1
|
Zulfiqar B, Raza MAS, Saleem MF, Ali B, Aslam MU, Al-Ghamdi AA, Elshikh MS, Hassan MU, Toleikienė M, Ahmed J, Rizwan M, Iqbal R. Abscisic acid improves drought resilience, growth, physio-biochemical and quality attributes in wheat (Triticum aestivum L.) at critical growth stages. Sci Rep 2024; 14:20411. [PMID: 39223242 PMCID: PMC11369261 DOI: 10.1038/s41598-024-71404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | | | - Baber Ali
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmood Ul Hassan
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, 2 W Yuanmingyuan Ave, Haidian, Beijing, 100193, China
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, 58344, Akademija, Kedainiai, Lithuania
| | - Junaid Ahmed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
2
|
Wang WY, Bi JF, Hu JX, Li X. Metabolomics comparison of four varieties apple with different browning characters in response to pretreatment during pulp processing. Food Res Int 2024; 190:114600. [PMID: 38945570 DOI: 10.1016/j.foodres.2024.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.
Collapse
Affiliation(s)
- Wen-Yue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jin-Feng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Jia-Xing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| |
Collapse
|
3
|
Escandón M, Valledor L, Lamelas L, Álvarez JM, Cañal MJ, Meijón M. Multiomics analyses reveal the central role of the nucleolus and its machinery during heat stress acclimation in Pinus radiata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2558-2573. [PMID: 38318976 DOI: 10.1093/jxb/erae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation. To this end, we generated a high-density dataset employing Illumina technology. This approach allowed us to reconstruct a needle transcriptome, defining 12 164 and 13 590 transcripts as down- and up-regulated, respectively, during a time course stress acclimation experiment. Additionally, the combination of transcriptome data with other available omics layers allowed us to determine the complex inter-related processes involved in the heat stress response from the molecular to the physiological level. Nucleolus and nucleoid activities seem to be a central core in the acclimating process, producing specific RNA isoforms and other essential elements for anterograde-retrograde stress signaling such as NAC proteins (Pra_vml_051671_1 and Pra_vml_055001_5) or helicase RVB. These mechanisms are connected by elements already known in heat stress response (redox, heat-shock proteins, or abscisic acid-related) and with others whose involvement is not so well defined such as shikimate-related, brassinosteriods, or proline proteases together with their potential regulatory elements. This work provides a first in-depth overview about molecular mechanisms underlying the heat stress response and acclimation in P. radiata.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jóse M Álvarez
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Zhou X, Ma Y, Miao R, Li C, Liu Z, Zhang D, Chen S, Luo J, Tang W. Physiological responses and transcriptomic analysis of StCPD gene overexpression in potato under salt stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1297812. [PMID: 38434433 PMCID: PMC10906663 DOI: 10.3389/fpls.2024.1297812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Introduction The potato (Solanum tuberosum L.), one of the most vital food crops worldwide, is sensitive to salinity. Brassinosteroids (BRs) are crucial in tolerance to various abiotic stresses. The constitutive photomorphogenesis and dwarf (CPD) gene encodes C-3 oxidase, which is a rate-limiting enzyme that controls the synthesis of BRs. Methods In this study, we used StCPD gene overexpression (T) and un-transgenic (NT) plants obtained from our former research to illustrate adaptive resistance to salt stress at levels of phenotype; cell ultrastructure, physiology, and biochemistry; hormone; and transcription. Results Results showed the accumulation of 2,4-epibrassionolide (EBL) in T potatoes. We found that under high salt situations, the changed Na+/K+ transporter gene expression was linked with the prevalent ionic responses in T plants, which led to lower concentrations of K+ and higher concentrations of Na+ in leaves. Furthermore, RNA-sequencing (RNA-seq) data elucidated that gene expressions in NT and T plants were significantly changed with 200-mM NaCl treatment for 24 h and 48 h, compared with the 0-h treatment. Functional enrichment analysis suggested that most of the differentially expressed genes (DEGs) were related to the regulation of BR-related gene expression, pigment metabolism process, light and action, and plant hormone signal transduction. Discussion These findings suggested that StCPD gene overexpression can alleviate the damage caused by salt stress and enhance the salt resistance of potato plantlets. Our study provides an essential reference for further research on BR regulation of plant molecular mechanisms in potatoes with stress tolerance.
Collapse
Affiliation(s)
- Xiangyan Zhou
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanming Ma
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rong Miao
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caijuan Li
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ziliang Liu
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Sijin Chen
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiaqi Luo
- Qinzhou District Agricultural Technology Comprehensive Service Center in Tianshui City, Tianshui, China
| | - Wenhui Tang
- Zhuanglang Agricultural Technology Extension Center in Pingliang City, Pingliang, China
| |
Collapse
|
5
|
Kloc Y, Dmochowska-Boguta M, Żebrowska-Różańska P, Łaczmański Ł, Nadolska-Orczyk A, Orczyk W. HvGSK1.1 Controls Salt Tolerance and Yield through the Brassinosteroid Signaling Pathway in Barley. Int J Mol Sci 2024; 25:998. [PMID: 38256072 PMCID: PMC10815662 DOI: 10.3390/ijms25020998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.
Collapse
Affiliation(s)
- Yuliya Kloc
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Marta Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| |
Collapse
|
6
|
Khan TA, Kappachery S, Karumannil S, AlHosani M, Almansoori N, Almansoori H, Yusuf M, Tran LSP, Gururani MA. Brassinosteroid Signaling Pathways: Insights into Plant Responses under Abiotic Stress. Int J Mol Sci 2023; 24:17246. [PMID: 38139074 PMCID: PMC10743706 DOI: 10.3390/ijms242417246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
With the growing global population, abiotic factors have emerged as a formidable threat to agricultural food production. If left unaddressed, these stress factors might reduce food yields by up to 25% by 2050. Plants utilize natural mechanisms, such as reactive oxygen species scavenging, to mitigate the adverse impacts of abiotic stressors. Diverse plants exhibit unique adaptations to abiotic stresses, which are regulated by phytohormones at various levels. Brassinosteroids (BRs) play a crucial role in controlling essential physiological processes in plants, including seed germination, xylem differentiation, and reproduction. The BR cascade serves as the mechanism through which plants respond to environmental stimuli, including drought and extreme temperatures. Despite two decades of research, the complex signaling of BRs under different stress conditions is still being elucidated. Manipulating BR signaling, biosynthesis, or perception holds promise for enhancing crop resilience. This review explores the role of BRs in signaling cascades and summarizes their substantial contribution to plants' ability to withstand abiotic stresses.
Collapse
Affiliation(s)
- Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Sajeesh Kappachery
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Sameera Karumannil
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Mohamed AlHosani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Nemah Almansoori
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Hamda Almansoori
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.A.K.); (S.K.); (S.K.); (M.A.); (N.A.); (H.A.); (M.Y.)
| |
Collapse
|
7
|
Zhang Z, Chen Z, Song H, Cheng S. From plant survival to thriving: exploring the miracle of brassinosteroids for boosting abiotic stress resilience in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1218229. [PMID: 37546254 PMCID: PMC10401277 DOI: 10.3389/fpls.2023.1218229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Abiotic stresses pose significant threat to horticultural crop production worldwide. These stresses adversely affect plant growth, development, and ultimately declined crop growth, yield and quality. In recent years, plant scientists have been actively investigating innovative strategies to enhance abiotic stress resilience in crops, and one promising avenue of research focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones that play crucial roles in various physiological processes, including cell elongation, differentiation, and stress responses. They have emerged as potent regulators of plant growth and development, and their role in improving abiotic stress tolerance is gaining considerable attention. BRs have been shown to mitigate the negative effects of abiotic stresses by modulating key physiological and biochemical processes, including stomatal regulation, antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses disrupt numerous physiological functions and lead to undesirable phenotypic traits in plants. The use of BRs as a tool to improve crop resilience offers significant promise for sustainable agriculture in the face of increasing abiotic stresses caused by climate change. By unraveling the phenomenon of BRs, this review emphasizes the potential of BRs as an innovative approach for boosting abiotic stress tolerance and improving the overall productivity and quality of horticultural crops. Further research and field trials are necessary to fully harness the benefits of BRs and translate these findings into practical applications for crop production systems.
