1
|
Pan F, Yang W, Zhao T, Liu K, Zhao S, Zhao L. Procyanidine alleviates bisphenol A-induced apoptosis in TM3 cells via the Nrf2 signaling pathway. Food Chem Toxicol 2024; 192:114908. [PMID: 39117098 DOI: 10.1016/j.fct.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Contaminated foods are a major source of bisphenol A (BPA) and are widely used in food packaging. Prolonged exposure to BPA can cause reproductive dysfunction in humans. Procyanidine (PC) is a potent natural antioxidant; however, the exact mechanism by which PC mitigates Leydig cell damage caused by BPA is unknown. In this study, the protective effect of PC against BPA-induced TM3 cell damage was investigated, and the underlying mechanism was assessed. PC treatment attenuates BPA-induced TM3 cell damage by suppressing oxidative stress and inhibiting TM3 apoptosis. In addition, PC upregulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant target genes. Treatment with the NRF2 inhibitor ML385 reversed the PC-induced upregulation of the mRNA expression of these genes. Overall, PC may mitigate BPA-induced cell damage by activating the Nrf2 signaling pathway, suggesting that PC supplementation may alleviate BPA toxicity in TM3 cells.
Collapse
Affiliation(s)
- Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
2
|
Hu H, Yu Q, Zheng Y, Cui H, Huang X, Zhang K. Forsythoside A protects against Zearalenone-induced cell damage in chicken embryonic fibroblasts via mitigation of endoplasmic reticulum stress. Vet Res Commun 2024; 48:1659-1670. [PMID: 38467911 DOI: 10.1007/s11259-024-10350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin that exerts its toxic effects through various damage mechanisms such as oxidative stress, endoplasmic reticulum stress (ERS), mitochondrial damage, cell cycle arrest, and apoptosis. At present, there are few studies on drugs that can rescue ZEA-induced chicken embryonic fibroblasts damage. Forsythoside A (FA) is one of effective ingredients of traditional Chinese medicine that plays a role in various biological functions, but its antitoxin research has not been investigated so far. In this study, in vitro experiments were carried out. Chicken embryo fibroblast (DF-1) cells was used as the research object to select the appropriate treatment concentration of ZEA and examined reactive oxygen species (ROS), mitochondrial membrane potential, ERS and apoptosis to investigate the effects and mechanisms of FA in alleviating ZEA-induced cytotoxicity in DF-1 cells. Our results showed that ZEA induced ERS and activated the unfolded protein response (UPR) leading to apoptosis, an apoptotic pathway characterized by overproduction of Lactate dehydrogenase (LDH), Caspase-3, and ROS and loss of mitochondrial membrane potential. We also demonstrated that FA help to prevent ERS and attenuated ZEA-induced apoptosis in DF-1 cells by reducing the level of ROS, downregulating GRP78, PERK, ATF4, ATF6, JNK, IRE1, ASK1, CHOP, BAX expression, and up-regulating Bcl-2 expression. Our results provide a basis for an in-depth study of the mechanism of toxic effects of ZEA on chicken cells and the means of detoxification, which has implications for the treatment of relevant avian diseases.
