1
|
Chen R, Zhang L, Gu W, Li R, Hong H, Zhou L, Zhang J, Wang Y, Ni P, Xu S, Wang Z, Sun Q, Liu C, Yang J. Lung function benefits of traditional Chinese medicine Qiju granules against fine particulate air pollution exposure: a randomized controlled trial. Front Med (Lausanne) 2024; 11:1370657. [PMID: 38741765 PMCID: PMC11089203 DOI: 10.3389/fmed.2024.1370657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Multiple targets are considered as the causes of ambient fine particulate matter [aerodynamic diameters of < 2.5 μm (PM2.5)] induced lung function injury. Qiju granules are derived from the traditional Chinese medicine (TCM) formula known as Qi-Ju-Di-Huang-Wan (Lycium, Chrysanthemum, and Rehmannia Formula, QJDHW), which has been traditionally used to treat symptoms such as cough with phlegm, dry mouth and throat, and liver heat. This treatment approach involves attenuating inflammation, oxidative stress, and fibrosis response. This study investigated the effects of Qiju granules on protecting lung function against PM2.5 exposure in a clinical trial. Methods A randomized, double-blinded, and placebo-controlled trial was performed among 47 healthy college students in Hangzhou, Zhejiang Province in China. The participants were randomly assigned to the Qiju granules group or the control group based on gender. Clinical follow-ups were conducted once every 2 weeks during a total of 4 weeks of intervention. Real-time monitoring of PM2.5 concentrations in the individually exposed participants was carried out. Data on individual characteristics, heart rate (HR), blood pressure (BP), and lung function at baseline and during the follow-ups were collected. The effects of PM2.5 exposure on lung function were assessed within each group using linear mixed-effect models. Results In total, 40 eligible participants completed the scheduled follow-ups. The average PM2.5 level was found to be 64.72 μg/m3 during the study period. A significant negative correlation of lung function with PM2.5 exposure concentrations was observed, and a 1-week lag effect was observed. Forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), maximal mid-expiratory flow (MMEF), forced expiratory flow at 75% of forced vital capacity (FVC) (FEF75), forced expiratory flow at 50% of FVC (FEF50), and forced expiratory flow at 25% of FVC (FEF25) were significantly decreased due to PM2.5 exposure in the control group. Small airway function was impaired more seriously than large airway function when PM2.5 exposure concentrations were increased. In the Qiju granules group, the associations between lung function and PM2.5 exposure were much weaker, and no statistical significance was observed. Conclusion The results of the study showed that PM2.5 exposure was associated with reduced lung function. Qiju granules could potentially be effective in protecting lung functions from the adverse effects of PM2.5 exposure. Clinical Trial Registration identifier: ChiCTR1900021235.
Collapse
Affiliation(s)
- Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Huihua Hong
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Linshui Zhou
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinna Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Yixuan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ping Ni
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuqin Xu
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Wang
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Junchao Yang
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Liao H, Chen S, Xu S, Lv Y, Liu W, Xu H. Acute effects of ambient air pollution exposure on lung function in the elderly in Hangzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1022-1032. [PMID: 35469508 DOI: 10.1080/09603123.2022.2067523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Evidence of an association between acute air pollution exposure and lung function in the elderly is limited. This study is cross-sectional. We quantified the effects of air pollution exposure on lung function among 256 elderly by using a linear mixed model. The results revealed that air pollutants had lag effects on lung function after adjusting for confounders. PM2.5 (Lag03, Lag 03 was defined three-day moving average, and so forth), PM10, NO2 (Lag04-Lag05) were significantly associated with reduced FEV1. PM2.5 (Lag01-Lag02), PM10 (Lag0-Lag07), NO2 (Lag0, Lag04), and SO2 (Lag0) were significantly associated with reduced Forced vital capacity (FVC). PM2.5 (Lag04-Lag07) and NO2 (Lag01-Lag07) were significantly associated with reduced FEF25%-75%. The results showed the adverse change was stronger after adjusting for other pollutants in the PM models, and women were more susceptible to air pollutants. Therefore, we should pay attention to the problem of air pollution in the elderly, especially in women.
