1
|
Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli G, Peng Y, Yang Y. The China plant trait database version 2. Sci Data 2022; 9:769. [PMID: 36522346 PMCID: PMC9755148 DOI: 10.1038/s41597-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Plant functional traits represent adaptive strategies to the environment, linked to biophysical and biogeochemical processes and ecosystem functioning. Compilations of trait data facilitate research in multiple fields from plant ecology through to land-surface modelling. Here we present version 2 of the China Plant Trait Database, which contains information on morphometric, physical, chemical, photosynthetic and hydraulic traits from 1529 unique species in 140 sites spanning a diversity of vegetation types. Version 2 has five improvements compared to the previous version: (1) new data from a 4-km elevation transect on the edge of Tibetan Plateau, including alpine vegetation types not sampled previously; (2) inclusion of traits related to hydraulic processes, including specific sapwood conductance, the area ratio of sapwood to leaf, wood density and turgor loss point; (3) inclusion of information on soil properties to complement the existing data on climate and vegetation (4) assessments and flagging the reliability of individual trait measurements; and (5) inclusion of standardized templates for systematical field sampling and measurements.
Collapse
Grants
- 694481 GC2.0 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 787203 REALM EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program
- High-End Foreign Expert award at Tsinghua University (G20190001075, G20200001064, G2021102001); the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program
- the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program; the High-End Foreign Expert award at Tsinghua University (G20190001075, G20200001064, G2021102001); the Imperial College initiative on Grand Challenges in Ecology and Environment
Collapse
Affiliation(s)
- Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China.
| | - Sandy P Harrison
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Reading, RG6 6AH, United Kingdom
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - I Colin Prentice
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, United Kingdom
| | - Shengchao Qiao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Runxi Wang
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Huiying Xu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Giulia Mengoli
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, United Kingdom
| | - Yunke Peng
- Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Yanzheng Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Wang J, Wen X. Limiting resource and leaf functional traits jointly determine distribution patterns of leaf intrinsic water use efficiency along aridity gradients. FRONTIERS IN PLANT SCIENCE 2022; 13:909603. [PMID: 35968133 PMCID: PMC9372487 DOI: 10.3389/fpls.2022.909603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Responses of Carbon Isotope Composition of Common C3 and C4 Plants to Climatic Factors in Temperate Grasslands. SUSTAINABILITY 2022. [DOI: 10.3390/su14127311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Investigating relationships between climatic factors and plant δ13C of both C3 and C4 plants simultaneously is critical for accurately predicting the effects of climate change on plant ecophysiology and ecosystem functioning and reconstructing past vegetation and climate conditions. We selected common C3 and C4 plants in temperate grasslands in Inner Mongolia, China, i.e., Stipa spp., Carex spp., Leymus chinensis and Cleistogenes spp., and investigated the relationships between climatic factors and plant δ13C of each genus/species. The results showed that precipitation, especially growing season precipitation (GSP), was the dominant factor affecting plant δ13C in this region. For C3 plants, there were significantly negative relationships between precipitation and plant δ13C. For C4 plants, plant δ13C of Cleistogenes spp. firstly increased, then decreased with precipitation at a breakpoint GSP 204.84 mm. Our findings emphasize that C4 plant δ13C is sensitive to precipitation, but responses are species-specific and environment-specific, and suggest that C4 plant δ13C can be used as a proxy for water use efficiency (WUE), but care should be taken in evaluating WUE. Moreover, our findings provide basic information for accurately predicting the effects of climate change on ecosystem structure and function and reconstructing past vegetation and climate conditions from bulk materials in arid and semiarid regions.
