1
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
2
|
Hasanuzzaman M, Nowroz F, Raihan MRH, Siddika A, Alam MM, Prasad PVV. Application of biochar and humic acid improves the physiological and biochemical processes of rice (Oryza sativa L.) in conferring plant tolerance to arsenic-induced oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1562-1575. [PMID: 38047999 DOI: 10.1007/s11356-023-31119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg-1 soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Farzana Nowroz
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Md Rakib Hossain Raihan
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| | - Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Md Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Chi Y, Tam NFY, Li WC, Ye Z. Multiple geochemical and microbial processes regulated by redox and organic matter control the vertical heterogeneity of As and Cd in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156229. [PMID: 35643135 DOI: 10.1016/j.scitotenv.2022.156229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneity of arsenic (As) and cadmium (Cd) in paddy soils seriously hinders the assessment of contamination status and prediction of rice uptake. Their vertical patterns across different environmental conditions and the underlying mechanisms remain largely unexplored. In this study, maximum vertical differences of bioavailable As and Cd within 0-30 cm depth in paddy soils were 4.1-fold and four orders of magnitude, respectively. The vertical patterns of As and Cd followed the vertical redox gradient in long-term reduced paddies, but were shaped by the vertical pH gradient derived from acidic wastewater irrigation in partly oxidized soils. Iron(III)- and sulfate-reducing bacteria played key roles in the formation of vertical pH gradient and the immobilization of As and Cd by iron (hydr)oxides and sulfides under varied redox conditions. Soil redox and organic matter determined the transition between these two mechanisms via regulating microbial iron(III) and sulfate reduction processes. The work proposes that soil vertical As and Cd patterns directly affect the accumulation of As and Cd in different rice cultivars with different vertical root patterns. This is the first study elucidating the controlling mechanisms governing the vertical As and Cd patterns in paddy fields, providing important references to identify, manage and remediate contaminated paddy fields.
Collapse
Affiliation(s)
- Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Kowloon, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129557. [PMID: 35999729 DOI: 10.1016/j.jhazmat.2022.129557] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The amendment of biochar for soil bioremediation can improve soil conditions, influence soil microbial community, and achieve co-application of biochar-microbe to promote the removal of pollutants. This paper summarizes the positive effects of biochar on microorganisms, including acting as a shelter, providing nutrients, and improving soil conditions (soil aggregation, pH, cation exchange capacity (CEC), and enzymatic activity). These effects will cause variations in microbial abundance, activity, and community structure. Biochar can act as an electron mediator to promote electron transfer in the process of microbial degradation. And the application of biochar in soil bioremediation is also introduced. Nevertheless, toxic substances carried by biochar that may threaten microbial community shouldn't be overlooked. With this review, we can better understand biochar's involvement in soil bioremediation, which will help us choose and modify biochar in a targeted manner for the desired purpose in practical applications.
Collapse
Affiliation(s)
- Xuemei Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ting Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zichen Shangguan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Qu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
5
|
Li Z, Chen L, Chen Z, Chen G, Zhou J, Liu X. Study of the Effects on Mn, Pb, and Zn Solidification in Soil by a Mixed Curing Agent of Modified Diatomite. ACS OMEGA 2022; 7:25229-25238. [PMID: 35910122 PMCID: PMC9330184 DOI: 10.1021/acsomega.2c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In order to improve the application scale of diatomite in the remediation of heavy metal-contaminated soil in non-ferrous metal mining areas, the preparation of the modified diatomite-combined curing agent and its stabilizing effect on manganese (Mn), lead (Pb), and zinc (Zn) were systematically studied in non-ferrous metal tailing soil in this paper. The results showed that compared with that in natural diatomite (DE), the contents of available Mn in soil treated by acid- and alkali-modified diatomite samples (C-D and Na-D) were 18.82 and 25.93% lower, respectively, and the content of available Zn in Na-D was significantly lower, 6.71%, than that in DE. Further research showed that modified diatomite combined with quicklime (CaO) and hydroxyapatite (HAP) could significantly improve the solidification effect of soil heavy metals. Compared with that in single modified diatomite, the contents of available Mn, Pb, and Zn in the mixed curing agent-treated soil decreased by 23.59-46.32, 5.88-47.93, and 5.37-10.68%, respectively. The final pot test showed that the mixed curing agent of modified diatomite had no significant effect on the growth of plants, but it could reduce the Mn, Pb, and Zn accumulation in the upper and lower parts of plants, which is because the acid-soluble and reducible heavy metals in soil transform into an oxidizable and residual state, which reduces the mobility of heavy metals.