Collapse
Affiliation(s)
- Hui Liao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuchang Chen
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shanshan Xu
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ye Lv
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Weiyan Liu
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hong Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang Y, Guo Z, Zhang W, Li Q, Zhao Y, Wang Z, Luo Z. Effect of Acute PM2.5 Exposure on Lung Function in Children: A Systematic Review and Meta-Analysis. J Asthma Allergy 2023; 16:529-540. [PMID: 37193111 PMCID: PMC10183178 DOI: 10.2147/jaa.s405929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
Objective The objective of this study was to conduct a systematic review and meta-analysis to identify the adverse effects of acute PM2.5 exposure on lung function in children. Design Systematic review and meta-analysis. Setting, participants and measures: Eligible studies analyzing PM2.5 level and lung function in children were screened out. Effect estimates of PM2.5 measurements were quantified using random effect models. Heterogeneity was investigated with Q-test and I2 statistics. We also conducted meta-regression and sensitivity analysis to explore the sources of heterogeneity, such as different countries and asthmatic status. Subgroup analyses were conducted to determine the effects of acute PM2.5 exposure on children of different asthmatic status and in different countries. Results A total of 11 studies with 4314 participants from Brazil, China and Japan were included finally. A 10 μg/m3 increase of PM2.5 was associated with a 1.74L/min (95% CI: -2.68, -0.90) decrease in peak expiratory flow (PEF). Since the asthmatic status and country could partly explain the heterogeneity, we conducted the subgroup analysis. Children with severe asthma were more susceptible to PM2.5 exposure (-3.11 L/min per 10 μg/m3 increase, 95% CI -4.54, -1.67) than healthy children (-1.61 L/min per 10 μg/m3 increase, 95% CI -2.34, -0.91). In the children of China, PEF decreased by 1.54 L/min (95% CI -2.33, -0.75) with a 10 μg/m3 increase in PM2.5 exposure. In the children of Japan, PEF decreased by 2.65 L/min (95% CI -3.82, -1.48) with a 10 μg/m3 increase of PM2.5 exposure. In contrast, no statistic association was found between every 10 μg/m3 increase of PM2.5 and lung function in children of Brazil (-0.38 L/min, 95% CI -0.91, 0.15). Conclusion Our results demonstrated that the acute PM2.5 exposure exerted adverse impacts on children's lung function, and children with severe asthma were more susceptible to the increase of PM2.5 exposure. The impacts of acute PM2.5 exposure varied across different countries.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
- Department of Respiratory, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Ziyao Guo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
| | - Wen Zhang
- Department of Respiratory, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Qinyuan Li
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
| | - Yan Zhao
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
| | - Zhili Wang
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, People’s Republic of China
- Correspondence: Zhengxiu Luo, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China, Email
| |
Collapse
|
4
|
Feng S, Miao J, Wang M, Jiang N, Dou S, Yang L, Ma Y, Yu P, Ye T, Wu Y, Wen B, Lu P, Li S, Guo Y. Long-term improvement of air quality associated with lung function benefits in Chinese young adults: A quasi-experiment cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158150. [PMID: 35995154 DOI: 10.1016/j.scitotenv.2022.158150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Long-term exposure to air pollution is associated with lung function impairment. However, whether long-term improvements in air quality could improve lung function is unclear. OBJECTIVES To examine whether the reduction of long-term air pollution was associated with lung function improvement among Chinese young adults. METHODS We conducted a prospective quasi-experiment cohort study with 1731 college students in Shandong, China from September 2019 to September 2020, covering COVID-19 lockdown period. Data on air pollution concentrations were obtained from China Environmental Monitoring Station. Lung function indicators included forced vital capacity (FVC), forced expiratory volume in 1st second (FEV1) and forced expiratory flow at 50 % of FVC (FEF50%). We used linear mixed-effects model to examine the associations between the change of air pollutants concentrations and the change of lung function, and additional adjustments for indoor air pollution (IAP) source. We also conducted stratified analysis by sex. RESULTS Compared with 2019, the mean FVC, FEV1 and FEF50% were elevated by 414.4 ml, 321.5 ml, and 28.4 ml/s respectively in 2020. Every 5 μg/m3 decrease in annual average PM2.5 concentrations was associated with 36.0 ml [95 % confidence interval (CI):6.0, 66.0 ml], 46.1 ml (95 % CI:16.7, 75.5 ml), and 124.2 ml/s (95 % CI:69.5, 178.9 ml/s) increment in the FVC, FEV1, and FEF50%, respectively. Similar associations were found for PM10. The estimated impact was almost unchanged after adjusting for IAP source. There was no significant effect difference between males and females. CONCLUSION Long-term improvement of air quality can improve lung function among young adults. Stricter policies on improving air quality are needed to protect human health.
Collapse
Affiliation(s)
- Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Ning Jiang
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Li S, Wang G, Geng Y, Wu W, Duan X. Lung function decline associated with individual short-term exposure to PM 1, PM 2.5 and PM 10 in patients with allergic rhinoconjunctivitis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158151. [PMID: 35988632 DOI: 10.1016/j.scitotenv.2022.158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The susceptibility of allergic rhinoconjunctivitis (ARC) patients to air pollution has yet to be clarified. OBJECTIVES Based on a repeated measurement panel study, we explored the association of short-term PM exposure with lung function in ARC patients and to further identify the susceptible populations. METHODS Personal PM exposure, including PM1, PM2.5 and PM10, was monitored consecutively for three days before outcomes measurements. Lung function indices including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75 % of the vital capacity (FEF25-75) were measured. Serum total immunoglobulin E (IgE), specific-allergen