1
|
Molina CA, Quiroz-Moreno C, Jarrín-V P, Díaz M, Yugsi E, Pérez-Galarza J, Baldeón-Rojas L. Bacterial community assessment of drinking water and downstream distribution systems in highland localities of Ecuador. JOURNAL OF WATER AND HEALTH 2024; 22:536-549. [PMID: 38557569 DOI: 10.2166/wh.2024.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
Bacterial communities in drinking water provide a gauge to measure quality and confer insights into public health. In contrast to urban systems, water treatment in rural areas is not adequately monitored and could become a health risk. We performed 16S rRNA amplicon sequencing to analyze the microbiome present in the water treatment plants at two rural communities, one city, and the downstream water for human consumption in schools and reservoirs in the Andean highlands of Ecuador. We tested the effect of water treatment on the diversity and composition of bacterial communities. A set of physicochemical variables in the sampled water was evaluated and correlated with the structure of the observed bacterial communities. Predominant bacteria in the analyzed communities belonged to Proteobacteria and Actinobacteria. The Sphingobium genus, a chlorine resistance group, was particularly abundant. Of health concern in drinking water reservoirs were Fusobacteriaceae, Lachnospiraceae, and Ruminococcaceae; these families are associated with human and poultry fecal contamination. We propose the latter families as relevant biomarkers for establishing local standards for the monitoring of potable water systems in highlands of Ecuador. Our assessment of bacterial community composition in water systems in the Ecuadorian highlands provides a technical background to inform management decisions.
Collapse
Affiliation(s)
- C Alfonso Molina
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Cdla. Universitaria y Gaspar de Carvajal s/n., 170521 Quito, Ecuador; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Cdla. Universitaria y Gaspar de Carvajal s/n., 170521, Quito, Ecuador E-mail:
| | - Cristian Quiroz-Moreno
- Department of Horticulture and Crop Science, Ohio State University, 2021 Coffey Road, Columbus OH 43210
| | - Pablo Jarrín-V
- Laboratorio de Secuenciamiento de Ácidos Nucleicos, Dirección de Gestión de la Innovación, Instituto Nacional de Biodiversidad INABIO, Pje. Rumipamba N341 y Av. de los Shyris, Quito, Ecuador
| | - Magdalena Díaz
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Cdla. Universitaria y Gaspar de Carvajal s/n., 170521, Quito, Ecuador; Facultad de Ingeniería Química, Universidad Central del Ecuador, Ritter s/n y Bolivia, 170521 Quito, Ecuador; Institute of Integrative Systems Biology (I2SysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Carrer del Catedràtic Agustín Escardino Benlloch, 46980 Paterna, Valencia, Spain
| | - Elizabeth Yugsi
- Centro de Biotecnología 'Dr Daniel Alkalay Lowitt', Universidad Técnica Federico Santa María, General Bari 699, 2390136, Valparaíso, Chile
| | - Jorge Pérez-Galarza
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Iquique N14-121 y Sodiro, Quito, Ecuador; Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Capitán Giovanni Calles y Derby, Quito, Ecuador
| | - Lucy Baldeón-Rojas
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Iquique N14-121 y Sodiro, Quito, Ecuador; Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Capitán Giovanni Calles y Derby, Quito, Ecuador
| |
Collapse
|
2
|
Zhao B, Liu R, Li Y, Xu H, Li X, Gu J, Zhang X, Wang Y, Wang Y. Changes of putative pathogenic species within the water bacterial community in large-scale drinking water treatment and distribution systems. WATER RESEARCH 2024; 249:120947. [PMID: 38043356 DOI: 10.1016/j.watres.2023.120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Although the management of microbes in drinking water is of paramount importance for public health, there remain challenges in comprehensively examining pathogenic bacteria in the water supply system at the species level. In this study, high-throughput sequencing of nearly full-length 16S rRNA genes was performed to investigate the changes of the water bacterial community in three large-scale drinking water treatment plants (DWTPs) and their corresponding distribution systems during winter and summer. Our findings revealed significant differences in the bacterial community structure between winter and summer water samples for each DWTP and its distribution management area (DMA). In the groundwater-fed DWTP, selective enrichment of mycobacterial species was observed in both seasons, and the subsequent DMA also exhibited strong selection for specific mycobacterial species. In one of the surface water-fed DWTPs, certain Legionella species present in the source water in winter were selectively enriched in the bacterial community after pre-oxidation, although they were susceptible to the subsequent purification steps. A variety of putative pathogenic species (n = 83) were identified based on our pathogen identification pipeline, with the dominant species representing opportunistic pathogens commonly found in water supply systems. While pathogen removal primarily occurred during the purification processes of DWTPs, especially for surface water-fed plants, the relative abundance of pathogenic bacteria in the DMA water flora was lower than that in the DWTP effluent flora, indicating a diminished competitiveness of pathogens within the DMA ecosystem.