Collapse
Affiliation(s)
- Hui Hu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Zheng
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjie Cui
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaizhao Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:toxins14120859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85283756
| |
Collapse
|
4
|
Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins (Basel) 2022; 14:toxins14110733. [PMID: 36355983 PMCID: PMC9694162 DOI: 10.3390/toxins14110733] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is a common mycotoxin that induces oxidative stress (OS) and affects the male reproductive system in animals. Resveratrol (RSV) has good antioxidant activity and can activate nuclear factor erythroid 2-related factor (Nrf2) to protect cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The objective of this study was to investigate the protective effect and the mechanism of RSV on OS and apoptosis in TM4 cells induced by ZEA. Prior to being exposed to ZEA, TM4 cells were pretreated with RSV or the PI3K/Akt inhibitor LY294002. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assays. Flow cytometry was used to determine the level of apoptosis and intracellular reactive oxygen species (ROS). The expression of poly ADP-ribose polymerase (PARP), caspase-3, BCL2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2), and PI3K/Akt-mediated Nrf2/heme oxygenase 1 (HO-1) signaling pathway-related proteins was evaluated by Western blotting. Nrf2 siRNA transfection and LY294002 treatment were used to investigate the role of the Nrf2/HO-1 and PI3K/Akt signaling pathways in RSV alleviation of ZEA-induced OS. The results showed that pretreatment with RSV significantly reduced the expression of apoptosis-related proteins and increased cell viability. Catalase (CAT) activity and glutathione (GSH) levels were also increased, whereas malondialdehyde (MDA) and ROS levels decreased (p < 0.05). RSV also upregulated Akt phosphorylation, Nrf2 nuclear translocation, and HO-1 expression under conditions of OS (p < 0.05). Transfection with Nrf2 siRNA abolished the protective effects of RSV against ZEA-induced cytotoxicity (p < 0.05), ROS accumulation (p < 0.05), and apoptosis (p < 0.05). LY294002 completely blocked the RSV-mediated increase in Nrf2 nuclear translocation (p < 0.05), HO-1 expression (p < 0.05), and cytoprotective activity (p < 0.05). Collectively, the above findings indicate that RSV can protect against ZEA-induced OS and apoptosis in TM4 cells by PI3K/Akt-mediated activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
5
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Feng YQ, Zhao AH, Wang JJ, Tian Y, Yan ZH, Dri M, Shen W, De Felici M, Li L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022; 829:146511. [PMID: 35447234 DOI: 10.1016/j.gene.2022.146511] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Lin X, Zhu L, Gao X, Kong L, Huang Y, Zhao H, Chen Y, Wen L, Li R, Wu J, Yuan Z, Yi J. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113561. [PMID: 35489292 DOI: 10.1016/j.ecoenv.2022.113561] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin, which mainly contaminates grains and has estrogen-like effects on the reproductive system. Betulinic acid (BA), a natural lupane-type pentacyclic triterpene, has anti-oxidative and anti-inflammatory properties. This study aimed to investigate whether BA alleviates ZEA-induced testicular damage and explore the possible mechanism. Here, BA ameliorated testicular damage by mitigating the disordered arrangement of seminiferous tubules, the exfoliation of lumen cells, and the increase of cell apoptosis caused by ZEA. Meanwhile, BA alleviated ZEA-triggered testicular damage by restoring hormone levels and sperm motility, and reconstructing the blood-testis-barrier. Moreover, BA alleviated ZEA-exposed testicular oxidative stress by activating Nrf2 pathway. Furthermore, BA moderated ZEA-evoked testicular inflammation by inhibiting p38/ERK MAPK pathway. Overall, our results revealed that BA has a therapeutic protective effect on ZEA-induced testicular injury and oxidative stress via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation, which provides a viable alternative to alleviate ZEA-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Lee R, Kim DW, Lee WY, Park HJ. Zearalenone Induces Apoptosis and Autophagy in a Spermatogonia Cell Line. Toxins (Basel) 2022; 14:toxins14020148. [PMID: 35202175 PMCID: PMC8878478 DOI: 10.3390/toxins14020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Zearalenone (ZEN), a widely known mycotoxin, is mainly produced by various Fusarium species, and it is a potent estrogenic metabolite that affects reproductive health in livestock and humans. In this study, the molecular mechanisms of toxicity and cell damage induced by ZEN in GC-1 spermatogonia (spg) cells were evaluated. Our results showed that cell viability decreased and apoptosis increased in a dose-dependent manner when GC-1 spg cells were exposed to ZEN. In addition, the