IgE, blood eosinophil and basophils, and the symptoms severe scores were tested in each visit. Linear mixed effect models were applied to estimate the association between PM exposure and lung function. Furthermore, stratified and overlapping grouped populations based on IgE levels were implemented to characterize the modification role and the modulating threshold of IgE at which the association turned significantly negative. RESULTS Short-term PM personal exposure was associated with a significant decrease in lung function in ARC patients, especially for small airway respiratory indexes. The highest estimates occurred in PM1, specifically a 10 μg/m3 increase reduced FEV1/FVC, PEF and FEF25-75 by 1.36 % (95 %CI: -2.29 to -0.43), 0.23 L/s (95 %CI: -0.42 to -0.03) and 0.18 L/s (95 %CI: -0.30 to -0.06), respectively. Notably, PM-induced decreases in lung function were stronger in patients with higher IgE levels (IgE ≥ 100 IU/mL), which were related to higher inflammatory cytokines and symptoms scores. Further, PM-associated lung function declines enhanced robustly and monotonically with increasing IgE concentration. Potential modulating thresholds of IgE occurred at 46.8-59.6 IU/mL for significant PM-lung function associations. CONCLUSION These novel findings estimated the short-term effects of PM on lung function in ARC patients, and the threshold values of IgE for the significant and robust associations.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Wang
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yishuo Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Wu
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Fang J, Gao Y, Zhang M, Jiang Q, Chen C, Gao X, Liu Y, Dong H, Tang S, Li T, Shi X. Personal PM 2.5 Elemental Components, Decline of Lung Function, and the Role of DNA Methylation on Inflammation-Related Genes in Older Adults: Results and Implications of the BAPE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15990-16000. [PMID: 36214782 DOI: 10.1021/acs.est.2c04972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epidemiological evidence of the effects of PM2.5 elements on lung function and DNA methylation is limited. We conducted a longitudinal panel study of 76 healthy older adults aged 60-69 years in Jinan, China, from September 2018 to January 2019. We periodically measured individual 72 h PM2.5 and element concentrations, lung function, and DNA methylation levels of eight inflammation-related genes. We used linear mixed-effect models to investigate the effects of exposure to personal PM2.5 elements on the lung function and DNA methylation. Mediation analysis was used to investigate the underlying effect mechanism. Negative changes in the ratio of forced expiratory volume in 1 s to forced vital capacity, ranging from -1.23% [95% confidence interval (CI): -2.11%, -0.35%] to -0.77% (95% CI: -1.49%, -0.04%), were significantly associated with interquartile range (IQR) increases in personal PM2.5 at different lag periods (7-12, 13-24, 25-48, 0-24, 0-48, and 0-72 h). Arsenic (As), nickel, rubidium (Rb), selenium, and vanadium were significantly associated with at least three lung function parameters, and IQR increases in these elements led to 0.12-5.66% reductions in these parameters. PM2.5 elements were significantly associated with DNA methylation levels. DNA methylation mediated 7.28-13.02% of the As- and Rb-related reduced lung function. The findings indicate that exposure to elements in personal PM2.5 contributes to reduced lung function through DNA methylation.
Collapse
Affiliation(s)
- Jianlong Fang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Meiyun Zhang
- Chaoyang District Center for Disease Control and Prevention, Beijing 100021, China
| | - Qizheng Jiang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Gao
- School of Public Health, Peking University, Beijing 100191, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Zhang W, Ma R, Wang Y, Jiang N, Zhang Y, Li T. The relationship between particulate matter and lung function of children: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119735. [PMID: 35810981 DOI: 10.1016/j.envpol.2022.119735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 05/17/2023]
Abstract
There have been many studies on the relationship between fine particulate matter (PM2.5) and lung function. However, the impact of short-term or long-term PM2.5 exposures on lung function in children is still inconsistent globally, and the reasons for the inconsistency of the research results are not clear. Therefore, we searched the PubMed, Embase and Web of Science databases up to May 2022, and a total of 653 studies about PM2.5 exposures on children's lung function were identified. Random effects meta-analysis was used to estimate the combined effects of the 25 articles included. PM2.5 concentrations in short-term exposure studies mainly come from individual and site monitoring. And for every 10 μg/m3 increase, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and peak expiratory flow (PEF) decreased by 21.39 ml (95% CI: 13.87, 28.92), 25.66 ml (95% CI: 14.85, 36.47) and 1.76 L/min (95% CI: 1.04, 2.49), respectively. The effect of PM2.5 on lung function has a lag effect. For every 10 μg/m3 increase in the 1-day moving average PM2.5 concentration, FEV1, FVC and PEF decreased by 14.81 ml, 15.40 ml and 1.18 L/min, respectively. PM2.5 concentrations in long-term exposure studies mainly obtained via ground monitoring stations. And for every 10 μg/m3 increase, FEV1, FVC and PEF decreased by 61.00 ml (95% CI: 25.80, 96.21), 54.47 ml (95% CI: 7.29, 101.64) and 10.02 L/min (95% CI: 7.07, 12.98), respectively. The sex, body mass index (BMI), relative humidity (RH), temperature (Temp) and the average PM2.5 exposure level modify the relationship between short-term PM2.5 exposure and lung function. Our study provides further scientific evidence for the deleterious effects of PM2.5 exposures on children's lung function, suggesting that exposure to PM2.5 is detrimental to children's respiratory health. Appropriate protective measures should be taken to reduce the adverse impact of air pollution on children's health.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Public Health, Nanjing Medical University, Nanjing, 211100, China; China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Ning Jiang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China
| | - Tiantian Li
- School of Public Health, Nanjing Medical University, Nanjing, 211100, China; China CDC Key Laboratory of Environment and Population, Health Chinese Center for Disease, China.