Collapse
Affiliation(s)
- Bei Zhao
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China; Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou, Shandong, PR China.
| | - Yuxian Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Hao Xu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiangyi Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Junnong Gu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiaolan Zhang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Yue Wang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China
| | - Yansong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
3
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
4
|
Li S, Li L, Gao Q, Dong S, Shi S. Deep-sea cage culture altered microbial community composition in the sediments of the Yellow Sea Cold Water Mass. MARINE POLLUTION BULLETIN 2022; 183:114081. [PMID: 36067677 DOI: 10.1016/j.marpolbul.2022.114081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Environmental impacts of the first submersible salmonid culture cage, which was launched in the deep-sea of the Yellow Sea Cold Water Mass, were investigated. The temporal and spatial variations of several physicochemical parameters were observed in both the bottom and sediment pore water. Aquaculture activities decreased bacterial richness in the sediment. The dominant phyla Proteobacteria, Desulfobacterota and Acidobacteriota, accounted for 30.42 % of the total bacteria community. Principal component analysis indicated that the bacterial composition in December was different from that in the other three months, and the aquaculture activity affected the distribution of the sediment microbial community in June, August and April. Planctomycetes was selected as biomarkers in the aquaculture area by linear discriminant analysis effect size. Redundancy analysis showed that the biomarkers were positively correlated with temperature and the concentration of nitrite in June, and negatively correlated with the dissolved oxygen in August and April.
Collapse
Affiliation(s)
- Shuting Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266235, PR China.
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266235, PR China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266235, PR China
| | - Shuai Shi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Luo F, Chen H, Wu X, Liu L, Chen Y, Wang Z. Insights into the Seasonal Olfactory Mechanism of Geosmin in Raw Water of Huangpu River. TOXICS 2022; 10:485. [PMID: 36006164 PMCID: PMC9415234 DOI: 10.3390/toxics10080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Since the 1990s, the raw water of Huangpu River in Shanghai, China, has intermittently encountered off-flavor contamination. In this work, the concentrations of typical odor, geosmin, in raw water of Huangpu River are found to shift along with the seasons. However, microbes recognized as the producer of geosmin such as Cyanobacteria and Actinobacteria are not consistent with the shift of geosmin. Cyanobacteria blooms in summer rather than winter, whereas Actinobacteria thrives in winter. Representational difference analysis (RDA) reveals that microbes associated with blooming algae have positive co-occurrence correlations with the concentrations of geosmin and nutrients in winter, whereas those within Cyanobacteria and Planctomycete are in a positive correlation with temperature and thrive in summer. This causes the concentration of geosmin in raw water to appear to depend on the abundance of Actinobacteria rather than that of Cyanobacteria. However, combining with the synthesis and storage properties of geosmin in algae, as well as the decomposition properties of algae with Actinobacteria, geosmin might be synthesized by Cyanobacteria in summer, which is stored in cells of Cyanobacteria and released only via the decomposition of Actinobacteria in winter. This potential olfactory mechanism of geosmin is quite different from that derived from pure culture of odor producers or correlation analysis of bacteria and odors; thus, providing insights into the mechanism of practical off-flavor events.
Collapse
Affiliation(s)
- Fei Luo
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxin Wu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yuean Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Atnafu B, Desta A, Assefa F. Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia. MICROBIAL ECOLOGY 2022; 84:73-89. [PMID: 34410455 DOI: 10.1007/s00248-021-01819-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Drinking water distribution systems harbor various microbiota despite efforts made in improving water infrastructures in the water industry, especially, in developing countries. Intermittent water supply, long time of water storage, low water pressure, and contaminated source water are among many of the factors responsible for poor drinking water quality affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and household points of use locations (taps). High-throughput Illumina sequencing technology was employed by targeting the V4 region of the 16S rRNA gene and the V1-V3 region of the 18S rRNA gene to analyze the microbial community structure. Proteobacteria followed by Firmicutes, Bacteroidetes, and Actinobacteria were the core dominating taxa. Gammaproteobacteria was also dominant among other proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, and Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmannella, Acanthamoeba, Aspergillus, and Candida were also abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations was influenced by basic factors such as residual chlorine, intermittent water supply, and long-time storage at the household. The complex microbiota detected in different sampling sites in this study brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage, and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk. Findings of this research provide important and baseline information to understand the microbial profiles of drinking water along source water and distribution systems. Moreover, knowing the microbial profile will help to design proper water quality assurance approaches.