Collapse
|
4
|
Shaner PJL, Ke LH. Niche overlap in rodents increases with competition but not ecological opportunity: A role of inter-individual difference? J Anim Ecol 2022; 91:1679-1692. [PMID: 35633185 DOI: 10.1111/1365-2656.13750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023]
Abstract
Niche variation at population level mediates niche packing (i.e., patterns of species' spread within the niche space) and species coexistence at community level. Competition and ecological opportunity (resource diversity) are two of the main mechanisms underlying niche variation. Dense niche packing could occur through increased niche partitioning or increased niche overlap. In this study we used stable carbon and nitrogen isotope data of 635 individual rodents from 4 species across 9 sites in the montane region of a subtropical island to test the effects of competition and ecological opportunity on population isotope niche size, inter-individual niche difference within population, and inter-specific niche overlap within community. We used the Bayesian Standard Ellipse Area (SEAB, the ellipse area enclosed by carbon and nitrogen isotope values of organisms on a bi-plot) to estimate population niche size and inter-specific niche overlap. Inter-individual niche difference within population was quantified as isotopic divergence and isotopic uniqueness. We used rodent abundance (the number of unique individuals captured) to measure competition and plant isotope niche size (plant SEAB) to measure ecological opportunity. The rodents experienced competition as evidenced by a negative relationship between population change rate and conspecific abundance. Rodent population niche size increased with ecological opportunity but not competition. The inter-individual niche difference (isotopic uniqueness) increased with competition (inter-specific competition only) but not ecological opportunity. At community level, inter-specific niche overlap (herbivore-omnivore pair only) increased with competition (the combined abundance of the pair) but not ecological opportunity. This study demonstrated that isotope niche variation of the rodents could be hierarchically influenced by ecological opportunity and competition, with the former setting the limit of population niche size across communities and the latter shaping inter-individual niche difference and inter-specific niche overlap within communities. Under strong intra-specific competition and limited ecological opportunity for niche expansion, individuals may choose to increase their isotopic uniqueness from conspecifics at the cost of overlapping with heterospecifics of different trophic roles within the community niche space as overall competition increases. Denser niche packing of these rodent communities might be achieved through increased niche overlap.
Collapse
Affiliation(s)
- Pei-Jen L Shaner
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hua Ke
- Wildervalley Environmental Consultants Ltd., Pingtung, Taiwan
| |
Collapse
|
5
|
Spatial–Temporal Changes and Driving Force Analysis of Ecosystems in the Loess Plateau Ecological Screen. FORESTS 2022. [DOI: 10.3390/f13010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ecological degradation caused by unreasonable development and prolonged utilization threatens economic development. In response to the development crisis triggered by ecological degradation, the Chinese government launched the National Barrier Zone (NBZ) Construction Program in 2006. However, few in-depth studies on the Loess Plateau Ecological Screen (LPES) have been conducted since the implementation of that program. To address this omission, based on the remote sensing image as the primary data, combined with meteorological, soil, hydrological, social, and economic data, and using GIS spatial analysis technology, this paper analyzes the change characteristics of the ecosystem pattern, quality, and dominant services of the ecosystem in the LPES from 2005 to 2015. The results show that from 2005 to 2015, the ecosystem structure in the study area was relatively stable, and the area of each ecosystem fluctuated slightly. However, the evaluation results based on FVC, LAI, and NPP showed that the quality of the ecosystem improved. The vegetation coverage (FVC) increased significantly at a rate of 0.91% per year, and the net primary productivity (NPP) had increased significantly at a rate of 6.94 gC/(m2∙a) per year. The leaf area index (LAI) in more than 66% of the regions improved, but there were still about 8% of the local regions that were degraded. During these 10 years, the soil erosion situation in LPES improved overall, and the amount of soil conservation (ASC) of the ecosystem in the LPES increased by about 0.18 billion tons. Grassland and forest played important roles in soil conservation in this area. Pearson correlation analysis and redundancy analysis showed that the soil conservation services (SCS) in the LPES were mainly affected by climate change, economic development, and urban construction. The precipitation (P), total solar radiation (SOL), and temperature (T) can explain 52%, 30.1%, and 17% of the change trends of SCS, respectively. Construction land and primary industry were negatively correlated with SCS, accounting for 22% and 8% of the change trends, respectively. Overall, from 2005 to 2015, the ecological environment of LPES showed a gradual improvement trend, but the phenomenon of destroying grass and forests and reclaiming wasteland still existed.