key proteins involved in apoptosis, cleaved caspase-3 and -8, BAD, BAX, and phosphorylation of p53 and ERK1/2, were significantly increased in ZEN-exposed GC-1 spg cells for 24 h, and cytochrome c was released from mitochondria by ZEN. Interestingly, ZEN also triggered autophagy in GC-1 spg cells. The expression levels of the autophagy-related genes Atg5, Atg3, Beclin 1, LC3, Ulk1, Bnip 3, and p62 were significantly higher in ZEN-treated GC-1 spg cells, and the protein levels of both LC3A/B and Atg12 were remarkably increased in a dose-dependent manner in ZEN-exposed GC-1 spg cells compared to the control. In addition, immunostaining results showed that ZEN-treated groups showed a remarkable increase in LC 3A/B positive puncta as compared to the control in a dose-dependent manner based on confocal microscopy analysis in GC-1 spg cells. Our findings suggest that ZEN has toxic effects on tGC-1 spg cells and induces both apoptosis and autophagy.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cell and Regenerative Biology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Dong-Wook Kim
- Department of Swine & Poultry Science, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Korea;
| | - Won-Young Lee
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Korea;
| | - Hyun-Jung Park
- Department of Animal Biotechnology, Sangji University, 83, Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea
- Correspondence: ; Tel.: +33-730-0543
| |
Collapse
|
9
|
Zhu W, Ge M, Li X, Wang J, Wang P, Tai T, Wang Y, Sun J, Shi G. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. Int Immunopharmacol 2021; 102:108408. [PMID: 34920313 DOI: 10.1016/j.intimp.2021.108408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA) is a ubiquitous mycotoxin contaminant that causes immune toxicity, apoptosis, and oxidative stress in animals. Hyperoside (Hyp) is a flavonol glycoside compound with antioxidant and anti-apoptotic properties. However, the potential of Hyp to prevent ZEA-induced spleen injury remains unknown. To evaluate the chemoprotective effect of Hyp against ZEA-induced spleen injury, 60 male Kunming mice were randomly assigned into five groups. The first two groups were orally treated with ZEA (40 mg/kg) for 30 days, and combined with Hyp (0, 100 mg/kg) treatment. The other three groups are orally treated with normal saline, olive oil, or Hyp (100 mg/kg) for 30 days. Hyperoside had an inhibitory effect against ZEA-induced spleen lesions. In addition, Hyp significantly increased the activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)], the total antioxidant capacity (T-AOC), and significantly reduced the malondialdehyde (MDA) content reducing ZEA-induced oxidative stress in the spleen. Moreover, the translation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes (CAT, NQO1, SOD1, GSS, GCLM, and GCLC) were ameliorated using co-therapy with Hyp before treatment with ZEA. Hyperoside also significantly inhibited the translation and expression of apoptotic genes (caspase3, casepase9, Bax, Bcl-2) and the production of apoptotic bodies induced by ZEA in the spleen. In conclusion, the findings revealed that Hyp inhibited ZEA-induced spleen injury through its antioxidant and anti-apoptotic effects. Thus, it provides a new treatment option for immune system diseases caused by ZEA.
Collapse
Affiliation(s)
- Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - PanPan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
The Antagonistic Effect of Glutamine on Zearalenone-Induced Apoptosis via PI3K/Akt Signaling Pathway in IPEC-J2 Cells. Toxins (Basel) 2021; 13:toxins13120891. [PMID: 34941728 PMCID: PMC8704905 DOI: 10.3390/toxins13120891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogen mycotoxin produced by Fusarium fungi, which inevitably exists in human and animal food or feed. Previous studies indicated that apoptosis seems to be a key determinant of ZEN-induced toxicity. This experiment aimed to investigate the protective effects of Glutamine (Gln) on ZEN-induced cytotoxicity in IPEC-J2 cells. The experimental results showed that Gln was able to alleviate the decline of cell viability and reduce the production of reactive oxygen species and calcium (Ca2+) induced by ZEN. Meanwhile, the mRNA expression of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, and catalase was up-regulated after Gln addition. Subsequently, Gln supplementation resulted in the nuclear fission and Bad-fluorescence distribution of apoptotic cells were weakened, and the mRNA expression and protein expression of pro-apoptotic genes and apoptotic rates were significantly reduced. Moreover, ZEN reduced the phosphorylation Akt, decreased the expression of Bcl-2, and increased the expression of Bax. Gln alleviated the above changes induced by ZEN and the antagonistic effects of Gln were disturbed by PI3K inhibitor (LY294002). To conclude, this study revealed that Gln exhibited significant protective effects on ZEN-induced apoptosis, and this effect may be attributed to the PI3K/Akt signaling pathway.