Collapse
Affiliation(s)
- Zhixian Li
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Limei Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Zhang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Guoliang Chen
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Jianlin Zhou
- Hunan
Province Key Laboratory of Coal Resources Clean Utilization and Mine
Environment Protection, Hunan University
of Science and Technology, Xiangtan 411201, China
| | - Xiling Liu
- School
of Resources and Safety Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
6
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
7
|
Song A, Li Z, Wang E, Xu D, Wang S, Bi J, Wang H, Jeyakumar P, Li Z, Fan F. Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148797. [PMID: 34273835 DOI: 10.1016/j.scitotenv.2021.148797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zimin Li
- Earth and Life Institute, Soil Sciences, Université catholique de Louvain (UCLouvain), Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium.
| | - Enzhao Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhongyang Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Li Y, Heal K, Wang S, Cao S, Zhou C. Chemodiversity of Soil Dissolved Organic Matter and Its Association With Soil Microbial Communities Along a Chronosequence of Chinese Fir Monoculture Plantations. Front Microbiol 2021; 12:729344. [PMID: 34745032 PMCID: PMC8566896 DOI: 10.3389/fmicb.2021.729344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The total dissolved organic matter (DOM) content of soil changes after vegetation transformation, but the diversity of the underlying chemical composition has not been explored in detail. Characterizing the molecular diversity of DOM and its fate enables a better understanding of the soil quality of monoculture forest plantations. This study characterized the chemodiversity of soil DOM, assessed the variation of the soil microbial community composition, and identified specific linkages between DOM molecules and microbial community composition in soil samples from a 100-year chronosequence of Chinese fir monoculture plantations. With increasing plantation age, soil total carbon and dissolved organic carbon first decreased and then increased, while soil nutrients, such as available potassium and phosphorus and total nitrogen, potassium, and phosphorus, increased significantly. Lignin/carboxylic-rich alicyclic molecule (CRAM)-like structures accounted for the largest proportion of DOM, while aliphatic/proteins and carbohydrates showed a decreasing trend along the chronosequence. DOM high in H/C (such as lipids and aliphatic/proteins) degraded preferentially, while low-H/C DOM (such as lignin/CRAM-like structures and tannins) showed recalcitrance during stand development. Soil bacterial richness and diversity increased significantly as stand age increased, while soil fungal diversity tended to increase during early stand development and then decrease. The soil microbial community had a complex connectivity and strong interaction with DOM during stand development. Most bacterial phyla, such as Acidobacteria, Chloroflexi, and Firmicutes, were very significantly and positively correlated with DOM molecules. However, Verrucomicrobia and almost all fungi, such as Basidiomycota and Ascomycota, were significantly negatively correlated with DOM molecules. Overall, the community of soil microorganisms interacted closely with the compositional variability of DOM in the monoculture plantations investigated, both by producing and consuming DOM. This suggests that DOM is not intrinsically recalcitrant but instead persists in soils as a result of simultaneous consumption, transformation, and formation by soil microorganisms with extended stand ages of Chinese fir plantations.
Collapse
Affiliation(s)
- Ying Li
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kate Heal
- School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Shuzhen Wang
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Cao
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuifan Zhou
- University Engineering Research Center of Sustainable Plantation Management, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Munyai R, Ogola HJO, Modise DM. Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.
