1
|
Weheba A, Vertigan A, Abdelsayad A, Tarlo SM. Respiratory Diseases Associated With Wildfire Exposure in Outdoor Workers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1989-1996. [PMID: 38548173 DOI: 10.1016/j.jaip.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Wildfires, including forest fires, bushfires, and landscape fires, have become increasingly prevalent, fueled by climate change and environmental factors and posing significant challenges to both ecosystems and public health. This review article examines the relationship between wildfires and respiratory diseases in outdoor workers, with a main focus on airway disease. In addition to the expected effects of direct thermal respiratory injuries and possible carbon monoxide poisoning, there are associations between wildfires and upper and lower respiratory effects, including infections as well as exacerbations of asthma and chronic obstructive pulmonary disease. A few studies have also shown an increased risk of new-onset asthma among wildfire firefighters. Outdoor workers are likely to have greater exposure to wildfire smoke with associated increased risks of adverse effects. As wildfires become increasingly prevalent globally, it is crucial to understand the various dimensions of this association. Furthermore, this review addresses preventive measures and potential interventions to alleviate the airway burden on individuals during and after work with wildfires events.
Collapse
Affiliation(s)
- Ahmed Weheba
- Toronto Metropolitan University, Faculty of Science, Toronto, Ontario, Canada
| | - Anne Vertigan
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia; Speech Pathology Department, John Hunter Hospital, Newcastle, New South Wales, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Abeer Abdelsayad
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Respiratory Division, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Susan M Tarlo
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Respiratory Division, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Dalla Lana Department of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Alahmad B, Khraishah H, Althalji K, Borchert W, Al-Mulla F, Koutrakis P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can J Cardiol 2023; 39:1182-1190. [PMID: 37030516 PMCID: PMC11097327 DOI: 10.1016/j.cjca.2023.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, more people die from cardiovascular disease than any other cause. Climate change, through amplified environmental exposures, will promote and contribute to many noncommunicable diseases, including cardiovascular disease. Air pollution, too, is responsible for millions of deaths from cardiovascular disease each year. Although they may appear to be independent, interchangeable relationships and bidirectional cause-and-effect arrows between climate change and air pollution can eventually lead to poor cardiovascular health. In this topical review, we show that climate change and air pollution worsen each other, leading to several ecosystem-mediated effects. We highlight how increases in hot climates as a result of climate change have increased the risk of major air pollution events such as severe wildfires and dust storms. In addition, we show how altered atmospheric chemistry and changing patterns of weather conditions can promote the formation and accumulation of air pollutants: a phenomenon known as the climate penalty. We demonstrate these amplified environmental exposures and their associations to adverse cardiovascular health outcomes. The community of health professionals-and cardiologists, in particular-cannot afford to overlook the risks that climate change and air pollution bring to the public's health.
Collapse
Affiliation(s)
- Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Environmental and Occupational Health Department, College of Public Health, Kuwait University, Kuwait City, Kuwait; Dasman Diabetes Institute (DDI), Kuwait City, Kuwait.
| | - Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Khalid Althalji
- Jaber Alahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - William Borchert
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fahd Al-Mulla
- Dasman Diabetes Institute (DDI), Kuwait City, Kuwait
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Melton CC, De Fries CM, Smith RM, Mason LR. Wildfires and Older Adults: A Scoping Review of Impacts, Risks, and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6252. [PMID: 37444100 PMCID: PMC10341407 DOI: 10.3390/ijerph20136252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Climate change is leading to worsening disasters that disproportionately impact older adults. While research has begun to measure disparities, there is a gap in examining wildfire-specific disasters. To address this gap, this scoping review analyzed literature to explore the nexus of wildfires and older adults. We searched peer-reviewed literature using the following inclusion criteria: (1) published in a peer-reviewed journal; (2) available in English; (3) examines at least one topic related to wildfires; and (4) examines how criterion three relates to older adults in at least one way. Authors screened 261 titles and abstracts and 138 were reviewed in full, with 75 articles meeting inclusion criteria. Findings heavily focused on health impacts of wildfires on older adults, particularly of smoke exposure and air quality. While many articles mentioned a need for community-engaged responses that incorporate the needs of older adults, few addressed firsthand experiences of older adults. Other common topics included problems with evacuation, general health impacts, and Indigenous elders' fire knowledge. Further research is needed at the nexus of wildfires and older adults to highlight both vulnerabilities and needs as well as the unique experience and knowledge of older adults to inform wildfire response strategies and tactics.
Collapse
Affiliation(s)
| | | | | | - Lisa Reyes Mason
- Graduate School of Social Work, University of Denver, Denver, CO 80210, USA; (C.C.M.); (C.M.D.F.); (R.M.S.)
| |
Collapse
|
5
|
Jiang X, Eum Y, Yoo EH. The impact of fire-specific PM 2.5 calibration on health effect analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159548. [PMID: 36270362 DOI: 10.1016/j.scitotenv.2022.159548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The quantification of PM2.5 concentrations solely stemming from both wildfire and prescribed burns (hereafter referred to as 'fire') is viable using the Community Multiscale Air Quality (CMAQ), although CMAQ outputs are subject to biases and uncertainties. To reduce the biases in CMAQ-based outputs, we propose a two-stage calibration strategy that improves the accuracy of CMAQ-based fire PM2.5 estimates. First, we calibrated CMAQ-based non-fire PM2.5 to ground PM2.5 observations retrieved during non-fire days using an ensemble-based model. We estimated fire PM2.5 concentrations in the second stage by multiplying the calibrated non-fire PM2.5 obtained from the first stage by location- and time-specific conversion ratios. In a case study, we estimated fire PM2.5 during the Washington 2016 fire season using the proposed calibration approach. The calibrated PM2.5 better agreed with ground PM2.5 observations with a 10-fold cross-validated (CV) R2 of 0.79 compared to CMAQ-based PM2.5 estimates with R2 of 0.12. In the health effect analysis, we found significant associations between calibrated fire PM2.5 and cardio-respiratory hospitalizations across the fire season: relative risk (RR) for cardiovascular disease = 1.074, 95% confidence interval (CI) = 1.021-1.130 in October; RR = 1.191, 95% CI = 1.099-1.291 in November; RR for respiratory disease = 1.078, 95% CI = 1.005-1.157 in October; RR = 1.153, 95% CI = 1.045-1.272 in November. However, the results were inconsistent when non-calibrated PM2.5 was used in the analysis. We found that calibration affected health effect assessments in the present study, but further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiangyu Jiang
- Georgia Environmental Protection Division, Atlanta, GA 30354, USA.