Collapse
|
11
|
Kizilay G, Bayram S, Ersoy O, Cerkezkayabekir A, Sapmaz-Metin M, Karaca T. Role of JNK, TGF-β1, Akt, IL-1β and INSL-3 in proanthocyanidin protection against apoptosis in diabetic rat testis. Biotech Histochem 2021; 97:363-371. [PMID: 34789048 DOI: 10.1080/10520295.2021.2002931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated how proanthocyanidin treatment altered c-Jun N-terminal kinases, transforming growth factor beta 1, serine/threonine-specific protein kinase, interleukin 1 beta and insulin-like 3 expression in the testis of diabetic rats. We used 24 Wistar albino male rats divided into four groups. Group 1 was untreated control. Group 2 was treated with 40 mg/kg streptozotocin (STZ) for 5 days. Group 3 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin once daily for six weeks. Group 4 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin. Superoxide dismutase activity was reduced in groups 3 and 4 compared to group 2. Glutathione peroxidase activity was increased significantly in groups 3 and 4 compared to groups 1 and 2. Catalase activity was decreased in group 4 compared to group 2. We found that proanthocyanidin increased cell proliferation in diabetic testis. Phospho-JNK and TGF-β1 immunostaining was decreased groups 3 and 4 compared to group 2, while p-Akt immunostaining was increased in groups 3 and 4. The number of IL-1β immunostained cells in groups 3 and 4 was decreased compared to group 2. INSL-3 immunostaining was increased significantly in group 3 compared to group 2. Our findings indicate that proanthocyanidin ameliorated diabetes related testicular dysfunction. Proanthocyanidin contributes to a balanced oxidant-antioxidant status, and balanced proliferation and apoptosis activity in the germinal cells.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Sinasi Bayram
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | | - Melike Sapmaz-Metin
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
12
|
Yi Y, Wan S, Wang S, Khan A, Guo J, Zheng X, Li H, Sun N. Scutellarin protects mouse ovarian granulosa cells from injury induced by the toxin zearalenone. Food Funct 2021; 12:1252-1261. [PMID: 33433546 DOI: 10.1039/d0fo02711a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEA), present in animal grain feed is produced by Fusarium fungi and this toxin targets ovarian granulosa cells (GCs) to cause reproductive disorders in female animals. Current research on drugs that can rescue ZEA-induced ovarian GC damage is limited. The purpose of this study was to explore the effect of scutellarin (Scu) on ZEA-induced apoptosis of mouse ovarian GCs and its mechanism. In one set of experiments, the primary cultured mouse ovarian GCs were co-treated with ZEA and Scu for 24 h. The results showed that Scu significantly alleviated ZEA-induced cell damage, restored cell cycle arrest, and inhibited apoptosis by reducing the ratio of cleaved-caspase-3, cleaved-PARP, and Bax/Bcl-2. In another set of experiments, six-week-old mice were intragastrically administered with 40 mg kg-1 ZEA for 2 h, followed by 100 mg kg-1 Scu for 3 days. It was observed that Scu inhibited ZEA-induced apoptosis and positive signal expression of cleaved-caspase-3 in the ovarian granulosa layer, with the involvement of the mitochondrial apoptotic pathway. These data provide strong evidence that Scu can be further developed as a potential new therapeutic drug for preventing or treating reproductive toxicity caused by the exposure of animals to ZEA found in the grains of animal feeds.
