J, Peng B, He X, Liu W. Hsa-let-7c-5p augments enterovirus 71 replication through viral subversion of cell signaling in rhabdomyosarcoma cells. Cell Biosci 2017; 7:7. [PMID: 28101327 PMCID: PMC5237547 DOI: 10.1186/s13578-017-0135-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Background Human enterovirus 71 (EV71) causes severe hand, foot and mouse disease, accompanied by neurological complications. During the interaction between EV71 and the host, the virus subverts host cell machinery for its own replication. However, the roles of microRNAs (miRNAs) in this process remain obscure. Results In this study, we found that the miRNA hsa-let-7c-5p was significantly upregulated in EV71-infected rhabdomyosarcoma cells. The overexpression of hsa-let-7c-5p promoted replication of the virus, and the hsa-let-7c-5p inhibitor suppressed viral replication. Furthermore, hsa-let-7c-5p targeted mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and inhibited its expression. Interestingly, downregulation of MAP4K4 expression led to an increase in EV71 replication. In addition, MAP4K4 knockdown or transfection with the hsa-let-7c-5p mimic led to activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas the hsa-let-7c-5p inhibitor inhibited activation of this pathway. Moreover, EV71 infection promoted JNK pathway activation to facilitate viral replication. Conclusions Our data suggested that hsa-let-7c-5p facilitated EV71 replication by inhibiting MAP4K4 expression, which might be related to subversion of the JNK pathway by the virus. These results may shed light on a novel mechanism underlying the defense of EV71 against cellular responses. In addition, these findings may facilitate the development of new antiviral strategies for use in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13578-017-0135-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingfei Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Min Chu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xiong Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Yongjuan Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Zhihao Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Fengfeng Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
38
|
Zhongping X, Hua L, Ting Y, Zhengling L, Min F, Tianhong X, Runxiang L, Dong S, Guangju J, Lei Y, Rong Y, Fangyu L, Qihan L. Biological characteristics of different epidemic enterovirus 71 strains and their pathogeneses in neonatal mice and rhesus monkeys. Virus Res 2015; 213:82-89. [PMID: 26555165 DOI: 10.1016/j.virusres.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) has been prevalent in China since 2008. Enterovirus 71 (EV71) is a common causative agent of HFMD, and various strains of EV71 are prevalent worldwide. The EV71C4 subgenotype is the most endemic strain in China. However, few studies investigating the biological characteristics and pathogeneses of different C4 strains have been reported. Therefore, the current study investigated 19 clinical EV71 strains in neonatal ICR mice and neonatal rhesus monkeys by comparing pathogenicity; the virulence of different viral passages, dosages, and routes of infection; and the effects produced by subject animal age. These 19 clinical EV71 strains, which were of the same subtype, displayed varying pathogenic effects. Three strains (HE31, 231 and 262) induced limb paralysis in neonatal ICR mice. In addition, the degree of virulence was largely dependent upon the dose, route of infection, and number of passages of the challenge virus, as well as the ages of the infected animals. The present study provides valuable basic data to enable further research into EV71 pathogenesis and to facilitate the development of new drugs and vaccines.
Collapse
Affiliation(s)
- Xie Zhongping
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Li Hua
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yang Ting
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liu Zhengling
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Feng Min
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xie Tianhong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Long Runxiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shen Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Jiang Guangju
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yue Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yang Rong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Luo Fangyu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Li Qihan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
39
|
The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model. PLoS Pathog 2015; 11:e1005033. [PMID: 26181772 PMCID: PMC4504482 DOI: 10.1371/journal.ppat.1005033] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals. Recently, large outbreaks of hand, foot, and mouth disease, including fatal neurological cases in young children primarily because of enterovirus 71 (EV71) have been reported, particularly in the Asia Pacific regions where the disease poses a serious threat to public health. Based on mutational and structural analyses of EV71, we identified amino acid residue 145 of the capsid protein VP1 (VP1-145) as a critical molecular determinant for the binding of EV71 to a specific cellular receptor, human P-selectin glycoprotein ligand-1 (PSGL-1). VP1-145 is highly variable among EV71 isolates and has been identified as a potential neurovirulence determinant in humans and experimental mouse models. To elucidate the in vivo involvement of PSGL-1-depentent replication and pathogenesis, we investigated viral replication, genetic stability, and the pathogenicity of the PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) strains of EV71 in a cynomolgus monkey model. After the intravenous inoculation with the PB strain, viruses found to be highly mutated at VP1-145 with resultant VP1-145E variants (non-PB) inducing viremia and neuropathogenesis, presumably in a PSGL-1-independent manner. VP1-145G variants were identified only in peripheral blood mononuclear cells from two PB-inoculated monkeys. Our study provides new insights into the interplay between virus, receptors, and host in EV71-infected individuals.