Collapse
|
10
|
Wang Y, Ren Q, Li T, Zhan W, Zheng K, Liu Y, Chen R. Influences of modified biochar on metal bioavailability, metal uptake by wheat seedlings (Triticum aestivum L.) and the soil bacterial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112370. [PMID: 34058673 DOI: 10.1016/j.ecoenv.2021.112370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A 6 weeks pot culture experiment was carried out to investigate the stabilization effects of a modified biochar (BCM) on metals in contaminated soil and the uptake of these metals by wheat seedlings. The results showed that the application of BCM significantly increased the soil fertility, the biomass of wheat seedling roots increased by more than 50%, and soil dehydrogenase (DHA) and catalase (CAT) activities increased by 369.23% and 12.61%, respectively. In addition, with the application of BCM, the diethylenetriaminepentaacetic acid extractable (DTPA-extractable) Cd, Pb, Cu and Zn in soil were reduced from 2.34 to 0.38 mg/kg, from 49.27 to 25.65 mg/kg, from 3.55 mg/kg to below the detection limit and from 4.05 to 3.55 mg/kg, respectively. Correspondingly, the uptake of these metals in wheat roots and shoots decreased by 62.43% and 79.83% for Cd, 73.21% and 66.32% for Pb, 57.98% and 68.92% for Cu, and 40.42% and 43.66% for Zn. Furthermore, BCM application decreased the abundance and alpha diversity of soil bacteria and changed the soil bacterial community structure dramatically. Overall, BCM has great potential for the remediation of metal-contaminated soils, but its long-term impact on soil metals and biota need further research.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Qiang Ren
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Tao Li
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yidan Liu
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| |
Collapse
|
11
|
Liu C, Lin H, Li B, Dong Y, Yin T, Chen X. Endophyte inoculation redistributed bioavailable Cd and nutrient in soil aggregates and enhanced Cd accumulation in Phytolacca acinosa. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125952. [PMID: 34492871 DOI: 10.1016/j.jhazmat.2021.125952] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and heavy metal (HM) accumulation is affected by heavy metal bioavailability and nutrient content in soil aggregates during endophyte-assisted phytoremediation. In this study, we evaluated the influence of endophytes inoculation on P. acinosa HM accumulation and soil aggregate physicochemical properties and explored the correlation among them. Endophyte inoculation increased the plant growth and Cd accumulation by 7.95-25.13% and 3.27-19.22%, respectively and the soil aggregate was redistributed with a decrease of 1.88-5.41% of the clay fraction. The available nitrogen, phosphorus and potassium, and organic matter in macro-aggregate and micro-aggregate were significantly improved with endophyte inoculation. In addition, compared to the no inoculation group, endophytes inoculation enhanced the bioavailability of Cd in macro-aggregates by 4.92-15.00% and in micro-aggregate by 0-9.37%. Both multiple linear regression analysis and the structural equation modeling (SEM) analysis showed that the Cd accumulation in P. acinosa was mainly depended on the Cd bioavailability in macro-aggregates and micro-aggregates. In general, this study helped to improve our understanding of soil aggregate HM bioavailability and nutrient content distribution characteristics under endophyte inoculation, which could further explain the mechanisms of endophytes in plant growth promoting and HM accumulation improving.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
12
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123282. [PMID: 32634659 DOI: 10.1016/j.jhazmat.2020.123282] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Dane Lamb
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
13
|
Zhu Y, Ma J, Chen F, Yu R, Hu G, Zhang S. Remediation of Soil Polluted with Cd in a Postmining Area Using Thiourea-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207654. [PMID: 33092212 PMCID: PMC7589461 DOI: 10.3390/ijerph17207654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/23/2022]
Abstract
Cadmium presence in soil is considered a significant threat to human health. Biochar is recognized as an effective method to immobilize Cd ions in different soils. However, obtaining effective and viable biochar to remove elevated Cd from postmining soil remains a challenge. More modifiers need to be explored to improve biochar remediation capacity. In this investigation, pot experiments were conducted to study the effects of poplar-bark biochar (PBC600) and thiourea-modified poplar-bark biochar (TPBC600) on Cd speciation and availability, as well as on soil properties. Our results showed that the addition of biochar had a significant influence on soil properties. In the presence of TPBC600, the acid-soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions. This process effectively reduced Cd bioavailability in the soil system. Compared to PBC600, TPBC600 was more effective in improving soil pH, electrical conductivity (EC), organic matter (SOM), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), available potassium (AK), available phosphorus (AP), and available sulfur (AS). However, this improvement diminished as incubation time increased. Results of Pearson correlation analysis, multivariate linear regression analysis, and principal component analysis showed that soil pH and available phosphorus played key roles in reducing the available cadmium in soil. Therefore, TPBC600 was shown to be an effective modifier that could be used in the remediation of soil polluted with Cd.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