Collapse
Affiliation(s)
- Yanyan Yi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Shuangxiu Wan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China. and School of Pharmacy, Heze University, Heze 274000, Shangdong, People's Republic of China
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, NSW 2800, Australia
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| |
Collapse
|
13
|
Wu L, Duan Q, Gao D, Wang Y, Xue S, Li W, Lei M. Zearalenone Blocks Autophagy Flow and Induces Cell Apoptosis During Embryo Implantation in Gilts. Toxicol Sci 2021; 175:126-139. [PMID: 32239165 DOI: 10.1093/toxsci/kfaa018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEA) has been proved to be toxic, particularly to the reproductive system of gilts. The effect of ZEA on gilts during embryo implantation window period is of particular interests. Here, we observed window stage dysontogenesis of gilts treated with ZEA. In endometrial tissues and cells, autophagosomes increased significantly and mitochondria were damaged with increasing ZEA concentration. Addition of autophagy inhibitor confirmed that ZEA blocks the autophagic flow in the fusion of autophagosomes and lysosomes. In conclusion, ZEA exposure during embryo implantation results in endometrium inflammation by activating autophagy while blocking autophagy flow at the same time, leading to the significant accumulation of autophagosomes. The aforementioned effects of ZEA induce the apoptosis of primary endometrial cells through the caspase3 pathway, which would break the uterus environment balance and finally lead to embryo implantation failure and dysontogenesis in gilts.
Collapse
Affiliation(s)
- Lihang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qianni Duan
- Department of TCM, Tongji Medical College, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yueying Wang
- Department of Reproductive Medicine, Jining First People's Hospital, Jining 272000, P. R. China
| | - Songyi Xue
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenchao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,National Engineering Research Center for Livestock.,Department of Pig Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Herrera AS, Beeraka NM, Sinelnikov MY, Nikolenko VN, Giller DB, Solis LFT, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G. The Beneficial Effects of QIAPI 1® against Pentavalent Arsenic-Induced Lung Toxicity a Hypothetical Model for SARS CoV2-Induced Lung Toxicity. Curr Pharm Biotechnol 2021; 23:307-315. [PMID: 33845734 DOI: 10.2174/1389201022666210412142230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Given the commonalities of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to As-induced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.
Collapse
Affiliation(s)
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore - 570 015, Karnataka. India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Dimitry B Giller
- Department of Phthisiopulmonology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | | | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Gjumrakch Aliev
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| |
Collapse
|
15
|
Wang M, Huang S, Chen J, Chen S, Long M. Complete Genome Sequence of Zearalenone Degrading Bacteria Bacillus velezensis A2. Curr Microbiol 2020; 78:347-350. [PMID: 33034767 DOI: 10.1007/s00284-020-02234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Zearalenone (ZEN) is a severe contaminant mycotoxin found worldwide. Our previous results indicate that Bacillus velezensis A2 isolated from ZEN-contaminated crop soil can degrade ZEN. Here, we present the complete genomic sequence of B. velezensis A2 (the Genbank accession number: CP053717), which contains 3,929,218 bp in the chromosome, has a GC content of 46.5%, and contains the encoded ZEN-degrading enzyme gene. The complete genomic sequence can provide a genomic basis for a series of A2 biotechnology applications as an effective method of degrading ZEN.
Collapse
Affiliation(s)
- Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sheng Huang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Si Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
16
|
Güner A. Toxic and irritant effects induced by zearalenone: prevention by taurine. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1777432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Adem Güner
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
17
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
18
|
Yang SH, He JB, Yu LH, Li L, Long M, Liu MD, Li P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34575-34583. [PMID: 31650475 DOI: 10.1007/s11356-019-06587-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate whether curcumin (CUR) can ameliorate cadmium-induced reproductive toxicity and its mechanism. A total of 48 male mice were equally divided into 4 groups: control, CdCl2 (2 mg/kg, intraperitoneally inject) curcumin (50 mg/kg, intraperitoneally inject), co-treatment with curcumin (50 mg/kg), and CdCl2 (2 mg/kg) for 10 days. The results demonstrated that CdCl2 reduces sperm motility, decreases the sperm density and serum testosterone content, and significantly improves the rate of sperm deformity. CdCl2 increased the level of testicular total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH), and CdCl2 declined the level of malondialdehyde (MDA). However, the semen quality of the mice in the curcumin intervention group was improved. Moreover, the testosterone content and antioxidant capacity were increased. In the Cd group mice, the expression of testicular Nrf2, as well as the mRNA and protein expressions of the downstream target molecules, glutathione peroxidase (GSH-Px), and γ-glutamylcysteine synthetase (γ-GCS) of Nrf2 declined, while the above genetic expressions elevated significantly in the curcumin intervention group. Our results suggested that curcumin could protect against Cd-induced testicular injury via activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ming-Da Liu
