1
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Kim HJ, Yun SP, Kim HJ, Kim H, Park SW. Deficiency of purinergic P2Y2 receptor impairs the recovery after renal ischemia-reperfusion injury and accelerates renal fibrosis and tubular senescence in mice. Sci Rep 2024; 14:31932. [PMID: 39738595 DOI: 10.1038/s41598-024-83411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR. KO mice showed severe kidney dysfunction and structural damage compared to WT mice. KO mice showed higher senescence-associated β-galactosidase expression and shorter telomere length than WT mice. Consistently, interstitial collagen accumulation and fibrogenic mediators were significantly upregulated in KO mice. Renal apoptosis and inflammation were highly elevated in KO mice. Interestingly, cell proliferation as shown by Ki-67 and PCNA expression, was increased for 3 days after IR in WT mice, whereas it maintained increased for 14 days in KO mice. Cell cycle inhibitors, p16 and p21, and regulators JunB and cyclin E were significantly increased after IR in KO mice, suggesting that cell cycle progression was impaired during recovery after IR. Proximal tubular cells treated with JunB siRNA showed a reduced expression of fibrogenic mediators and proinflammatory cytokines, consistent with the mice treated with MRS2768, a P2Y2 agonist that downregulated JunB levels. In conclusion, P2Y2R reduces kidney tissue damage after IR and repairs the tissue properly by regulating JunB-mediated signaling during the recovery process.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Zhou L, Deng H, Zhang Y, Li G, Yu H, Wu K, Wang F. A switch in the pathway of TRPC3-mediated calcium influx into brain pericytes contributes to capillary spasms after subarachnoid hemorrhage. Neurotherapeutics 2024; 21:e00380. [PMID: 38839450 PMCID: PMC11581875 DOI: 10.1016/j.neurot.2024.e00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
Calcium influx and subsequent elevation of the intracellular calcium concentration ([Ca2+]i) induce contractions of brain pericytes and capillary spasms following subarachnoid hemorrhage. This calcium influx is exerted through cation channels. However, the specific calcium influx pathways in brain pericytes after subarachnoid hemorrhage remain unknown. Transient receptor potential canonical 3 (TRPC3) is the most abundant cation channel potentially involved in calcium influx into brain pericytes and is involved in calcium influx into other cell types either via store-operated calcium entry (SOCE) or receptor-operated calcium entry (ROCE). Therefore, we hypothesized that TRPC3 is associated with [Ca2+]i elevation in brain pericytes, potentially mediating brain pericyte contraction and capillary spasms after subarachnoid hemorrhage. In this study, we isolated rat brain pericytes and demonstrated increased TRPC3 expression and its currents in brain pericytes after subarachnoid hemorrhage. Calcium imaging of brain pericytes revealed that changes in TRPC3 expression mediated a switch from SOCE-dominant to ROCE-dominant calcium influx after subarachnoid hemorrhage, resulting in significantly higher [Ca2+]i levels after SAH. TRPC3 activity in brain pericytes also contributed to capillary spasms and reduction in cerebral blood flow in an in vivo rat model of subarachnoid hemorrhage. Therefore, we suggest that the switch in TRPC3-mediated calcium influx pathways plays a crucial role in the [Ca2+]i elevation in brain pericytes after subarachnoid hemorrhage, ultimately leading to capillary spasms and a reduction in cerebral blood flow.
Collapse
Affiliation(s)
- Yuncong Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Hongji Deng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yongjin Zhang
- Department of Laboratory for Basic Research, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Guibo Li
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Hanfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kun Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
3
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
4
|
Romagnolo A, Dematteis G, Scheper M, Luinenburg MJ, Mühlebner A, Van Hecke W, Manfredi M, De Giorgis V, Reano S, Filigheddu N, Bortolotto V, Tapella L, Anink JJ, François L, Dedeurwaerdere S, Mills JD, Genazzani AA, Lim D, Aronica E. Astroglial calcium signaling and homeostasis in tuberous sclerosis complex. Acta Neuropathol 2024; 147:48. [PMID: 38418708 PMCID: PMC10901927 DOI: 10.1007/s00401-024-02711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Alessia Romagnolo
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mirte Scheper
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark J Luinenburg
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcello Manfredi
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Veronica De Giorgis
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Simone Reano
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
| | | | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-L'Alleud, Belgium
| | | | - James D Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
5
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
6
|
Ribeiro DE, Petiz LL, Glaser T, Oliveira-Giacomelli Á, Andrejew R, Saab FDAR, Milanis MDS, Campos HC, Sampaio VFA, La Banca S, Longo BM, Lameu C, Tang Y, Resende RR, Ferreira ST, Ulrich H. Purinergic signaling in cognitive impairment and neuropsychiatric symptoms of Alzheimer's disease. Neuropharmacology 2023; 226:109371. [PMID: 36502867 DOI: 10.1016/j.neuropharm.2022.109371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
About 10 million new cases of dementia develop worldwide each year, of which up to 70% are attributable to Alzheimer's disease (AD). In addition to the widely known symptoms of memory loss and cognitive impairment, AD patients frequently develop non-cognitive symptoms, referred to as behavioral and psychological symptoms of dementia (BPSDs). Sleep disorders are often associated with AD, but mood alterations, notably depression and apathy, comprise the most frequent class of BPSDs. BPSDs negatively affect the lives of AD patients and their caregivers, and have a significant impact on public health systems and the economy. Because treatments currently available for AD are not disease-modifying and mainly aim to ameliorate some of the cognitive symptoms, elucidating the mechanisms underlying mood alterations and other BPSDs in AD may reveal novel avenues for progress in AD therapy. Purinergic signaling is implicated in the pathophysiology of several central nervous system (CNS) disorders, such as AD, depression and sleep disorders. Here, we review recent findings indicating that purinergic receptors, mainly the A1, A2A, and P2X7 subtypes, are associated with the development/progression of AD. Current evidence suggests that targeting purinergic signaling may represent a promising therapeutic approach in AD and related conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil.