Collapse
|
40
|
Zhou X, Zhu Q, Xia W, He F, Hu M, Ni X, Gao M, Chen H, Chen S. Molecular epidemiology of an outbreak of hand, foot, and mouth disease associated with subgenotype C4a of enterovirus A71 in Nanchang, China in 2014. J Med Virol 2015; 87:2154-8. [PMID: 26058813 DOI: 10.1002/jmv.24288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Abstract
An outbreak of hand, foot, and mouth disease was reported through hospital-based surveillance in Nanchang, China in 2014. A total of 244 cases were reported, 176 (72.1%) cases were tested positive for enteroviruses by direct reverse transcription-polymerase chain reaction, in which enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), and untyped enteroviruses (UEV) accounted for 84.1%, 3.4%, and 12.5%, respectively. In this outbreak, children under 5 years old constituted more than 98% of the positive cases, and the ratio of male to female cases was 2.6 to 1 (P < 0.01). Phylogenetic analysis indicated that the Nanchang EV-A71 strains belonged to subgenotype C4a undergoing continuously evolutionary changes.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Qingxiong Zhu
- Department of Infectious Diseases, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Wen Xia
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fenglan He
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Maohong Hu
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiansheng Ni
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Meiling Gao
- Nanchang University Medical College, Nanchang, China
| | - Haiying Chen
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Shengen Chen
- Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
41
|
Coxsackievirus A16 elicits incomplete autophagy involving the mTOR and ERK pathways. PLoS One 2015; 10:e0122109. [PMID: 25853521 PMCID: PMC4390341 DOI: 10.1371/journal.pone.0122109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resulting in increased extracellular virus production. Moreover, expression of CA16 nonstructural proteins 2C and 3C was sufficient to trigger autophagosome accumulation by blocking the fusion of autophagosomes with lysosomes. Interestingly, we found that Immunity-related GTPase family M (IRGM) was crucial for the activation of CA16 infection-induced autophagy; in turn, reducing IRGM expression suppressed autophagy. Expression of viral protein 2C enhanced IRGM promoter activation, thereby increasing IRGM expression and inducing autophagy. CA16 infection inhibited Akt/mTOR signaling and activated extracellular signal-regulated kinase (ERK) signaling, both of which are necessary for autophagy induction. In summary, CA16 can use autophagy to enhance its own replication. These results raise the possibility of targeting the autophagic pathway for the treatment of hand, foot, and mouth disease (HFMD).
Collapse
|
42
|
Fan P, Li X, Sun S, Su W, An D, Gao F, Kong W, Jiang C. Identification of a common epitope between enterovirus 71 and human MED25 proteins which may explain virus-associated neurological disease. Viruses 2015; 7:1558-77. [PMID: 25826188 PMCID: PMC4411665 DOI: 10.3390/v7041558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope) between EV71 VP1 and human mediator complex subunit 25 (MED25) highly expressed in brain stem. A monoclonal antibody (2H2) against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd) of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease.
Collapse
Affiliation(s)
- Peihu Fan
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Xiaojun Li
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Dong An
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Changchun 130012, China
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (C.J.); Tel.: +86-0431-8517-7701 (W.K.); +86-0431-8516-7790 (C.J.); Fax: +86-0431-8516-7751 (W.K. and C.J.)
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: (P.F.); (X.L.); (S.S.); (W.S.); (D.A.); (F.G.)
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Changchun 130012, China
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (C.J.); Tel.: +86-0431-8517-7701 (W.K.); +86-0431-8516-7790 (C.J.); Fax: +86-0431-8516-7751 (W.K. and C.J.)
| |
Collapse
|
43
|
Liu Y, Zhang F, Fu C, Wu S, Chen X, Shi Y, Zhou B, Zhang L, Zhang Y, Han S, Yin J, Peng B, He X, Liu W. Combination of intratypic and intertypic recombinant events in EV71: a novel evidence for the "triple-recombinant" strains of genotype A viruses in Mainland China from 2008 to 2010. Virus Genes 2015; 50:365-74. [PMID: 25724176 DOI: 10.1007/s11262-015-1170-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022]
Abstract
The first Enterovirus 71 (EV71) strain isolated in 1969 was classified as genotype A. It is interesting that the genotype A disappeared nearly 40 years until its re-emergence in mainland China in 2008-2010. Few studies on genetic characterization of the re-emerged genotype A viruses have been reported. In this study, a series of analyses were performed on molecular epidemiology and genome recombination of genotype A viruses in China. Phylogenetic analysis indicated that except for 17 reported genotype A strains and 3 orphan strains (C0, C3 and B5), almost all EV71 strains in mainland China were belonging to subgenotype C4 during 1987-2011. The subgenotype C4 was further divided into 3 clades C4a1, C4a2, and C4b. The genotype A viruses co-circulated with the predominant clade C4a2 and the re-emerged clade C4b both in eastern and central China in 2008-2009. Moreover, comprehensive recombination analysis showed that the genotype A viruses were "triple-recombinant" by combination of intratypic and intertypic recombination. Intertypic recombination between the oldest C4b strain (SHZH98) and Coxsackievirus A5 (CVA5) and intratypic recombination between the SHZH98 and C1 strains both with one junction in 5'-UTR were observed for some specific C4a2 strains and the re-emerged C4b strain, respectively. And intratypic recombination between the re-emerged C4b strain and the specific C4a2 strains with one junction in 5'-UTR was observed for the Chinese genotype A viruses. Taken together, these results provided potential explanations for the genesis of Chinese genotype A viruses which were significant for preventing and controlling outbreaks.