| |
Collapse
|
14
|
Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139060. [PMID: 32498182 DOI: 10.1016/j.scitotenv.2020.139060] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Various types of biochar have been widely used to remediate soil contamination from heavy metals (HMs) and to reduce HM mobility and bioavailability in soils in recent years. Most researchers have paid attention to the beneficial effects of biochar during the remediation process, but few have emphasized their negative effects and the challenges for their application. In this review, the negative effects and challenges of applying biochar for the remediation of HM-contaminated soils are thoroughly summarized and discussed, including the changeable characteristics of biochar, biochar over-application, toxic substances in biochar, activation of some HMs in soils by biochar, nonspecific adsorption, and the negative influences of biochar on soil microorganisms and plants. In addition, further research directions and several recommendations (standardization, long-term field experiments, mechanisms research and designer biochars) were also proposed to enable the large-scale application of biochar for the remediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China; Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yidan Liu
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Junnan Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Chaosheng Zhang
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| |
Collapse
|
15
|
Luo M, Lin H, He Y, Zhang Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137014. [PMID: 32065885 DOI: 10.1016/j.scitotenv.2020.137014] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Biochar plays a significant role in soil remediation. However, the simultaneous immobilization mechanism and relationship of biochar to cations and anions have never been clear. We designed a batch incubation experiment to investigate the impact of corncob-based biochars to cadmium (Cd) and arsenic (As) contaminations in yellow soil and cinnamon soil, and analyze the relationships among biochars physicochemical characteristics (surface area: SA, total pore volume: TV, average pore size: AV and the C/O rate), soil properties, metals immobilization and microbial diversity indices. Results showed that the modified biochars (inorganic-modified biochar: BCTD) had a good effect on heavy metals immobilization and transformed acid extractable and reducible fraction into the residual fraction. Total nitrogen, organic matter and available potassium increased in both soils after biochar application. The principal component analysis presented that the smaller C/O rate was favorable to As stabilization; the SA and TV of biochar were negatively correlated with the leaching concentration of Cd. The larger surface area, higher porosity and organic matters of biochar were more beneficial to soil microbial diversity. This work not only can demonstrate remediation mechanisms of heavy metals contaminated soil by biochars, but also gain an application of biochars technology in the recycling and reutilize of agricultural waste, and provide a clear strategy for heavy metals contaminated soil, especially As and Cd.
Collapse
Affiliation(s)
- Mingke Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Ye Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| |
Collapse
|
16
|
Wang L, Lin H, Dong Y, Li B, He Y. Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. CHEMOSPHERE 2020; 240:124891. [PMID: 31574442 DOI: 10.1016/j.chemosphere.2019.124891] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
We investigated the effects of endophytes inoculation on ecological factors such as root morphology, rhizosphere soil properties, heavy metal speciation, and rhizosphere and endophytic bacterial communities and their role on phytoremediation. Indian mustards were grown for two months in V-contaminated soil with three treatments (control, inoculation with Serratia PRE01 or Arthrobacter PRE05). Inoculation with PRE01 and PRE05 increased organic matter content by 6.94% and 4.6% respectively and significantly increased bioavailability of heavy metals in rhizosphere soils. Despite the endophyte inocula failed to flourish as stable endophytes, they significantly affected the specific composition and diversity of endophytic bacterial communities in roots, with no significant effect on rhizosphere bacterial communities. The test strains could greatly increase plant growth promotion-related biomarkers in the endosphere, especially those associated with Pseudomonas and Microbacterium genera. PICRUSt analysis predicted high relative abundances of functional genes related to environmental information processing especially in the endophytic microbiota. More biomass production (12.0%-17.4%) and total metals uptake (24.2%-32.0%) were acquired in inoculated treatments. We conclude that endophyte PRE01 or PRE05 inoculation could effectively enhance phytoremediation of V-contaminated soil by improving the rhizosphere and endosphere microecology without causing any ecological damage.