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Talita Glaser
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Roberta Andrejew
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Milena da Silva Milanis
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Henrique Correia Campos
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Sophia La Banca
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
7
|
He J, Liu S, Tan Q, Liu Z, Fu J, Li T, Wei C, Liu X, Mei Z, Cheng J, Wang K, Fu J. Antiviral Potential of Small Molecules Cordycepin, Thymoquinone, and N6, N6-Dimethyladenosine Targeting SARS-CoV-2 Entry Protein ADAM17. Molecules 2022; 27:molecules27249044. [PMID: 36558177 PMCID: PMC9781528 DOI: 10.3390/molecules27249044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kai Wang
- Correspondence: (J.C.); (K.W.); (J.F.)
| | | |
Collapse
|
8
|
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NEUROSCI 2022; 3:604-615. [PMID: 39483765 PMCID: PMC11523754 DOI: 10.3390/neurosci3040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2024] Open
Abstract
Different brain disorders display distinctive etiologies and pathogenic mechanisms. However, they also share pathogenic events. One event systematically occurring in different brain disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly important in the control of astrocytic activity and in astrocyte-neuron communication. In diverse brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurodegeneration by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana S. Figueira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Joana M. Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
9
|
Xiong Y, Zhou D, Zheng K, Bi W, Dong Y. Extracellular Adenosine Triphosphate Binding to P2Y1 Receptors Prevents Glutamate-Induced Excitotoxicity: Involvement of Erk1/2 Signaling Pathway to Suppress Autophagy. Front Neurosci 2022; 16:901688. [PMID: 35747207 PMCID: PMC9209742 DOI: 10.3389/fnins.2022.901688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Glutamate-induced neuroexcitotoxicity could be related to the pathophysiology of some neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. Extracellular ATP exerts a wide variety of functions, such as attenuating Aβ-mediated toxicity, inhibiting N-Methyl-D-Aspartate (NMDA) receptor subunit combinations, and aggravating ischemic brain injury. However, the effect of extracellular ATP on glutamate-induced neuroexcitotoxicity remains largely unknown. Herein, we showed that extracellular ATP prevented the glutamate-induced excitotoxicity via binding to its P2Y1 receptors. We found that excessive glutamate triggered cellular reactive oxygen species (ROS) overproduction and mitochondrial membrane potential damage, which were significantly attenuated by extracellular ATP. Besides, glutamate activated autophagy, as illustrated by the increased protein level of autophagic marker LC3II and decreased level of p62, and glutamate-induced neuroexcitotoxicity could be completely abolished by autophagy inhibitor chloroquine. In addition, we revealed that extracellular ATP activated Erk1/2 signaling to suppress autophagy and to exert its neuroprotective effects, which was further reduced by autophagy agonist rapamycin and the selective Erk1/2 inhibitor PD0325901. Taken together, our findings suggest that extracellular ATP binding to P2Y1 receptors protected against glutamate-induced excitotoxicity via Erk1/2-mediated autophagy inhibition, implying the potential of ATP for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yiping Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Duanyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
- School of Pharmacy and Food Sciences, Zhuhai College of Science and Technology, Zhuhai, China
- *Correspondence: Yun Dong, ; orcid.org/0000-0002-5658-3896
| |
Collapse
|
10
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
11
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Hakim MA, Behringer EJ. Development of Alzheimer's Disease Progressively Alters Sex-Dependent KCa and Sex-Independent KIR Channel Function in Cerebrovascular Endothelium. J Alzheimers Dis 2021; 76:1423-1442. [PMID: 32651315 DOI: 10.3233/jad-200085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aβ plaques (Aβ; 6- 8 mo), and Aβ plaques + neurofibrillary tangles (AβT; 12- 15 mo)]. RESULTS The coupling of ΔVm-to-Δ[Ca2+]i during AβT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aβ+ AβT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aβ pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
13
|
Glaser T, Oliveira-Giacomelli Á, Petiz LL, Ribeiro DE, Andrejew R, Ulrich H. Antagonistic Roles of P2X7 and P2Y2 Receptors in Neurodegenerative Diseases. Front Pharmacol 2021; 12:659097. [PMID: 33912064 PMCID: PMC8072373 DOI: 10.3389/fphar.2021.659097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Forcaia G, Formicola B, Terribile G, Negri S, Lim D, Biella G, Re F, Moccia F, Sancini G. Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer's disease. Mol Neurobiol 2021; 58:2824-2835. [PMID: 33511502 PMCID: PMC8128821 DOI: 10.1007/s12035-021-02299-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
In light of previous results, we assessed whether liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) (mApoE-PA-LIP) impacted on intracellular calcium (Ca2+) dynamics in cultured human cerebral microvascular endothelial cells (hCMEC/D3), as an in vitro human blood-brain barrier (BBB) model, and in cultured astrocytes. mApoE-PA-LIP pre-treatment actively increased both the duration and the area under the curve (A.U.C) of the ATP-evoked Ca2+ waves in cultured hCMEC/D3 cells as well as in cultured astrocytes. mApoE-PA-LIP increased the ATP-evoked intracellular Ca2+ waves even under 0 [Ca2+]e conditions, thus indicating that the increased intracellular Ca2+ response to ATP is mainly due to endogenous Ca2+ release. Indeed, when Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) activity was blocked by cyclopiazonic acid (CPA), the extracellular application of ATP failed to trigger any intracellular Ca2+ waves, indicating that metabotropic purinergic receptors (P2Y) are mainly involved in the mApoE-PA-LIP-induced increase of the Ca2+ wave triggered by ATP. In conclusion, mApoE-PA-LIP modulate intracellular Ca2+ dynamics evoked by ATP when SERCA is active through inositol-1,4,5-trisphosphate-dependent (InsP3) endoplasmic reticulum Ca2+ release. Considering that P2Y receptors represent important pharmacological targets to treat cognitive dysfunctions, and that P2Y receptors have neuroprotective effects in neuroinflammatory processes, the enhancement of purinergic signaling provided by mApoE-PA-LIP could counteract Aβ-induced vasoconstriction and reduction in cerebral blood flow (CBF). Our obtained results could give an additional support to promote mApoE-PA-LIP as effective therapeutic tool for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Greta Forcaia
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Giulia Terribile
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100, Novara, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy.,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy. .,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy.
| |
Collapse
|
15
|
Barinov EF, Statinova EA, Sokhina VS, Faber TI. [Risks of progression of cerebrovascular pathology associated with the activity of the brain purinergic system]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:118-124. [PMID: 33244967 DOI: 10.17116/jnevro2020120101118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Until now, there is no understanding of the relationship between risk factors and the progression of cerebrovascular pathology. The review presents facts that confirm the involvement of various subtypes of purine P2 receptors in neuron activation, growth and myelination of axons, migration and microglia phagocytosis, astrogliosis, regulation of vascular tone, thrombosis and angiogenesis, neuroinflammation and immune responses. The data suggest the possibility of the activation of purinergic system of the brain during the development of main risk factors for cerebrovascular pathology (age, arterial hypertension, diabetes), as a stereotypical mechanism that can affect the homeostasis of the ensemble "neuron-glia-capillary". Purinergic P2 receptors may be a potential target for the development of pharmacological methods to limit the progression of cerebrovascular pathology.