Collapse
Affiliation(s)
- Bayable Atnafu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Adey Desta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Zhou W, Li W, Chen J, Zhou Y, Wei Z, Gong L. Microbial diversity in full-scale water supply systems through sequencing technology: a review. RSC Adv 2021; 11:25484-25496. [PMID: 35478887 PMCID: PMC9037190 DOI: 10.1039/d1ra03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Abstract
The prevalence of microorganisms in full-scale water supply systems raises concerns about their pathogenicity and threats to public health. Clean tap water is essential for public health safety. The conditions of the water treatment process from the source water to tap water, including source water quality, water treatment processes, the drinking water distribution system (DWDS), and building water supply systems (BWSSs) in buildings, greatly influence the bacterial community in tap water. Given the importance of drinking water biosafety, the study of microbial diversity from source water to tap water is essential. With the development of molecular biology methods and bioinformatics in recent years, sequencing technology has been applied to study bacterial communities in full-scale water supply systems. In this paper, changes in the bacterial community and the influence of each treatment stage on microbial diversity in full-scale water supply systems are classified and analyzed. Microbial traceability analysis and control are discussed, and suggestions for future drinking water biosafety research and its prospects are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Yu Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhongqing Wei
- Fuzhou Water Affairs Investment Development Co., Ltd. Fuzhou 350000 Fujian China
| | | |
Collapse
|
8
|
Zhang C, Qin K, Struewing I, Buse H, Santo Domingo J, Lytle D, Lu J. The Bacterial Community Diversity of Bathroom Hot Tap Water Was Significantly Lower Than That of Cold Tap and Shower Water. Front Microbiol 2021; 12:625324. [PMID: 33967975 PMCID: PMC8102780 DOI: 10.3389/fmicb.2021.625324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects public health. Bacterial community structure is the essential aspect of microbial water quality. Studies have elucidated the microbial community structure in cold tap water, while the microbial community structures in hot tap and shower water are poorly understood. We sampled cold tap, hot tap, and shower water from a simulated PPS monthly for 16 consecutive months and assessed the bacterial community structures in those samples via high-throughput sequencing of bacterial 16S rRNA genes. The total relative abundance of the top five most abundant phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was greater than 90% among the 24 identified phyla. The most abundant families were Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that the bacterial community diversity increased with water temperature and the age of the simulated PPS, decreased with total chlorine residual concentration, and had a limited seasonal variation. The bacterial community in hot tap water had significantly lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much lower diversity than those in cold tap and shower water. The paradoxical results (i.e., diversity increased with water temperature, but hot tap water bacterial community was less diverse) were presumably because (1) other environmental factors made hot tap water bacterial community less diverse, (2) the diversity of bacterial communities in all types of water samples increased with water temperature, and (3) the first draw samples of hot tap water could have a comparable or even lower temperature than shower water samples and the second draw samples of cold tap water. In both a three-dimensional Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram, the samples of cold tap and shower water cluster and are separate from hot tap water samples (p < 0.05). In summary, the bacterial community in hot tap water in the simulated PPS had a distinct structure from and a much lower diversity than those in cold tap and shower water.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Ke Qin
- Oak Ridge Institute for Science and Education Participation Program, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Helen Buse
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Jorge Santo Domingo
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Darren Lytle
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
9
|
Shilei Z, Yue S, Tinglin H, Ya C, Xiao Y, Zizhen Z, Yang L, Zaixing L, Jiansheng C, Xiao L. Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110456. [PMID: 32421660 DOI: 10.1016/j.jenvman.2020.110456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