Collapse
Affiliation(s)
- Liang Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 10083, China
| | - Hai Lin
- Department of Environmental Engineering, University of Science and Technology Beijing, 10083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, 10083, China.
| | - Yingbo Dong
- Department of Environmental Engineering, University of Science and Technology Beijing, 10083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, 10083, China.
| | - Bing Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 10083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, 10083, China
| | - Yinhai He
- Department of Environmental Engineering, University of Science and Technology Beijing, 10083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, 10083, China
| |
Collapse
|
17
|
Jin W, Wang Z, Sun Y, Wang Y, Bi C, Zhou L, Zheng X. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109928. [PMID: 31767458 DOI: 10.1016/j.ecoenv.2019.109928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to arsenic (As) through rice consumption is a global food safety issue, especially in Southeast Asia. To investigate the impacts of biochar amendment (rice husk and smooth cordgrass-derived biochar) and/or silicate fertilizer on As mobility/phytoavailability in soil and on As accumulation in rice, pot and microcosm experiments were conducted. The results showed that both single application of low doses of biochar (0.5%, w/w) and coapplication of biochar with silicate fertilizer decreased As levels in grain (brown rice) by 14-16%, but not in straw and roots. The biodilution of As in grain resulting from increased grain biomass (by 6-21%) could be mainly a response to the decline in grain As levels with biochar and/or silicate fertilizer amendment. However, both applications exerted limited effects to decrease the overall As uptake by rice grain and straw, potentially due to the small changes in As mobility/phytoavailability in amended soil relative to the control, although plant-available silicon (Si) from amendment could potentially inhibit As uptake. Furthermore, microcosm-based anaerobic incubation experiments demonstrated that As levels in soil solution increased (up to 11-14-fold) with increasing doses of biochar amendment (up to 5%, w/w), possibly due to biochar enhancing the reductive dissolution of iron (oxyhydr) oxides via an increase in the total number of iron-reducing bacteria (up to 1.6-3.2-fold). Our findings suggested that a low application rate of biochar may not be a very effective approach for mitigating As accumulation in rice, while a high application rate could enhance the health risk of As in As-contaminated flooded soil.
Collapse
Affiliation(s)
- Wenjia Jin
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| | - Zhigang Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| | - Yafei Sun
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| | - Yongjie Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China.
| | - Chunjuan Bi
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China.
| | - Limin Zhou
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China
| | - Xiangmin Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| |
Collapse
|
18
|
Zhen M, Chen H, Liu Q, Song B, Wang Y, Tang J. Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica. J Environ Sci (China) 2019; 85:107-118. [PMID: 31471017 DOI: 10.1016/j.jes.2019.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Biochar (BC) and rhamnolipid (RL) is used in bioremediation of petroleum hydrocarbons, however, the combined effect of BC and RL in phytoremediation has not been studied until now. In this paper, the phytoremediation of petroleum hydrocarbon-contaminated soil using novel plant Spartina anglica was enhanced by the combination of biochar (BC) and rhamnolipid (RL). Samples of petroleum-contaminated soil (10, 30 and 50 g/kg) were amended by BC, BC+ RL and rhamnolipid modified biochar (RMB), respectively. After 60 day's cultivation, the removal rate of total petroleum hydrocarbons (TPHs) for unplanted soil (UP), planted soil (P), planted soil with BC addition (P-BC), planted soil with BC and RL addition (P-BC + RL) and planted soil with addition of RMB (P-RMB) were 8.6%, 19.1%, 27.7%, 32.4% and 35.1% in soil with TPHs concentration of 30 g/kg, respectively. Compared with UP, the plantation of Spartina anglica significantly decreased the concentration of C8-14 and tricyclic PAHs. Furthermore, the application of BC and RMB alleviated the toxicity of petroleum hydrocarbons to Spartina anglica via improving plant growth with increasing plant height, root vitality and total chlorophyll content. High-throughput sequencing result indicated that rhizosphere microbial community of Spartina anglica was regulated by the application of BC and RMB, with increase of bacteria and plant mycorrhizal symbiotic fungus in biochar and RMB amended soil.