| |
Collapse
|
8
|
Zhou J, Lei R, Xu J, Peng L, Ye X, Yang D, Yang S, Yin Y, Zhang R. The Effects of Short-Term PM 2.5 Exposure on Pulmonary Function among Children with Asthma-A Panel Study in Shanghai, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11385. [PMID: 36141658 PMCID: PMC9517124 DOI: 10.3390/ijerph191811385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Fine particulate matter (PM2.5) has been reported to be an important risk factor for asthma. This study was designed to evaluate the relationship between PM2.5 and lung function among children with asthma in Shanghai, China. From 2016 to 2019, a total of 70 Chinese children aged 4 to 14 in Shanghai were recruited for this panel study. The questionnaire was used to collect baseline information, and the lung function covering forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) were carried out for each child more than twice during follow-up. Meanwhile, the simultaneous daily air atmospheric pollutants and meteorological data were collected. The linear mixed effect (LME) model was used to assess the relationship between air pollutants and lung function. A significantly negative association was found between PM2.5 and lung function in children with asthma. In the single-pollutant model, the largest effects of PM2.5 on lung function were found for lag 0-2, with FVC and FEV1 decreasing by 0.91% [95% confidence interval (CI): -1.75, -0.07] and 1.05% (95% CI: -2.09, 0.00), respectively, for each 10 μg/m3 increase in PM2.5. In the multi-pollution model (adjusted PM2.5 + SO2 + O3), the maximum effects of PM2.5 on FVC and FEV1 also appeared for lag 0-2, with FVC and FEV1 decreasing by 1.57% (95% CI: -2.69, -0.44) and 1.67% (95% CI: -3.05, -0.26), respectively, for each 10 μg/m3 increase in PM2.5. In the subgroup analysis, boys, preschoolers (<6 years old) and hot seasons (May to September) were more sensitive to changes. Our findings may contribute to a better understanding of the short-term exposure effects of PM2.5 on lung function in children with asthma.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200437, China
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianming Xu
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Li Peng
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Xiaofang Ye
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Dandan Yang
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Sixu Yang
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Yong Yin
- Department of Respiratory, School of Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renhe Zhang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200437, China
| |
Collapse
|
9
|
Chen R, Zhang J, Pang Y, Liu Q, Peng J, Lin X, Cao L, Gu W, Zhang L, Li R, Sun Q, Zhang R, Liu C. Qianjinweijing Decoction Protects Against Fine Particulate Matter Exposure-mediated Lung Function Disorder. Front Pharmacol 2022; 13:873055. [PMID: 35814198 PMCID: PMC9263354 DOI: 10.3389/fphar.2022.873055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Fine particulate matter (PM2.5) is well known to impair lung function. Strategies protecting against PM2.5-exerted lung dysfunction have been less investigated. Qianjinweijing decoction (QJWJ), a decoction of a herbal medicine of natural origin, has been used to treat lung disorders as it inhibits oxidation and inflammation. However, no clinical trial has yet evaluated the role of QJWJ in PM2.5-induced lung dysfunction. Therefore, we conducted a randomized, double-blind, placebo-controlled trial to assess whether QJWJ provided lung benefits against the adverse effects of PM2.5 exposure among adults. Eligible participants (n = 65) were recruited and randomized to receive QJWJ decoction (n = 32) or placebo (n = 33) for 4 weeks. The restrictive ventilatory defect (RVD), lung function parameters, and induced sputum were analyzed. The PM2.5 exposure concentration was significantly associated with the vital capacity (VC), peak expiratory flow (PEF), and forced expiratory flow at 75% of the forced vital capacity (FEF75). The negative associations between PM2.5 and the lung function parameters were eliminated in response to the QJWJ intervention. Additionally, the percentage of RVD (P = 0.018) and the proportion of eosinophils (Eo%) in induced sputum (P = 0.014) in the QJWJ group was significantly lower than that in the placebo group. This study demonstrated that QJWJ could alleviated PM2.5-induced lung dysfunction and could be a potential treatment for air pollution-related chronic respiratory disease.
Collapse
Affiliation(s)
- Rucheng Chen
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Jinna Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Jing Peng
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Lin
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Cuiqing Liu, ; Rong Zhang,
| | - Cuiqing Liu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
- *Correspondence: Cuiqing Liu, ; Rong Zhang,
| |
Collapse
|
10
|
Yang X, Wang Q, Han F, Dong B, Wen B, Li L, Ruan H, Zhang S, Kong J, Zhi H, Wang C, Wang J, Zhang M, Xu D. Pulmonary Benefits of Intervention with Air Cleaner among Schoolchildren in Beijing: A Randomized Double-Blind Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7185-7193. [PMID: 34491046 DOI: 10.1021/acs.est.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We conducted a crossover study employing air cleaner intervention among 125 schoolchildren aged 9-12 years in a boarding school in Beijing, China. The PM concentrations were monitored, and 27 biomarkers were analyzed. We used the linear mixed-effects model to evaluate the association of intervention/time-weighted PM concentrations with biomarkers. The outcomes showed that air cleaner intervention was associated with FeNO, exhaled breath condensate (EBC) IL-1β, and IL-6, which decreased by 12.57%, 10.83%, and 4.33%, respectively. Similar results were observed in the associations with PMs. Lag 1 day PMs had the strongest relationship with biomarkers, and significant changes were observed in biomarkers such as FEV1, FeNO, EBC 8-iso, and MCP-1. Boys showed higher percentage changes than girls, and the related biomarkers were FeNO, EBC 4-HNE, IL-1β, IL-6, and MCP-1. The results showed that biomarkers such as FeNO, EBC IL-6, MCP-1, and 4-HNE could sensitively reflect the early abnormal response of the respiratory system under short-term PM exposure among healthy schoolchildren and indicated that (1) air cleaners exert a protective effect on children's respiratory system. (2) PM had lag and cumulative effect, lag 1 day had the greatest effect. (3) The boys were more sensitive than the girls.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qin Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Air Quality and Health Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Han