| | - Youngseob Eum
- Department of Geography, State University of New York at Buffalo, Buffalo, NY 14261, USA
| | - Eun-Hye Yoo
- Department of Geography, State University of New York at Buffalo, Buffalo, NY 14261, USA
| |
Collapse
|
6
|
Lou X, Zhang P, Shi N, Ding Z, Xu Z, Liu B, Hu W, Yan T, Wang J, Liu L, Zha Y, Wang J, Chen W, Xu C, Xu J, Jiang H, Ma H, Yuan W, Wang C, Liao Y, Wang D, Yao L, Chen M, Li G, Li Y, Wang P, Li X, Lu C, Tang W, Wan J, Li R, Xiao X, Zhang C, Jiao J, Zhang W, Yuan J, Lan L, Li J, Zhang P, Zheng W, Chen J. Associations between short-term exposure of ambient particulate matter and hemodialysis patients death: A nationwide, longitudinal case-control study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158215. [PMID: 36028020 DOI: 10.1016/j.scitotenv.2022.158215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Long-term exposure to particulate air pollutants can lead to an increase in mortality of hemodialysis patients, but evidence of mortality risk with short-term exposure to ambient particulate matter is lacking. This study aimed to estimate the association of short-term exposure to ambient particulate matter across a wide range of concentrations with hemodialysis patients mortality. METHODS We performed a time-stratified case-crossover study to estimate the association between short-term exposures to PM2.5 and PM10 and mortality of hemodialysis patients. The study included 18,114 hemodialysis death case from 279 hospitals in 41 cities since 2013. Daily particulate matter exposures were calculated by the inverse distance-weighted model based on each case's dialysis center address. Conditional logistic regression were implemented to quantify exposure-response associations. The sensitivity analysis mainly explored the lag effect of particulate matter. RESULTS During the study period, there were 18,114 case days and 61,726 control days. Of all case and control days, average PM2.5 and PM10 levels were 43.98 μg/m3 and 70.86 μg/m3, respectively. Each short-term increase of 10 μg/m3 in PM2.5 and PM10 were statistically significantly associated with a relative increase of 1.07 % (95 % confidence interval [CI]: 0.99 % - 1.15 %) and 0.89 % (95 % CI: 0.84 % - 0.94 %) in daily mortality rate of hemodialysis patients, respectively. There was no evidence of a threshold in the exposure-response relationship. The mean of daily exposure on the same day of death and one-day prior (Lag 01 Day) was the most plausible exposure time window. CONCLUSIONS This study confirms that short-term exposure to particulate matter leads to increased mortality in hemodialysis patients. Policy makers and public health practices have a clear and urgent opportunity to pass air quality control policies that care for hemodialysis populations and incorporate air quality into the daily medical management of hemodialysis patients.
Collapse
Affiliation(s)
- Xiaowei Lou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; Zhejiang Dialysis Quality Control Center, PR China
| | - Nan Shi
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Zhe Ding
- College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhonggao Xu
- First Hospital of Jilin University, PR China
| | - Bicheng Liu
- Affiliated Zhongda Hospital of Southeast University, PR China
| | - Wenbo Hu
- Qinghai Provincial Peoples Hospital, PR China
| | - Tiekun Yan
- Tianjin Medical University General Hospital, PR China
| | - Jinwen Wang
- Yan'an Hospital of Kunming Medical University, PR China
| | - Ling Liu
- Second Affiliated Hospital of Chongqing Medical University, PR China
| | - Yan Zha
- Guizhou Provincial People's Hospital, PR China
| | - Jianqin Wang
- Second Affiliated Hospital of Lanzhou University, PR China
| | - Wei Chen
- First Affiliated Hospital of Sun yat-sen University, PR China
| | - Chenyun Xu
- Second Affiliated Hospital of Nanchang University, PR China
| | - Jinsheng Xu
- Fourth Hospital of Hebei Medical University, PR China
| | - Hongli Jiang
- First Affiliated Hospital of Xian Jiaotong University, PR China
| | - Huichao Ma
- Second Hospital of Tibet Autonomous Region, PR China
| | | | - Caili Wang
- First Affiliated Hospital of Baotou Medical College, PR China
| | - Yunhua Liao
- First Affiliated Hospital of Guangxi Medical University, PR China
| | - Deguang Wang
- Second Affiliated Hospital of Anhui Medical University, PR China
| | - Li Yao
- First Affiliated Hospital of China Medical University, PR China
| | - Menghua Chen
- General Hospital of Ningxia Medical University, PR China
| | - Guisen Li
- Sichuan Provincial Peoples Hospital, PR China
| | - Yun Li
- Jiangxi Provincial Peoples Hospital, PR China
| | - Pei Wang
- First Affiliated Hospital of Zhengzhou University, PR China
| | - Xuemei Li
- Peking Union Medical College Hospital, PR China
| | - Chen Lu
- Peoples Hospital of Xinjiang Uygur Autonomous Region, PR China
| | | | - Jianxin Wan
- First Affiliated Hospital of Fujian Medical University, PR China
| | - Rongshan Li
- Shanxi Provincial People's Hospital, PR China
| | | | - Chun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Jundong Jiao
- Second Affiliated Hospital of Harbin Medical University, PR China
| | - Wei Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Jing Yuan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Jingsong Li
- Research Center for Healthcare Data Science, Zhejiang Lab, PR China
| | - Peng Zhang
- School of Mathematical Sciences, Zhejiang University, PR China.