Collapse
Affiliation(s)
- Meinan Zhen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkun Chen
- State Key Lab of Petroleum Pollution Control, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Benru Song
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yizhi Wang
- Tianjin Tianmai Energy Saving Equipment Co. LTD, Tianjin 300393, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300071, China.
| |
Collapse
|
19
|
Hou L, Liu R, Li N, Dai Y, Yan J. Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31401-31413. [PMID: 31485937 DOI: 10.1007/s11356-019-05828-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
The effects of Fire Phoenix (a mixture of Festuca L.) and Purple coneflower (Echinacea purpurea (L.) Moench) on the remediation of two different high concentrations of PAH-contaminated soils were studied under the effect of strain N12 (Mycobacterium sp.), and the changes in rhizosphere enzymatic activity were preliminarily studied. The results of three culture stages (60 d, 120 d, and 150 d) showed that N12 has a promotional effect on the biomass of Fire Phoenix and E. purpurea, and the effect of N12 on the biomass of Fire Phoenix is better. Under the strengthening of N12, the maximum removal rates of Fire Phoenix reached 86.77% and 67.82% at two high PAH concentrations (A and B, respectively). The activity of dehydrogenase (DHO) is positively correlated with the degradation rate of PAHs at the A concentration (P < 0.05). The activity of DHO in soil will continue to increase at a higher level of the B concentration, but the positive correlation between the activity of DHO and the degradation rate of PAH is weakened. In the rhizosphere soil of the two plants, the change in polyphenol oxidase (PPO) activity with time has a significant negative correlation with the degradation rate of PAHs (P < 0.05). The experiment proved that Fire Phoenix is more suitable for the remediation of heavy PAH-contaminated soil under the condition of microorganism-strengthening, and it can achieve a better degradation effect when the concentrations of PAHs are < 150 mg·kg-1. Results provide a further scientific basis for the remediation of contaminated sites.
Collapse
Affiliation(s)
- Liqun Hou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China.
| | - Na Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
| |
Collapse
|
20
|
Lebrun M, Miard F, Renouard S, Nandillon R, Scippa GS, Morabito D, Bourgerie S. Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33678-33690. [PMID: 30276689 DOI: 10.1007/s11356-018-3247-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Biochar, produced by the pyrolysis of biomass under low oxygen conditions, has gathered attention in the last few years due to its capability to reduce metal(loid)s bioavailability and mobility in soils, as well as its beneficial effects on soil fertility. Indeed, biochar amendment to polluted soil induced usually an increase of pH, water holding capacity, and nutrient contents, associated with a decrease of metal(loid)s concentrations in soil pore water, through sorption. However, biochar has been shown efficient in sorbing cation pollutants, like Pb, but present a low sorption capacity towards anions like As. This contrasted behavior poses a problem, as most polluted soils are multi-contaminated, with both cation and anion pollutants. One of the solutions to overcome such problem is to functionalize biochar, by modifying its surface. However, most studies actually focused on functionalization effect on metal(loid)s sorption towards batch experiments, and only a few dealt with modified biochar incorporation to the soil. Therefore, this study aimed (i) to assess the sorption capacity of hardwood biochars, harboring different particle sizes, towards Pb and As; (ii) to evaluate the effect of a Fe-functionalization on Pb and As sorption; and (iii) to validate the results, in a phytotoxicity test using Phaseolus vulgaris as bioindicator plant. The batch experiments showed that all four biochars were able to efficiently sorb Pb, the fine biochars showing higher sorption values than the coarse biochars. As sorption was very low. Fe-coating increased As sorption value, while having no effect on Pb sorption. However, when incorporated in the soil, Fe-coated biochar did not improve soil physico-chemical properties compared to the pristine biochar; especially, it did not reduce As soil pore water concentrations. Finally, bean plant did not show differences in terms of biomass production between the two biochars incorporated into polluted soil, demonstrating that Fe-functionalization did not improve biochar capacity to decrease soil toxicity.
Collapse
Affiliation(s)
- Manhattan Lebrun
- University of Orleans, INRA USC1328, LBLGC EA 1207, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Florie Miard
- University of Orleans, INRA USC1328, LBLGC EA 1207, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sullivan Renouard
- Université d'Orléans, LBLGC INRA, USC 1328-Antenne Scientifique Universitaire de Chartres, 21 Rue de Loigny La Bataille, 28000, Chartres, France
| | - Romain Nandillon
- University of Orleans, INRA USC1328, LBLGC EA 1207, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Gabriella S Scippa
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Domenico Morabito
- University of Orleans, INRA USC1328, LBLGC EA 1207, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- University of Orleans, INRA USC1328, LBLGC EA 1207, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
21
|
Jiang X, Ouyang Z, Zhang Z, Yang C, Li X, Dang Z, Wu P. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|