Collapse
Affiliation(s)
- E F Barinov
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - E A Statinova
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - V S Sokhina
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - T I Faber
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| |
Collapse
|
16
|
Alhowail A, Zhang LX, Buabeid M, Shen JZ, Suppiramaniam V. Role of the purinergic P2Y2 receptor in hippocampal function in mice. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 24:11858-11864. [PMID: 33275273 PMCID: PMC10015965 DOI: 10.26355/eurrev_202011_23843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of the purinergic P2Y2 receptor in learning and memory processes. MATERIALS AND METHODS Behavioral, electrophysiological, and biochemical tests of memory function were conducted in P2Y2 receptor knockout (P2Y2R-KO) mice, and the findings were compared to those of wild-type mice with the help of unpaired Student's t-test. RESULTS The findings of the behavioral Y-maze test showed that the P2Y2R-KO mice had impaired memory and cognitive function. Electrophysiological studies on paired-pulse facilitation showed that glutamate release was higher in the P2Y2R-KO mice than in the WT mice. Furthermore, PCR and Western blot analysis revealed that the mRNA and protein expression of acetylcholinesterase E (AChE) and alpha-7 nicotinic acetylcholine receptors (α7 nAChRs) were increased in the hippocampus of P2Y2R-KO mice. CONCLUSIONS The findings of this study indicate that P2Y2 receptors are important regulators of both glutamatergic and cholinergic systems in the hippocampus.
Collapse
Affiliation(s)
- A Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
17
|
Anwar S, Rivest S. Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 2020; 24:331-344. [PMID: 32129117 DOI: 10.1080/14728222.2020.1738391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: Despite the revolutionary progress in neurodegenerative disease research, there is no cure for Alzheimer's disease (AD). This is a chronic progressive neurodegenerative disease affecting aged people and is associated with chronic neuroinflammation and amyloid-beta (Aβ) deposition in the brain parenchyma. Microglia, the resident myeloid cells in the central nervous system, are critically involved in the pathogenesis of AD and have emerged as a potential therapeutic target for treating or preventing AD. The failure of microglia to keep up with persistent amyloid-beta development along with secretion of inflammatory cytokines is detrimental to neurons and favors Aβ accumulation.Areas covered: This review illuminates the latest research that is focused on molecules and their intracellular targets that promote microglial phagocytosis and /or its polarization to an anti-inflammatory state.Expert opinion: A robust inflammatory response of microglia is not necessary to improve their efficiency of Aβ clearance. The challenge is to master inflammatory/anti-inflammatory phenotypes depending on the stage of AD and to maintain efficient responses to remove Aβ. Therefore, promoting microglia phagocytosis without a persistent excessive inflammatory response could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shehata Anwar
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
18
|
Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer's disease. Mol Cell Neurosci 2019; 101:103414. [PMID: 31655116 DOI: 10.1016/j.mcn.2019.103414] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a late onset neurodegenerative disorder is characterized by the loss of memory, disordered cognitive function, caused by accumulation of amyloid-β (Aβ) peptide and neurofibrillary tangles (NFTs) in the neocortex and hippocampal brain area. Extensive research has been done on the findings of the disease etiology or pathological causes of aggregation of Aβ and hyperphosphorylation of tau protein without much promising results. Recently, calcium dysregulation has been reported to play an important role in the pathophysiology of AD. Calcium ion acts as one of the major secondary messengers, regulates many signaling pathways involved in cell survival, proliferation, differentiation, transcription and apoptosis. Calcium signaling is one of the major signaling pathways involved in the formation of memory, generation of energy and other physiological functions. It also can modulate function of many proteins upon binding. Dysregulation in calcium homeostasis leads to many physiological changes leading to neurodegenerative diseases including AD. In AD, GPCRs generate secondary messengers which regulate calcium homeostasis inside the cell and is reported to be disturbed in the pathological condition. Calcium channels and receptors present on the plasma membrane and intracellular organelle maintain calcium homeostasis through different signaling mechanisms. In this review, we have summarized the different calcium channels and receptors involved in calcium dysregulation which in turn play a critical role in the pathogenesis of AD. Understanding the role of calcium channels and GPCRs to maintain calcium homeostasis is an attempt to develop effective AD treatments.
Collapse
Affiliation(s)
- Sushma
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
| |
Collapse
|
19
|
Caveolin-1 Regulates P2Y 2 Receptor Signaling during Mechanical Injury in Human 1321N1 Astrocytoma. Biomolecules 2019; 9:biom9100622. [PMID: 31635212 PMCID: PMC6843573 DOI: 10.3390/biom9100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Caveolae-associated protein caveolin-1 (Cav-1) plays key roles in cellular processes such as mechanosensing, receptor coupling to signaling pathways, cell growth, apoptosis, and cancer. In 1321N1 astrocytoma cells Cav-1 interacts with the P2Y2 receptor (P2Y2R) to modulate its downstream signaling. P2Y2R and its signaling machinery also mediate pro-survival actions after mechanical injury. This study determines if Cav-1 knockdown (KD) affects P2Y2R signaling and its pro-survival actions in the 1321N1 astrocytoma cells mechanical injury model system. KD of Cav-1 decreased its expression in 1321N1 cells devoid of or expressing hHAP2Y2R by ~88% and ~85%, respectively. Cav-1 KD had no significant impact on P2Y2R expression. Post-injury densitometric analysis of pERK1/2 and Akt activities in Cav-1-positive 1321N1 cells (devoid of or expressing a hHAP2Y2R) revealed a P2Y2R-dependent temporal increase in both kinases. These temporal increases in pERK1/2 and pAkt were significantly decreased in Cav-1 KD 1321N1 (devoid of or expressing a hHAP2Y2R). Cav-1 KD led to an ~2.0-fold and ~2.4-fold decrease in the magnitude of the hHAP2Y2R-mediated pERK1/2 and pAkt kinases’ activity, respectively. These early-onset hHAP2Y2R-mediated signaling responses in Cav-1-expressing and Cav-1 KD 1321N1 correlated with changes in cell viability (via a resazurin-based method) and apoptosis (via caspase-9 expression). In Cav-1-positive 1321N1 cells, expression of hHAP2Y2R led to a significant increase in cell viability and decreased apoptotic (caspase-9) activity after mechanical injury. In contrast, hHAP2Y2R-elicited changes in viability and apoptotic (caspase-9) activity were decreased after mechanical injury in Cav-1 KD 1321N1 cells expressing hHAP2Y2R. These findings support the importance of Cav-1 in modulating P2Y2R signaling during mechanical injury and its protective actions in a human astrocytoma cell line, whilst shedding light on potential new venues for brain injury or trauma interventions.