To investigate how the aquatic bacterial community of a stratified reservoir drives the evolution of water parameters, the microbial community structure and network characteristics of bacteria in a stratified reservoir were investigated using Illumina MiSeq sequencing technology. A total of 42 phyla and 689 distinct genera were identified, which showed significant seasonal variation. Additionally, stratified variations in the bacterial community strongly reflected the vertical gradient and seasonal changes in water temperature, dissolved oxygen, and nutrition concentration. Furthermore, principal coordinate analysis indicated that most microorganisms were likely influenced by changes in water stratification conditions, exhibiting significant differences during the stratification period and mixing period based on Adonis, MRPP, and Anosim. Compared to the stratification period, 123 enhanced operational taxonomic units (OTUs; 29%) and 226 depleted OTUs (52%) were identified during the mixing period. Linear discriminant analysis effect size results showed that 15 major genera were enriched in the mixing period and 10 major genera were enriched in the stratification period. Importantly, network analysis revealed that the keystone species belonged to hgcI_clade, CL500-29, Acidibacter, Paucimonas, Flavobacterium, Prochlorothrix, Xanthomonadales, Chloroflexia, Burkholderiales, OPB56, KI89A_clade, Synechococcus, Caulobacter or were unclassified. Redundancy analysis showed that temperature, dissolved oxygen, pH, chlorophyll-α, total phosphorus, nitrate, and ammonia were important factors influencing the water bacterial community and function composition, which were consistent with the results of the Mantel test analysis. Furthermore, random forest analysis showed that temperature, dissolved oxygen, ammonia, and total dissolved phosphorous were the most important variables predicting water bacterial community and function community α- and β-diversity (P < 0.05). Overall, these results provide insight into the interactions between the microbial community and water quality evolution mechanism in Zhoucun reservoir.
Collapse
Affiliation(s)
- Zhou Shilei
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Sun Yue
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Huang Tinglin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Cheng Ya
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yang Xiao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Northwest Engineering Corporation Limited the Power Construction Corporation of China, PR China
| | - Zhou Zizhen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Zaixing
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Cui Jiansheng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Luo Xiao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| |
Collapse
|
10
|
De Sotto R, Tang R, Bae S. Biofilms in premise plumbing systems as a double-edged sword: microbial community composition and functional profiling of biofilms in a tropical region. JOURNAL OF WATER AND HEALTH 2020; 18:172-185. [PMID: 32300090 DOI: 10.2166/wh.2020.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand distributions of opportunistic premise plumbing pathogens (OPPPs) and microbial community structures governed by sample location, pipe materials, water temperature, age of property and type of house, 29 biofilm samples obtained from faucets, pipes, and shower heads in different households in Singapore were examined using next-generation sequencing technology. Predictive functional profiling of the biofilm communities was also performed to understand the potential of uncultivated microorganisms in premise plumbing systems and their involvement in various metabolic pathways. Microbial community analysis showed Proteobacteria, Bacteroidetes, Acidobacteria, Nitrospira, and Actinobacteria to be the most abundant phyla across the samples which was found to be significantly different when grouped by age of the properties, location, and the type of house. Meanwhile, opportunistic premise plumbing pathogens such as Mycobacterium, Citrobacter, Pseudomonas, Stenotrophomonas, and Methylobacterium were observed from the samples at 0.5% of the total reads. Functional prediction using 16S gene markers revealed the involvement of the biofilm communities in different metabolic pathways like nitrogen metabolism, biodegradation of xenobiotics, and bacterial secretion implying diverse functionalities that are yet to be studied in this environment. This study serves as a preliminary survey on the microbial communities harboring premise plumbing systems in a tropical region like Singapore.