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Bo Wen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Li Li
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongjie Ruan
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shaoping Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Kong
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Zhi
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jun Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Chemistry, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ming Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dongqun Xu
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
11
|
Liu M, Zhao L, Liu L, Guo W, Yang H, Chen S, Yu J, Li M, Fang Q, Lai X, Yang L, Zhu R, Zhang X. Urinary phthalate metabolites mixture, serum cytokines and renal function in children: A panel study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126963. [PMID: 34449333 DOI: 10.1016/j.jhazmat.2021.126963] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 05/26/2023]
Abstract
Epidemiological evidence regarded the relations of phthalates with children's renal function and its underlying mechanism were largely unknown. We conducted a panel study using 287 paired urine-blood samples by repeated measurements of 103 children (4-13 years) across 3 seasons to explore effects of urinary phthalate metabolites on estimated glomerular filtration rate (eGFR) and the potential role of multiple cytokines. We found that mono-ethyl phthalate (MEP), monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP) and mono-n-octyl phthalate (MOP) were significantly associated with eGFR reduction. Compared with the lowest quartile, MBP, MBzP and MEP in the third and fourth quartiles exhibited a graded decrease in eGFR. Meanwhile, weighted quantile sum regression analyses showed an inverse association of metabolites mixture with eGFR, to which MEP, MBzP, MOP were the major contributors. MEP also remained robust in multiple-phthalate model. Age and weight status might modify such relationships with significant interactions. Furthermore, eGFR related phthalate metabolites were associated with increased multiple cytokines, and CCL27, CXCL1 might be potential mediators between MEP and eGFR with mild mediated proportions. Accordingly, urinary phthalate metabolites were related to eGFR reduction in dose-response manner and multiple cytokines elevation, of which CCL27 and CXCL1 might partly mediate phthalate-associated decreased renal function among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of medical affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Ye Z, Wang B, Mu G, Zhou Y, Qiu W, Yang S, Wang X, Zhang Z, Chen W. Short-term effects of real-time individual fine particulate matter exposure on lung function: a panel study in Zhuhai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65140-65149. [PMID: 34231152 DOI: 10.1007/s11356-021-15246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is still the primary air pollutant in most Chinese cities and its adverse effects on lung function have been widely reported. However, short-term effects of individual exposure to PM2.5 on pulmonary expiration flow indices remain largely unknown. In this study, we examined the short-term effects of real-time individual exposure to PM2.5 on lung function in a panel of 115 healthy adults. We measured individual real-time PM2.5 exposure and lung function. Environmental PM2.5 concentrations in the same period were collected from the nearest monitoring station. Generalized linear model was used to assess the effects of individual PM2.5 exposure on lung function after adjusting for potential confounders. Individual PM2.5 exposure ranged from 18.5 to 42.4 μg/m3 with fluctuations over time and ambient PM2.5 concentrations presented a moderate trend of fluctuation at the same day. Except forced expiratory volume in 1 s (FEV1) decline related to 2-h moving average PM2.5 exposure, no significant associations between individual PM2.5 exposure and other volume indices including forced vital capacity (FVC) and FEV1/FVC ratio were observed. The adverse effects of individual PM2.5 exposure on pulmonary expiration flow indices including peak expiratory flow (PEF), maximal mid-expiratory flow (MMF) and forced expiratory flow at 50%, and 75% of vital capacity (FEF50% and FEF75%) were observed to be strongest at 2 moving average hours and could last for 24 h. Stratified analysis showed greater and longer effects among participants who were aged over 40 years, males, or smokers. These findings suggested that individual PM2.5 exposure was significantly associated with altered lung function, especially with pulmonary expiration flow indices decline, which was strongest at 2 moving average hours and could last for 24 h.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Feo-Brito F, Alfaya Arias T, Amo-Salas M, Somoza Álvarez ML, Haroun Díaz E, Mayorga Mayorga C, Fernández Santamaría R, Urra Ardanaz JM. Clinical impact and immunological alterations in asthmatic patients allergic to grass pollen subjected to high urban pollution in Madrid. Clin Exp Allergy 2021; 52:530-539. [PMID: 34741765 DOI: 10.1111/cea.14041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The prevalence of asthma has increased in recent decades. Among the reasons for this increase is environmental pollution. Pollutants cause bronchial inflammation and introduce modifications in the pollen, making it more allergenic. OBJECTIVE Assess symptoms and medication requirements of asthmatic patients with grass allergies in Madrid (high urban pollution) and Ciudad Real (low pollution), and simultaneously evaluate the in vitro effects that pollen collected in both areas has on the immune cells of patients. METHODS During two pollen seasons, patients from both cities were included. The patients recorded their symptoms and the asthma medication they took daily. In both cities, pollen data, pollutants and meteorological variables were evaluated. The response to different cell populations from patients in both areas were analysed after "in vitro" stimulation with pollen from both cities. RESULTS The symptoms and medication use of the patients in Madrid was 29.94% higher. The NO2 concentration in Madrid was triple that of Ciudad Real (33.4 vs. 9.1 µg/m3 of air). All other pollutants had very similar concentrations during the study period. Pollen from the high pollution area caused a significant enhancement of T-CD8+ and NK cells proliferation compared with pollen of low pollution area, independently of the patient's origin. CONCLUSION Asthmatic patients from Madrid have a worse clinical evolution than those from Ciudad Real because of higher levels of urban pollution, and this could be driven by the higher capacity of pollen of Madrid to activate T-CD8+ and NK cells.