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
19
|
Yang S, Gong P, Pan J, Wang N, Tong J, Wang M, Long M, Li P, He J. Pediococcus pentosaceus xy46 Can Absorb Zearalenone and Alleviate its Toxicity to the Reproductive Systems of Male Mice. Microorganisms 2019; 7:microorganisms7080266. [PMID: 31426404 PMCID: PMC6722568 DOI: 10.3390/microorganisms7080266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA) contamination is a very serious problem around the world as it can induce reproductive disorders in animals and affect the health of humans. Therefore, reducing the damage it causes to humans and animals is a current focus of research. In this study, we assess the removing capacity of Pediococcus pentosaceus xy46 towards ZEA and investigate the mechanism responsible for its action, thus confirming if it can alleviate ZEA toxicity to the reproductive systems of male mice. Our results show that the rate at which the strain removes ZEA is as high as 89.2% in 48 h when the concentration of ZEA is 4 μg/mL in the liquid medium. Heat and acid treatment significantly enhanced the ability of the bacteria to remove ZEA. The animal experiments results show that the oral administration of xy46 to mice (0.2 mL daily at a concentration of 109 CFU/mL for 28 days) significantly reduces the degree of testicular pathomorphological changes and apoptosis induced by ZEA when the mice are intragastric administration with 40 mg/kg ZEA daily for 28 days. Moreover, oral administration of xy46 enhances the decrease in the testosterone level and improves the oxidative stress injury induced by ZEA. Furthermore, oral administration of xy46 reverts the expression of these genes and proteins in the testicular tissues of the mice involved in the blood-testis barrier and apoptosis (e.g., Vim, caspase 12, Cldn11, N-cad, Bax, and Bcl-2). However, xy46 cannot significantly revert in some of these evaluated parameters, especially in sperm quantity and quality when the mice were given 70 mg/kg ZEA daily for 28 days. In conclusion, our results suggest that the strain Pediococcus pentosaceus xy46 can efficiently remove ZEA from the liquid medium, the mechanism responsible for its action is absorption, and it can alleviate the toxicity of ZEA to the reproductive systems of male mice when the mice are given 40 mg/kg ZEA daily, However, it cannot completely alleviate the reproductive toxicity of higher dosage of zearalenone through its ability to adsorb ZEA.
Collapse
Affiliation(s)
- Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
20
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
21
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
22
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
23
|
Long M, Chen X, Wang N, Wang M, Pan J, Tong J, Li P, Yang S, He J. Proanthocyanidins Protect Epithelial Cells from Zearalenone-Induced Apoptosis via Inhibition of Endoplasmic Reticulum Stress-Induced Apoptosis Pathways in Mouse Small Intestines. Molecules 2018; 23:molecules23071508. [PMID: 29933637 PMCID: PMC6099583 DOI: 10.3390/molecules23071508] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study evaluated the protective effect of proanthocyanidins (PCs) on reducing apoptosis in the mouse intestinal epithelial cell model MODE-K exposed to zearalenone (ZEA) through inhibition of the endoplasmic reticulum stress (ERS)-induced apoptosis pathway. Our results showed that PCs could reduce the rate of apoptosis in MODE-K cells exposed to ZEA (p < 0.01). PCs significantly increased the ZEA-induced antioxidant protective effects on the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on the content of GSH. PCs also significantly decreased the ZEA-induced increase in the content of malondialdehyde (MDA). The analysis indicated that ZEA increased both mRNA and protein expression levels of C/EBP homologous protein (CHOP), GRP78, c-Jun N-terminal kinase (JNK), and cysteinyl aspartate specific proteinase 12 (caspase-12) (p < 0.05), which are related to the ERS-induced apoptosis pathway. ZEA decreased levels of the pro-apoptotic related protein Bcl-2 (p < 0.05) and increased the anti-apoptotic related protein Bax (p < 0.05). Co-treatment with PCs was also shown to significantly reverse the expression levels of these proteins in MODE-K cells. The results demonstrated that PCs could protect MODE-K cells from oxidative stress and apoptosis induced by ZEA. The underlying mechanism may be that PCs can alleviate apoptosis in mouse intestinal epithelial cells by inhibition of the ERS-induced apoptosis pathway.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
24
|
Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins (Basel) 2018; 10:toxins10050184. [PMID: 29724047 PMCID: PMC5983240 DOI: 10.3390/toxins10050184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis.