Collapse
Affiliation(s)
- Ryan De Sotto
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Rena Tang
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| |
Collapse
|
11
|
Li X, Ma M, Rene ER, Ma W, Zhang P. Changes in microbial communities during the removal of natural and synthetic glucocorticoids in three types of river-based aquifer media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33953-33962. [PMID: 30043346 DOI: 10.1007/s11356-018-2748-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Glucocorticoids in sewage treatment plant effluent discharged into rivers could influence microbial community structure in river-based aquifer media and affect groundwater quality. The effect of representative natural and synthetic glucocorticoids, namely, hydrocortisone (CRL) and dexamethasone (DEX), on the microbial communities in three types of river-based aquifer media was evaluated. The aquifer media was taken from the Beijing Chaobai River (BJ), Hebei Hutuo River (HB), and Tianjin Duliujian River (TJ) and they exhibited different physicochemical and biological properties. The attenuation rates of CRL were 0.175, 0.119, and 0.096 day-1 and for DEX were 0.222, 0.151, and 0.113 day-1 in the media from BJ, HB, and TJ, respectively. All the attenuation rates followed first-order kinetics. The biodiversity decreased significantly with CRL and DEX amendment. The microbial community composition differed in relation to the type of aquifer media and glucocorticoids, especially for BJ at the phylum level. In BJ, the major bacterial genus was Bacillus and in HB it was Rhodobacter. However, in TJ, three bacterial genera (Methylophilus, Methylobacillus, and Methylotenera) and Candidatus_Nitrososphaera were predominant in the microflora. All these genera were able to degrade both CRL and DEX. Distance-based redundancy analysis revealed that total organic carbon (TOC), the type of glucocorticoid, and the pH were the main factors explaining the variations in microbial community composition.
Collapse
Affiliation(s)
- Xinyu Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Mengsi Ma
- Graduate School of International Relationship, International University of Japan, Minami Uonuma, 9497248, Japan
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Gu J, Zhang L, Wang X, Lu C, Liu J, Liu Y, Li L, Peng J, Xue M. High-throughput analysis of the effects of different fish culture methods on antibiotic resistance gene abundances in a lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5445-5453. [PMID: 30607848 DOI: 10.1007/s11356-018-3972-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Freshwater lakes are important reservoirs for antibiotic resistance genes (ARGs). In this study, we determined the ARG profiles in water samples from Ying Lake, China, using high-throughput quantitative PCR. The high prevalence of ARGs suggested significant pollution with ARGs in the study area, where the ARG diversity and abundance were greater in an area with box-type fish farming than an area with fenced fish farming. Network analysis indicated the widespread co-occurrence of ARGs and mobile genetic elements. cphA-01, blalMP02, and blaCMY202 were identified as adequate indicator genes for estimating the total ARG abundances. Redundancy analysis indicated that changes in the microbial communities caused by variations in the physicochemical parameters with different fish culture methods mainly determined the ARGs in the lake system. Thus, analyzing the factors that affect ARGs provided novel insights into the mechanisms responsible for the maintenance and propagation of ARGs in a lake.
Collapse
Affiliation(s)
- Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chunya Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lichan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayuan Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
13
|
Luo Z, Li S, Hou K, Ji G. Spatial and seasonal bacterioplankton community dynamics in the main channel of the Middle Route of South-to-North Water Diversion Project. Res Microbiol 2019; 170:24-34. [DOI: 10.1016/j.resmic.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
|
14
|
Brandt J, Albertsen M. Investigation of Detection Limits and the Influence of DNA Extraction and Primer Choice on the Observed Microbial Communities in Drinking Water Samples Using 16S rRNA Gene Amplicon Sequencing. Front Microbiol 2018; 9:2140. [PMID: 30245681 PMCID: PMC6137089 DOI: 10.3389/fmicb.2018.02140] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
In recent years, 16S rRNA gene amplicon sequencing has been widely adopted for analyzing the microbial communities in drinking water (DW). However, no comprehensive attempts have been made to illuminate the inherent method biases specifically relating to DW communities. In this study, we investigated the impact of DNA extraction and primer choice on the observed microbial community, and furthermore estimated the detection limit of the 16S rRNA gene amplicon sequencing in these experimental settings. Of the two DNA extraction kits investigated, the PowerWater DNA Isolation Kit resulted in higher yield, better reproducibility and more OTUs identified compared to the FastDNA SPIN Kit for Soil, which is also commonly used within DW microbiome research. The use of three separate primer-sets targeting the V1-3, V3-4, and V4 region of the 16S rRNA gene revealed large differences in OTU abundances, with some of the primers unable to detect entire phyla. Estimations of the detection limit were based on bacteria-free water samples (1 L) spiked with Escherichia coli cells in different concentrations [101–106 cells/ml]. E.coli could be detected in all samples, however, samples with ∼101 cells/ml had several contaminating OTUs constituting approximately 8% of the read abundances. Based on our findings, we recommend using the PowerWater DNA Isolation Kit for DNA extraction in combination with PCR amplification of the V3-4 or V4 region for DW samples if a broad overview of the microbial community is to be obtained.