Collapse
Affiliation(s)
- Francisco Feo-Brito
- Allergy, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | | | - Mariano Amo-Salas
- Facultad de Medicina de Ciudad Real, Departamento de Matemáticas, Universidad de Castilla La Mancha (UCLM), Ciudad Real, Spain
| | | | | | | | - Rubén Fernández Santamaría
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Miguel Urra Ardanaz
- Facultad de Medicina, Universidad de Castilla-La Mancha (UCLM), Ciudad Real, Spain.,Immunology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
14
|
Ma H, Liu F, Yang X, Liu Q, Wang X, Xing X, Lin Z, Cao J, Li J, Huang K, Yan W, Liu T, Fan M, Chen S, Lu X, Gu D, Huang J. Association of short-term fine particulate matter exposure with pulmonary function in populations at intermediate to high-risk of cardiovascular disease: A panel study in three Chinese cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112397. [PMID: 34116334 DOI: 10.1016/j.ecoenv.2021.112397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Decline in pulmonary function contributes to increasing cardiovascular disease (CVD) risk. Although adverse effects of short-term exposure to fine particulate matter (PM2.5) on pulmonary function have been recognized in healthy people or patients with respiratory disease, these results were not well illustrated among people with elevated CVD risk. MATERIALS AND METHODS A panel study was conducted in three Chinese cities with three repeated visits among populations at intermediate to high-risk of CVD, defined as treated hypertension patients or those with blood pressure ≥ 130/80 mmHg, who met any of the three conditions including abdominal obesity, dyslipidemia, and diabetes mellitus. Individualized PM2.5 exposure and pulmonary function were measured during each seasonal visit. Linear mixed-effect models were applied to analyze the associations of PM2.5 concentrations with pulmonary function indicators, including forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity (FVC), maximal mid-expiratory flow (MMF), and peak expiratory flow (PEF). RESULTS Short-term PM2.5 exposure was significantly associated with decreased pulmonary function and an increment of 10 μg/m3 in PM2.5 concentrations during lag 12-24 hour was associated with declines of 41.7 ml/s (95% confidence interval [CI]: 7.7-75.7), 0.35% (95% CI: 0.01, 0.69), and 20.9 ml/s (95% CI: 0.5-41.3) for PEF, FEV1/FVC, and MMF, respectively. Results from stratified and sensitivity analyses were generally similar with the overall findings, while the adverse effects of PM2.5 on pulmonary functions were more pronounced in those who were physically inactive. CONCLUSIONS This study first identified short-term exposure to PM2.5 was associated with impaired pulmonary function and physical activity might attenuate the adverse effects of PM2.5 among populations at intermediate to high-risk of CVD. These findings provide new robust evidence on health effects of air pollution and call for effective prevention measures among people at CVD risk.
Collapse
Affiliation(s)
- Han Ma
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiong Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xinyan Wang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China; Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Xiaolong Xing
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Zhennan Lin
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Tingting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Fan
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| |
Collapse
|
15
|
Qin J, Xia W, Liang G, Xu S, Zhao X, Wang D, Sun X, Li Y, Liu H. Association of fine particulate matter with glucose and lipid metabolism: a longitudinal study in young adults. Occup Environ Med 2021; 78:oemed-2020-107039. [PMID: 33637624 DOI: 10.1136/oemed-2020-107039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This study aimed to evaluate whether PM2.5 exposure in a highly polluted area (>100 µg/m3) affects glucose and lipid metabolism in healthy adults. METHODS We recruited 110 healthy adults in Baoding city, Hebei, China, and followed them up between 2017 and 2018. Personal air samplers were used to monitor personal PM2.5 levels. Eight glucose and lipid metabolism parameters were quantified. We performed the linear mixed-effect models to investigate the relationships between PM2.5 and glucose and lipid metabolism parameters. Stratified analyses were further performed according to sex and body mass index (BMI). RESULTS The concentration of PM2.5 was the highest in spring, with a median of 232 μg/m3 and the lowest in autumn (139 μg/m3). After adjusting for potential confounders, we found that for each twofold increase in PM2.5, the median of insulin concentration decreased by 5.89% (95% CI -10.91% to -0.58%; p<0.05), and ox-LDL increased by 6.43% (95% CI 2.21% to 10.82%; p<0.05). Stratified analyses indicated that the associations were more pronounced in females, overweight and obese participants. CONCLUSIONS Exposure to high PM2.5 may have deleterious effects on glucose and lipid metabolism. Females, overweight and obese participants are more vulnerable.