Collapse
Affiliation(s)
- Zhilu Zhang
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Zhongyu Chen
- People’s Park Management Office of Nanyang City Garden and Greening Center, Garden and Greening Center of Nanyang City, Nanyang, Henan, China
| | - Haina Song
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| |
Collapse
|
8
|
Wang X, Zhao N, Cai L, Liu N, Zhu J, Yang B. High-quality chromosome-level scaffolds of the plant bug Pachypeltis micranthus provide insights into the availability of Mikania micrantha control. BMC Genomics 2023; 24:339. [PMID: 37340339 DOI: 10.1186/s12864-023-09445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The plant bug, Pachypeltis micranthus Mu et Liu (Hemiptera: Miridae), is an effective potential biological control agent for Mikania micrantha H.B.K. (Asteraceae; one of the most notorious invasive weeds worldwide). However, limited knowledge about this species hindered its practical application and research. Accordingly, sequencing the genome of this mirid bug holds great significance in controlling M. micrantha. RESULTS Here, 712.72 Mb high-quality chromosome-level scaffolds of P. micranthus were generated, of which 707.51 Mb (99.27%) of assembled sequences were anchored onto 15 chromosome-level scaffolds with contig N50 of 16.84 Mb. The P. micranthus genome had the highest GC content (42.43%) and the second highest proportion of repetitive sequences (375.82 Mb, 52.73%) than the three other mirid bugs (i.e., Apolygus lucorum, Cyrtorhinus lividipennis, and Nesidiocoris tenuis). Phylogenetic analysis showed that P. micranthus clustered with other mirid bugs and diverged from the common ancestor approximately 200 million years ago. Gene family expansion and/or contraction were analyzed, and significantly expanded gene families associated with P. micranthus feeding and adaptation to M. micrantha were manually identified. Compared with the whole body, transcriptome analysis of the salivary gland revealed that most of the upregulated genes were significantly associated with metabolism pathways and peptidase activity, particularly among cysteine peptidase, serine peptidase, and polygalacturonase; this could be one of the reasons for precisely and highly efficient feeding by the oligophagous bug P. micranthus on M. micrantha. CONCLUSION Collectively, this work provides a crucial chromosome-level scaffolds resource to study the evolutionary adaptation between mirid bug and their host. It is also helpful in searching for novel environment-friendly biological strategies to control M. micrantha.
Collapse
Affiliation(s)
- Xiafei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Liqiong Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| |
Collapse
|
9
|
Huang J, Shen B, Rao X, Cao X, Zhang J, Liu L, Li J, Mao J. Assessment of Biological Activity of 28-Homobrassinolide via a Multi-Level Comparative Analysis. Int J Mol Sci 2023; 24:ijms24119377. [PMID: 37298328 DOI: 10.3390/ijms24119377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Brassinosteroids (BRs) play vital roles in the plant life cycle and synthetic BRs are widely used to increase crop yield and plant stress tolerance. Among them are 24R-methyl-epibrassinolide (24-EBL) and 24S-ethyl-28-homobrassinolide (28-HBL), which differ from brassinolide (BL, the most active BR) at the C-24 position. Although it is well known that 24-EBL is 10% active as BL, there is no consensus on the bioactivity of 28-HBL. A recent outpouring of research interest in 28-HBL on major crops accompanied with a surge of industrial-scale synthesis that produces mixtures of active (22R,23R)-28-HBL and inactive (22S,23S)-28HBL, demands a standardized assay system capable of analyzing different synthetic "28-HBL" products. In this study, the relative bioactivity of 28-HBL to BL and 24-EBL, including its capacity to induce the well-established BR responses at molecular, biochemical, and physiological levels, was systematically analyzed using the whole seedlings of the wild-type and BR-deficient mutant of Arabidopsis thaliana. These multi-level bioassays consistently showed that 28-HBL exhibits a much stronger bioactivity than 24-EBL and is almost as active as BL in rescuing the short hypocotyl phenotype of the dark-grown det2 mutant. These results are consistent with the previously established structure-activity relationship of BRs, proving that this multi-level whole seedling bioassay system could be used to analyze different batches of industrially produced 28-HBL or other BL analogs to ensure the full potential of BRs in modern agriculture.
Collapse
Affiliation(s)
- Junpeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Biaodi Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xuehua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Ding M, Wang L, Sun Y, Zhang J, Chen Y, Wang X, Liu L. Transcriptome analysis of brassinolide under low temperature stress in winter wheat. AOB PLANTS 2023; 15:plad005. [PMID: 37025104 PMCID: PMC10071052 DOI: 10.1093/aobpla/plad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Low temperatures are the main abiotic factor affecting wheat growth. Brassinolide is a novel plant hormone that can improve the cold resistance of plants; however, the molecular mechanism of brassinolide in winter wheat at low temperatures remains unclear. In this study, winter wheat Dongnong dongmai 1 was sprayed with 0.01, 0.1, or 1.0 mg·L-1 brassinolide (BR) at the three-leaf stage, and tillering nodes were sampled at different temperatures (5, -10 and -25 °C), and then physiological indexes were determined and the transcriptome was sequenced. The results showed that the optimum concentration of brassinolide for cold resistance is 0.1 mg·L-1. A total of 15 302 (8198 upregulated and 7104 downregulated) differentially expressed genes (DEGs) were identified in the B1 vs D1 comparison (B1 represents 5 °C 0.1 mg·L-1 BR treatment, D1 represents 5 °C control); 3386 (1930 upregulated and 1456 downregulated) differentially expressed genes (DEGs) were identified in the B2 vs D2 comparison (B2 represents -10 °C 0.1 mg·L-1 BR treatment, D2 represents -10 °C control); and 2684 (2102 upregulated and 582 downregulated) differentially expressed genes (DEGs) were identified in the B3 vs D3 comparison (B3 represents -25 °C 0.1 mg·L-1 BR treatment, D3 represents -25 °C control). Further studies showed that these DEGs were mainly involved in carbon fixation in photosynthetic organs, photosynthesis and plant-pathogen interactions, all of which were related to stress and energy metabolism. This indicates that brassinolide can produce substances that improve cold resistance in wheat seedlings. This study provides a theoretical basis for further research on the improvement of cold resistance in winter wheat by brassinolide.
Collapse
Affiliation(s)
- Meiyun Ding
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Luyao Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Yuting Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Junbao Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Yushu Chen
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Xuesong Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, 42 Wenhua street, Qiqihar 161006, Heilongjiang, China
| | - Lijie Liu
- Corresponding author’s e-mail address:
| |
Collapse
|
11
|
Xu M, Wang Y, Zhang M, Chen M, Ni Y, Xu X, Xu S, Li Y, Zhang X. Genome-Wide Identification of BES1 Gene Family in Six Cucurbitaceae Species and Its Expression Analysis in Cucurbita moschata. Int J Mol Sci 2023; 24:ijms24032287. [PMID: 36768611 PMCID: PMC9916444 DOI: 10.3390/ijms24032287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The BES1 (BRI1-EMSSUPPRESSOR1) gene family play a vital role in the BR (brassinosteroid) signaling pathway, which is involved in the growth and development, biotic, abiotic, and hormone stress response in many plants. However, there are few reports of BES1 in Cucurbita moschata. In this study, 50 BES1 genes were identified in six Cucurbitaceae species by genome-wide analysis, which could be classified into 3 groups according to their gene structural features and motif compositions, and 13 CmoBES1 genes in Cucurbita moschata were mapped on 10 chromosomes. Quantitative real-time PCR analysis showed that the CmoBES1 genes displayed differential expression under different abiotic stress and hormone treatments. Subcellular localization showed that the most of CmoBES1 proteins localized in nucleus and cytoplasm, and transactivation assay indicated 9 CmoBES1 proteins played roles as transcription factors. Our analysis of BES1s diversity, localization, and expression in Curcubitaceae contributes to the better understanding of the essential roles of these transcription factors in plants.
