1
|
Almeida-Junior S, de Oliveira KRP, Marques LP, Martins JG, Ubeda H, Santos MFC, Rodrigues MA, Andrade E Silva ML, Ambrósio SR, Bastos JK, Ross SA, Furtado RA. In vivo anti-inflammatory activity of BACCHARIN from BRAZILIAN green PROPOLIS. Fitoterapia 2024; 175:105975. [PMID: 38685509 DOI: 10.1016/j.fitote.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Baccharin is one of the major compounds found in Brazilian green propolis and its botanical source, Baccharis dracunculifolia. Considering the biological effects of propolis and B. dracunculifolia, this study aims to evaluate the analgesic and anti-inflammatory potential of baccharin. The neurodepressor potential was performed by the open field test, analgesia by mechanical stimulation with Dynamic Plantar Aesthesiometer, and by thermal stimulation with Hargreaves apparatus. In addition, the anti-inflammatory potential was achieved by the paw edema assay, histopathological evaluation, and NF-kB expression. Doses of 2.5, 5, and 10 mg/kg of baccharin were evaluated. After euthanasia, plantar tissue was collected and prepared for histology. As a result, analgesic activity was observed at a dose of 10 mg/kg of baccharin in thermal stimulation under an inflammatory process and anti-inflammatory potential at a dose of 5 mg/kg of baccharin from the second hour in the paw edema test. A decrease in cellular infiltrate and down-modulation of NF-kB, besides the reduction of edema in the histopathology was observed. There was no evidence of kidney and liver toxicity and neurodepressive potential at the doses tested. Thus, baccharin has a promising anti-inflammatory effect possibly associated with antiedematogenic activity by inhibiting mediators such as prostaglandins, inhibiting the migration of polymorphonuclear cells, and modulating NF-kB expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | | |
Collapse
|
2
|
Hu Z, Sun Y, Liu S, Xiang Y, Li M, Li Y, Li Y, Liu X, Fu M. Dietary additive ferulic acid alleviated oxidative stress, inflammation, and apoptosis induced by chronic exposure to avermectin in the liver of common carp (Cyprinus carpio). Toxicon 2024; 244:107755. [PMID: 38740097 DOI: 10.1016/j.toxicon.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.
Collapse
Affiliation(s)
- Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujuan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiguang Liu
- Neurosurgery Department, Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
Abstract
Background
Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.
Methods
Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.
Results
Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.
Conclusion
Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
4
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
5
|
Wang K, Liu H, Sun W, Guo J, Jiang Z, Xu S, Miao Z. Eucalyptol alleviates avermectin exposure-induced apoptosis and necroptosis of grass carp hepatocytes by regulating ROS/NLRP3 axis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106739. [PMID: 37918148 DOI: 10.1016/j.aquatox.2023.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The wide application of Avermectin (AVM) has caused pollution of surface water and damage to non-target organisms. A growing body of evidence supports the most prominent role of Eucalyptol (EUC) is antioxidation. To the purpose of explore the injury mechanism of Avermectin on grass carp hepatocytes and the antagonistic effect of Eucalyptol, 5.7 μM AVM and/or 20 μM EUC were used to treat grass carp hepatocytes for 24 h to establish hepatocyte exposure model. The results showed that Avermectin exposure significantly increased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in cells, reduced the activities of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC). Also, the expressions of NLRP3 inflammasome-related genes including NLRP3, ASC, and Caspase-1, the necroptosis-related genes including RIPK1, RIPK3, and MLKL and apoptotic genes including Bax, Caspase-3, and Caspase-9 were all up-regulated. Meanwhile, the expressions of Caspase-8 and Bcl-2 were significantly decreased upon exposure to Avermectin. However, the toxicity was significantly alleviated with the treatment of EUC or N-acetyl-l-cysteine (NAC). The above results indicated that eucalyptol alleviated AVM exposure-induced apoptosis and necroptosis of grass carp hepatocytes by regulating the ROS/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhihui Jiang
- Henan Beiai Natural Product Application and Development Engineering Research Center, Anyang Institute of Technology, Anyang, Henan 455000, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Zhiying Miao
- College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| |
Collapse
|
6
|