Collapse
|
25
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
26
|
Long M, Yang SH, Shi W, Li P, Guo Y, Guo J, He JB, Zhang Y. Protective effect of proanthocyanidin on mice Sertoli cell apoptosis induced by zearalenone via the Nrf2/ARE signalling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26724-26733. [PMID: 28956244 DOI: 10.1007/s11356-017-0123-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 05/07/2023]
Abstract
This study evaluated the protective effect of proanthocyanidin (PC) on the cytotoxicity of the Sertoli cell TM4 of mice, as induced by zearalenone (ZEA). Flow cytometry was used to detect the apoptosis rate of cells in each group. The activities of antioxidant enzymes and the content of antioxidant substances were detected by using a proprietary kit; the RT-PCR method was used to detect the expression level of mRNA, the related genes of Nrf2/ARE signal pathway, the nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase (γ-GCS) and the expression level of mRNA, the apoptosis-related genes, Bcl-2 and Bax; the Western-blot method was used to detect the protein expression levels of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 in each group. Our results showed that PC could reduce the apoptosis rate of the TM4 cells exposed to ZEA (p < 0.01); PC could enhance the decrease in the activities of T-SOD and GSH-Px induced by ZEA (p < 0.05), reduce the increase in the content of MDA, as caused by ZEA; PC could significantly up-regulate the down-regulation levels of the mRNA and protein of Nrf2, GSH-Px, HO-1, γ-GCS and NQO1 induced by ZEA. PC could enhance the decrease in the mRNA expression level of Bcl-2 and down-regulate the mRNA expression of Bax induced by ZEA (p < 0.05). These results demonstrated that PC conferred protective effects against oxidative damage and apoptosis of TM4 cells induced by ZEA. The protection mechanism of PC on TM4 cells might act through the activation of the Nrf2/ARE signalling pathway.
Collapse
Affiliation(s)
- Miao Long
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shu-Hua Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Shi
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayi Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
27
|
El-Nekeety AA, El-Kady AA, Abdel-Wahhab KG, Hassan NS, Abdel-Wahhab MA. Reduction of individual or combined toxicity of fumonisin B 1 and zearalenone via dietary inclusion of organo-modified nano-montmorillonite in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20770-20783. [PMID: 28718025 DOI: 10.1007/s11356-017-9721-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Fusarium mycotoxins are nature environmental contaminants worldwide in animal feed and human food resulting in a serious health risk. The present study aimed to evaluate the potential role of organo-modified nano-montmorillonite (OMNM) against the health risk and the oxidative stress resulted from the exposure of fumonisin (FB1) and zearalenone (ZEN) individually and in combination in rats. Eight groups of female Sprague Dawley rats were treated orally for 3 weeks including the control group, FB1 alone-treated group (50 mg/kg b.w.), ZEN alone-treated group (40 μg/kg b.w), FB1 plus ZEN-treated group, the group fed basal diet supplemented with OMNM (5 g/kg diet), and the groups fed basal diet supplemented with OMNM and treated with FB1 and/or ZEN. At the end of the experimental period, samples of blood and tissues were collected for different biochemical and histological analyses. The results revealed that administration of FB1 and/or ZEN resulted in significant disturbances in the biochemical parameters tested, lipid profiles, serum cytokines, oxidative stress indices, the activity of antioxidant enzymes, and the histological status of the liver and kidney. Co-administration of both mycotoxins indicated a synergistic effect. OMNM alone was safe and succeeded to reduce and/or prevent most of the toxicity of both mycotoxins. It could be concluded that OMNM is a novel and promising nanograde adsorbent suitable for the protection against the combined exposure to FB1 and ZEN.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed A El-Kady
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|