Collapse
|
12
|
Zhang S, Hu X, Dong J, Du M, Song J, Xu S, Zhao C. Identification, evolution, and expression analysis of OsBSK gene family in Oryza sativa Japonica. BMC PLANT BIOLOGY 2022; 22:565. [PMID: 36464674 PMCID: PMC9720961 DOI: 10.1186/s12870-022-03905-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND As an essential component of the BR (brassinosteroid) signaling pathway, BSK (BR-signalling kinases) plays a vital role in plant growth, development, and stress regulation. There have been sporadic reports on the functions of members of this family in monocotyledonous model plant rice, but few reports have been reported on the phylogenetic analysis and gene expression profiling of the family genes. RESULTS In this study, a total of 6 OsBSK members were identified at the genomic level by bioinformatics methods, distributed on four rice chromosomes. Through the evolution analysis of 74 BSK proteins from 22 species, it was found that BSKs originated from higher plants, were highly conserved, and could be divided into six subgroups. Among them, OsBSKs belonged to four subgroups or two significant groups. OsBSK family gene promoters contained a large number of light, abscisic acid (ABA), and methyl jasmonate (MeJA) response-related elements. At the same time, the qRT-PCR test also showed that the genes of this family were involved in response to a variety of hormones, biotic and abiotic stress treatments, and expression patterns of the family gene can be roughly divided into two categories, which were similar to the tissue expression patterns of genes in different growth stages. OsBSK1-1, OsBSK1-2, and OsBSK3 were mostly up-regulated. OsBSK2, OsBSK4, and OsBSK5 were mostly down-regulated or had little change in expression. CONCLUSIONS This study revealed the origin and evolution of the BSK family and the farm-out of BSKs in rice growth, development, and stress response. It provides the theoretical reference for in-depth analysis of BR hormone, signal transduction, and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Xuewei Hu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Jiejing Dong
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Mengxiang Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Juqi Song
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Shangyuan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Changjiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319 Heilongjiang China
| |
Collapse
|
13
|
Yao X, Li Y, Chen J, Zhou Z, Wen Y, Fang K, Yang F, Li T, Zhang D, Lin H. Brassinosteroids enhance BES1-required thermomemory in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3492-3504. [PMID: 36130868 DOI: 10.1111/pce.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Heat stress (HS) caused by ambient high temperature poses a threat to plants. In the natural and agricultural environment, plants often encounter repeated and changeable HS. Moderate HS primes plants to establish a molecular 'thermomemory' that enables plants to withstand a later-and possibly more extreme-HS attack. Recent years, brassinosteroids (BRs) have been implicated in HS response, whereas the information is lacking on whether BRs signal transduction modulates thermomemory. Here, we uncover the positive role of BRs signalling in thermomemory of Arabidopsis thaliana. Heat priming induces de novo synthesis and nuclear accumulation of BRI1-Ethyl methyl sulfon-SUPPRESSOR (BES1), which is the key regulator of BRs signalling. BRs promote the accumulation of dephosphorylated BES1 during memory phase, and stoppage of BRs synthesis impairs dephosphorylation. During HS memory, BES1 is required to maintain sustained induction of HS memory genes and directly targets APX2 and HSFA3 for activation. In summary, our results reveal a BES1-required, BRs-enhanced transcriptional control module of thermomemory in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Taotao Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Sun Z, Zou Y, Xie C, Han L, Zheng X, Tian Y, Ma C, Liu X, Wang C. Brassinolide improves the tolerance of Malus hupehensis to alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1032646. [PMID: 36507405 PMCID: PMC9731795 DOI: 10.3389/fpls.2022.1032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Malus hupehensis is one of the most widely used apple rootstocks in china but is severely damaged by alkaline soil. Alkaline stress can cause more serious harmful effects on apple plants than salt stress because it also induces high pH stress except for ion toxicity, osmotic stress, and oxidative damage. Brassinolide (BL) plays important roles in plant responses to salt stress. However, its role and function mechanism in apple plants in response to alkaline stress has never been reported. This study showed that applying exogenous 0.2 mg/L BL significantly enhanced the resistance of M. hupehensis seedlings to alkaline stress. The main functional mechanisms were also explored. First, exogenous BL could decrease the rhizosphere pH and promote Ca2+ and Mg2+ absorption by regulating malic acid and citric acid contents and increasing H+ excretion. Second, exogenous BL could alleviate ion toxicity caused by alkaline stress through enhancing Na+ efflux and inhibiting K+ expel and vacuole compartmentalization. Last, exogenous BL could balance osmotic stress by accumulating proline and reduce oxidative damage through increasing the activities of antioxidant enzymes and antioxidants contents. This study provides an important theoretical basis for further analyzing the mechanism of exogenous BL in improving alkaline tolerance of apple plants.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yawen Zou
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Cheng Xie
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| |
Collapse
|
15
|
Zuo C, Zhang L, Yan X, Guo X, Zhang Q, Li S, Li Y, Xu W, Song X, Wang J, Yuan M. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling. BMC Genomics 2022; 23:568. [PMID: 35941544 PMCID: PMC9361572 DOI: 10.1186/s12864-022-08810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brassinosteroids (BRs) are a group of essential steroid hormones involved in diverse developmental and physiological processes in plants. The Brassinazole-resistant 1 (BZR1) transcription factors are key components of BR signaling and integrate a wide range of internal and environmental signals to coordinate plant development, growth, and resistance to abiotic and biotic stresses. Although the BZR1 family has been fully studied in Arabidopsis, celery BZR1 family genes remain largely unknown. RESULTS Nine BZR1 genes were identified in the celery genome, and categorized into four classes based on phylogenetic and gene structure analyses. All the BZR1 proteins shared a typical bHLH (basic helix-loop-helix) domain that is highly conserved across the whole family in Arabidopsis, grape, lettuce, ginseng, and three Apiaceae species. Both duplications and losses of the BZR1 gene family were detected during the shaping of the celery genome. Whole-genome duplication (WGD) or segmental duplication contributed 55.56% of the BZR1 genes expansion, and the γ as well as celery-ω polyploidization events made a considerable contribution to the production of the BZR1 paralogs in celery. Four AgBZR1 members (AgBZR1.1, AgBZR1.3, AgBZR1.5, and AgBZR1.9), which were localized both in the nucleus and cytoplasm, exhibit transcription activation activity in yeast. AgBZR1.5 overexpression transgenic plants in Arabidopsis showed curled leaves with bent, long petioles and constitutive BR-responsive phenotypes. Furthermore, the AgBZR1 genes possessed divergent expression patterns with some overlaps in roots, petioles, and leaves, suggesting an extensive involvement of AgBZR1s in the developmental processes in celery with both functional redundancy and divergence. CONCLUSIONS Our results not only demonstrated that AgBZR1 played a conserved role in BR signaling but also suggested that AgBZR1 might be extensively involved in plant developmental processes in celery. The findings lay the foundation for further study on the molecular mechanism of the AgBZR1s in regulating the agronomic traits and environmental adaptation of celery, and provide insights for future BR-related genetic breeding of celery and other Apiaceae crops.
Collapse
Affiliation(s)
- Chunliu Zuo
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lan Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xinyue Yan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xinyue Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Qing Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Songyang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yanling Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wen Xu
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jinpeng Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Min Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
16
|
Yan Q, Li X, Xiao X, Chen J, Liu J, Lin C, Guan R, Wang D. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses. Ecol Evol 2022; 12:e9091. [PMID: 35845374 PMCID: PMC9273509 DOI: 10.1002/ece3.9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Drought is the main limiting factor for plant growth in karst areas with a fragile ecological environment. Cinnamomum migao H.W. Li is an endemic medicinal woody plant present in the karst areas of southwestern China, and it is endangered due to poor drought tolerance. Arbuscular mycorrhizal fungi (AMF) are known to enhance the drought tolerance of plants. However, few studies have examined the contribution of AMF in improving the drought tolerance of C. migao seedlings. Therefore, we conducted a series of experiments to determine whether a single inoculation and coinoculation of AMF (Claroideoglomus lamellosum and Claroideoglomus etunicatum) enhanced the drought tolerance of C. migao. Furthermore, we compared the effects of single inoculation and coinoculation with different inoculum sizes (20, 40, 60, and 100 g; four replicates per treatment) on mycorrhizal colonization rate, plant growth, photosynthetic parameters, antioxidant enzyme activity, and malondialdehyde (MDA) and osmoregulatory substance contents. The results showed that compared with nonmycorrhizal plants, AMF colonization significantly improved plant growing status; net photosynthetic rate; superoxide dismutase, catalase, and peroxidase activities; and soluble sugar, soluble protein, and proline contents. Furthermore, AMF colonization increased relative water content and reduced MDA content in cells. These combined cumulative effects of AMF symbiosis ultimately enhanced the drought tolerance of seedlings and were closely related to the inoculum size. With an increase in inoculum size, the growth rate and drought tolerance of plants first increased and then decreased. The damage caused by drought stress could be reduced by inoculating 40-60 g of AMF, and the effect of coinoculation was significantly better than that of single inoculation at 60 g of AMF, while the effect was opposite at 40 g of AMF. Additionally, the interaction between AMF and inoculum sizes had a significant effect on drought tolerance. In conclusion, the inoculation of the AMF (Cl. lamellosum and Cl. etunicatum) improved photosynthesis, activated antioxidant enzymes, regulated cell osmotic state, and enhanced the drought tolerance of C. migao, enabling its growth in fragile ecological environments.