Wu X, Ma Y, Li X, He N, Zhang T, Liu F, Feng H, Dong J. Molecular mechanism of kidney damage caused by abamectin in carp: Oxidative stress, inflammation, mitochondrial damage, and apoptosis. Toxicology 2023; 494:153599. [PMID: 37499778 DOI: 10.1016/j.tox.2023.153599] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Indiscriminate use of pesticides not only leads to environmental pollution problems, but also causes poisoning of non-target organisms. Abamectin (ABM), a widely used insecticide worldwide, is of wide concern due to its persistence in the environment and its high toxicity to fish. The kidney, as a key organ for detoxification, is more susceptible to the effects of ABM. Unfortunately, few studies investigated the mechanisms behind this connection. In this study, carp was used as an indicator organism for toxicological studies to investigate renal damage caused by ABM residues in carp. In this work, carp were exposed to ABM (0, 3.005, and 12.02 μg/L) for 4 d and the nephrotoxicity was assessed. Histopathological findings revealed that ABM exposure induced kidney damage in carp, as well as an increase Creatinine and BUN levels. Meanwhile, ABM as a reactive oxygen species (ROS) stimulator, boosted ROS bursts and lowered antioxidant enzyme activity while activating the body's antioxidant system, the Nrf2-Keap1 signaling pathway. The accumulation of ROS can also lead to the imbalance of the body's oxidation system, leading to oxidative stress. At the same time, NF-κB signaling pathway associated with inflammation was activated, which regulated expression levels of inflammatory cytokines (TNF-α, IL-6, IL-1β, and iNOS increased, while IL-10 and TGF-β1 decreased). In addition, ABM exposure caused structural damage to kidney mitochondria of carp, resulting in decreased mitochondrial membrane potential and ATP production capacity, and mediated apoptosis through endogenous pathways Bax/Bcl-2/Caspase-9/Caspase-3. In conclusion, ABM caused kidney damage in carp by inducing oxidative stress, inflammation, and apoptosis through mitochondrial pathway. These findings will be useful for future research into molecular mechanisms of ABM-induced nephrotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Tekeli MY, Eraslan G, Bayram LÇ, Aslan C, Çalımlı S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53997-54021. [PMID: 36869176 DOI: 10.1007/s11356-023-26110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the effects of baicalin, chrysin and their combinations against emamectin benzoate-induced toxicity in rats. For this purpose, sixty four rats were divided into evenly 8 groups with 6-8-week-old male Wistar albino rats, weighing 180-250 g, in each group. While the first group was kept as a control (corn oil), the remaining 7 groups were administered with emamectin benzoate (10 mg/kg bw), baicalin (50 mg/kg bw) and chrysin (50 mg/kg bw) alone or together for 28 days. Oxidative stress parameters, serum biochemical parameters and blood/tissue (liver, kidney, brain, testis and heart) and tissue histopathology were investigated. Compared to the control group, the emamectin benzoate-intoxicated rats had significantly higher tissue/plasma concentrations of nitric oxide (NO) and malondialdehyde (MDA), as well as lower tissue glutathione (GSH) concentrations and antioxidant enzyme activity (glutathione peroxidase/GSH-Px, glutathione reductase/GR, glutathione-S-transferase/GST, superoxide dismutase/SOD, catalase/CAT). Biochemical analysis showed that emamectin benzoate administration significantly increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities, as well as triglyceride, cholesterol, creatinine, uric acid and urea levels, and decreased serum total protein and albumin levels. The histopathological examination of the liver, kidney, brain, heart and testis tissues of the emamectin benzoate-intoxicated rats demonstrated necrotic changes. Baicalin and/or chrysin reversed the biochemical and histopathological alterations induced by emamectin benzoate on these tested organs. Therefore, baicalin and chrysin (alone or in combination) could offer protection against emamectin benzoate-induced toxicity.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Sinem Çalımlı
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Taysi S, Algburi FS, Taysi ME, Caglayan C. Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, COVID-19, and radiotherapy. Phytother Res 2023; 37:1115-1135. [PMID: 36562210 PMCID: PMC9880688 DOI: 10.1002/ptr.7707] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep, Turkey.,Department of Biology, College of Science, Tikrit University, Tikrit, Iraq.,College of Dentistry, Al-Kitab University, Altun Kupri, Iraq
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University-Bolu, Bolu, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Medical School, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
9
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wu X, Wang Y, Dong J. Non-target toxic effects of avermectin on carp spleen involve oxidative stress, inflammation, and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105190. [PMID: 36127050 DOI: 10.1016/j.pestbp.2022.105190] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Avermectin is one of the most widely used pesticides, but its toxicity to non-target organisms, especially aquatic organisms, has been ignored. Therefore, an acute spleen injury model of avermectin in carp was established to assess the non-target toxicity of avermectin to carp. In this study, 3.005 μg/L and 12.02 μg/L were set as the low and high dose groups of avermectin, respectively, and a four days acute exposure experiment was conducted. Pathological structure observation showed that avermectin damaged