Collapse
Affiliation(s)
- Jingyi Qin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaodao Liang
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Danlu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Differential contribution of bone marrow-derived infiltrating monocytes and resident macrophages to persistent lung inflammation in chronic air pollution exposure. Sci Rep 2020; 10:14348. [PMID: 32873817 PMCID: PMC7462977 DOI: 10.1038/s41598-020-71144-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure to particulate matter < 2.5µ (PM2.5) has been linked to cardiopulmonary disease. Tissue-resident (TR) alveolar macrophages (AΦ) are long-lived, self-renew and critical to the health impact of inhalational insults. There is an inadequate understanding of the impact of PM2.5 exposure on the nature/time course of transcriptional responses, self-renewal of AΦ, and the contribution from bone marrow (BM) to this population. Accordingly, we exposed chimeric (CD45.2/CD45.1) mice to concentrated PM2.5 or filtered air (FA) to evaluate the impact on these end-points. PM2.5 exposure for 4-weeks induced an influx of BM-derived monocytes into the lungs with no contribution to the overall TR-AΦ pool. Chronic (32-weeks) PM2.5 exposure on the other hand while associated with increased recruitment of BM-derived monocytes and their incorporation into the AΦ population, resulted in enhanced apoptosis and decreased proliferation of TR-AΦ. RNA-seq analysis of isolated TR-AΦ and BM-AΦ from 4- and 32-weeks exposed mice revealed a unique time-dependent pattern of differentially expressed genes. PM2.5 exposure resulted in altered histological changes in the lungs, a reduced alveolar fraction which corresponded to protracted lung inflammation. Our findings suggest a time-dependent entrainment of BM-derived monocytes into the AΦ population of PM2.5 exposed mice, that together with enhanced apoptosis of TR-AΦ and reorganization of transcriptional responses, could collectively contribute to the perpetuation of chronic inflammation.
Collapse
|
17
|
Liu W, Cai J, Fu Q, Zou Z, Sun C, Zhang J, Huang C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. CHEMOSPHERE 2020; 252:126600. [PMID: 32234631 DOI: 10.1016/j.chemosphere.2020.126600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Findings are inconsistent in studies for impacts of outdoor air pollutants on airway health in childhood. In this paper, we collected data regarding airway and allergic symptoms in the past year before a survey in 13,335 preschoolers from a cross-sectional study. Daily averaged concentrations of ambient sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10 μm (PM10) in the past year before the survey were collected in the kindergarten-located district. We investigated associations of 12-month average concentrations of these pollutants with childhood airway and allergic symptoms. In the two-level (district-child) logistic regression analyses, exposure to higher level of NO2 and of PM10 increased odds of wheeze symptoms (adjusted OR, 95%CI: 1.03, 1.01-1.05 for per 3.0 μg/m3 increase in NO2; 1.22, 1.09-1.39 for per 7.6 μg/m3 increase in PM10), wheeze with a cold (1.03, 1.01-1.06; 1.22, 1.08-1.39), dry cough during night (1.05, 1.03-1.08; 1.23, 1.09-1.40), rhinitis symptoms (1.11, 1.08-1.13; 1.32, 1.07-1.63), rhinitis on pet (1.11, 1.05-1.18; 1.37, 0.95-1.98) and pollen (1.12, 1.03-1.21; 1.23, 0.84-1.82) exposure, eczema symptoms (1.09, 1.05-1.12; 1.22, 0.98-1.52), and lack of sleep due to eczema (1.12, 1.07-1.18; 1.58, 1.25-1.98). Exposures to NO2 and PM10 were also significantly and positively associated with the accumulative score of airway symptoms. Similar positive associations were found of NO2 and of PM10 with the individual symptoms and symptom scores among preschoolers from different kindergarten-located district. These results indicate that ambient NO2 and PM10 likely are risk factors for airway and allergic symptoms in childhood in Shanghai, China.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China; School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
18
|
Zhou Y, Ma J, Wang B, Liu Y, Xiao L, Ye Z, Fan L, Wang D, Mu G, Chen W. Long-term effect of personal PM 2.5 exposure on lung function: A panel study in China. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122457. [PMID: 32151939 DOI: 10.1016/j.jhazmat.2020.122457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Exposure to fine particulate matter (PM2.5) have been associated with adverse respiratory outcomes, but long-term effect of personal exposure on lung function remains largely unknown. We conducted a panel study of 158 adult residents with 394 measurements of personal PM2.5 concentration and lung function within six years to investigate the long-term association. Linear mixed models were used to identify the associations between lung function changes in relation to different levels of persistent personal PM2.5 exposure in three or six years. We further attempted to validate resident areas (city) and smoking status as potential predictors of the long-term PM2.5 exposure levels (persistently high/ persistently low) by generating ROC curves. Compared with subjects who had persistently low exposure level, those with persistently high levels of personal PM2.5 exposure had an additional 3.63 % decline in FEV1/FVC in three years (-3.63 [-7.25, -0.02]), while 7.15 % decline in six years (-7.15 [-14.27, -0.03]). BMI can modify the association. The AUCs were 0.68 (95 %CI: 0.54, 0.82), 0.75 (0.64, 0.86), and 0.82 (0.71, 0.93) for models including smoking status, resident areas, and smoking status combining resident areas respectively. These findings provide new evidence for the long-term effect of personal PM2.5 exposure on lung function decline.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
19
|
Zong Z, Tan Y, Wang X, Tian C, Li J, Fang Y, Chen Y, Cui S, Zhang G. Dual-modelling-based source apportionment of NO x in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014. ENVIRONMENT INTERNATIONAL 2020; 137:105592. [PMID: 32106050 DOI: 10.1016/j.envint.2020.105592] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
In China, nitrate (NO3-) becomes the main contributor to fine particles (PM2.5) because the emissions of its precursor, nitrogen oxides (NOx), were not recognized and controlled well in recent years. In this work, sources, conversion, and geographical origin of NOx were interpreted combining the isotopic information (δ15N and δ18O) of NO3- and dual modelling at five Chinese megacities (Beijing, Shanghai, Guangzhou, Wuhan and Chengdu) during 2013-2014. Results showed that the δ15N-NO3- values (n = 512) ranged from -12.3‰ to +22.9‰, and the average δ18O-NO3- value was +83.4‰ ± 17.2‰. The isotopic compositions both had a rising tendency as ambient temperature dropped, attributing largely to the source changes. Bayesian model indicated the percentage for the OH pathway of NOx conversion had a clear seasonal variation with a higher value during summer (58.0% ± 9.82%) and a lower value during winter (11.1% ± 3.99%); it was also significantly correlated with latitude (p < 0.01). Coal combustion was the most important source of NOx (31.1%-41.0%), which was geographically derived from North China and other south-central developed regions implied by Potential Source Contribution Function (PSCF). Apart from Chengdu, mobile sources was the second largest contributor to NOx. This source was extensive but uniformly distributed all around the typical urban agglomerations of China. Biomass burning and microbial processes shared similar source areas, mostly originating from the North China Plain and Sichuan Basin. Based on the NOx features, we infer that residential coal combustion was the primary source of heavy PM2.5 pollution in Chinese megacities. Controlling the source categories of these regional priorities would help mitigate atmospheric pollution in these areas.