Collapse
Affiliation(s)
- Jakob Brandt
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Salmaso N, Albanese D, Capelli C, Boscaini A, Pindo M, Donati C. Diversity and Cyclical Seasonal Transitions in the Bacterial Community in a Large and Deep Perialpine Lake. MICROBIAL ECOLOGY 2018; 76:125-143. [PMID: 29192335 DOI: 10.1007/s00248-017-1120-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
High-throughput sequencing (HTS) was used to analyze the seasonal variations in the bacterioplankton community composition (BCC) in the euphotic layer of a large and deep lake south of the Alps (Lake Garda). The BCC was analyzed throughout two annual cycles by monthly samplings using the amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene by the MiSeq Illumina platform. The dominant and most diverse bacterioplankton phyla were among the more frequently reported in freshwater ecosystems, including the Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctomycetes. As a distinctive feature, the development of the BCC showed a cyclical temporal pattern in the two analyzed years and throughout the euphotic layer. The recurring temporal development was controlled by the strong seasonality in water temperature and thermal stratification, and by cyclical temporal changes in nutrients and, possibly, by the remarkable annual cyclical development of cyanobacteria and eukaryotic phytoplankton hosting bacterioplankton that characterizes Lake Garda. Further downstream analyses of operational taxonomic units associated to cyanobacteria allowed confirming the presence of the most abundant taxa previously identified by microscopy and/or phylogenetic analyses, as well as the presence of other small Synechococcales/Chroococcales and rare Nostocales never identified so far in the deep lakes south of the Alps. The implications of the high diversity and strong seasonality are relevant, opening perspectives for the definition of common and discriminating patterns characterizing the temporal and spatial distribution in the BCC, and for the application of the new sequencing technologies in the monitoring of water quality in large and deep lakes.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Camilla Capelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
16
|
Hou L, Zhou Q, Wu Q, Gu Q, Sun M, Zhang J. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:449-459. [PMID: 29291559 DOI: 10.1016/j.scitotenv.2017.12.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
To gain insight into the bacterial dynamics present in drinking water treatment (DWT) systems, the microbial community and activity in a full-scale DWT plant (DWTP) in Guangzhou, South China, were investigated using Illumina Hiseq sequencing analyses combined with cultivation-based techniques during the wet and dry seasons. Illumina sequencing analysis of 16S rRNA genes revealed a large shift in the proportion of Actinobacteria, Proteobacteria and Firmicutes during the treatment process, with the proportion of Actinobacteria decreased sharply, whereas that of Proteobacteria and Firmicutes increased and predominated in treated water. Both microbial activity and bacterial diversity during the treatment process showed obvious spatial variation, with higher levels observed during the dry season and lower levels during the wet season. Clustering analysis and principal component analysis indicated dramatic shifts in the bacterial community after chlorination, suggesting that chlorination was highly effective at influencing the bacterial community. The bacterial community structure of finished water primarily comprised Pseudomonas, Citrobacter, and Acinetobacter, and interestingly showed high similarity to biofilms on granular activated carbon. Additionally, the abundance of bacterial communities was relatively stable in finished water and did not change with the season. A large number of unique operational taxonomic units were shared during treatment steps, indicating the presence of a diverse core microbiome throughout the treatment process. Opportunistic pathogens, including Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, Legionella, Streptococcus and Enterococcus, were detected in water including finished water, suggesting a potential threat to drinking-water safety. We also detected bacteria isolated from each treatment step using the pure-culture method. In particular, two isolates, identified as Mycobacterium sp. and Blastococcus sp., which belong to the phylum Actinobacteria, were obtained from finished water during the dry season. Together, these results provided evidence of spatial and temporal variations in DWTPs and contributed to the beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Luanfeng Hou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qin Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qihui Gu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Ming Sun
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China; Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| |
Collapse
|
17
|
Neu L, Bänziger C, Proctor CR, Zhang Y, Liu WT, Hammes F. Ugly ducklings-the dark side of plastic materials in contact with potable water. NPJ Biofilms Microbiomes 2018; 4:7. [PMID: 29619241 PMCID: PMC5869678 DOI: 10.1038/s41522-018-0050-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2 (clean water controls), 9.5 × 106 cells/cm2 (real bath toys), and 7.3 × 107 cells/cm2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users’ microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water. While bathing typically means good hygiene, bath toys can serve as incubators for microbial growth. Microbes colonize nearly every natural and human-made surface, sometimes living within complex communities called biofilms. A team led by Frederik Hammes at the Swiss Federal Institute of Aquatic Science and Technology found that tap water bacteria and fungi readily formed biofilms inside bath toys, suggesting that bathing provides food for microbes. These nutrients may come from bath toys’ polymeric material, from care products like soap and from human secretions like sweat. While 16S rRNA sequence analysis found that some of the microbes were related to disease-causing strains, future work is needed to assess the disease risk from these bath toy-associated biofilms. This work sheds light on how microbes are spread by our routine activities and that we are bathed in microbes, literally.