Collapse
|
6
|
Variation in carbon isotope composition of plants across an aridity gradient on the Loess Plateau, China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Zhang Y, Zhao J, Xu J, Chai Y, Liu P, Quan J, Wu X, Li C, Yue M. Effects of Water Availability on the Relationships Between Hydraulic and Economic Traits in the Quercus wutaishanica Forests. FRONTIERS IN PLANT SCIENCE 2022; 13:902509. [PMID: 35720582 PMCID: PMC9199496 DOI: 10.3389/fpls.2022.902509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 05/02/2023]
Abstract
Water availability is a key environmental factor affecting plant species distribution, and the relationships between hydraulic and economic traits are important for understanding the species' distribution patterns. However, in the same community type but within different soil water availabilities, the relationships in congeneric species remain ambiguous. In northwest China, Quercus wutaishanica forests in the Qinling Mountains (QM, humid region) and Loess Plateau (LP, drought region) have different species composition owing to contrasting soil water availability, but with common species occurring in two regions. We analyzed eight hydraulic traits [stomatal density (SD), vein density (VD), wood specific gravity (WSGbranch), lower leaf area: sapwood area (Al: As), stomatal length (SL), turgor loss point (ΨTlp), maximum vessel diameter (Vdmax) and height (Height)] and five economic traits [leaf dry matter content (LDMC), leaf tissue density (TD), leaf dry mass per area (LMA), Leaf thickness (LT) and maximum net photosynthetic rate (Pmax)] of congeneric species (including common species and endemic species) in Q. wutaishanica forests of QM and LP. We explored whether the congeneric species have different economic and hydraulic traits across regions. And whether the relationship between hydraulic and economic traits was determined by soil water availability, and whether it was related to species distribution and congeneric endemic species composition of the same community. We found that LP species tended to have higher SD, VD, WSGbranch, Al: As, SL, ΨTlp and Vdmax than QM species. There was a significant trade-off between hydraulic efficiency and safety across congeneric species. Also, the relationships between hydraulic and economic traits were closer in LP than in QM. These results suggested that relationships between hydraulic and economic traits, hydraulic efficiency and safety played the role in constraining species distribution across regions. Interestingly, some relationships between traits changed (from significant correlation to non-correlation) in common species across two regions (from LP to QM), but not in endemic species. The change of these seven pairs of relationships might be a reason for common species' wide occurrence in the two Q. wutaishanica forests with different soil water availability. In drought or humid conditions, congeneric species developed different types of adaptation mechanisms. The study helps to understand the environmental adaptive strategies of plant species, and the results improve our understanding of the role of both hydraulic and economic traits during community assembly.
Collapse
Affiliation(s)
- Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiale Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Xipin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- *Correspondence: Ming Yue,
| |
Collapse
|
8
|
Gong X, Xu Z, Peng Q, Tian Y, Hu Y, Li Z, Hao T. Spatial patterns of leaf δ 13C and δ 15N of aquatic macrophytes in the arid zone of northwestern China. Ecol Evol 2021; 11:3110-3119. [PMID: 33841771 PMCID: PMC8019054 DOI: 10.1002/ece3.7257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/06/2022] Open
Abstract
Analysis of stable isotope composition is an important tool in research on plant physiological ecology. However, large-scale patterns of leaf-stable isotopes for aquatic macrophytes have received considerably less attention. In this study, we examined the spatial pattern of stable isotopes of carbon (δ13C) and nitrogen (δ15N) of macrophytes leaves collected across the arid zone of northwestern China (approximately 2.4 × 106 km2) and attempted to illustrate its relationship with environmental factors (i.e., temperature, precipitation, potential evapotranspiration, sediment total carbon and nitrogen). Our results showed that the mean values of the leaf δ13C and δ15N in the macrophytes sampled from the arid zone were -24.49‰ and 6.82‰, respectively, which were far less depleted than those measured of terrestrial plants. The order of averaged leaf δ13C from different life forms was as follows: submerged > floating-leaved > emergent. Additionally, our studies indicated that the values of foliar δ13C values of all the aquatic macrophytes were only negatively associated with precipitation, but the foliar δ15N values were mainly associated with temperature, precipitation, and potential evapotranspiration. Therefore, we speculated that water-relation factors are the leaf δ13C determinant of macrophytes in the arid zone of northwestern China, and the main factors affecting leaf δ15N values are the complex combination of water and energy factors.