spleen tissue structure and produced inflammatory cell infiltration. Biochemical analysis showed that avermectin significantly reduced the activities of antioxidant enzymes CAT, SOD, and GSH-px, but increased the content of MDA, a marker of oxidative damage. Avermectin exposure also significantly increased the transcription levels of inflammatory cytokines such as IL-1β, IL-6, TNF-α, and INOS, and also significantly enhanced the activity of the inflammatory mediator iNOS, but suppressed the transcription levels of anti-inflammatory factors TGF-β1 and IL-10. In addition, TUNEL detected that the apoptosis rate increased significantly with the increase of avermectin dosage, and the transcription levels of apoptosis-related genes BAX, P53, and Caspase 3/9 also increased in a dose-dependent manner. This study is preliminary evidence that avermectin induces spleen injury in carp through oxidative stress, inflammation, and apoptosis, which has important implications for subsequent studies on the effects of avermectin on non-target organisms.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wang G, Wang Y, Dong J. Avermectin induces carp neurotoxicity by mediating blood-brain barrier dysfunction, oxidative stress, inflammation, and apoptosis through PI3K/Akt and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113961. [PMID: 35969982 DOI: 10.1016/j.ecoenv.2022.113961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Avermectin, a "low toxicity insecticide", has been widely used in recent years, but its non-target toxicity, especially to aquatic organisms, has been neglected. In this study, we evaluated the neurotoxic effects of avermectin on carp by establishing a 96 h avermectin acute toxicity test, and its possible mechanism was discussed. The 96 h LC50 of avermectin in carp was found to be 24.04 μg/L. Therefore, 3.005 μg/L and 12.02 μg/L were used as the low-dose and high-dose groups, respectively, to investigate the neurotoxic effects of avermectin on carp. The results of high-performance liquid chromatography (HPLC) analysis showed that avermectin accumulated in the carp brain. Histopathological observation and immunohistochemical analysis (IHC) of TNF-α and Bax showed that avermectin exposure led to inflammatory cell infiltration and neuronal necrosis. The mRNA levels of tight junction genes and the IHC results of ZO-1 and Occludin showed that the structure of the blood-brain barrier (BBB) was destroyed. Biochemical analysis showed that avermectin induced the accumulation of MDA in the brain and decreased the activity of antioxidant enzymes CAT and SOD, leading to oxidative stress. In addition, avermectin induces brain inflammation by activating NF-κB pathway and releasing inflammatory factors IL-1β, IL-6, TNF-α and iNOS. TEM and TUNEL assays showed that exposure to avermectin induced apoptosis in brain. what is more, the expression of apoptosis-related genes and proteins suggested that avermectin-induced apoptosis may be associated with inhibition of the PI3K/Akt signaling pathway. This study also showed that avermectin-induced NF-κB signaling activation was partially dependent on its upstream PI3K/Akt signaling pathway. Therefore, this study concludes that avermectin can induce neurotoxicity in carp by disrupting the blood-brain barrier structure and generating oxidative stress, inflammation, and apoptosis and that NF-κB and PI3K/Akt signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Deapartment of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
11
|
Kostić S, Vilotić A, Pirković A, Dekanski D, Borozan S, Nacka-Aleksić M, Vrzić-Petronijević S, Krivokuća MJ. Caffeic acid protects human trophoblast HTR-8/SVneo cells from H 2O 2-induced oxidative stress and genotoxicity. Food Chem Toxicol 2022; 163:112993. [PMID: 35398184 DOI: 10.1016/j.fct.2022.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Caffeic acid is highlighted as one of the major phenolic compounds present in foods with known antioxidant activity. This phenolic is among commonly consumed substances in everyday diet of pregnant women. However, there is not enough information on its effects during pregnancy, especially the most vulnerable early stage. Extravillous trophoblast cells are specific cells of the placenta that come in direct contact with maternal uterine tissue. Through this study we investigated the cytoprotective effects of caffeic acid on H2O2-induced oxidative damage in first trimester extravillous trophoblast cell line HTR-8/SVneo. Investigated concentrations (1-100 μM) of caffeic acid showed neither cytotoxic nor genotoxic effects on HTR-8/SVneo cells. The treatment with caffeic acid 100 μM significantly increased the percentage of cells in G2/M phase of the cell cycle, compared to non-treated cells. Pretreatment with caffeic acid (10 and 100 μM) attenuated oxidative DNA damage significantly, reduced cytotoxicity, protein and lipid peroxidation, and restored antioxidant capacity in trophoblast cells following H2O2 exposure. This beneficial outcome is probably mediated by the augmentation of GSH and effective ROS scavenging by caffeic acid. These promising results require further investigations to reveal the additional mechanisms/pathways and confirmation through studies in vivo.