| | - Weijun Zheng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; Zhejiang Dialysis Quality Control Center, PR China.
| |
Collapse
|
7
|
Eisenman DP, Galway LP. The mental health and well-being effects of wildfire smoke: a scoping review. BMC Public Health 2022; 22:2274. [PMID: 36471306 PMCID: PMC9724257 DOI: 10.1186/s12889-022-14662-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Smoke from wildfires is a growing public health risk due to the enormous amount of smoke-related pollution that is produced and can travel thousands of kilometers from its source. While many studies have documented the physical health harms of wildfire smoke, less is known about the effects on mental health and well-being. Understanding the effects of wildfire smoke on mental health and well-being is crucial as the world enters a time in which wildfire smoke events become more frequent and severe. We conducted a scoping review of the existing information on wildfire smoke's impact on mental health and well-being and developed a model for understanding the pathways in which wildfire smoke may contribute to mental health distress. METHODS We conducted searches using PubMed, Medline, Embase, Google, Scopus, and ProQuest for 1990-2022. These searches yielded 200 articles. Sixteen publications met inclusion criteria following screening and eligibility assessment. Three more publications from the bibliographies of these articles were included for a total of 19 publications. RESULTS Our review suggests that exposure to wildfire smoke may have mental health impacts, particularly in episodes of chronic and persistent smoke events, but the evidence is inconsistent and limited. Qualitative studies disclose a wider range of impacts across multiple mental health and well-being domains. The potential pathways connecting wildfire smoke with mental health and well-being operate at multiple interacting levels including individual, social and community networks, living and working conditions, and ecological levels. CONCLUSIONS Priorities for future research include: 1) applying more rigorous methods; 2) differentiating between mental illness and emotional well-being; 3) studying chronic, persistent or repeated smoke events; 4) identifying the contextual factors that set the stage for mental health and well-being effects, and 5) identifying the causal processes that link wildfire smoke to mental health and well-being effects. The pathways model can serve as a basis for further research and knowledge synthesis on this topic. Also, it helps public health, community mental health, and emergency management practitioners mitigate the mental health and well-being harms of wildfire smoke.
Collapse
Affiliation(s)
- David P. Eisenman
- grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, UCLA Fielding School of Public Health, Center for Healthy Climate Solutions and Center for Public Health and Disasters, 1100 Glendon Avenue, Suite 850-878, Los Angeles, CA 90024 USA
| | - Lindsay P. Galway
- grid.258900.60000 0001 0687 7127Lakehead University Department of Health Sciences, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
8
|
Karanasiou A, Alastuey A, Amato F, Renzi M, Stafoggia M, Tobias A, Reche C, Forastiere F, Gumy S, Mudu P, Querol X. Short-term health effects from outdoor exposure to biomass burning emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146739. [PMID: 33798874 DOI: 10.1016/j.scitotenv.2021.146739] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 05/28/2023]
Abstract
Biomass burning (BB) including forest, bush, prescribed fires, agricultural fires, residential wood combustion, and power generation has long been known to affect climate, air quality and human health. With this work we supply a systematic review on the health effects of BB emissions in the framework of the WHO activities on air pollution. We performed a literature search of online databases (PubMed, ISI, and Scopus) from year 1980 up to 2020. A total of 81 papers were considered as relevant for mortality and morbidity effects. High risk of bias was related with poor estimation of BB exposure and lack of adjustment for important confounders. PM10 and PM2.5 concentrations originating from BB were associated with all-cause mortality: the meta-analytical estimate was equal to 1.31% (95% CI 0.71, 1.71) and 1.92% (95% CI -1.19, 5.03) increased mortality per each 10 μg m-3 increase of PM10 and PM2.5, respectively. Regarding cardiovascular mortality 8 studies reported quantitative estimates. For smoky days and for each 10 μg m-3 increase in PM2.5 concentrations, the risk of cardiovascular mortality increased by 4.45% (95% CI 0.96, 7.95) and by 3.30% (95% CI -1.97, 8.57), respectively. Fourteen studies evaluated whether respiratory morbidity was adversely related to PM2.5 (9 studies) or PM10 (5 studies) originating from BB. All found positive associations. The pooled effect estimates were 4.10% (95% CI 2.86, 5.34) and 4.83% (95% CI 0.06, 9.60) increased risk of total respiratory admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. Regarding cardiovascular morbidity, sixteen studies evaluated whether this was adversely related to PM2.5 (10 studies) or PM10 (6 studies) originating from BB. They found both positive and negative results, with summary estimates equal to 3.68% (95% CI -1.73, 9.09) and 0.93% (95% CI -0.18, 2.05) increased risk of total cardiovascular admissions/emergency visits, per 10 μg m-3 increases in PM2.5 and PM10, respectively. To conclude, a significant number of studies indicate that BB exposure is associated with all-cause and cardiovascular mortality and respiratory morbidity.