Collapse
Affiliation(s)
- Zheng Zong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Yang Tan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Yoda Y, Takagi H, Wakamatsu J, Ito T, Nakatsubo R, Horie Y, Hiraki T, Shima M. Stronger association between particulate air pollution and pulmonary function among healthy students in fall than in spring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:483-489. [PMID: 31030154 DOI: 10.1016/j.scitotenv.2019.04.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have reported the short-term effects of particulate air pollution on health. However, most of those studies were relatively short in duration, with only a few, in healthy adolescents. We investigated the short-term effects of particulate air pollution on pulmonary function in healthy adolescents over a long period. A panel study was repeatedly conducted twice a year for about one month each, in spring and fall from 2014 to 2016, in an isolated island in the Seto Inland Sea, Japan. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in a total of 48 healthy college students aged 15-19 years. The ambient concentrations of particulate matter with diameter ≤2.5 μm (PM2.5) and between 2.5 and 10 μm (PM10-2.5), and black carbon (BC) were continuously measured. A mixed-effects model was used to investigate the relationships between air pollutants and pulmonary function. In the overall analyses of the six study periods, decreases in the PEF and FEV1 were significantly associated with increases in the PM2.5 and BC concentrations. The greatest decrease was found in FEV1 (-1.97% [95% confidence interval (CI): -2.90, -1.04]), which was associated with an interquartile range (IQR) increase in the 0-72-h average concentrations of PM2.5 (14.1 μg/m3). Neither PEF nor FEV1 were associated with PM10-2.5 concentrations. In the analyses by season, both the PEF and FEV1 values decreased significantly in relation to increases in the PM2.5, PM10-2.5 and BC concentrations in the fall. However, in spring, both PEF and FEV1 showed weak associations with each of the pollutants. In conclusion, relatively low increases in the ambient particulate matter levels were associated with reduced pulmonary function among healthy adolescents. This association was stronger in fall than in spring.
Collapse
Affiliation(s)
- Yoshiko Yoda
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Hiroshi Takagi
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima, Japan.
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Yosuke Horie
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Japan.
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
21
|
Wu P, Huang X, Zhang J, Luo B, Luo J, Song H, Zhang W, Rao Z, Feng Y, Zhang J. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2649-2661. [PMID: 30478772 DOI: 10.1007/s11356-018-3630-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
To investigate the characteristics and formation mechanisms of haze pollution in the autumn season in the Sichuan Basin, hourly concentrations of water-soluble inorganic ions in PM2.5 (Na+, K +, NH4+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) and major gaseous precursors (HCl, NH3, SO2, HONO, and HNO3) were measured by a gas and aerosol collector combined with ion chromatography (GAC-IC) from September to November 2017 at an urban site in Chengdu. The average mass concentration of total water-soluble ions was 36.9 ± 29.4 μg m-3, accounting for 62.8% of PM2.5 mass. Nitrate was the most abundant ion, comprising 41.2% of the total ions, followed by sulfate (27.1%) and ammonium (18.1%), indicating the important contribution of motor vehicle emissions to PM2.5 in Chengdu. Secondary formation of inorganic ions and biomass burning emissions played a vital role in the haze pollution processes. The formation of nitrate aerosol was particularly dominant and exhibited the most substantial increase during haze processes. It was likely to be produced primarily through homogeneous reactions, whereas heterogeneous reactions dominated sulfate formation. Additionally, distinct differences in diurnal patterns of secondary inorganic ions between clean days and polluted days were observed, reflecting different formation characteristics under polluted conditions. Due to a large increase of acidic aerosols, most particles collected on polluted days were acidic, and ammonium in most samples existed mainly as NH4HSO4 and NH4NO3. Furthermore, backward-trajectory cluster analysis revealed that air masses originating from the northeast of Chengdu prevailed in the autumn season, and haze pollution was dominated mainly by short-distance transport within the Sichuan Basin.
Collapse
Affiliation(s)
- Pan Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiaojuan Huang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Bin Luo
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Jinqi Luo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongyi Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Wei Zhang
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Zhihan Rao
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Yanpeng Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jianqiang Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|