Collapse
Affiliation(s)
- Yongjuan Liu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang F, Liu Y, Chen X, Dong L, Zhou B, Cheng Q, Han S, Liu Z, Peng B, He X, Liu W. RASSF4 promotes EV71 replication to accelerate the inhibition of the phosphorylation of AKT. Biochem Biophys Res Commun 2015; 458:810-5. [PMID: 25701784 DOI: 10.1016/j.bbrc.2015.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/06/2015] [Indexed: 11/30/2022]
Abstract
Enterovirus 71 (EV71) is a neurotropic virus that causes hand, foot and mouth disease (HFMD), occasionally leading to death. As a member of the RAS association domain family (RASSFs), RASSF4 plays important roles in cell death, tumor development and signal transduction. However, little is known about the relationship between RASSF4 and EV71. Our study reveals for the first time that RASSF4 promotes EV71 replication and then accelerates AKT phosphorylation inhibition in EV71-infected 293T cells, suggesting that RASSF4 may be a potential new target for designing therapeutic measures to prevent and control EV71 infection.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| | - Yongjuan Liu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiong Chen
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lanlan Dong
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bingfei Zhou
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qingqing Cheng
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Song Han
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongchun Liu
- Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Biwen Peng
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaohua He
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Wanhong Liu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| |
Collapse
|
45
|
Fischer TK, Nielsen AY, Sydenham TV, Andersen PH, Andersen B, Midgley SE. Emergence of enterovirus 71 C4a in Denmark, 2009 to 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 25306878 DOI: 10.2807/1560-7917.es2014.19.38.20911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus (EV) 71 has emerged as a primary cause of severe neurologic enterovirus infection in the aftermath of the global polio eradication effort. Eleven subgenotypes of EV71 exist, the C4 subgenotype being associated with large outbreaks in Asia with high mortality rates. This subgenotype has rarely been reported in Europe. In the period between 1 January 2009 and 31 December 2013 a total of 1,447 EV positive samples from 1,143 individuals were sent to the Statens Serum Institute (SSI), and 938 samples from 913 patients were genotyped at the Danish National World Health Organization Reference laboratory for Poliovirus at SSI. Echovirus 6 (E06) (n=141 patients), echovirus 30 (E30) (n=114), coxsackievirus A6 (CA06) (n=96) and EV71 (n=63) were the most prevalent genotypes. We observed a shift in circulating EV71 subgenotypes during the study period, with subgenotype C4 dominating in 2012. A total of 34 EV71 patients were found to be infected with strains of the C4 subgenotype, and phylogenetic analysis revealed that they belonged to the C4a lineage. In our study, the proportions of cases with cerebral and/or sepsis-like symptoms were similar in those affected by C4a (19/34) and those with C1 and C2 (15/35). The majority (n=30) of the 34 EV71 C4 cases were children≤5 years of age, and males (n=22) were over-represented. Continued EV surveillance is required to monitor the spread of EV71 C4 in Denmark and the rest of Europe.
Collapse
Affiliation(s)
- T K Fischer
- Virus Surveillance and Research Section, Statens Serum Institute, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
miR-27a suppresses EV71 replication by directly targeting EGFR. Virus Genes 2014; 49:373-82. [PMID: 25212431 DOI: 10.1007/s11262-014-1114-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, has broken out several times and was accompanied by neurological disease. microRNAs, a class of small non-coding RNAs that are approximately 20 nucleotides long, play important roles in the regulation of various biological processes, including antiviral defense. However, the roles of miRNAs in EV71 replication and pathogenesis are not well understood. In this study, we found that the expression of miR-27a was significantly decreased in EV71-infected cells. Interestingly, the over-expression of miR-27a could inhibit EV71 replication, as measured by virus titration, qPCR, and Western blotting. We identified EGFR mRNA is a bona fide target of miR-27a by computational analysis and luciferase reporter assays. Furthermore, miR-27a could decrease EGFR expression, as measured by qPCR and Western blotting. Moreover, the inhibition of EGFR expression by miR-27a decreased the phosphorylation of Akt and ERK, which facilitate EV71 replication. These results suggest that miR-27a may have antiviral activity against EV71 by inhibiting EGFR.
Collapse
|