Collapse
Affiliation(s)
- Qiuxiao Yan
- Department of Ecology, College of Forestry Guizhou University Guiyang China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang China.,State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
| | - Xiangying Li
- Institute of New Rural Development Guizhou University Guiyang China
| | - Xuefeng Xiao
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Jingzhong Chen
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Jiming Liu
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Changhu Lin
- Department of Labor Health and Environmental Hygiene, School of Public Health Guizhou Medical University Guiyang China
| | - Ruiting Guan
- Department of Ecology, College of Forestry Guizhou University Guiyang China
| | - Daoping Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang China.,State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
| |
Collapse
|
17
|
Basit F, Liu J, An J, Chen M, He C, Zhu X, Li Z, Hu J, Guan Y. Seed priming with brassinosteroids alleviates aluminum toxicity in rice via improving antioxidant defense system and suppressing aluminum uptake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10183-10197. [PMID: 34515933 DOI: 10.1007/s11356-021-16209-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) are growth-promoting hormones that exhibit high biological activities across various plant species. BRs shield plants against various abiotic stresses. In the present study, the effect of BRs against aluminum (Al) toxicity was investigated through seed priming with 24-epibrassinolide (0.01 μM) in two different rice cultivars. BRs application was found effective in confronting plants from Al toxicity (400 μM). The rice seeds primed with BRs showed enhancement in seed germination energy, germination percentage, root and shoot length, as well as fresh and dry weight under Al-absence and Al-stressed conditions as compared to water-priming. Especially under Al stress, BRs priming promoted the growth of rice seedlings more obviously. Al toxicity significantly increased the Al contents in seedling root and shoot, as well as the MDA concentration, H2O2 production, and the activities of antioxidative enzymes including ascorbate peroxidase, catalase, and peroxidase. Meanwhile, the photosynthetic pigments of seedling reduced under Al stress. When compared to sensitive cultivar (CY-927), these modifications were more obvious in the tolerant variety (YLY-689). Surprisingly, BRs were able to alleviate the Al injury by lowering MDA and H2O2 level and increasing antioxidant activities and photosynthetic pigments under Al stress. The results on antioxidant activities were further validated by gene expression study of SOD-Cu-Zn, SOD-Fe2, CATa, CATb, APX02, and APX08. It suggested that BRs were responsible for the mitigation of Al stress in rice seedlings by inducing antioxidant activities with an effective response to other seed growth parameters and reduced Al uptake under induced metal stress.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiaxin Liu
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, 572025, People's Republic of China
| | - Jianyu An
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Min Chen
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Can He
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhu
- Hainan Institute of Zhejiang University, Sanya, 572025, People's Republic of China
| | - Zhan Li
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, 572025, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Hainan Institute of Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
18
|
Litvinovskaya RP, Shkliarevskyi MA, Kolupaev YE, Kokorev AI, Khripach VA. ROS-Dependent Stress-Protective Effect of 24-Epicastasterone and Its Monosalicylate on Wheat Seedlings in Hyperthermia. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Song Y, Zhai Y, Li L, Yang Z, Ge X, Yang Z, Zhang C, Li F, Ren M. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2097-2112. [PMID: 34036698 PMCID: PMC8486250 DOI: 10.1111/pbi.13640] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Verticillium wilt is caused by the soil-borne vascular pathogen Verticillium dahliae, and affects a wide range of economically important crops, including upland cotton (Gossypium hirsutum). Previous studies showed that expression levels of BIN2 were significantly down-regulated during infestation with V. dahliae. However, the underlying molecular mechanism of BIN2 in plant regulation against V. dahliae remains enigmatic. Here, we characterized a protein kinase GhBIN2 from Gossypium hirsutum, and identified GhBIN2 as a negative regulator of resistance to V. dahliae. The Verticillium wilt resistance of Arabidopsis and cotton were significantly enhanced when BIN2 was knocked down. Constitutive expression of BIN2 attenuated plant resistance to V. dahliae. We found that BIN2 regulated plant endogenous JA content and influenced the expression of JA-responsive marker genes. Further analysis revealed that BIN2 interacted with and phosphorylated JAZ family proteins, key repressors of the JA signalling pathway in both Arabidopsis and cotton. Spectrometric analysis and site-directed mutagenesis showed that BIN2 phosphorylated AtJAZ1 at T196, resulting in the degradation of JAZ proteins. Collectively, these results show that BIN2 interacts with JAZ proteins and plays a negative role in plant resistance to V. dahliae. Thus, BIN2 may be a potential target gene for genetic engineering against Verticillium wilt in crops.
Collapse
Affiliation(s)
- Yun Song
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- School of Life SciencesLiaocheng UniversityLiaochengChina
| | - Yaohua Zhai
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Linxuan Li
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| | - Zhaoen Yang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaoyang Ge
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chaojun Zhang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Maozhi Ren
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| |
Collapse
|
20
|
Chen M, Fang X, Wang Z, Shangguan L, Liu T, Chen C, Liu Z, Ge M, Zhang C, Zheng T, Fang J. Multi-omics analyses on the response mechanisms of 'Shine Muscat' grapevine to low degree of excess copper stress (Low-ECS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117278. [PMID: 33964687 DOI: 10.1016/j.envpol.2021.117278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the 'Shine Muscat' ('SM') grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in 'SM' grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the 'SM' grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of 'SM' grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.
Collapse
Affiliation(s)
- Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chun Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chuan Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Ting Zheng
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
21
|
Basit F, Liu J, An J, Chen M, He C, Zhu X, Li Z, Hu J, Guan Y. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44768-44779. [PMID: 34235688 DOI: 10.1007/s11356-021-15087-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/19/2021] [Indexed: 05/07/2023]
Abstract
Biotic and abiotic stresses, especially heavy metal toxicity, are becoming a big problem in agriculture, which pose serious threats to crop production. Plant hormones have recently been used to develop stress tolerance in a variety of plants. Brassinosteroids (BRs) are the sixth class of plant steroid hormones, with pleiotropic effects on plants. Exogenous application of BRs to boost plant tolerance mechanisms to various stresses has been a major research focus. Numerous studies have revealed the role of these steroidal hormones in the up-regulation of stress-related resistance genes, as well as their interactions with other metabolic pathways. BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid, and polyamines to regulate a variety of physiological and developmental processes in plants. BRs regulate expressions of many BR-inducible genes by activating the brassinazole-resistant 1 (BZR1)/BRI1-EMS suppressor 1 (BES1) complex. Moreover, to improve plant development under a variety of stresses, BRs regulate antioxidant enzyme activity, chlorophyll concentration, photosynthetic capability, and glucose metabolism. This review will provide insights into the mechanistic role and actions of brassinosteroids in plants in response to various stresses.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaxin Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyu An
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Min Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Can He
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhan Li
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Imran M, Ashraf M, Awan AR. Growth, yield and arsenic accumulation by wheat grown in a pressmud amended salt-affected soil irrigated with arsenic contaminated water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112692. [PMID: 34438270 DOI: 10.1016/j.ecoenv.2021.112692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 05/26/2023]
Abstract
The study assessed the influence of pressmud (PM) application on soil available phosphorus (P) content, growth, yield, and arsenic (As) accumulation in wheat grains on a salt-affected soil receiving irrigation of As-contaminated water. Wheat seeds (cv. Faisalabad-2008) were sown in pots containing saline soil (EC 11.72 dS m-1; pH 8.07; SAR 31.3 mmol1/2 L-1/2) amended with PM (0, 2.5, 10 and 15 g kg-1) and irrigated with As-contaminated water (0, 25 and 100 µg L-1). The pot experiments had two sets, one was harvested after 30-days of germination while the other at crop maturity. Pressmud application at 2.5, 10 and 15 g kg-1 improved biomass of 30-days old wheat seedlings by 44%, 86% and 90%, respectively compared to unamended soil. Irrigation with As-contaminated waters did not affect seedling biomass or grain yield of wheat. Plant height, fertile tillers, straw biomass and grain yield increased from 57-62 cm, 3-5 no. plant-1, 2.93-5.31 g plant-1 and 3.93-7.11 g plant-1, respectively by 15 g PM kg-1 soil. Moreover, PM application resulted in an 8-fold increase in soil available P content, which resulted in higher grain P uptake. Irrigation with water of 25 and 100 µg As L-1 increased soil available P by 7.6% and 11%, respectively, but its influence on the grain P concentration was non-significant. Pressmud application in combination with As-contaminated water increased accumulation of As in grains. By applying water of 25 and 100 µg L-1 As, accumulation of As in wheat grains increased from 3.12-42.4 and 49.58-91.85 µg kg-1, respectively compared with normal water. However, these concentrations of As in wheat grains were still below the permissible limit of 430 µg kg-1 prescribed for agronomic crops. In conclusion, PM is very effective in improving wheat productivity on salt-affected soils but it can aggravate As accumulation in wheat grains if applied in combination with As polluted water.