Collapse
Affiliation(s)
- Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Matteo Renzi
- Department of Epidemiology of the Lazio Region/ASL, Roma 1, Italy
| | | | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Francesco Forastiere
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Sophie Gumy
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
9
|
Sorensen C, House JA, O'Dell K, Brey SJ, Ford B, Pierce JR, Fischer EV, Lemery J, Crooks JL. Associations Between Wildfire-Related PM 2.5 and Intensive Care Unit Admissions in the United States, 2006-2015. GEOHEALTH 2021; 5:e2021GH000385. [PMID: 33977181 PMCID: PMC8095362 DOI: 10.1029/2021gh000385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/29/2023]
Abstract
Wildfire smoke is a growing public health concern in the United States. Numerous studies have documented associations between ambient smoke exposure and severe patient outcomes for single-fire seasons or limited geographic regions. However, there are few national-scale health studies of wildfire smoke in the United States, few studies investigating Intensive Care Unit (ICU) admissions as an outcome, and few specifically framed around hospital operations. This study retrospectively examined the associations between ambient wildfire-related PM2.5 at a hospital ZIP code with total hospital ICU admissions using a national-scale hospitalization data set. Wildfire smoke was characterized using a combination of kriged PM2.5 monitor observations and satellite-derived plume polygons from National Oceanic and Atmospheric Administration's Hazard Mapping System. ICU admissions data were acquired from Premier, Inc. and encompass 15%-20% of all U.S. ICU admissions during the study period. Associations were estimated using a distributed-lag conditional Poisson model under a time-stratified case-crossover design. We found that a 10 μg/m3 increase in daily wildfire PM2.5 was associated with a 2.7% (95% CI: 1.3, 4.1; p = 0.00018) increase in ICU admissions 5 days later. Under stratification, positive associations were found among patients aged 0-20 and 60+, patients living in the Midwest Census Region, patients admitted in the years 2013-2015, and non-Black patients, though other results were mixed. Following a simulated severe 7-day 120 μg/m3 smoke event, our results predict ICU bed utilization peaking at 131% (95% CI: 43, 239; p < 10-5) over baseline. Our work suggests that hospitals may need to preposition vital critical care resources when severe smoke events are forecast.
Collapse
Affiliation(s)
- Cecilia Sorensen
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
- Center for Health, Work & EnvironmentColorado School of Public HealthAuroraCOUSA
| | | | - Katelyn O'Dell
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Steven J. Brey
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jay Lemery
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
| | - James L. Crooks
- Division of Biostatistics and Bioinformatics and Department of Immunology and Genomic MedicineNational Jewish HealthDenverCOUSA
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| |
Collapse
|
10
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
11
|
Salvador P, Pandolfi M, Tobías A, Gómez-Moreno FJ, Molero F, Barreiro M, Pérez N, Revuelta MA, Marco IM, Querol X, Artíñano B. Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41702-41716. [PMID: 32696403 DOI: 10.1007/s11356-020-10146-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of local high-pollution episodes in densely populated urban areas, which have huge fleets of vehicles, is currently one of the most worrying problems associated with air pollution worldwide. Such episodes are produced under specific meteorological conditions, which favour the sudden increase of levels of air pollutants. This study has investigated the influence of the mixing layer height (MLH) on the concentration levels of atmospheric pollutants and daily mortality in Madrid, Spain, during the period 2011-2014. It may help to understand the causes and impact of local high-pollution episodes. MLH at midday over Madrid was daily estimated from meteorological radio soundings. Then, days with different MLH over this urban area were characterized by meteorological parameters registered at different levels of an instrumented tower and by composite sea level pressure maps, representing the associated synoptic meteorological scenarios. Next, statistically significant associations between MLH and levels of PM10, PM2.5, NO, NO2, CO and ultra-fine particles number concentrations registered at representative monitoring stations were evaluated. Finally, associations between all-natural cause daily mortality in Madrid, MLH, and air pollutants were estimated using conditional Poisson regression models. The reduction of MLH to values below 482 m above-ground level under strong atmospheric stagnation conditions was accompanied by a statistically significant increase in levels of NO, NO2, CO, PM2.5 and ultra-fine particle number concentrations at urban-traffic and suburban monitoring sites. The decrease of the MLH was also associated to a linear increase of the daily number of exceedances of the UE NO2 hourly limit value (200 μg/m3) and levels of air pollutants at hotspot urban-traffic monitoring stations. Also, a statistically significant association of the MLH with all-natural cause daily mortality was obtained. When the MLH increased by 830 m, the risk of mortality decreased by 2.5% the same day and by 3.3% the next day, when African dust episodic days were excluded. They were also higher in absolute terms than the increases in risk of mortality that were determined for the exposition to any other air pollutant. Our results suggest that when the prediction models foresee values of MLH below 482 m above-ground level in Madrid, the evolution of high-contamination episodes will be very favourable. Therefore, short-term policy measures will have to be implemented to reduce NO, NO2, CO, PM2.5 and ultra-fine particle emissions from anthropogenic sources in this southern European urban location.
Collapse
Affiliation(s)
- Pedro Salvador
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain.
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Francisco Javier Gómez-Moreno
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Francisco Molero
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Marcos Barreiro
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Isabel Martínez Marco
- Spanish Meteorological Agency (AEMET), c. Leonardo Prieto Castro 8, 28071, Madrid, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034, Barcelona, Spain
| | - Begoña Artíñano
- Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, CIEMAT, Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
12
|
Ballesteros-González K, Sullivan AP, Morales-Betancourt R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139755. [PMID: 32758934 DOI: 10.1016/j.scitotenv.2020.139755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) emissions significantly deteriorate air quality in many regions worldwide, impact human health and perturbing Earth's radiation budget and climate. South America is one of largest contributors to BB emissions globally. After Amazonia, BB emissions from open and agricultural fires of Northern South America (NSA) are the most significant. Recent evidence shows a strong correlation between fire counts in NSA and Brown Carbon in some Colombian cities, suggesting a substantial seasonal contribution of regional BB sources to air pollution levels in the densely populated areas of NSA. In this work we use the atmospheric regional chemical transport model WRF-Chem to assess the contribution of open BB events to pollutant concentration and to estimate potential health impacts associated with wildfire events in NSA. Three nested domains are used to simulate atmospheric composition in the Northern part of South America and the Caribbean. Simulations included biogenic and anthropogenic emissions from a global emission inventory merged with local emissions for the city of Bogotá. Two modelling scenarios were considered, a base case without BB emissions (NO_FIRE) and a sensitivity scenario with BB emissions. Simulations were carried out for periods of strong BB activity in NSA. In the NO_FIRE scenario, aerosol concentrations are unrealistically low. When BB emissions are is included background PM2.5 concentrations increase 80%. The increment in aerosol concentrations is mainly driven by Secondary Organic Aerosols. In the case of Bogotá, the most densely populated city in the domain, monthly mean increase in PM2.5 is 3.3 μg m-3 and 4.3 ppb for O3. Modeled meteorological and air pollution fields are in better agreement with observations when high spatial resolution (3 × 3 km) is used in the simulations. The total estimated short-term all-cause mortality associated to BB during February in the region is 171 cases, 88 PM2.5-related and 83 O3-related mortality.
