1
|
Sivagami M, Asharani IV. Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles. Photochem Photobiol Sci 2023; 22:2445-2462. [PMID: 37493919 DOI: 10.1007/s43630-023-00462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m2/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H2O2) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H2O2, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.
Collapse
Affiliation(s)
- M Sivagami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Rawat S, Singh J. Synthesis of nZnO from waste batteries by hydrometallurgical method for photocatalytic degradation of organic pollutants under visible light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115518. [PMID: 35759965 DOI: 10.1016/j.jenvman.2022.115518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Waste zinc carbon (Zn-C) batteries are generated worldwide in a large amount. They are non-rechargeable and costly to recycle. Therefore, they end up in the landfills where they create hazards for humans and for environment as well. Zn-C batteries are rich in concentration of different heavy metals so they can be subjected for the recovery of metals for the development of valuable new materials. In this study authors have proposed an easy hydrometallurgical method for the recovery of zinc from waste Zn-C batteries to synthesize nano zinc oxide (nZnO) photocatalyst. The prepared nZnO particles were irregular in shape, highly crystalline in nature with crystallite size 23.94 nm. The band gap of the photocatalyst was 3.1 eV. The photocatalytic activity of the synthesised nZnO was tested for the degradation of three organic pollutants namely; phenol, p-nitrophenol (PNP) and crystal violet dye (CV) in an aqueous solution under visible light irradiation. nZnO showed a good catalytic efficiency for the degradation of all the three pollutants, however, the crystal violet (CV) removal was best in comparison with the other pollutants, it was minimally effected by the increase in CV concentration. The maximum degradation of phenol, PNP and CV was found to be 95.03 ± 0.2%, 88.63 ± 0.1% and 97.87 ± 0.4%, respectively. The degradation data was fitted best with pseudo-first-order kinetic model. The photocatalyst was recyclable and its regeneration ability was higher for initial three cycles. The intermediate compounds formed in the process of degradation were determined by liquid chromatography and mass spectroscopy (LC-MS) analysis.
Collapse
Affiliation(s)
- Shalu Rawat
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
3
|
Shukla BK, Rawat S, Gautam MK, Bhandari H, Garg S, Singh J. Photocatalytic Degradation of Orange G Dye by Using Bismuth Molybdate: Photocatalysis Optimization and Modeling via Definitive Screening Designs. Molecules 2022; 27:2309. [PMID: 35408707 PMCID: PMC9000439 DOI: 10.3390/molecules27072309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
In the current study, Bismuth molybdate was synthesized using simple co-precipitation procedure, and their characterization was carried out by various methods such as FT-IR, SEM, and P-XRD. Furthermore, the photocatalytic degradation of Orange G (ORG) dye using synthesized catalyst under visible light irradiation was studied. Response surface Method was used for the optimization of process variables and degradation kinetics evaluated by modeling of experimental data. Based on the experimental design outcomes, the first-order model was proven as a practical correlation between selected factors and response. Further ANOVA analysis has revealed that only two out of six factors have a significant effect on ORG degradation, however ORG concentration and irradiation time indicated the significant effects sequentially. Maximum ORG degradation of approximately 96% was achieved by keeping process parameters in range, such as 1 g L-1 loading of catalyst, 50 mg L-1 concentration of ORG, 1.4 mol L-1 concentration of H2O2 at pH 7 and a temperature of 30 °C. Kinetics of ORG degradation followed the pseudo first order, and almost complete degradation was achieved within 8 h. The effectiveness of the Bi2MoO6/H2O2 photo-Fenton system in degradation reactions is due to the higher number of photo-generated e- available on the catalyst surface as a result of their ability to inhibit recombination of e- and h+ pair.
Collapse
Affiliation(s)
- Brijesh Kumar Shukla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, India;
| | - Shalu Rawat
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (S.R.); (M.K.G.)
| | - Mayank Kumar Gautam
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (S.R.); (M.K.G.)
| | - Hema Bhandari
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi 110021, India;
| | - Seema Garg
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, India;
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (S.R.); (M.K.G.)
| |
Collapse
|
4
|
Garg R, Gupta R, Singh N, Bansal A. Characterization and performance evaluation of synthesized ZnO nanoflowers, nanorods, and their hybrid nanocomposites with graphene oxide for degradation of Orange G. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57009-57029. [PMID: 34080119 DOI: 10.1007/s11356-021-14511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Nanoflowers and nanorods of ZnO were synthesized via hydrothermal route. These morphologies of zinc oxide (ZnO) were then decorated over graphene oxide (GO) to yield hybrid nanocomposites, namely, GO-ZnOnR and GO-ZnOnF. The decoration of ZnO nanorods and nanoflowers on GO layers was confirmed through FESEM images. The synthesized nanocomposites were subjected to degrade the Orange G under identical conditions. The band gap energies determined using diffused reflectance spectra were 2.87, 2.89 eV for GO-ZnOnR, and GO-ZnOnF, whereas, for both ZnOnR and ZnOnF, it was 3.14 eV. For 50 min of UV irradiations (at 6 pH), 100% degradation was achieved corresponding to GO-ZnOnR (44.1 m2 g-1) followed by 90.1%, 70.2%, and 68.3% with GO-ZnOnF (35.9 m2 g-1), ZnOnR (20 m2 g-1), and ZnOnF (15.1 m2 g-1), respectively. Significant boost in the degradation of Orange G, with GO-ZnOnR, was attributed to its reduced band gap, higher surface area, and enhanced charge separation. Kinetic study confirms the pseudo-first-order reaction rate. Mineralization efficiency of 91% in 120 min indicated the efficient reduction of Orange G and its intermediates. Further, reactive species trapping experiments revealed that photo-induced •OH are dominant radicals for the degradation followed by •O2- and h+. Liquid chromatography mass spectra data has been used to predict the plausible reaction pathways. Reusability studies indicated that GO-ZnOnR can be used for four successive degradation cycles, without any significant activity loss.