Collapse
|
20
|
Sebastián-Serrano Á, de Diego-García L, di Lauro C, Bianchi C, Díaz-Hernández M. Nucleotides regulate the common molecular mechanisms that underlie neurodegenerative diseases; Therapeutic implications. Brain Res Bull 2019; 151:84-91. [PMID: 30721769 DOI: 10.1016/j.brainresbull.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (ND) are a heterogeneous group of neurological disorders characterized by a progressive loss of neuronal function which results in neuronal death. Although a specific toxic factor has been identified for each ND, all of them share common pathological molecular mechanisms favouring the disease development. In the final stages of ND, patients become unable to take care of themselves and decline to a total functional incapacitation that leads to their death. Some of the main factors which contribute to the disease progression include proteasomal dysfunction, neuroinflammation, synaptic alterations, protein aggregation, and oxidative stress. Over recent years, evidence has been accumulated to suggest that purinergic signaling plays a key role in the aforementioned molecular pathways. In this review, we revise the implications of the purinergic signaling in the common molecular mechanism underlying the ND. In particular, we focus on the role of the purinergic receptors P2X7, P2Y2 and the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP).
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Caterina di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
21
|
Erb L, Woods LT, Khalafalla MG, Weisman GA. Purinergic signaling in Alzheimer's disease. Brain Res Bull 2018; 151:25-37. [PMID: 30472151 DOI: 10.1016/j.brainresbull.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by three major histopathological markers: amyloid-β (Aβ) plaques, neurofibrillary tangles and gliosis in the central nervous system (CNS). It is now accepted that neuroinflammatory events in the CNS play a crucial role in the development of AD. This review focuses on neuroinflammatory signaling mediated by purinergic receptors (P1 adenosine receptors, P2X ATP-gated ion channels and G protein-coupled P2Y nucleotide receptors) and how therapeutic modulation of purinergic signaling influences disease progression in AD patients and animal models of AD.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Mahmoud G Khalafalla
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
22
|
Role of purinergic receptors in the Alzheimer's disease. Purinergic Signal 2018; 14:331-344. [PMID: 30362042 PMCID: PMC6298926 DOI: 10.1007/s11302-018-9629-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Etiology of the Alzheimer’s disease (AD) is not fully understood. Different pathological processes are considered, such as amyloid deposition, tau protein phosphorylation, oxidative stress (OS), metal ion disregulation, or chronic neuroinflammation. Purinergic signaling is involved in all these processes, suggesting the importance of nucleotide receptors (P2X and P2Y) and adenosine receptors (A1, A2A, A2B, A3) present on the CNS cells. Ecto-purines, ecto-pyrimidines, and enzymes participating in their metabolism are present in the inter-cellular spaces. Accumulation of amyloid-β (Aβ) in brain induces the ATP release into the extra-cellular space, which in turn stimulates the P2X7 receptors. Activation of P2X7 results in the increased synthesis and release of many pro-inflammatory mediators such as cytokines and chemokines. Furthermore, activation of P2X7 leads to the decreased activity of α-secretase, while activation of P2Y2 receptor has an opposite effect. Simultaneous inhibition of P2X7 and stimulation of P2Y2 would therefore be the efficient way of the α-secretase activation. Activation of P2Y2 receptors present in neurons, glia cells, and endothelial cells may have a positive neuroprotective effect in AD. The OS may also be counteracted via the purinergic signaling. ADP and its non-hydrolysable analogs activate P2Y13 receptors, leading to the increased activity of heme oxygenase, which has a cytoprotective activity. Adenosine, via A1 and A2A receptors, affects the dopaminergic and glutaminergic signaling, the brain-derived neurotrophic factor (BNDF), and also changes the synaptic plasticity (e.g., causing a prolonged excitation or inhibition) in brain regions responsible for learning and memory. Such activity may be advantageous in the Alzheimer’s disease.
Collapse
|
23
|
Gendron FP, Placet M, Arguin G. P2Y 2 Receptor Functions in Cancer: A Perspective in the Context of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:91-106. [PMID: 28815512 DOI: 10.1007/5584_2017_90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purinergic signaling has recently emerged as a network of signaling molecules, enzymes and receptors that coordinates the action and behavior of cancerous cells. Extracellular adenosine 5' triphosphate activates a plethora of P2 nucleotide receptors that can putatively modulate cancer cell proliferation, survival and dissemination. In this context, the G protein-coupled P2Y2 receptor was identified as one of the entities coordinating the cellular and molecular events that characterize cancerous cells. In this chapter, we will look at the contribution of the P2Y2 receptor in cancer outcomes and use this information to demonstrate that the P2Y2 receptor represents a drug target of interest in the setting of colorectal cancer, for which the role and function of this receptor is poorly defined. More particularly, we will review how the P2Y2 receptor modulates cancer cell proliferation and survival, while promoting cell dissemination and formation of metastases. Finally, we will investigate how the P2Y2 receptor can contribute to the detrimental development of drug resistance that is often observed in cancerous cells.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Morgane Placet
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Mancini JE, Ortiz G, Potilinstki C, Salica JP, Lopez ES, Croxatto JO, Gallo JE. Possible neuroprotective role of P2X2 in the retina of diabetic rats. Diabetol Metab Syndr 2018; 10:31. [PMID: 29682007 PMCID: PMC5898034 DOI: 10.1186/s13098-018-0332-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Purinergic receptors are expressed in different tissues including the retina. These receptors are involved in processes like cell growth, proliferation, activation and survival. ATP is the major activator of P2 receptors. In diabetes, there is a constant ATP production and this rise of ATP leads to a persistent activation of purinergic receptors. Antagonists of these receptors are used to evaluate their inhibition effects. Recently, the P2X2 has been reported to have a neuroprotective role. METHODS We carried out a study in groups of diabetic and non-diabetic rats (N = 5) treated with intraperitoneal injections of PPADS, at 9 and 24 weeks of diabetes. Control group received only the buffer. Animals were euthanized at 34 weeks of diabetes or at a matching age. Rat retinas were analyzed with immunohistochemistry and western blot using antibodies against GFAP, P2X2, P2Y2 and VEGF-A. RESULTS Diabetic animals treated with PPADS disclosed a much more extended staining of VEGF-A than diabetics without treatment. A lower protein expression of VEGF-A was found at the retina of diabetic animals without treatment of purinergic antagonists compared to diabetics with the antagonist treatment. Inhibition of P2X2 receptor by PPADS decreases cell death in the diabetic rat retina. CONCLUSION Results might be useful for better understanding the pathophysiology of diabetic retinopathy.