Collapse
Affiliation(s)
| | - Amy P Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
13
|
Linares C, Martinez GS, Kendrovski V, Diaz J. A new integrative perspective on early warning systems for health in the context of climate change. ENVIRONMENTAL RESEARCH 2020; 187:109623. [PMID: 32416361 DOI: 10.1016/j.envres.2020.109623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Climate change causes or aggravates a wide range of exposures with multiple impacts on health, both direct and indirect. Early warning systems have been established to act on the risks posed by these exposures, permitting the timely activation of action plans to minimize health effects. These plans are usually activated individually. Although they show good results from the point of view of minimizing health impacts, such as in the case of high temperature plans, they commonly fail to address the synergies across various climate-related or climate-aggravated exposures. Since several of those exposures tend to occur concurrently, failure to integrate them in prevention efforts could affect their effectiveness and reach. Thus, there is a need to carry out an integrative approach for the multiple effects that climate change has on population health. This article presents a proposal for how these plans should be articulated. The proposed integrated plan would consist of four phases. The first phase, based on early warning systems, would be the activation of different existing individual plans related to the health effects that can be caused by certain circumstances and when possible corrective measures would be implemented. The second phase would attempt to quantify the health impact foreseen by the event in terms of the different health indicators selected. The third phase would be to activate measures to minimize the impact on health, via population alerts and advisories, and additional social and health services, based on the provisions in phase two. Phase four would be related to epidemiological surveillance that permits evaluation of the effects of activating the plan. We believe that this integrative approach should be extended to all of the public health interventions related to climate change.
Collapse
Affiliation(s)
- C Linares
- National School of Public Health, Carlos III Institute of Health, Spain
| | | | - V Kendrovski
- World Health Organization Regional Office for Europe, Bonn, Germany
| | - J Diaz
- National School of Public Health, Carlos III Institute of Health, Spain
| |
Collapse
|
14
|
DeFelice T. Relationship between temporal anomalies in PM 2.5 concentrations and reported influenza/influenza-like illness activity. Heliyon 2020; 6:e04726. [PMID: 32835121 PMCID: PMC7428445 DOI: 10.1016/j.heliyon.2020.e04726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/06/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
A small number of studies suggest atmospheric particulate matter with diameters 2.5 micron and smaller (PM2.5) may possibly play a role in the transmission of influenza and influenza-like illness (ILI) symptoms. Those studies were predominantly conducted under moderately to highly polluted outdoor atmospheres. The purpose of this study was to extend the data set to include a less polluted atmospheric environment. A relationship between PM2.5 and ILI activity extended to include lightly to moderately polluted atmospheres could imply a more complicated mechanism than that suggested by existing studies. We obtained concurrent PM2.5 mass concentration data, meteorological data and reported Influenza and influenza-like illness (ILI) activity for the light to moderately polluted atmospheres over the Tucson, AZ region. We found no relation between PM2.5 mass concentration and ILI activity. There was an expected relation between ILI, activity, temperature, and relative humidity. There was a possible relation between PM2.5 mass concentration anomalies and ILI activity. These results might be due to the small dataset size and to the technological limitations of the PM measurements. Further study is recommended since it would improve the understanding of ILI transmission and thereby improve ILI activity/outbreak forecasts and transmission model accuracies.
Collapse
|
15
|
Xi Y, Kshirsagar AV, Wade TJ, Richardson DB, Brookhart MA, Wyatt L, Rappold AG. Mortality in US Hemodialysis Patients Following Exposure to Wildfire Smoke. J Am Soc Nephrol 2020; 31:1824-1835. [PMID: 32675302 DOI: 10.1681/asn.2019101066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/09/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Wildfires are increasingly a significant source of fine particulate matter (PM2.5), which has been linked to adverse health effects and increased mortality. ESKD patients are potentially susceptible to this environmental stressor. METHODS We conducted a retrospective time-series analysis of the association between daily exposure to wildfire PM2.5 and mortality in 253 counties near a major wildfire between 2008 and 2012. Using quasi-Poisson regression models, we estimated rate ratios (RRs) for all-cause mortality on the day of exposure and up to 30 days following exposure, adjusted for background PM2.5, day of week, seasonality, and heat. We stratified the analysis by causes of death (cardiac, vascular, infectious, or other) and place of death (clinical or nonclinical setting) for differential PM2.5 exposure and outcome classification. RESULTS We found 48,454 deaths matched to the 253 counties. A 10-μg/m3 increase in wildfire PM2.5 associated with a 4% increase in all-cause mortality on the same day (RR, 1.04; 95% confidence interval [95% CI], 1.01 to 1.07) and 7% increase cumulatively over 30 days following exposure (RR, 1.07; 95% CI, 1.01 to 1.12). Risk was elevated following exposure for deaths occurring in nonclinical settings (RR, 1.07; 95% CI, 1.02 to 1.12), suggesting modification of exposure by place of death. "Other" deaths (those not attributed to cardiac, vascular, or infectious causes) accounted for the largest portion of deaths and had a strong same-day effect (RR, 1.08; 95% CI, 1.03 to 1.12) and cumulative effect over the 30-day period. On days with a wildfire PM2.5 contribution >10 μg/m3, exposure accounted for 8.4% of mortality. CONCLUSIONS Wildfire smoke exposure was positively associated with all-cause mortality among patients receiving in-center hemodialysis.