Collapse
Affiliation(s)
- Renuka Garg
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Renu Gupta
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Nirmal Singh
- Post Graduate Department of Chemistry, RSD College, Ferozepur, 152002, Punjab, India
| | - Ajay Bansal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India.
| |
Collapse
|
5
|
Algethami FK, Katouah HA, Al-Omar MA, Almehizia AA, Amr AEGE, Naglah AM, Al-Shakliah NS, Fetoh ME, Youssef HM. Facile Synthesis of Magnesium Oxide Nanoparticles for Studying Their Photocatalytic Activities Against Orange G Dye and Biological Activities Against Some Bacterial and Fungal Strains. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01920-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chankaew C, Tapala W, Grudpan K, Rujiwatra A. Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17548-17554. [PMID: 31025284 DOI: 10.1007/s11356-019-05099-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Crude water extract of the ground longan seeds which have been disposed in a large amount annually in Northern Thailand has been used in a simple and rapid microwave synthesis of ZnO nanoparticles. The particles were characterized by the UV-vis spectroscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction, electron diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy and revealed to be pure hexagonal phase. Influences of zinc precursor in the extract, microwave power, and irradiation time on particle sizes were studied. The use of 800 W and 30 cycles of the microwave irradiation provided the ZnO particles of 10-100 nm in size with an active surface area, a band gap energy, and a zero-point charge of 35 m2·g-1, 3.42 eV, and pH 7.7, respectively, after the calcination. Photocatalytic efficiencies of the synthesized particles were evaluated through the decolorization of methylene blue, malachite green, methyl orange, and orange II, and proved to be on par with commercially available titanium dioxide (Arroxide®P-25) under the same conditions. The use of the longan seeds biowaste as a sustainable supply of natural reagents for the green synthesis of ZnO nanoparticles which can be employed further for waste water treatment of the local textile dyeing industry is therefore presented. Graphical Abstract.
Collapse
Affiliation(s)
- Chaiyos Chankaew
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Moung, Chiang Mai, 50200, Thailand
| | - Weerinradah Tapala
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
| | - Kate Grudpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Moung, Chiang Mai, 50200, Thailand
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Moung, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Abhilash MR, Akshatha G, Srikantaswamy S. Photocatalytic dye degradation and biological activities of the Fe 2O 3/Cu 2O nanocomposite. RSC Adv 2019; 9:8557-8568. [PMID: 35518681 PMCID: PMC9061704 DOI: 10.1039/c8ra09929d] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 11/22/2022] Open
Abstract
The present study reports the synthesis of the Fe2O3/Cu2O nanocomposite via a facile hydrothermal route. The products were characterized using X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Brunauer-Emmett-Teller (BET) techniques. The composition, morphology and structural features of the nanoparticles were found to be size-dependent due to the temperature response in the particular time log during hydrothermal synthesis. HR-TEM confirmed the formation of hexagonal rod-shaped bare Cu2O, rhombohedral-shaped Fe2O3 and composite assembly. Rhodamine-B (RB) and Janus green (JG) were chosen as model dyes for the degradation studies. Photocatalytic degradation of the dyes was deliberated by altering the catalyst and dye concentrations. The results showed that the Rhodamine-B (RB) and Janus green (JG) dyes were degraded within a short time span. The synthesized materials were found to be highly stable in the visible light-driven degradation of the dyes; showed antibacterial activity against E. coli, P. aeruginosa, Staph. aureus and B. subtilis; and exhibited less toxicity against the Musmusculus skin melanoma cells (B16-F10). The fusion of these advantages paves the way for further applications in energy conversion, biological applications as well as in environmental remediation.