Collapse
Affiliation(s)
- Jorge E. Mancini
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Gustavo Ortiz
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Constanza Potilinstki
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan P. Salica
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Emiliano S. Lopez
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - J. Oscar Croxatto
- Department of Ocular Pathology, Fundación Oftalmlógica Argentina “Jorge Malbran”, Buenos Aires, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan E. Gallo
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| |
Collapse
|
25
|
N -glycan-dependent cell-surface expression of the P2Y 2 receptor and N -glycan-independent distribution to lipid rafts. Biochem Biophys Res Commun 2017; 485:427-431. [DOI: 10.1016/j.bbrc.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
|
26
|
Brilliant Blue Dyes in Daily Food: How Could Purinergic System Be Affected? INTERNATIONAL JOURNAL OF FOOD SCIENCE 2016; 2016:7548498. [PMID: 27833914 PMCID: PMC5090090 DOI: 10.1155/2016/7548498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/28/2016] [Indexed: 11/21/2022]
Abstract
Dyes were first obtained from the extraction of plant sources in the Neolithic period to produce dyed clothes. At the beginning of the 19th century, synthetic dyes were produced to color clothes on a large scale. Other applications for synthetic dyes include the pharmaceutical and food industries, which are important interference factors in our lives and health. Herein, we analyzed the possible implications of some dyes that are already described as antagonists of purinergic receptors, including special Brilliant Blue G and its derivative FD&C Blue No. 1. Purinergic receptor family is widely expressed in the body and is critical to relate to much cellular homeostasis maintenance as well as inflammation and cell death. In this review, we discuss previous studies and show purinergic signaling as an important issue to be aware of in food additives development and their correlations with the physiological functions.
Collapse
|
27
|
de Diego-García L, Ramírez-Escudero M, Sebastián-Serrano Á, Diaz-Hernández JI, Pintor J, Lucas JJ, Díaz-Hernández M. Regulation of proteasome activity by P2Y 2 receptor underlies the neuroprotective effects of extracellular nucleotides. Biochim Biophys Acta Mol Basis Dis 2016; 1863:43-51. [PMID: 27768902 DOI: 10.1016/j.bbadis.2016.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/22/2016] [Accepted: 10/16/2016] [Indexed: 02/05/2023]
Abstract
The Ubiquitin-Proteasome System (UPS) is essential for the regulation of the cellular proteostasis. Indeed, it has been postulated that an UPS dysregulation is the common mechanism that underlies several neurological disorders. Considering that extracellular nucleotides, through their selective P2Y2 receptor (P2Y2R), play a neuroprotective role in various neurological disorders that course with an UPS impairment, we wonder if this neuroprotective capacity resulted from their ability to modulate the UPS. Using a cellular model expressing two different UPS reporters, we found that the stimulation of P2Y2R by its selective agonist Up4U induced a significant reduction of UPS reporter levels. This reduction was due to an increase in two of the three peptidase proteasome activities, chymotrypsin and postglutamyl, caused by an increased expression of proteasome constitutive catalytic subunits β1 and β5. The intracellular signaling pathway involved required the activation of IP3/MEK1/2/ERK but was independent of PKC or PKA. Interestingly, the P2Y2R activation was able to revert both UPS-reporter accumulation and the cell death induced by a prolonged inhibition of UPS. Finally, we also observed that intracerebroventricular administration of Up4U induced a significant increase both of chymotrypsin and postglutamyl activities as well as an increased expression of proteasome subunits β1 and β5 in the hippocampus of wild-type mice, but not in P2Y2R KO mice. All these results strongly suggest that the capacity to modulate the UPS activity via P2Y2R is the molecular mechanism which is how the nucleotides play a neuroprotective role in neurological disorders.
Collapse
Affiliation(s)
- Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Mercedes Ramírez-Escudero
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Juan Ignacio Diaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" (CBM"SO"), CSIC/UAM, 28049 Madrid, Spain
| | - Jesús Pintor
- Faculty of Optic and Optometry, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa" (CBM"SO"), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
28
|
Burm SM, Zuiderwijk-Sick EA, Weert PM, Bajramovic JJ. ATP-induced IL-1β secretion is selectively impaired in microglia as compared to hematopoietic macrophages. Glia 2016; 64:2231-2246. [PMID: 27641912 DOI: 10.1002/glia.23059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
Under stressful conditions nucleotides are released from dying cells into the extracellular space, where they can bind to purinergic P2X and P2Y receptors. High concentrations of extracellular ATP in particular induce P2X7-mediated signaling, which leads to inflammasome activation. This in turn leads to the processing and secretion of pro-inflammatory cytokines, like interleukin (IL)-1β. During neurodegenerative diseases, innate immune responses are shaped by microglia and we have previously identified microglia-specific features of inflammasome-mediated responses. Here, we compared ATP-induced IL-1β secretion in primary rhesus macaque microglia and bone marrow-derived macrophages (BMDM). We assessed the full expression profile of P2 receptors and characterized the induction and modulation of IL-1β secretion by extracellular nucleotides. Microglia secreted significantly lower levels of IL-1β in response to ATP when compared to BMDM. We demonstrate that this is not due to differences in sensitivity, kinetics or expression of ATP-processing enzymes, but rather to differences in purinergic receptor expression levels and usage. Using a combined approach of purinergic receptor agonists and antagonists, we demonstrate that ATP-induced IL-1β secretion in BMDM was fully dependent on P2X7 signaling, whereas in microglia multiple purinergic receptors were involved, including P2X7 and P2X4. These cell type-specific features of conserved innate immune responses may reflect adaptations to the vulnerable CNS microenvironment. GLIA 2016;64:2231-2246.
Collapse
Affiliation(s)
- Saskia Maria Burm
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | | | - Paola Massiel Weert
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
29
|
Martinez NA, Ayala AM, Martinez M, Martinez-Rivera FJ, Miranda JD, Silva WI. Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells. J Biol Chem 2016; 291:12208-22. [PMID: 27129210 DOI: 10.1074/jbc.m116.730226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the CNS can cause a differential spatio-temporal release of multiple factors, such as nucleotides, ATP and UTP. The latter interact with neuronal and glial nucleotide receptors. The P2Y2 nucleotide receptor (P2Y2R) has gained prominence as a modulator of gliotic responses after CNS injury. Still, the molecular mechanisms underlying these responses in glia are not fully understood. Membrane-raft microdomains, such as caveolae, and their constituent caveolins, modulate receptor signaling in astrocytes; yet, their role in P2Y2R signaling has not been adequately explored. Hence, this study evaluated the role of caveolin-1 (Cav-1) in modulating P2Y2R subcellular distribution and signaling in human 1321N1 astrocytoma cells. Recombinant hP2Y2R expressed in 1321N1 cells and Cav-1 were found to co-fractionate in light-density membrane-raft fractions, co-localize via confocal microscopy, and co-immunoprecipitate. Raft localization was dependent on ATP stimulation and Cav-1 expression. This hP2Y2R/Cav-1 distribution and interaction was confirmed with various cell model systems differing in the expression of both P2Y2R and Cav-1, and shRNA knockdown of Cav-1 expression. Furthermore, shRNA knockdown of Cav-1 expression decreased nucleotide-induced increases in the intracellular Ca(2+) concentration in 1321N1 and C6 glioma cells without altering TRAP-6 and carbachol Ca(2+) responses. In addition, Cav-1 shRNA knockdown also decreased AKT phosphorylation and altered the kinetics of ERK1/2 activation in 1321N1 cells. Our findings strongly suggest that P2Y2R interaction with Cav-1 in membrane-raft caveolae of 1321N1 cells modulates receptor coupling to its downstream signaling machinery. Thus, P2Y2R/Cav-1 interactions represent a novel target for controlling P2Y2R function after CNS injury.