Collapse
Affiliation(s)
- Lisa Neu
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Carola Bänziger
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Caitlin R Proctor
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Ya Zhang
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Wen-Tso Liu
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Frederik Hammes
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
18
|
Li Q, Yu S, Li L, Liu G, Gu Z, Liu M, Liu Z, Ye Y, Xia Q, Ren L. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety. Front Microbiol 2017; 8:2465. [PMID: 29312177 PMCID: PMC5733044 DOI: 10.3389/fmicb.2017.02465] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/27/2017] [Indexed: 12/02/2022] Open
Abstract
Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by chlorine. These resistant bacteria and, especially potential pathogens should receive more attention. Redundancy analysis (RDA) showed that turbidity, ammonia nitrogen and total organic carbon (TOC) exerted significant effects on community profiles. Overall, this study provides insight into variations of microbial communities in the treatment processes and aids the optimization of drinking water treatment plant design and operation for public health.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Guicai Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zhengyang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Minmin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zhiyuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yubing Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Qing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Liumo Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Vandermaesen J, Lievens B, Springael D. Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants. Res Microbiol 2017; 168:594-607. [DOI: 10.1016/j.resmic.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
20
|
Zhang Y, Oh S, Liu WT. Impact of drinking water treatment and distribution on the microbiome continuum: an ecological disturbance's perspective. Environ Microbiol 2017; 19:3163-3174. [PMID: 28654183 DOI: 10.1111/1462-2920.13800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/30/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
While microbes are known to be present at different stages of a drinking water system, their potential functions and ability to grow in such systems are poorly understood. In this study, we demonstrated that treatment and distribution processes could be viewed as ecological disturbances exhibited over space on the microbiome continuum in a groundwater-derived system. Results from 16S rRNA gene amplicon analysis and metagenomics suggested that disturbances in the system were intense as the community diversity was substantially reduced during the treatment steps. Specifically, syntrophs and methanogens dominant in raw water (RW) disappeared after water abstraction, accompanied by a substantial decrease in both the abundance and number of functional genes related to methanogenesis. The softening effluent was dominated by an Exiguobacterium-related population, likely due to its ability to use the phosphotransferase system (PTS) as regulatory machinery to control the energy conditions of the cell. After disinfection and entering the distribution system, community-level functionality remained relatively stable, whereas the community structure differed from those taken in the treatment steps. The diversity and high abundance of some eukaryotic groups in the system suggested that predation could be a disturbance to the bacterial microbiome, which could further drive the diversification of the bacterial community.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL, 61810, USA
| | - Seungdae Oh
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL, 61810, USA
| |
Collapse
|
21
|
Zhang J, Zhu C, Guan R, Xiong Z, Zhang W, Shi J, Sheng Y, Zhu B, Tu J, Ge Q, Chen T, Lu Z. Microbial profiles of a drinking water resource based on different 16S rRNA V regions during a heavy cyanobacterial bloom in Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12796-12808. [PMID: 28364202 PMCID: PMC5418304 DOI: 10.1007/s11356-017-8693-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/23/2017] [Indexed: 05/31/2023]
Abstract
Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.
Collapse
Affiliation(s)
- Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Congming Zhu
- MOE Key Lab of Bioinformatics, Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Rui Guan
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhipeng Xiong
- Wuxi Metagene Science & Technology Co., Ltd, Lake Taihu Cyanobacterial Blooms Research Institute, Wuxi, China
| | - Wen Zhang
- China Environmental Protection Foundation, Beijing, China
| | - Junzhe Shi
- Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Yi Sheng
- Wuxi Environmental Monitoring Centre, Wuxi, China
| | | | - Jing Tu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Zuhong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
22
|
Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, Pace NR. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4220-4229. [PMID: 28296394 DOI: 10.1021/acs.est.6b06064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.