Collapse
Affiliation(s)
| | - Gangadhar Akshatha
- Department of Studies in Environmental Science, University of Mysore Manasagangotri Mysore 570006 India
- Centre for Materials Science and Technology, Vijnana Bhavan, University of Mysore Manasagangotri Mysore 570006 India
| | - Shivanna Srikantaswamy
- Department of Studies in Environmental Science, University of Mysore Manasagangotri Mysore 570006 India
- Centre for Materials Science and Technology, Vijnana Bhavan, University of Mysore Manasagangotri Mysore 570006 India
| |
Collapse
|
8
|
Qu Z, Rong Y, Tang L, Shu X, Liu X, Zhang Z, Wang J. A new visible-light-induced Z-scheme photocatalytic system: Er3+:Y3Al5O12/(MoS2/NiGa2O4)-(BiVO4/PdS) for refractory pollutant degradation with simultaneous hydrogen evolution. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Sarkar B, Daware AV, Gupta P, Krishnani KK, Baruah S, Bhattacharjee S. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25775-25797. [PMID: 28988306 DOI: 10.1007/s11356-017-0252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 05/22/2023]
Abstract
Water pollution is a serious challenge to the public health. Among different forms of aquatic pollutants, chemical and biological agents create paramount threat to water quality when the safety standards are surpassed. There are many conventional remediatory strategies that are practiced such as resin-based exchanger and activated charcoal/carbon andreverse osmosis. Newer technologies using plants, microorganisms, genetic engineering, and enzyme-based approaches are also proposed for aquatic pollution management. However, the conventional technologies have shown impending inadequacies. On the other hand, new bio-based techniques have failed to exhibit reproducibility, wide specificity, and fidelity in field conditions. Hence, to solve these shortcomings, nanotechnology ushered a ray of hope by applying nanoscale zinc oxide (ZnO), titanium dioxide (TiO2), and tungsten oxide (WO3) particles for the remediation of water pollution. These nanophotocatalysts are active, cost-effective, quicker in action, and can be implemented at a larger scale. These nanoparticles are climate-independent, assist in complete mineralization of pollutants, and can act non-specifically against chemically and biologically based aquatic pollutants. Photocatalysis for environmental remediation depends on the availability of solar light. The mechanism of photocatalysis involves the formation of electron-hole pairs upon light irradiations at intensities higher than their band gap energies. In the present review, different methods of synthesis of nanoscale ZnO, TiO2, and WO3 as well as their structural characterizations have been discussed. Photodegradation of organic pollutants through mentioned nanoparticles has been reviewed with recent advancements. Enhancing the efficacy of photocatalysis through doping of TiO2 and ZnO nanoparticles with non-metals, metals, and metal ions has also been documented in this report.
Collapse
Affiliation(s)
- Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), IINRG Campus, Namkum, Ranchi, Jharkhand, 834010, India.
| | - Akshay Vishnu Daware
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Priya Gupta
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Kishore Kumar Krishnani
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Sunandan Baruah
- Department of Electronics, Assam Don Bosco University, Azara, Guwahati, Assam, 781017, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| |
Collapse
|
10
|
Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusoff N, Lee SL, Yusuf SY. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system. CHEMOSPHERE 2017; 184:112-119. [PMID: 28586651 DOI: 10.1016/j.chemosphere.2017.05.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/21/2023]
Abstract
The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their Voc, Jsc and Pmax. The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis.
Collapse
Affiliation(s)
- Wan Fadhilah Khalik
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Li-Ngee Ho
- School of Materials Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.
| | - Soon-An Ong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Chun-Hong Voon
- School of Materials Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Yee-Shian Wong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - NikAthirah Yusoff
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Sin-Li Lee
- School of Materials Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Sara Yasina Yusuf
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| |
Collapse
|
11
|
Mapukata S, Chindeka F, Sekhosana KE, Nyokong T. Laser induced photodegradation of Orange G using phthalocyanine – cobalt ferrite magnetic nanoparticle conjugates electrospun in polystyrene nanofibers. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Dhiman N, Markandeya, Singh A, Verma NK, Ajaria N, Patnaik S. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles. J Colloid Interface Sci 2017; 493:295-306. [DOI: 10.1016/j.jcis.2017.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
|
13
|
Muthukrishnaraj A, Vadivel S, Kamalakannan VP, Balasubramanian N. α-Fe2O3/reduced graphene oxide nanorod as efficient photocatalyst for methylene blue degradation. ACTA ACUST UNITED AC 2014. [DOI: 10.1179/1433075x14y.0000000251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- A. Muthukrishnaraj
- Department of Chemical EngineeringAC Tech campus, Anna University, Chennai-25, India
| | - S. Vadivel
- Department of Chemical EngineeringAC Tech campus, Anna University, Chennai-25, India
| | - V. P. Kamalakannan
- Department of Chemical EngineeringAC Tech campus, Anna University, Chennai-25, India
| | - N. Balasubramanian
- Department of Chemical EngineeringAC Tech campus, Anna University, Chennai-25, India
| |
Collapse
|
14
|
Wang X, Wu P, Lu Y, Huang Z, Zhu N, Lin C, Dang Z. NiZnAl layered double hydroxides as photocatalyst under solar radiation for photocatalytic degradation of orange G. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Leelavathi A, Madras G, Ravishankar N. Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys Chem Chem Phys 2013; 15:10795-802. [PMID: 23694926 DOI: 10.1039/c3cp51058a] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn(2+) sites is higher on the {1010} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment.
Collapse
Affiliation(s)
- A Leelavathi
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | | | | |
Collapse
|