Collapse
Affiliation(s)
- Xusheng Gong
- Key Laboratory of Development and Environmental ResponseFaculty of Resource and EnvironmentHubei UniversityWuhanChina
- School of Nuclear Technology and Chemistry & BiologyHubei Engineering Research Center for Fragrant PlantsHubei University of Science and TechnologyXianningChina
| | - Zhiyan Xu
- Key Laboratory of Development and Environmental ResponseFaculty of Resource and EnvironmentHubei UniversityWuhanChina
| | - Qiutong Peng
- Key Laboratory of Development and Environmental ResponseFaculty of Resource and EnvironmentHubei UniversityWuhanChina
| | - Yuqing Tian
- Key Laboratory of Development and Environmental ResponseFaculty of Resource and EnvironmentHubei UniversityWuhanChina
| | - Yang Hu
- Taihu Laboratory for Lake Ecosystem ResearchState Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Zhongqiang Li
- Key Laboratory of Development and Environmental ResponseFaculty of Resource and EnvironmentHubei UniversityWuhanChina
| | - Tao Hao
- Wildlife Conservation Chief Station of Hubei ProvinceWuhanChina
| |
Collapse
|
9
|
Driscoll AW, Bitter NQ, Ehleringer JR. Interactions among intrinsic water-use efficiency and climate influence growth and flowering in a common desert shrub. Oecologia 2021; 197:1027-1038. [PMID: 33387007 DOI: 10.1007/s00442-020-04825-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
Plants make leaf-level trade-offs between photosynthetic carbon assimilation and water loss, and the optimal balance between the two is dependent, in part, on water availability. "Conservative" water-use strategies, in which minimizing water loss is prioritized over assimilating carbon, tend to be favored in arid environments, while "aggressive" water-use strategies, in which carbon assimilation is prioritized over water conservation, are often favored in mesic environments. When derived from foliar carbon isotope ratios, intrinsic water-use efficiency (iWUE) serves as a seasonally integrated indicator of the balance of carbon assimilation to water loss at the leaf level. Here, we used a multi-decadal record of annual iWUE, growth, and flowering from a single population of Encelia farinosa in the Mojave Desert to evaluate the effect of iWUE on plant performance across interannual fluctuations in water availability. We identified substantial variability in iWUE among individuals and found that iWUE interacted with water availability to significantly influence growth and flowering. However, the relationships between iWUE, water availability, and plant performance did not universally suggest that "conservative" water-use strategies were advantageous in dry years or that "aggressive" strategies were advantageous in wet years. iWUE was positively related to the odds of growth regardless of water availability and to the odds of flowering in dry years, but negatively related to growth rates in dry years. In addition, we found that leaf nitrogen content affected interannual plant performance and that an individual's iWUE plasticity in response to fluctuations in aridity was negatively related to early life drought survival and growth.
Collapse
Affiliation(s)
- Avery W Driscoll
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA.
| | - Nicholas Q Bitter
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA
| | - James R Ehleringer
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
10
|
Spatial Variation in Leaf Stable Carbon Isotope Composition of Three Caragana Species in Northern China. FORESTS 2018. [DOI: 10.3390/f9060297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Wang Y, An Y, Yu J, Zhou Z, He S, Ru M, Cui B, Zhang Y, Han R, Liang Z. Different responses of photosystem II and antioxidants to drought stress in two contrasting populations of Sour jujube from the Loess Plateau, China. Ecol Res 2016. [DOI: 10.1007/s11284-016-1384-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pan S, Zhang W, Zhao M, Li Y, Xu S, Wang G. Altitude Patterns of Leaf Carbon Isotope Composition in a Subtropical Monsoon Forest. POLISH JOURNAL OF ECOLOGY 2016. [DOI: 10.3161/15052249pje2016.64.2.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Pan S, Zhang W, Zhao M, Li Y, Xu S, Wang G. Altitude Patterns of Leaf Carbon Isotope Composition in a Subtropical Monsoon Forest. POLISH JOURNAL OF ECOLOGY 2015. [DOI: 10.3161/15052249pje2015.63.4.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Liu Y, Li Y, Zhang L, Xu X, Niu H. Effects of sampling method on foliar δ (13)C of Leymus chinensis at different scales. Ecol Evol 2015; 5:1068-75. [PMID: 25798224 PMCID: PMC4364821 DOI: 10.1002/ece3.1401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/15/2014] [Indexed: 12/03/2022] Open
Abstract
Stable carbon isotope composition (δ (13)C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ (13)C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ (13)C values of all samples were measured. We compared the patterns that foliar δ (13)C to precipitation among different years or different sample sizes, the differences of foliar δ (13)C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ (13)C every year. Significant difference was found between the slopes of foliar δ (13)C to AAP and MAP every year, among the slopes of foliar δ (13)C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P-values of the linear regression test between foliar δ (13)C and precipitation. Furthermore, there was significant lower foliar δ (13)C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ (13)C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Resources and Environment, University of Chinese Academy of Sciences19-A Yuquan Road, Beijing 100049, China