Collapse
Affiliation(s)
| | | | | | - Freddyson J Martinez-Rivera
- Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | |
Collapse
|
30
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
32
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
33
|
Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:243-54. [PMID: 26359530 DOI: 10.1016/j.neuropharm.2015.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 02/03/2023]
Abstract
Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- M Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain.
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Juan Ignacio Diaz-Hernandez
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Illes P, Verkhratsky A. Purinergic neurone-glia signalling in cognitive-related pathologies. Neuropharmacology 2015; 104:62-75. [PMID: 26256423 DOI: 10.1016/j.neuropharm.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/19/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Neuroglia, represented by astrocytes, oligodendrocytes, NG glia and microglia are homeostatic, myelinating and defensive cells of the brain. Neuroglial cells express various combinations of purinoceptors, which contribute to multiple intercellular signalling pathways in the healthy and diseased nervous system. Neurological diseases are invariably associated with profound neuroglial remodelling, which is manifest by reactive gliosis, pathological remodelling and functional atrophy of various types of glial cells. Gliopathology is disease and region specific and produces multiple glial phenotypes that may be neuroprotective or neurotoxic. In this review we summarise recent knowledge on the role of glial purinergic signalling in cognitive-related neurological diseases. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
35
|
Eun SY, Ko YS, Park SW, Chang KC, Kim HJ. P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep 2015; 34:195-202. [PMID: 26063340 DOI: 10.3892/or.2015.3972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/26/2015] [Indexed: 11/05/2022] Open
Abstract
Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between high- and low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.
Collapse
Affiliation(s)
- So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Young Shin Ko
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| |
Collapse
|
36
|
Eun SY, Ko YS, Park SW, Chang KC, Kim HJ. IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release. Vascul Pharmacol 2015; 72:108-17. [PMID: 25956731 DOI: 10.1016/j.vph.2015.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 01/11/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessel walls, and their proliferation and migration play important roles in the development of atherosclerosis. Recently, it has been reported that IL-1β mediates the inflammatory response through the upregulation of the P2Y2 receptor (P2Y2R). Thus, we examined the role of P2Y2R in IL-1β-mediated proliferation and migration of VSMCs and the underlying molecular mechanisms. VSMCs were pretreated with IL-1β for 24h to upregulate P2Y2R expression. The cells were then stimulated with UTP or ATP for the indicated times, and cell proliferation and migration and the related signaling pathways were examined. The equipotent P2Y2R agonists ATP and UTP enhanced proliferation, RAGE expression and HMGB1 secretion in IL-1β-pretreated VSMCs. Additionally, pretreatment with IL-1β enhanced UTP-mediated VSMC migration and MMP-2 release, but these effects were not observed in the P2Y2R-siRNA- or RAGE-siRNA-transfected VSMCs. Next, the signaling molecules involved in P2Y2R-mediated cell proliferation and migration were determined. The ERK, AKT, PKC, Rac-1 and ROCK2 pathways were involved in UTP-induced cell proliferation and migration, MMP-2 and HMGB1 secretion and RAGE expression in the IL-1β-pretreated VSMCs. UTP induced the phosphorylation of ERK, AKT and PKC and the translocation of Rac-1 and ROCK2 from cytosol to membrane as well as stress fiber formation, which were markedly increased in the IL-1β-pretreated VSMCs but not in the P2Y2R-siRNA-transfected VSMCs. These results demonstrate that pro-inflammatory cytokines associated with atherosclerosis, such as IL-1β, can accelerate the process of atherosclerosis through the upregulation of P2Y2R.
Collapse
Affiliation(s)
- So Young Eun
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Young Shin Ko
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea.
| |
Collapse
|
37
|
Evidence for the existence of pyrimidinergic transmission in rat brain. Neuropharmacology 2014; 91:77-86. [PMID: 25541414 DOI: 10.1016/j.neuropharm.2014.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
Abstract
The uridine nucleotides uridine-5'-triphosphate (UTP) and uridine-5'-diphosphate (UDP) have previously been identified in media from cultured cells. However, no study to date has demonstrated their presence in brain extracellular fluid (ECF) obtained in vivo. Using a novel method, we now show that UTP and UDP, as well as uridine, are detectable in dialysates of striatal ECF obtained from freely-moving rats. Intraperitoneal (i.p.) administration of uridine or exposure of striatum to depolarizing concentrations of potassium chloride increases extracellular uridine, UTP and UDP, while tetrodotoxin (TTX) decreases their ECF levels. Uridine administration also enhances cholinergic neurotransmission which is accompanied by enhanced brain levels of diacylglycerol (DAG) and inositol trisphosphate (IP3) and blocked by suramin, but not by PPADS (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid) or MRS2578 suggesting a possible mediation of P2Y2 receptors activated by UTP. These observations suggest that uridine, UTP and UDP may function as pyrimidinergic neurotransmitters, and that enhancement of such neurotransmission underlies pharmacologic effects of exogenous uridine on the brain.
Collapse
|
38
|
P2X and P2Y receptors—role in the pathophysiology of the nervous system. Int J Mol Sci 2014; 15:23672-704. [PMID: 25530618 PMCID: PMC4284787 DOI: 10.3390/ijms151223672] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022] Open
Abstract
Purinergic signalling plays a crucial role in proper functioning of the nervous system. Mechanisms depending on extracellular nucleotides and their P2 receptors also underlie a number of nervous system dysfunctions. This review aims to present the role of purinergic signalling, with particular focus devoted to role of P2 family receptors, in epilepsy, depression, neuropathic pain, nervous system neoplasms, such as glioma and neuroblastoma, neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease and multiple sclerosis. The above-mentioned conditions are associated with changes in expression of extracellular ectonucleotidases, P2X and P2Y receptors in neurons and glial cells, as well as releasing considerable amounts of nucleotides from activated or damaged nervous tissue cells into the extracellular space, which contributes to disturbance in purinergic signalling. The numerous studies indicate a potential possibility of using synthetic agonists/antagonists of P2 receptors in treatment of selected nervous system diseases. This is of particular significance, since numerous available agents reveal a low effectiveness and often produce side effects.