Collapse
Affiliation(s)
- Yuzhi Xi
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, Research Triangle Park, North Carolina.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Abhijit V Kshirsagar
- University of North Carolina Kidney Center and Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy J Wade
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - M Alan Brookhart
- Department of Population Health Sciences, Duke University, Durham, North Carolina
| | - Lauren Wyatt
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, Research Triangle Park, North Carolina
| | - Ana G Rappold
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina
| |
Collapse
|
16
|
Jaffe DA, O’Neill SM, Larkin NK, Holder AL, Peterson DL, Halofsky JE, Rappold AG. Wildfire and prescribed burning impacts on air quality in the United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:583-615. [PMID: 32240055 PMCID: PMC7932990 DOI: 10.1080/10962247.2020.1749731] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for extended periods. Fires emit particulate matter (PM) and gaseous compounds that can negatively impact human health and reduce visibility. While the overall trend in U.S. air quality has been improving for decades, largely due to implementation of the Clean Air Act, seasonal wildfires threaten to undo this in some regions of the United States. Our understanding of the health effects of smoke is growing with regard to respiratory and cardiovascular consequences and mortality. The costs of these health outcomes can exceed the billions already spent on wildfire suppression. In this critical review, we examine each of the processes that influence wildland fires and the effects of fires, including the natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry, and human health impacts. We highlight key data gaps and examine the complexity and scope and scale of fire occurrence, estimated emissions, and resulting effects on regional air quality across the United States. The goal is to clarify which areas are well understood and which need more study. We conclude with a set of recommendations for future research. IMPLICATIONS In the recent decade the area of wildfires in the United States has increased dramatically and the resulting smoke has exposed millions of people to unhealthy air quality. In this critical review we examine the key factors and impacts from fires including natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry and human health.
Collapse
Affiliation(s)
- Daniel A. Jaffe
- School of STEM and Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Amara L. Holder
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David L. Peterson
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Jessica E. Halofsky
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Ana G. Rappold
- National Health and Environmental Effects Research Lab, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S. Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. ENVIRONMENTAL RESEARCH 2020; 182:109107. [PMID: 32069750 DOI: 10.1016/j.envres.2019.109107] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 05/04/2023]
Abstract
The Mediterranean Basin is undergoing a warming trend with longer and warmer summers, an increase in the frequency and the severity of heat waves, changes in precipitation patterns and a reduction in rainfall amounts. In this unique populated region, which is characterized by significant gaps in the socio-economic levels particularly between the North (Europe) and South (Africa), parallel with population growth and migration, increased water demand and forest fires risk - the vulnerability of the Mediterranean population to human health risks increases significantly. Indeed, climatic changes impact the health of the Mediterranean population directly through extreme heat, drought or storms, or indirectly by changes in water availability, food provision and quality, air pollution and other stressors. The main health effects are related to extreme weather events (including extreme temperatures and floods), changes in the distribution of climate-sensitive diseases and changes in environmental and social conditions. The poorer countries, particularly in North Africa and the Levant, are at highest risk. Climate change affects the vulnerable sectors of the region, including an increasingly older population, with a larger percentage of those with chronic diseases, as well as poor people, which are therefore more susceptible to the effects of extreme temperatures. For those populations, a better surveillance and control systems are especially needed. In view of the climatic projections and the vulnerability of Mediterranean countries, climate change mitigation and adaptation become ever more imperative. It is important that prevention Health Action Plans will be implemented, particularly in those countries that currently have no prevention plans. Most adaptation measures are "win-win situation" from a health perspective, including reducing air pollution or providing shading solutions. Additionally, Mediterranean countries need to enhance cross-border collaboration, as adaptation to many of the health risks requires collaboration across borders and also across the different parts of the basin.
Collapse
Affiliation(s)
- Cristina Linares
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Julio Díaz
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Maya Negev
- School of Public Health, University of Haifa, Israel
| | | | | | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Israel.
| |
Collapse
|
18
|
Moreira I, Linares C, Follos F, Sánchez-Martínez G, Vellón JM, Díaz J. Short-term effects of Saharan dust intrusions and biomass combustion on birth outcomes in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134755. [PMID: 31704398 DOI: 10.1016/j.scitotenv.2019.134755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 05/24/2023]
Abstract
The objective of this study is to analyze the short-term effects of atmospheric pollutant concentrations (PM10, NO2 and O3) and heat and cold waves on the number of pre-term births and cases of low birth weight related to Saharan dust advection and biomass combustion. The dependent variables used in this analysis were the total number of births, births with low weight (>2.500 g) and pre-term births (<37 weeks), that occurred at the province level. Data provided by the NSI included: days with Saharan dust intrusion or biomass advection classified in terms of information provided by MITECO for each of the nine regions in Spain. A representative city was selected for reach region in which the registered average daily concentrations of PM10, NO2 and O3 (μg/m3) were used. These were also provided by MITECO. The daily maximum and daily minimum temperature (°C) used was those registered by the meteorological observatory station located in each province capital, provided by AEMET. Using Poisson log linear regression models, the associated relative risks (RR) were measured as well as the population attributable risk (PAR) corresponding to the variables that resulted statistically significant at p < 0.05 for days with and without intrusion of natural particulate matter. The results obtained show that the days with Saharan dust intrusion or advections due to biomass combustion- beyond the impact of PM10, primary pollutants such as NO2 (in Saharan intrusions), heat waves and O3 - are associated with the number of births, low birth weight and pre-term birth. The RR and percent PAR of the pollutants and the heat waves are greater than those obtained for PM10. The results of this study indicate that days with natural particulate matter due to biomass combustion or advection of Saharan dust put pregnant women at risk.