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10D-78457 Konstanz, Germany
| | - Yan Li
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10D-78457 Konstanz, Germany
| | - Lirong Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences19-A Yuquan Road, Beijing 100049, China
| | - Xingliang Xu
- Key Laboratory and Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesNO.11-A Datun Road, Beijing, 100101, China
| | - Haishan Niu
- College of Resources and Environment, University of Chinese Academy of Sciences19-A Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Bertoldi D, Santato A, Paolini M, Barbero A, Camin F, Nicolini G, Larcher R. Botanical traceability of commercial tannins using the mineral profile and stable isotopes. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:792-801. [PMID: 25230175 DOI: 10.1002/jms.3457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/09/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
Commercial tannins are natural polyphenolic compounds extracted from different plant tissues such as gall, the wood of different species and fruit. In the food industry they are mainly used as flavourings and food ingredients, whereas in winemaking they are classified as clarification agents for wine protein stabilisation, although colour stabilisation, metal removal, unpleasant thiol removal and rheological correction are also well-known and desired effects. Due to their particular technical properties and very different costs, the possibility of correct identification of the real botanical origin of tannins can be considered a primary target in oenology research and in fulfilling the technical and economic requirements of the wine industry. For some categories of tannins encouraging results have already been achieved by considering sugar or polyphenolic composition. For the first time this work verifies the possibility of determining the botanical origin of tannins on the basis of the mineral element profile and analysis of the (13) C/(12) C isotopic ratio. One hundred two commercial tannins originating from 10 different botanical sources (grapes, oak, gall, chestnut, fruit trees, quebracho, tea, acacia, officinal plants and tara) were analysed to determine 57 elements and the (13) C/(12) C isotopic ratio, using inductively coupled plasma mass spectrometry and isotope-ratio mass spectrometry, respectively. Forward stepwise discriminant analysis provided good discrimination between the 8 most abundant groups, with 100% correct re-classification. The model was then validated five times on subsets of 10% of the overall samples, randomly extracted, achieving satisfactory results. With a similar approach it was also possible to distinguish toasted and untoasted oak tannins as well as tannins from grape skin and grape seeds.
Collapse
Affiliation(s)
- Daniela Bertoldi
- IASMA Fondazione Edmund Mach, via E. Mach, 1, 38010, San Michele all'Adige, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 2013; 17:82-91. [DOI: 10.1111/ele.12211] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- I. Colin Prentice
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
- AXA Chair of Biosphere and Climate Impacts; Department of Life Sciences and Grantham Institute for Climate Change; Imperial College; Silwood Park Ascot SL5 7PY UK
| | - Ning Dong
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| | - Sean M. Gleason
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| | - Vincent Maire
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| | - Ian J. Wright
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| |
Collapse
|
17
|
Rao Z, Chen F, Cheng H, Liu W, Wang G, Lai Z, Bloemendal J. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci Rep 2013; 3:2785. [PMID: 24071743 PMCID: PMC3784955 DOI: 10.1038/srep02785] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/10/2013] [Indexed: 11/09/2022] Open
Abstract
We present a summer precipitation reconstruction for the last glacial (LG) on the western edge of the Chinese Loess Plateau (CLP) using a well-dated organic carbon isotopic dataset together with an independent modern process study results. Our results demonstrate that summer precipitation variations in the CLP during the LG were broadly correlated to the intensity of the Asian summer monsoon (ASM) as recorded by stalagmite oxygen isotopes from southern China. During the last deglaciation, the onset of the increase in temperatures at high latitudes in the Northern Hemisphere and decline in the intensity of the East Asia winter monsoon in mid latitudes was earlier than the increase in ASM intensity and our reconstructed summer precipitation in the western CLP. Quantitative reconstruction of a single paleoclimatic factor provides new insights and opportunities for further understanding of the paleoclimatic variations in monsoonal East Asia and their relation to the global climatic system.