Collapse
Affiliation(s)
- Muhammad Imran
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan.
| | - Muhammad Ashraf
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Abdul Rasul Awan
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| |
Collapse
|
23
|
Zhang M, Song M, Cheng F, Yang Z, Davoudi M, Chen J, Lou Q. Identification of a putative candidate gene encoding 7-dehydrocholesterol reductase involved in brassinosteroids biosynthesis for compact plant architecture in Cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2023-2034. [PMID: 33683399 DOI: 10.1007/s00122-021-03802-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, which encodes 7 dehydrocholesterol reductase that involved in brassinosteroids biosynthesis, was identified as the candidate gene for cpa. Dwarf architecture is one of the most important breeding goals in crops. The biosynthesis and signal transduction of brassinosteroids (BRs) have a great impact on plant growth and development including plant architecture. Here, we identified a compact plant architecture (cpa) mutant from an EMS-induced cucumber population. cpa displayed the extremely dwarf phenotype with shortened internode and petiole, darkened and wrinkled leaf. Genetic analysis revealed that cpa was caused by a single recessive gene. By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, encoding a 7-dehydrocholesterol reductase that involved in sterol biosynthesis, was identified as the candidate gene for cpa. One single nucleotide mutation (G→A) in splicing site causing 3-bp insertion (TAG) was found in the first base of the sixth intron of CsDWF5 in cpa, which furtherly resulted in the frameshift mutation and got a premature stop codon. The expression of CsDWF5 gene was significantly down regulated in different tissues of the cpa mutant compared with that in wild type. The phenotype of cpa could be partially recovered by exogenous BR treatment. Transcriptome analysis identified 1096 genes that exhibited differential expression between the cpa mutant and wild type. KEGG enrichment analysis indicated that differentially expressed genes were significantly enriched in BR biosynthesis and plant-pathogen interaction pathways. These results provide perspectives on the molecular mechanisms underlying the dwarfing phenotype in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Zhige Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| |
Collapse
|
24
|
Xiao S, Hu Q, Zhang X, Si H, Liu S, Chen L, Chen K, Berne S, Yuan D, Lindsey K, Zhang X, Zhu L. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4721-4743. [PMID: 33928361 DOI: 10.1093/jxb/erab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) and brassinosteroids (BRs) are well known to regulate diverse processes of plant development and stress responses, but the mechanisms by which these phytohormones mediate the growth and defense trade-off are largely unclear. In addition, little is known about the roles of DEHYDRATION RESPONSIVE ELEMENT BINDING transcription factors, especially in biotic stress and plant growth. Here, we identified a cotton (Gossypium hirsutum) APETALA2/ETHYLENE RESPONSIVE FACTOR gene GhTINY2 that is strongly induced by Verticillium dahliae. Overexpression of GhTINY2 in cotton and Arabidopsis enhanced tolerance to V. dahliae, while knockdown of expression increased the susceptibility of cotton to the pathogen. GhTINY2 was found to promote SA accumulation and SA signaling transduction by directly activating expression of WRKY51. Moreover, GhTINY2-overexpressing cotton and Arabidopsis showed retardation of growth, increased sensitivity to inhibitors of BR biosynthesis, down-regulation of several BR-induced genes, and up-regulation of BR-repressed genes, while GhTINY2-RNAi cotton showed the opposite effects. We further determined that GhTINY2 negatively regulates BR signaling by interacting with BRASSINAZOLE-RESISTANT 1 (BZR1) and restraining its transcriptional activation of the expression of INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). These findings indicate that GhTINY2 fine-tunes the trade-off between immunity and growth via indirect crosstalk between WRKY51-mediated SA biosynthesis and BZR1-IAA19-regulated BR signaling.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
25
|
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. PLANTS 2021; 10:plants10020259. [PMID: 33525688 PMCID: PMC7911879 DOI: 10.3390/plants10020259] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Collapse
|
26
|
Wang S, Hu T, Tian A, Luo B, Du C, Zhang S, Huang S, Zhang F, Wang X. Modification of Serine 1040 of SIBRI1 Increases Fruit Yield by Enhancing Tolerance to Heat Stress in Tomato. Int J Mol Sci 2020; 21:ijms21207681. [PMID: 33081382 PMCID: PMC7589314 DOI: 10.3390/ijms21207681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/27/2022] Open
Abstract
High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 in stress tolerance are unknown. In this study, we investigated the biological functions of the phosphorylation site serine 1040 (Ser-1040) of SlBRI1 in tomato. Phenotype analysis indicated that transgenic tomato harbouring SlBRI1 dephosphorylated at Ser-1040 showed increased tolerance to heat stress, exhibiting better plant growth and plant yield under high temperature than transgenic lines expressing SlBRI1 or SlBRI1 phosphorylated at Ser-1040. Biochemical and physiological analyses further showed that antioxidant activity, cell membrane integrity, osmo-protectant accumulation, photosynthesis and transcript levels of heat stress defence genes were all elevated in tomato plants harbouring SlBRI1 dephosphorylated at Ser-1040, and the autophosphorylation level of SlBRI1 was inhibited when SlBRI1 dephosphorylated at Ser-1040. Taken together, our results demonstrate that the phosphorylation site Ser-1040 of SlBRI1 affects heat tolerance, leading to improved plant growth and yield under high-temperature conditions. Our results also indicate the promise of phosphorylation site modification as an approach for protecting crop yields from high-temperature stress.