Collapse
Affiliation(s)
- I Moreira
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - C Linares
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - F Follos
- Tdot Soluciones Sostenibles, S.L. Ferrol, A Coruña, Spain
| | | | - J M Vellón
- Tdot Soluciones Sostenibles, S.L. Ferrol, A Coruña, Spain
| | - J Díaz
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Yao J, Stieb DM, Taylor E, Henderson SB. Assessment of the Air Quality Health Index (AQHI) and four alternate AQHI-Plus amendments for wildfire seasons in British Columbia. Canadian Journal of Public Health 2019; 111:96-106. [PMID: 31286460 DOI: 10.17269/s41997-019-00237-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Wildfire smoke is an important source of air pollution associated with a range of cardiopulmonary health conditions. The Air Quality Health Index (AQHI) is the most widely used tool in Canada to communicate with the public about air pollution, but it may not adequately reflect health risks from wildfire smoke. The objective of this study was to evaluate the ability of the AQHI and four alternate AQHI-Plus amendments to predict adverse population health effects from wildfire smoke. METHODS The maximum 1-h values of the AQHI and the four amendments were calculated for each 48-h period of the wildfire seasons from 2010 to 2017 for 32 health units in British Columbia. Generalized Poisson models were used to estimate the association between these values and daily counts of five health outcomes: all-cause mortality; physician visits for all circulatory causes; visits for all respiratory causes, including asthma; asthma-specific visits; and dispensations of salbutamol sulfate (i.e., Ventolin®). Model fit was evaluated with the Akaike information criterion. RESULTS The AQHI and the four amendments were all associated with all five health outcomes. The AQHI exhibited best fit to the all-cause mortality and circulatory physician visits during all wildfire seasons, while the 1-h PM2.5Only AQHI-Plus exhibited best fit to the asthma-related outcomes during all wildfire seasons. CONCLUSION Individuals with common respiratory conditions such as asthma and chronic obstructive pulmonary disease are particularly susceptible to wildfire smoke. As such, the 1-h PM2.5Only AQHI-Plus amendment was recommended for communicating about potential health effects of air quality during wildfire seasons in BC.
Collapse
Affiliation(s)
- Jiayun Yao
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Dave M Stieb
- Environmental Health Science and Research Bureau, Health Canada, 420-757 West Hastings St. - Federal Tower, Vancouver, BC, V6C 1A1, Canada
| | - Eric Taylor
- BC Ministry of Environment and Climate Change Strategy, 525 Superior St., Victoria, BC, V8V 1T7, Canada
| | - Sarah B Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada.
| |
Collapse
|
20
|
Huang R, Hu Y, Russell AG, Mulholland JA, Odman MT. The Impacts of Prescribed Fire on PM 2.5 Air Quality and Human Health: Application to Asthma-Related Emergency Room Visits in Georgia, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2312. [PMID: 31261860 PMCID: PMC6651061 DOI: 10.3390/ijerph16132312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022]
Abstract
Short-term exposure to fire smoke, especially particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), is associated with adverse health effects. In order to quantify the impact of prescribed burning on human health, a general health impact function was used with exposure fields of PM2.5 from prescribed burning in Georgia, USA, during the burn seasons of 2015 to 2018, generated using a data fusion method. A method was developed to identify the days and areas when and where the prescribed burning had a major impact on local air quality to explore the relationship between prescribed burning and acute health effects. The results showed strong spatial and temporal variations in prescribed burning impacts. April 2018 exhibited a larger estimated daily health impact with more burned areas compared to Aprils in previous years, likely due to an extended burn season resulting from the need to burn more areas in Georgia. There were an estimated 145 emergency room (ER) visits in Georgia for asthma due to prescribed burning impacts in 2015 during the burn season, and this number increased by about 18% in 2018. Although southwestern, central, and east-central Georgia had large fire impacts on air quality, the absolute number of estimated ER asthma visits resulting from burn impacts was small in these regions compared to metropolitan areas where the population density is higher. Metro-Atlanta had the largest estimated prescribed burn-related asthma ER visits in Georgia, with an average of about 66 during the reporting years.
Collapse
Affiliation(s)
- Ran Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James A Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M Talat Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
21
|
Salvador C, Nieto R, Linares C, Diaz J, Gimeno L. Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:121-133. [PMID: 30690347 DOI: 10.1016/j.scitotenv.2019.01.217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Climate change scenarios indicate an increase in the intensity and frequency of droughts in several regions of the world in the 21st century, especially in Southern Europe, highlighting the threat to global health. For the first time, a time-series diagnostic study has been conducted regarding the impact of droughts in Galicia, a region in north-western Spain, on daily natural-cause mortality, daily circulatory-cause mortality, and daily respiratory-cause mortality, from 1983 to 2013. We analysed the drought periods over the area of interest using the daily Standardized Evapotranspiration-Precipitation Index (SPEI) and the daily Standardized Precipitation Index (SPI), obtained at various timescales (1, 3, 6, 9 months), to identify and classify the intensity of drought and non-drought periods. Generalized linear models with the Poisson regression link were used to calculate the Relative Risks (RRs) of different causes of mortality, and the percentage of Attributable Risk Mortality (%AR) was calculated based on RRs data. According to our findings, there were statistically significant (p < 0.05) associations between drought periods, measured by both the daily SPEI and SPI, and daily mortality in all provinces of Galicia (except Pontevedra) for different timescales. Furthermore, drought periods had a greater influence on daily mortality in the interior provinces of Galicia than in the coastal regions, with Lugo being the most affected. In short term, the effect of droughts (along with heatwaves) on daily mortality was observed in interior regions and was mainly explained by atmospheric pollution effect throughout 2000 to 2009 period in Ourense, being respiratory causes of mortality the group most strongly associated. The fact that droughts are likely to become increasingly frequent and intense in the context of climate change and the lack of studies that have considered the impact of droughts on specific causes of mortality make this type of analysis necessary.