Collapse
|
39
|
Pathological potential of astroglial purinergic receptors. ADVANCES IN NEUROBIOLOGY 2014; 11:213-56. [PMID: 25236731 DOI: 10.1007/978-3-319-08894-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute brain injury and neurodegenerative disorders may result in astroglial activation. Astrocytes are able to determine the progression and outcome of these neuropathologies in a beneficial or detrimental way. Nucleotides, e.g. adenosine 5'-triphosphate (ATP), released after acute or chronic neuronal injury, are important mediators of glial activation and astrogliosis.Acute injury may cause significant changes in ATP balance, resulting in (1) a decline of intracellular ATP levels and (2) an increase in extracellular ATP concentrations via efflux from the intracellular space. The released ATP may have trophic effects, but can also act as a proinflammatory mediator or cytotoxic factor, inducing necrosis/apoptosis as a universal "danger" signal. Furthermore, ATP, primarily released from astrocytes, is a means of communication between neurons, glial cells, and intracerebral blood vessels.Astrocytes express a heterogeneous battery of purinergic ionotropic and metabotropic receptors (P2XRs and P2YRs, respectively) to respond to extracellular nucleotides.In this chapter, we summarize the contemporary knowledge on the pathological potential of P2Rs in relation to changes of astrocytic functions, determined by distinct molecular signaling cascades, in a variety of diseases. We discuss specific aspects of reactive astrogliosis, with respect to the involvement of prominent receptor subtypes, such as the P2X7 and P2Y1/2Rs. Examples of purinergic signaling of microglia, oligodendrocytes, and blood vessels under pathophysiological conditions will also be presented.The understanding of the pathological potential of purinergic signaling in "controlling and fine-tuning" of astrocytic responses is important for identifying possible therapeutic principles to treat acute and chronic central nervous system diseases.
Collapse
|
40
|
Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Séguéla P. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain 2014; 10:43. [PMID: 24965271 PMCID: PMC4118315 DOI: 10.1186/1744-8069-10-43] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways. RESULTS Using in situ hybridization, we determined that TRPC3 and TRPC1 constitute the major TRPC subunits expressed in adult rat DRG. TRPC3 was found localized exclusively in small and medium diameter sensory neurons. Heterologous overexpression of TRPC3 channel subunits in cultured primary DRG neurons evoked a significant increase of Gd3+-sensitive SOCE following thapsigargin-induced calcium store depletion. Conversely, using the same calcium add-back protocol, knockdown of endogenous TRPC3 with shRNA-mediated interference or pharmacological inhibition with the selective TRPC3 antagonist Pyr10 induced a substantial decrease of SOCE, indicating a significant role of TRPC3 in SOCE in DRG nociceptors. Activation of P2Y2 purinoceptors or PAR2 protease receptors triggered a strong increase in intracellular calcium in conditions of TRPC3 overexpression. Additionally, knockdown of native TRPC3 or its selective pharmacological blockade suppressed UTP- or PAR2 agonist-evoked calcium responses as well as sensitization of DRG neurons. These data show a robust link between activation of pro-inflammatory receptors and calcium homeostasis through TRPC3-containing channels operating both in receptor- and store-operated mode. CONCLUSIONS Our findings highlight a major contribution of TRPC3 to neuronal calcium homeostasis in somatosensory pathways based on the unique ability of these cation channels to engage in both SOCE and receptor-operated calcium influx. This is the first evidence for TRPC3 as a SOCE component in DRG neurons. The flexible role of TRPC3 in calcium signaling as well as its functional coupling to pro-inflammatory metabotropic receptors involved in peripheral sensitization makes it a potential target for therapeutic strategies in chronic pain conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Alan Edwards Research Centre for Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
41
|
Lamarca A, Gella A, Martiañez T, Segura M, Figueiro-Silva J, Grijota-Martinez C, Trullas R, Casals N. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS One 2014; 9:e98998. [PMID: 24905332 PMCID: PMC4048211 DOI: 10.1371/journal.pone.0098998] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation.
Collapse
Affiliation(s)
- Aloa Lamarca
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Alejandro Gella
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- * E-mail:
| | - Tania Martiañez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Mònica Segura
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Joana Figueiro-Silva
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Ramón Trullas
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Núria Casals
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Song L, Risseeuw MDP, Karalic I, Barrett MO, Brown KA, Harden TK, Van Calenbergh S. Synthesis of extended uridine phosphonates derived from an allosteric P2Y2 receptor ligand. Molecules 2014; 19:4313-25. [PMID: 24714193 PMCID: PMC6270895 DOI: 10.3390/molecules19044313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/28/2023] Open
Abstract
In this study we report the synthesis of C5/C6-fused uridine phosphonates that are structurally related to earlier reported allosteric P2Y2 receptor ligands. A silyl-Hilbert-Johnson reaction of six quinazoline-2,4-(1H,3H)-dione-like base moieties with a suitable ribofuranosephosphonate afforded the desired analogues after full deprotection. In contrast to the parent 5-(4-fluoropheny)uridine phosphonate, the present extended-base uridine phosphonates essentially failed to modulate the P2Y2 receptor.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | - Izet Karalic
- Laboratory for Medicinal Chemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | - Matthew O Barrett
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7365, USA.
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7365, USA.
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7365, USA.
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| |
Collapse
|
43
|
Teoh J, Boulos S, Chieng J, Knuckey NW, Meloni BP. Erythropoietin increases neuronal NDPKA expression, and NDPKA up-regulation as well as exogenous application protects cortical neurons from in vitro ischemia-related insults. Cell Mol Neurobiol 2014; 34:379-92. [PMID: 24395206 DOI: 10.1007/s10571-013-0023-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
Using proteomics, we identified nucleoside diphosphate kinase A (NDPKA; also known as NME/NM23 nucleoside diphosphate kinase 1: NME1) to be up-regulated in primary cortical neuronal cultures by erythropoietin (EPO) preconditioning. To investigate a neuroprotective role of NDPKA in neurons, we used a RNAi construct to knock-down and an adenoviral vector to overexpress the protein in cortical neuronal cultures prior to exposure to three ischemia-related injury models; excitotoxicity (L-glutamic acid), oxidative stress (hydrogen peroxide), and in vitro ischemia (oxygen-glucose deprivation). NDPKA down-regulation had no effect on neuronal viability following injury. By contrast, NDPKA up-regulation increased neuronal survival in all three-injury models. Similarly, treatment with NDPKA recombinant protein increased neuronal survival, but only against in vitro ischemia and excitotoxicity. These findings indicate that the NDPKA protein may confer a neuroprotective advantage following injury. Furthermore, as exogenous NDPKA protein was neuroprotective, it suggests that a cell surface receptor may be activated by NDPKA leading to a protective cell-signaling response. Taken together both NDPKAs intracellular and extracellular neuroprotective actions suggest that the protein is a legitimate therapeutic target for the design of drugs to limit neuronal death following stroke and other forms of brain injury.