Collapse
Affiliation(s)
- Shufen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Aijuan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Bote Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Chenxi Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Siwei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Fei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence:
| |
Collapse
|
27
|
Chen T, Zhang W, Yang G, Chen JH, Chen BX, Sun R, Zhang H, An LZ. TRANSTHYRETIN-LIKE and BYPASS1-LIKE co-regulate growth and cold tolerance in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:332. [PMID: 32664862 PMCID: PMC7362626 DOI: 10.1186/s12870-020-02534-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress inhibits normal physiological metabolism in plants, thereby seriously affecting plant development. Meanwhile, plants also actively adjust their metabolism and development to adapt to changing environments. Several cold tolerance regulators have been found to participate in the regulation of plant development. Previously, we reported that BYPASS1-LIKE (B1L), a DUF793 family protein, participates in the regulation of cold tolerance, at least partly through stabilizing C-REPEAT BINDING FACTORS (CBFs). In this study, we found that B1L interacts with TRANSTHYRETIN-LIKE (TTL) protein, which is involved in brassinosteroid (BR)-mediated plant growth and catalyses the synthesis of S-allantoin, and both proteins participate in modulating plant growth and cold tolerance. RESULTS The results obtained with yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that B1L directly interacted with TTL. Similar to the ttl-1 and ttl-2 mutants, the b1l mutant displayed a longer hypocotyl and greater fresh weight than wild type, whereas B1L-overexpressing lines exhibited a shorter hypocotyl and reduced fresh weight. Moreover, ttl-1 displayed freezing tolerance to cold treatment compared with WT, whereas the b1l mutant and TTL-overexpressing lines were freezing-sensitive. The b1l ttl double mutant had a developmental phenotype and freezing tolerance that were highly similar to those of ttl-1 compared to b1l, indicating that TTL is important for B1L function. Although low concentrations of brassinolide (0.1 or 1 nM) displayed similarly promoted hypocotyl elongation of WT and b1l under normal temperature, it showed less effect to the hypocotyl elongation of b1l than to that of WT under cold conditions. In addition, the b1l mutant also contained less amount of allantoin than Col-0. CONCLUSION Our results indicate that B1L and TTL co-regulate development and cold tolerance in Arabidopsis, and BR and allantoin may participate in these processes through B1L and TTL.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Gang Yang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia-Hui Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Bi-Xia Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Sun
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hua Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Li-Zhe An
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- School of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
28
|
Mao J, Li J. Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 2020; 21:E4340. [PMID: 32570783 PMCID: PMC7352359 DOI: 10.3390/ijms21124340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Soares TFSN, Dias DCFDS, Oliveira AMS, Ribeiro DM, Dias LADS. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110296. [PMID: 32092579 DOI: 10.1016/j.ecoenv.2020.110296] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal to plants, animals, and human beings. The use of growth regulators has reversed the effects of heavy metal stress on germination and early plant development. The aim of this study was to evaluate the effect of brassinosteroids on seed germination and seedling growth of Brassica juncea (L.) Czern. & Coss. under Pb stress conditions. Two forms of application of 24-epibrassinolide (EBL) were evaluated, application on seeds in pre-soaking and on germination paper, using EBL concentrations of 0, 10-10, 10-8, and 10-6 M. Germination and seedling growth parameters were evaluated during the germination test. The activity of the enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase were determined, as well as the lead content in the seeds and seedlings. The EBL applied at the 10-8 M concentration was the most effective in overcoming Pb stress in both forms of application. The antioxidant enzyme defense system was compromised by Pb exposure. However, 10-8 M EBL increased the activity of antioxidant enzymes such as catalase and peroxidase to overcome the toxic effects caused by Pb. In addition, EBL at the concentration of 10-8 M increased Pb content in seedlings without affecting seedling growth.
Collapse
Affiliation(s)
| | | | | | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | |
Collapse
|
30
|
Sousa B, Soares C, Oliveira F, Martins M, Branco-Neves S, Barbosa B, Ataíde I, Teixeira J, Azenha M, Azevedo RA, Fidalgo F. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. CHEMOSPHERE 2020; 244:125579. [PMID: 32050351 DOI: 10.1016/j.chemosphere.2019.125579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still compromised by toxic levels of zinc (Zn). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. This study evaluated the potential of 24-epibrassinolide (24-EBL) to boost S. nigrum defence against Zn towards a better growth rate and remediation potential. After 24 days of exposure, the results revealed that Zn-mediated inhibitory effects on biomass and biometry were efficiently mitigated upon application of 24-EBL, without affecting Zn accumulation. The evaluation of oxidative stress markers reported that Zn excess stimulated the accumulation of superoxide anion (O2.-), but reduced hydrogen peroxide (H2O2) levels, while not altering lipid peroxidation (LP). This was accompanied by an up-regulation of the antioxidant system, especially proline, superoxide dismutase (SOD) and ascorbate peroxidase (APX) in both organs, and ascorbate in roots of Zn-exposed plants. Foliar application of 24-EBL, however, induced distinctive effects, lowering proline levels in both organs, as well as APX activity in shoots and SOD in roots, whilst stimulating GSH and total thiols in both organs, as well as SOD and APX activity, in shoots and in roots, respectively. Probably due to a better antioxidant efficiency, levels of O2.- and H2O2 in pre-treated plants remained identical to the control, while LP further decreased in shoots. Overall, our results indicate a protective effect of 24-EBL on S. nigrum response to excess Zn, contributing for a better tolerance and growth rate, without disturbing its phytoremediation potential.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Francisca Oliveira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Simão Branco-Neves
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Beatriz Barbosa
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Inês Ataíde
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Jorge Teixeira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP. 83, CEP 13418-900, Piracicaba, Brazil
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
31
|
Chávez-Arias CC, Gómez-Caro S, Restrepo-Díaz H. Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with Fusarium oxysporum f. sp. physali. PLANTS 2020; 9:plants9020176. [PMID: 32024161 PMCID: PMC7076635 DOI: 10.3390/plants9020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/26/2020] [Indexed: 11/16/2022]
Abstract
Vascular wilt caused by Fusarium oxysporum is the most limiting disease that affects cape gooseberry (Physalis peruviana L.) crops in Colombia. The use of synthetic elicitors for vascular wilt management is still scarce in Andean fruit species. The objective of the present study was to evaluate the effect and number of foliar applications of synthetic elicitors such as jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BR), or a commercial resistance elicitor based on botanical extracts (BE) on disease progress and their effect on the physiology of cape gooseberry plants inoculated with F. oxysporum f. sp. physali. Groups of ten plants were separately sprayed once, twice, or three times with a foliar synthetic elicitor, respectively. Elicitor applications were performed at the following concentrations: JA (10 mL L−1), SA (100 mg L−1), BR (1 mL L−1) and BE (2.5 mL of commercial product (Loker®) L−1). The results showed that three foliar BR, SA, or BE applications reduced the area under the disease progress, severity index, and vascular browning in comparison to inoculated plants without any elicitor spray. Three BR, SA, or BE sprays also favored stomatal conductance, water potential, growth (total dry weight and leaf area) and fluorescence parameters of chlorophyll compared with inoculated and untreated plants with no elicitor sprays. Three foliar sprays of SA, BR, or BE enhanced photosynthetic pigments (leaf total chlorophyll and carotenoid content) and proline synthesis and decreased oxidative stress in Foph-inoculated plants. In addition, the effectiveness of three foliar BR, SA, or BE sprays was corroborated by three-dimensional plot and biplot analysis, in which it can evidence that stomatal conductance, proline synthesis, and efficacy percentage were accurate parameters to predict Foph management. On the hand, JA showed the lowest level of amelioration of the negative effects of Foph inoculation. In conclusion, the use of the synthetic elicitors BR, SA, or BE can be considered as a tool complementary for the commercial management of vascular wilt in areas where this disease is a limiting factor.
Collapse
|
32
|
Elkeilsh A, Awad YM, Soliman MH, Abu-Elsaoud A, Abdelhamid MT, El-Metwally IM. Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. JOURNAL OF PLANT RESEARCH 2019; 132:881-901. [PMID: 31606785 DOI: 10.1007/s10265-019-01143-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Water stress reduces crop production significantly, and climate change has further aggravated the problem mainly in arid and semi-arid regions. This was the first study on the possible effects of β-sitosterol application in ameliorating the deleterious changes in wheat induced by water stress under field condition and drip irrigation regimes. A field experiment with the split-plot design was conducted, and wheat plants were foliar sprayed with four β-sitosterol (BBS) concentrations (0, 25, 75, and 100 mg L-1) and two irrigation regimes [50 and 100% of crop evapotranspiration (ETc)]. Water stress without BBS treatment reduced biological yield, grain yield, harvest index, and photosynthetic efficiency significantly by 28.9%, 42.8%, 19.6%, and 20.5% compared with the well-watered plants, respectively. Proline content increased in water-stressed and BSS-treated plants, owing to a significant role in cellular osmotic adjustment. Application of BSS was effective in reducing the generation of hydrogen peroxide (H2O2) and hence the malondialdehyde content significantly in water-stressed and well-watered wheat plants. Application of BSS up-regulated the activity of antioxidant enzymes (SOD, CAT, POD, and APX) significantly and increased the content of tocopherol, ascorbic acid, and carotene thereby reducing the levels of reactive oxygen species. The increased antioxidant system in BSS treated plants was further supported by the expression level of SOD and dehydrin genes in both water-stressed and well-watered plants. In the present study, the application of BBS at 100 mg L-1 was beneficial and can be recommended for improving the growth and yield of the wheat crop under water stress.
Collapse
Affiliation(s)
- Amr Elkeilsh
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Awad
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Kingdom of Saudi Arabia.