Collapse
Affiliation(s)
- C Salvador
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain.
| | - R Nieto
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain
| | - C Linares
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - J Diaz
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - L Gimeno
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
22
|
Linares C, Carmona R, Salvador P, Díaz J. Impact on mortality of biomass combustion from wildfires in Spain: A regional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:547-555. [PMID: 29223078 DOI: 10.1016/j.scitotenv.2017.11.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 04/13/2023]
Abstract
Studies that analyse the impact on mortality of particulate matter (PM) produced by biomass combustion from wildfires mostly focus on a single city or on cities in different countries, with very few concentrating on one country as a whole. Accordingly, the aim of this paper was to analyse the impact that PM has on daily mortality in Spain on days with biomass combustion from wildfires. To analyse natural PM advections the Ministry of Agriculture and Fishing, Food & Environment divides Spain into 9 geographical regions. One province representative of each region for was selected analysis purposes, with provincial daily natural-cause mortality across the period 2004-2009 as the dependent variable, and daily mean PM concentrations in the provincial capital as the independent variable. We controlled for the effect of other chemical pollutants (NO2 and O3), maximum daily temperature on heat-wave days, day of the week, trends, seasonalities and the autoregressive nature of the series, using generalised linear models with the Poisson regression link to calculate relative risks (RRs) and the increase in RR (IRR) of PM-related mortality. The analysis was performed for days with and without biomass advections (DBA and DNBA respectively), with a breakdown by year, summer, and the remainder of the year (i.e., excluding summer). The results indicated that daily mean PM concentrations were higher on DBA than on DNBA, with statistically significant differences in most provinces. Furthermore, PM10 was associated with higher daily mortality on DBA in regions where wildfires were most frequent, but not in the remaining provinces. This translated as an IRR per 10μg/m3 of PM of 7.93 (2.36-13.81) in the North-west, 3.76 (1.36-6.22) in the Centre and 4.46 (2.99-5.94) in the South-west, values which in all cases were statistically higher than those obtained on DNBA. The increase in PM caused by biomass advections from wildfires is linked to a significant IRR of mortality in Spain. Hence, the fact that wildfires are likely to become increasingly frequent in the context of climate change makes this type of analysis particularly necessary.
Collapse
Affiliation(s)
- C Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - R Carmona
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - P Salvador
- Environmental Department of Research, Centre for Energy, Environment and Technology (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas/CIEMAT), Madrid, Spain
| | - J Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
23
|
Ramakreshnan L, Aghamohammadi N, Fong CS, Bulgiba A, Zaki RA, Wong LP, Sulaiman NM. Haze and health impacts in ASEAN countries: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2096-2111. [PMID: 29209970 DOI: 10.1007/s11356-017-0860-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
Seasonal haze episodes and the associated inimical health impacts have become a regular crisis among the ASEAN countries. Even though many emerging experimental and epidemiological studies have documented the plausible health effects of the predominating toxic pollutants of haze, the consistency among the reported findings by these studies is poorly understood. By addressing such gap, this review aimed to critically highlight the evidence of physical and psychological health impacts of haze from the available literature in ASEAN countries. Systematic literature survey from six electronic databases across the environmental and medical disciplines was performed, and 20 peer-reviewed studies out of 384 retrieved articles were selected. The evidence pertaining to the health impacts of haze based on field survey, laboratory tests, modelling and time-series analysis were extracted for expert judgement. In specific, no generalization can be made on the reported physical symptoms as no specific symptoms recorded in all the reviewed studies except for throat discomfort. Consistent evidence was found for the increase in respiratory morbidity, especially for asthma, whilst the children and the elderly are deemed to be the vulnerable groups of the haze-induced respiratory ailments. A consensual conclusion on the association between the cardiovascular morbidity and haze is unfeasible as the available studies are scanty and geographically limited albeit of some reported increased cases. A number of modelling and simulation studies demonstrated elevating respiratory mortality rates due to seasonal haze exposures over the years. Besides, evidence on cancer risk is inconsistent where industrial and vehicular emissions are also expected to play more notable roles than mere haze exposure. There are insufficient regional studies to examine the association between the mental health and haze. Limited toxicological studies in ASEAN countries often impede a comprehensive understanding of the biological mechanism of haze-induced toxic pollutants on human physiology. Therefore, the lack of consistent evidence among the reported haze-induced health effects as highlighted in this review calls for more intensive longitudinal and toxicological studies with greater statistical power to disseminate more reliable and congruent findings to empower the institutional health planning among the ASEAN countries.
Collapse
Affiliation(s)
- Logaraj Ramakreshnan
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chng Saun Fong
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Awang Bulgiba
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rafdzah Ahmad Zaki
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Li Ping Wong
- Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nik Meriam Sulaiman
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1334-43. [PMID: 27082891 PMCID: PMC5010409 DOI: 10.1289/ehp.1409277] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 09/14/2015] [Accepted: 03/10/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. OBJECTIVES We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. METHODS We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. DISCUSSION Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. CONCLUSIONS Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. CITATION Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334-1343; http://dx.doi.org/10.1289/ehp.1409277.
Collapse
Affiliation(s)
- Colleen E. Reid
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
- Address correspondence to C.E. Reid, Harvard Center for Population and Development Studies, 9 Bow St., Cambridge, MA 02138 USA. Telephone: (617) 495-8108. E-mail:
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fay H. Johnston
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Environmental Health Services, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Michael Jerrett
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - John R. Balmes
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine T. Elliott
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Office of the Chief Medical Officer of Health, Yukon Health and Social Services, Whitehorse, Yukon, Canada
| |
Collapse
|