Collapse
Affiliation(s)
- Jonathan Teoh
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | | | | | | | | |
Collapse
|
44
|
Danino O, Giladi N, Grossman S, Fischer B. Nucleoside 5'-phosphorothioate derivatives are highly effective neuroprotectants. Biochem Pharmacol 2014; 88:384-92. [PMID: 24548458 DOI: 10.1016/j.bcp.2014.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
Abstract
The brain is especially sensitive to oxidative stress due to its high rate of oxidative metabolism, relatively low levels of antioxidant enzymes, and high concentrations of Fe/Cu ions. During the neurodegeneration process, the aggregation of proteins Aβ, accompanies oxidative stress. We explored the potential of thiophosphate derivatives to rescue neurons from oxidative stress and Aβ toxicity. We evaluated the neuroprotective effect of ATP-γ-S, ADP-β-S, and GDP-β-S on primary cortical neuronal cells exposed to several insults, including treatment with FeSO4, co-application of H2O2 and FeSO4, and addition of Aβ42. Upon treatment with FeSO4, phosphorothioate analogues exhibited up to 3000-fold better neuroprotectant activity than the corresponding parent nucleotides. Likewise, phosphorothioate analogues proved to be up to 30-fold better neuroprotectants than the corresponding parent nucleotides upon treatment with both H2O2 and FeSO4. When we exposed primary neuron and astrocyte cultures to 50 μM Aβ42-induced cell death, we found that ATP-γ-S significantly improved cell morphology and maintained culture viability with an IC50 value of 0.8 μM. Finally, we evaluated the viability of neuroblastoma cells under hypoxic conditions in the presence of ATP-γ-S and found that the latter was involved in the regulation of HIF-1a and stabilized mRNA levels of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT-1), which promote cell survival and proliferation. Based on its high potency as a neuroprotectant, we propose ATP-γ-S as a highly promising, biocompatible, and water-soluble drug candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- O Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - N Giladi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - S Grossman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - B Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
45
|
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y₂ nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer's disease. Mol Neurobiol 2013; 49:1031-42. [PMID: 24193664 DOI: 10.1007/s12035-013-8577-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1-42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Deepa Ajit
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hofmann C, Liese J, Schwarz T, Kunzmann S, Wirbelauer J, Nowak J, Hamann J, Girschick H, Graser S, Dietz K, Zeck S, Jakob F, Mentrup B. Compound heterozygosity of two functional null mutations in the ALPL gene associated with deleterious neurological outcome in an infant with hypophosphatasia. Bone 2013; 55:150-7. [PMID: 23454488 DOI: 10.1016/j.bone.2013.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
Hypophosphatasia (HPP) is a heterogeneous rare, inherited disorder of bone and mineral metabolism caused by different mutations in the ALPL gene encoding the isoenzyme, tissue-nonspecific alkaline phosphatase (TNAP). Prognosis is very poor in severe perinatal forms with most patients dying from pulmonary complications of their skeletal disease. TNAP deficiency, however, may also result in neurological symptoms such as neonatal seizures. The exact biological role of TNAP in the human brain is still not known and the pathophysiology of neurological symptoms due to TNAP deficiency in HPP is not understood in detail. In this report, we describe the clinical features and functional studies of a patient with severe perinatal HPP which presented with rapidly progressive encephalopathy caused by new compound heterozygous mutations in the ALPL gene which result in a functional ALPL "knock out", demonstrated in vitro. In contrast, an in vitro simulation of the genetic status of his currently asymptomatic parents who are both heterozygous for one mutation, showed a residual in vitro AP activity of above 50%. Interestingly, in our patient, the fatal outcome was due to progressive encephalopathy which was refractory to antiepileptic therapy including pyridoxine, rather than hypomineralization and respiratory insufficiency often seen in HPP patients. The patient's cranial MRI showed progressive cystic degradation of the cortex and peripheral white matter with nearly complete destruction of the cerebrum. To our knowledge, this is the first MRI-based report of a deleterious neurological clinical outcome due to a progressive encephalopathy in an infant harboring a functional human ALPL "knock out". This clinical course of disease suggests that TNAP is involved in development and may be responsible for multiple functions of the human brain. According to our data, a certain amount of residual TNAP activity might be mandatory for normal CNS function in newborns and early childhood.
Collapse
Affiliation(s)
- C Hofmann
- Children's Hospital, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Peterson TS, Thebeau CN, Ajit D, Camden JM, Woods LT, Wood WG, Petris MJ, Sun GY, Erb L, Weisman GA. Up-regulation and activation of the P2Y(2) nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons. J Neurochem 2013; 125:885-96. [PMID: 23550835 DOI: 10.1111/jnc.12252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
The pro-inflammatory cytokine interleukin-1β (IL-1β), whose levels are elevated in the brain in Alzheimer's and other neurodegenerative diseases, has been shown to have both detrimental and beneficial effects on disease progression. In this article, we demonstrate that incubation of mouse primary cortical neurons (mPCNs) with IL-1β increases the expression of the P2Y2 nucleotide receptor (P2Y2R) and that activation of the up-regulated receptor with UTP, a relatively selective agonist of the P2Y2R, increases neurite outgrowth. Consistent with the accepted role of cofilin in the regulation of neurite extension, results indicate that incubation of IL-1β-treated mPCNs with UTP increases the phosphorylation of cofilin, a response absent in PCNs isolated from P2Y2R(-/-) mice. Other findings indicate that function-blocking anti-αv β3/5 integrin antibodies prevent UTP-induced cofilin activation in IL-1β-treated mPCNs, suggesting that established P2Y2R/αv β3/5 interactions that promote G12 -dependent Rho activation lead to cofilin phosphorylation involved in neurite extension. Cofilin phosphorylation induced by UTP in IL-1β-treated mPCNs is also decreased by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), suggesting a role for P2Y2R-mediated and Gq-dependent calcium mobilization in neurite outgrowth. Taken together, these studies indicate that up-regulation of P2Y2Rs in mPCNs under pro-inflammatory conditions can promote cofilin-dependent neurite outgrowth, a neuroprotective response that may be a novel pharmacological target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Troy S Peterson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri 65211-7310, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|