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | | - Magdi T Abdelhamid
- Botany Department, National Research Centre, 33 Al Behoos Street, Dokki, Cairo, Egypt
| | - Ibrahim M El-Metwally
- Botany Department, National Research Centre, 33 Al Behoos Street, Dokki, Cairo, Egypt
| |
Collapse
|
33
|
Effects of Brassinosteroids on Postharvest Physiology of Horticultural Crops: A Concise Review. ACTA ACUST UNITED AC 2019. [DOI: 10.46653/jhst190203062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brassinosteroids are natural polyhydroxylated steroidal plant growth regulators or phyto-hormones. These are ubiquitous in plant kingdom and influence a wide variety of molecular, physiological and biochemical responses of plants. Brassinosteroids have also been applied and their possible role has been investigated on postharvest physiology of various horticultural crops. Brassinosteroids regulate ripening of different non-climacteric and climacteric fruits and influence colour metabolism. They inhibit activities of peroxidase and polyphenol oxidase enzymes and delay enzymatic browning. Exogenous application of brassinosteroids inhibits cell wall degradation and delays softening of fruits. In addition, their application regulates sugar and energy metabolism in different fruit and vegetable crops. They suppress lipoxygenase and phospholipase D enzyme activities and conserve higher unsaturated fatty acid contents, suppress electrolyte leakage, inhibit lipid peroxidation and maintain higher membrane integrity eventually leading to suppressed chilling injury during postharvest storage. These alleviate oxidative stress and prolong storage life potential of various horticultural crops. So, the present review summarizes various roles and mechanism of action of brassinosteroids in extending postharvest life and maintaining quality of different horticultural crops.
Collapse
|
34
|
In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean. Heliyon 2019; 5:e01868. [PMID: 31206092 PMCID: PMC6558309 DOI: 10.1016/j.heliyon.2019.e01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
The BES1 transcription factor family play a central role in brassinosteroid signaling pathway that regulates a wide range of plant growth and developmental processes, as well as resistances to various stresses. However, no comprehensive study of the BES1 gene family in soybean has been reported. In this work, 16 GmBES1-like genes were identified in soybean, which could be divided into two clades based on their phylogenetic relationships, gene structures and motif compositions. We then examined their duplication status and evolutionary models. The result showed that most of the GmBES1-like genes have duplicated counterparts generated from the recent Glycine WGD event, and these genes are originated from 6 distinct ancestors before the Gamma WGT event. We further studied the expression profiles of GmBES1-like genes, and found their spatio-temporal and stressed expression patterns varied tremendously. For example, GmBES1-5 and GmBES1-6 were highly expressed in almost every sample, whereas GmBES1-7 and GmBES1-8 were not expressed. Additionally, interaction network analysis revealed the presence of 3 clusters between GmBES1-like genes and other associated genes, implying that they have both the conserved and divergent functions. Lastly, we analyzed the genetic diversity of GmBES1-like genes in 302 resequenced wild, landrace and improved soybean accessions. It showed that most of these genes are well conserved, and they are not changed during domestication and improvement. These results provide insights into the characterization of GmBES1 family and lay the foundation for further functional study of such genes.
Collapse
|
35
|
Gao J, Yu M, Zhu S, Zhou L, Liu S. Effects of exogenous 24-epibrassinolide and brassinazole on negative gravitropism and tension wood formation in hybrid poplar (Populus deltoids × Populus nigra). PLANTA 2019; 249:1449-1463. [PMID: 30689054 DOI: 10.1007/s00425-018-03074-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Exogenous 24-epibrassinolide (BL) and brassinazole (BRZ) have regulatory roles in G-fiber cell wall development and secondary xylem cell wall carbohydrate biosynthesis during tension wood formation in hybrid poplar. Brassinosteroids (BRs) play important roles in regulating gravitropism and vasculature development. Here, we report the effect of brassinosteroids on negative gravitropism and G-fiber cell wall development of the stem in woody angiosperms. We applied exogenous 24-epibrassinolide (BL) or its biosynthesis inhibitor brassinazole (BRZ) to slanted hybrid poplar trees (Populus deltoids × Populus nigra) and measured the morphology of gravitropic stems, anatomy and chemistry of secondary cell wall. We furthermore analyzed the expression levels of auxin transport and cellulose biosynthetic genes after 24-epibrassinolide (BL) or brassinazole (BRZ) application. The BL-treated seedlings showed no negative gravitropism bending, whereas application of BRZ dramatically enhanced negative gravitropic bending. BL treatment stimulated secondary xylem fiber elongation and G-fiber formation on the upper side of stems but delayed G-fiber maturation. BRZ inhibited xylem fiber elongation but induced the production of more mature G-fibers on the upper side of stems. Wood chemistry analyses and immunolocalization demonstrated that BL and BRZ treatments increased the cellulose content and modified the deposition of cell wall carbohydrates including arabinose, galactose and rhamnose in the secondary xylem. The expression of cellulose biosynthetic genes, especially those related to cellulose microfibril deposition (PtFLA12 and PtCOBL4) was significantly upregulated in BL- and BRZ-treated TW stems compared with control stems. The significant differences of G-fibers development and negative gravitropism bending between 24-epibrassinolide (BL) and brassinazole (BRZ) application suggest that brassinosteroids are important for secondary xylem development during tension wood formation. Our findings provide potential insights into the mechanism by which BRs regulate G-fiber cell wall development to accomplish negative gravitropism in TW formation.
Collapse
Affiliation(s)
- Junlan Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Min Yu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Shiliu Zhu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Shengquan Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
36
|
Yan H, Wang Y, Hu B, Qiu Z, Zeng B, Fan C. Genome-Wide Characterization, Evolution, and Expression Profiling of VQ Gene Family in Response to Phytohormone Treatments and Abiotic Stress in Eucalyptus grandis. Int J Mol Sci 2019; 20:ijms20071765. [PMID: 30974801 PMCID: PMC6480042 DOI: 10.3390/ijms20071765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023] Open
Abstract
VQ genes play important roles in plant development, growth, and stress responses. However, little information regarding the functions of VQ genes is available for Eucalyptus grandis. In our study, genome-wide characterization and identification of VQ genes were performed in E. grandis. Results showed that 27 VQ genes, which divided into seven sub-families (I-VII), were found, and all but two VQ genes showed no intron by gene structure and conserved motif analysis. To further identify the function of EgrVQ proteins, gene expression analyses were also developed under hormone treatments (brassinosteroids, methyl jasmonate, salicylic acid, and abscisic acid) and abiotic conditions (salt stress, cold 4 °C, and heat 42 °C). The results of a quantitative real-time PCR analysis indicated that the EgrVQs were variously expressed under different hormone treatments and abiotic stressors. Our study provides a comprehensive overview of VQ genes in E. grandis, which will be beneficial in the molecular breeding of E. grandis to promote its resistance to abiotic stressors; the results also provide a basis from which to conduct further investigation into the functions of VQ genes in E. grandis.
Collapse
Affiliation(s)
- Huifang Yan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Yujiao Wang
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bing Hu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Zhenfei Qiu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Chunjie Fan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
37
|
Mito MS, Silva AA, Kagami FL, Almeida JD, Mantovanelli GC, Barbosa MC, Kern-Cardoso KA, Ishii-Iwamoto EL. Responses of the weed Bidens pilosa L. to exogenous application of the steroidal saponin protodioscin and plant growth regulators 24-epibrassinolide, indol-3-acetic acid and abscisic acid. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:326-335. [PMID: 30341820 DOI: 10.1111/plb.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The exogenous application of plant hormones and their analogues has been exploited to improve crop performance in the field. Protodioscin is a saponin whose steroidal moiety has some similarities to plant steroidal hormones, brassinosteroids. To test the possibility that protodioscin acts as an agonist or antagonist of brassinosteroids or other plant growth regulators, we compared responses of the weed species Bidens pilosa L. to treatment with protodioscin, brassinosteroids, auxins (IAA) and abscisic acid (ABA). Seeds were germinated and grown in agar containing protodioscin, dioscin, brassinolides, IAA and ABA. Root apex respiratory activity was measured with an oxygen electrode. Malondialdehyde (MDA) and antioxidant enzymes activities were assessed. Protodioscin at 48-240 μm inhibited growth of B. pilosa seedlings. The steroidal hormone 24-epibrassinolide (0.1-5 μm) also inhibited growth of primary roots, but brassicasterol was inactive. IAA at higher concentrations (0.5-10.0 μm) strongly inhibited primary root length and fresh weight of stems. ABA inhibited all parameters of seedling growth and also seed germination. Respiratory activity of primary roots (KCN-sensitive and KCN-insensitive) was activated by protodioscin. IAA and ABA reduced KCN-insensitive respiration. The content of MDA in primary roots increased only after protodioscin treatment. All assayed compounds increased APx and POD activity, with 24-epibrassinolide being most active. The activity of CAT was stimulated by protodioscin and 24-epibrassinolide. The results revealed that protodioscin was toxic to B. pilosa through a mechanism not related to plant growth regulator signalling. Protodioscin caused a disturbance in mitochondrial respiratory activity, which could be related to overproduction of ROS and consequent cell membrane damage.