Collapse
Affiliation(s)
- Natalie M Hull
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Eric P Holinger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Kimberly A Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Charles E Robertson
- Division of Infectious Disease, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Norman R Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Bacterial abundance and diversity in pond water supplied with different feeds. Sci Rep 2016; 6:35232. [PMID: 27759010 PMCID: PMC5069485 DOI: 10.1038/srep35232] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.
Collapse
|
24
|
Ji P, Parks J, Edwards MA, Pruden A. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome. PLoS One 2015; 10:e0141087. [PMID: 26495985 PMCID: PMC4619671 DOI: 10.1371/journal.pone.0141087] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023] Open
Abstract
A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9–10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.
Collapse
Affiliation(s)
- Pan Ji
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey Parks
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Marc A. Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China. Appl Microbiol Biotechnol 2015; 99:10713-24. [DOI: 10.1007/s00253-015-6885-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
|
26
|
Comparison of methods for the isolation of mycobacteria from water treatment plant sludge. Antonie van Leeuwenhoek 2015; 107:1165-79. [DOI: 10.1007/s10482-015-0408-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
|
27
|
Sun Z, Li G, Wang C, Jing Y, Zhu Y, Zhang S, Liu Y. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Sci Rep 2014; 4:6966. [PMID: 25382138 PMCID: PMC4225533 DOI: 10.1038/srep06966] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/22/2014] [Indexed: 01/19/2023] Open
Abstract
This study demonstrates both prokaryotic and eukaryotic community structures and dominant taxonomies in different positions of the greatest estuary reservoir for drinking water source in the world in four seasons of one year using 454 pyrosequencing method with total of 312,949 16S rRNA and 374,752 18S rRNA gene fragments, including 1,652 bacteria OTUs and 1,182 fungus OTUs. During winter and spring, the community composition at the phylum level showed that microorganisms had similar structures but their quantities were different. Similarly, obvious changes at the genus level were observed among the samples taken in winter and spring between summer and fall. Microorganisms located the reservoir inlet were founded to be different from those in rear at both phylum and genus level. Air temperature had a stronger effect than sampling location on the microbial community structure. Total nitrogen and dissolved oxygen were algae-monitoring indicators during the whole year. Moreover, Bacillus was an efficient indicator during summer and autumn for bacteria OTUs.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Environmental Science and Engineering, Fudan University, Handan Road, 200433, Shanghai, China
| | - Guoping Li
- Shanghai Chengtou Raw Water Limited Company, Beiai Road, 200125, Shanghai, China
| | - Chengwei Wang
- Department of Environmental Science and Engineering, Fudan University, Handan Road, 200433, Shanghai, China
| | - Yuhang Jing
- Department of Environmental Science and Engineering, Fudan University, Handan Road, 200433, Shanghai, China
| | - Yiping Zhu
- Shanghai Chengtou Raw Water Limited Company, Beiai Road, 200125, Shanghai, China
| | - Shumin Zhang
- Shanghai Chengtou Raw Water Limited Company, Beiai Road, 200125, Shanghai, China
| | - Yan Liu
- Department of Environmental Science and Engineering, Fudan University, Handan Road, 200433, Shanghai, China
| |
Collapse
|
28
|
Lautenschlager K, Hwang C, Ling F, Liu WT, Boon N, Köster O, Egli T, Hammes F. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. WATER RESEARCH 2014; 62:40-52. [PMID: 24937356 DOI: 10.1016/j.watres.2014.05.035] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 05/10/2023]
Abstract
Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant.
Collapse
Affiliation(s)
- Karin Lautenschlager
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstr. 133, CH-8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CH-8092 Zürich, Switzerland
| | - Chiachi Hwang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Fangqiong Ling
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nico Boon
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Microbial Ecology and Technology (LabMET), Gent, Belgium
| | - Oliver Köster
- Zürich Water Supply (WVZ), Hardhof 9, P.O. Box 1179, CH-8021 Zürich, Switzerland
| | - Thomas Egli
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstr. 133, CH-8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CH-8092 Zürich, Switzerland
| | - Frederik Hammes
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstr. 133, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
29
|
Buse HY, Lu J, Lu X, Mou X, Ashbolt NJ. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol Ecol 2014; 88:280-95. [PMID: 24490699 DOI: 10.1111/1574-6941.12294] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022] Open
Abstract
Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P < 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P > 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.
Collapse
|