Collapse
Affiliation(s)
- Zhiguo Rao
- MOE Key Laboratory of Western China's Environmental Systems, Collaborative Innovation Centre for Arid Environments and Climate Change, Lanzhou University, Lanzhou 73000, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang N, Gao J, Xu SS, Zhang WP, Wang GX. Biomass-density relationship varies with water use efficiency across an aridity gradient. CONTEMP PROBL ECOL+ 2013. [DOI: 10.1134/s1995425513040069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang N, Xu SS, Jia X, Gao J, Zhang WP, Qiu YP, Wang GX. Variations in foliar stable carbon isotopes among functional groups and along environmental gradients in China - a meta-analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:144-51. [PMID: 22672784 DOI: 10.1111/j.1438-8677.2012.00605.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Variations in foliar stable carbon isotope signatures (δ(13)C) of different plant functional groups (PFGs) and their relationships with environmental factors in China were investigated in this meta-analysis. There were some significant, but small differences in δ(13)C among PFGs categorised by life form (<1‰). Trees (-26.78‰) and shrubs (-26.89‰) had similar mean δ(13)C that were significantly higher than those of herbs (-27.49‰). Evergreen shrubs (-25.82‰) had significantly higher mean δ(13)C than deciduous shrubs (-26.92‰). Perennial herbs (-26.83‰) had significantly higher mean δ(13) C than annual herbs (-27.10‰). Grasses (-26.46‰) had significantly higher mean δ(13)C than forbs (-26.96‰). For pooled data, δ(13)C was significantly and negatively correlated with mean annual precipitation (MAP) and mean annual temperature (MAT), while it was significantly and positively correlated with latitude and altitude. There was a threshold value of MAP along the gradients, and δ(13)C did not change significantly with higher rainfall. The δ(13) C of PFGs changed with altitude, suggesting that increases in δ(13)C with altitude cannot be generalised. Differences in δ(13)C between PFGs were generally much <1‰ and therefore insignificant. In contrast, MAP and MAT had relatively large effects on δ(13) C (more than 4‰ between extremes). The δ(13)C of some PFGs responded to environmental gradients in the same manner, while their 'rates' of change were significantly different in some cases. This information could help predict potential changes in the distribution of PFGs in response to future climate change.
Collapse
Affiliation(s)
- N Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Ma JY, Sun W, Sun HL, Wang SM. Stable carbon isotope characteristics of desert plants in the Junggar Basin, China. Ecol Res 2011. [DOI: 10.1007/s11284-011-0878-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
ARAYA YOSEPHN, SILVERTOWN JONATHAN, GOWING DAVIDJ, MCCONWAY KEVIN, LINDER PETER, MIDGLEY GUY. Variation in δ13C among species and sexes in the family Restionaceae along a fine-scale hydrological gradient. AUSTRAL ECOL 2010. [DOI: 10.1111/j.1442-9993.2009.02089.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hartman G, Danin A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 2010; 162:837-52. [PMID: 19956974 PMCID: PMC2841277 DOI: 10.1007/s00442-009-1514-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
Abstract
Plant C and N isotope values often correlate with rainfall on global and regional scales. This study examines the relationship between plant isotopic values and rainfall in the Eastern Mediterranean region. The results indicate significant correlations between both C and N isotope values and rainfall in C(3) plant communities. This significant relationship is maintained when plant communities are divided by plant life forms. Furthermore, a seasonal increase in C isotope values is observed during the dry season while N isotope values remain stable across the wet and dry seasons. Finally, the isotopic pattern in plants originating from desert environments differs from those from Mediterranean environments because some desert plants obtain most of their water from secondary sources, namely water channeled by local topographic features rather than direct rainfall. From these results it can be concluded that water availability is the primary factor controlling C and N isotope variability in plant communities in the Eastern Mediterranean.
Collapse
Affiliation(s)
- Gideon Hartman
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | |
Collapse
|