Collapse
Affiliation(s)
- M S Mito
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | - A A Silva
- Department of Sciences of Nature, Federal University of Acre, Rio Branco, Brazil
| | - F L Kagami
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | - J D Almeida
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | - G C Mantovanelli
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | - M C Barbosa
- Department of Agronomy, University of Londrina, Londrina, Brazil
| | - K A Kern-Cardoso
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | | |
Collapse
|
38
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
39
|
Sakamoto T, Kitano H, Fujioka S. ERECT LEAF1 suppresses jasmonic acid response in rice by decreasing OsWRKY4 stability. PLANT SIGNALING & BEHAVIOR 2019; 14:1559578. [PMID: 30572766 PMCID: PMC6351086 DOI: 10.1080/15592324.2018.1559578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
ERECT LEAF 1 (ELF1), which was identified as a component of brassinosteroid signaling in rice, is involved in brassinosteroid-mediated suppression of jasmonic acid response. Here, by conducting yeast two-hybrid assay and in vitro ubiquitination experiments, we demonstrate that ELF1 interacts with the OsWRKY4 transcription factor, a positive regulator of defense responses to rice sheath blight. ELF1 decreased the stability of OsWRKY4, whereas exogenous jasmonic acid treatment suppressed this effect of ELF1, resulting in OsWRKY4 accumulation in rice plants. In wild-type rice, OsWRKY4 expression was up-regulated by jasmonic acid treatment but down-regulated by brassinosteroid treatment, suggesting that jasmonic acid-induced OsWRKY4 accumulation was caused by a combination of increased production and suppressed degradation. The expression levels of the OsWRKY4 target genes, PR1b and PR5, seemed to be correlated with the OsWRKY4 level. These results suggest that ELF1 indirectly controls the expression of PR1b and PR5 genes by regulating the OsWRKY4 protein level, and support a hypothesis that brassinosteroid and jasmonic acid cooperate to maintain the balance between growth and defense responses. We conclude that ELF1 participates in the antagonistic interaction between these two phytohormones by suppressing the jasmonic acid response through the down-regulation of OsWRKY4 protein level in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
- CONTACT Tomoaki Sakamoto Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
| | | |
Collapse
|
40
|
Zhou YL, Huo SF, Wang LT, Meng JF, Zhang ZW, Xi ZM. Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:555-565. [PMID: 30099273 DOI: 10.1016/j.plaphy.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) stress is the most common abiotic stress experienced in vineyards owing to the copper-based fungicides application. Plant hormones, including 24-Epibrassinolide (EBR), may alleviate the adverse impacts of heavy metal stress on plants. We investigated the effects of EBR pretreatment on root morphological parameters, active oxygen metabolism, osmolytes contents, antioxidant enzyme activity, endogenous phytohormone contents, and ascorbate-glutathione (AsA-GSH) cycle activity of one-year-old grape (Vitis vinifera L.) cuttings under Cu stress. Pretreatment with EBR significantly enhanced root morphological parameters (total root length, root surface area, root diameter, root volume, and tip number), increased soluble protein and proline contents, and significantly decreased the contents of H2O2, O2⋅-, and malondialdehyde (MDA) in roots and leaves. EBR pretreatment increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase oxidase (POD), and the contents of the endogenous phytohormones abscisic acid, jasmonic acid, and salicylic acid in the leaves. In addition, EBR regulated the balance of the AsA-GSH cycle by increasing the activities of monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GR), ascorbate peroxidase (APX), and dehydroascorbate reductase (DHAR), and the contents of the antioxidant ascorbate (AsA) and dehydroascorbic acid (DHA), but the contents of glutathione (GSH) and oxidized glutathione (GSSG) decreased. Among the treatments tested, pretreatment with 0.10 mg/L EBR showed the optimal performance for alleviation of Cu toxicity. The results show that exogenous brassinosteroids reduce oxidative damage and improve the tolerance of Cu stress of grapevine cuttings.
Collapse
Affiliation(s)
- Ya-Li Zhou
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Su-Fang Huo
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Li-Ting Wang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiang-Fei Meng
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, China
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, China.
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, China.
| |
Collapse
|
41
|
Li T, Yun Z, Wu Q, Zhang Z, Liu S, Shi X, Duan X, Jiang Y. Proteomic profiling of 24-epibrassinolide-induced chilling tolerance in harvested banana fruit. J Proteomics 2018; 187:1-12. [DOI: 10.1016/j.jprot.2018.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
|
42
|
Gong X, Dou F, Cheng X, Zhou J, Zou Y, Ma F. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress. Gene 2018; 669:52-62. [PMID: 29800731 DOI: 10.1016/j.gene.2018.05.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd.
Collapse
Affiliation(s)
- Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fangfang Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xi Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jing Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
43
|
The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:561-571. [PMID: 29673687 DOI: 10.1016/j.bbagrm.2018.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022]
Abstract
BZR1 and BES1 are key transcription factors of brassinosteroid (BR) signaling and represent the integration node of numerous signaling cascades. Their direct target genes have been identified, and BZR1/BES1-DNA interactions have been experimentally verified. Importantly, BZR1/BES1 also integrate different growth and development events via direct protein-protein interactions. For instance, DELLAs, PIFs, ARF6, and PKL, all directly interact with BZR1/BES1, forming a BZR1/BES1-centered regulatory network to coordinate cell elongation. By dissecting various BZR1/BES1-mediated BR responses, the concept that BZR1/BES1 act as an integration hub in multisignal-regulated plant growth and development was developed. The regulation of BZR1/BES1 is dynamic and multifaceted, including phosphorylation status, activity, and stability. Moreover, certain epigenetic modification mechanisms are involved in BZR1/BES1's regulation of gene expression. Herein, we review recent advances in BZR1/BES1-mediated molecular connections between BR and other pathways, highlighting the central role of the BZR1/BES1 interactome in optimizing plant growth and development.
Collapse
|
44
|
Sakamoto T, Kitano H, Fujioka S. Rice ERECT LEAF 1 acts in an alternative brassinosteroid signaling pathway independent of the receptor kinase OsBRI1. PLANT SIGNALING & BEHAVIOR 2017; 12:e1396404. [PMID: 29172939 PMCID: PMC5792126 DOI: 10.1080/15592324.2017.1396404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
ERECT LEAF 1 (ELF1) was previously identified as a component of brassinosteroid signaling in rice. A double mutant obtained by crossing elf1-1 (a null mutant of ELF1) with d61-1 (a leaky mutant of OsBRI1) showed a more severe phenotype than did the elf1-1 single mutant, resembling that of a severe brassinosteroid-deficient mutant. Microarray analysis showed that the gene expression profile of elf1-1 was distinct from that of d61-12 (a leaky mutant of OsBRI1 with a phenotype similar to that of elf1-1), and fewer than half of genes differentially expressed between the wild-type and elf1-1 showed similar differences in d61-12 relative to the wild-type. These results indicate that less than half of ELF1-regulated genes in rice seedlings are affected by OsBRI1, and suggest that ELF1 acts in a rice brassinosteroid signaling pathway different from that initiated by OsBRI1. Gene expression analysis showed that some stress response-related genes were induced in elf1-1 but not in d61-12, and 8 of 9 genes oppositely regulated in elf1-1 and d61-12 were significantly up- or down-regulated in both elf1-1 and jasmonic acid-treated wild-type. These results imply that ELF1 suppresses stress-induced signalling, and that jasmonic acid signaling is stimulated in elf1-1; therefore, ELF1 may be involved in the brassinosteroid-mediated suppression of jasmonic acid response in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Department of Bioproduction Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
| | | |
Collapse
|
45
|
Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:922-931. [PMID: 28774551 DOI: 10.1016/j.envpol.2017.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Bei-Bei He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xiang-Jie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|