Collapse
Affiliation(s)
- Sanja Kostić
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Andrea Pirković
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Dragana Dekanski
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Sunčica Borozan
- University of Belgrade, Faculty of Veterinary medicine, Department of Chemistry, Bulevar oslobođenja 18, 11000, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia
| | - Svetlana Vrzić-Petronijević
- University of Belgrade, Faculty of Medicine, Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
12
|
Salman M, Abbas RZ, Mehmood K, Hussain R, Shah S, Faheem M, Zaheer T, Abbas A, Morales B, Aneva I, Martínez JL. Assessment of Avermectins-Induced Toxicity in Animals. Pharmaceuticals (Basel) 2022; 15:332. [PMID: 35337129 PMCID: PMC8950826 DOI: 10.3390/ph15030332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Macrocyclic lactones, particularly the avermectins, have completely revolutionized the approaches aimed at control of parasites. These avermectins are the most widely used anti-parasitic drugs in veterinary field with sales exceeding one billion US dollars annually. However, before clinical usage, their safety evaluation in the animals is a major critical factor that must be considered. Many studies have reported the negative effects of avermectins like ivermectin, abamectin, doramectin, and eprinomectin on the host animals. These harmful effects arise from avermectins targeting GABA and glutamate-gated chloride channels present both in the parasites and the host animals. In this review, various modes of avermectins action along with the negative effects on the host like nephrotoxicity, hepatotoxicity, neurotoxicity, reproductive toxicity, and endocrine disruption were discussed in detail. Furthermore, other important issues like ecotoxicity, drug resistance, and drug residues in milk associated with avermectins usage were also discussed, which need special attention.
Collapse
Affiliation(s)
- Muhammad Salman
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Riaz Hussain
- Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sehar Shah
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Mehwish Faheem
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan;
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 59300, Pakistan;
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Estación Central, Santiago 9160000, Chile
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - José L. Martínez
- Vicerrectoria de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Estación Central, Santiago 9160000, Chile
| |
Collapse
|
13
|
Temiz Ö. In vivo neurotoxic effects of emamectin benzoate in male mice: evaluation with enzymatic and biomolecular multi-biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8921-8932. [PMID: 34498180 DOI: 10.1007/s11356-021-16373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The study of the toxic effects of emamectin benzoate (EMB) was conducted in male mice. Mice were randomly divided into 4 groups; control group, EMB25 group (1/30 LD50 = 25 mg/kg/day), EMB50 group (1/15 LD50 = 50 mg/kg/day), and EMB100 group (1/7.5 LD50 = 100 mg/kg/day). Control group received water (placebo), and EMB groups were administered by oral gavage for 14 days. The superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) enzyme activities, thiobarbituric acid reactive substance (TBARS) and protein carbonyl (PC) levels, and adenosine triphosphatase (ATPases) enzymes, which are ion transport enzymes (Na+/K+ ATPase, Ca+2 ATPase, Mg+2 ATPase), acetylcholinesterase (AChE, neurotoxicity biomarker), and myeloperoxidase (MPO) enzyme activities (inflammatory biomarker), were measured by spectrophotometric methods. 8-Hydroxy-2'-deoxyguanosine level (8-OHdG, DNA oxidation biomarker) was measured by enzyme-linked immunosorbent analysis (ELISA) technique. The results showed a decrease in SOD, CAT and GPx enzyme activities in the brain tissue and an increase in GST enzyme activity in the EMB groups compared to the control group. Meanwhile, the enzyme activities of the ion transport enzymes Na+/K+ ATPase, Ca+2 ATPase, and Mg+2 ATPase, and AChE enzyme activity showed significant inhibition. In addition, MPO enzyme activity, 8-OHdG, PC, and TBARS levels were increased. The results showed that dose-dependent EMB exposure induced different physiological processes with enzymatic and biomolecular multi-biomarkers in the brain tissue of male mice and caused neurotoxic effects.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| |
Collapse
|
14
|
Ju D, Dewer Y, Zhang S, Hu C, Li P, Yang X. Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113152. [PMID: 34983008 DOI: 10.1016/j.ecoenv.2021.113152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Shipan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
15
|
Owumi SE, Irozuru CE, Arunsi UO, Oyelere AK. Caffeic acid protects against DNA damage, oxidative and inflammatory mediated toxicities, and upregulated caspases activation in the hepatorenal system of rats treated with aflatoxin B 1. Toxicon 2022; 207:1-12. [PMID: 34995555 DOI: 10.1016/j.toxicon.2021.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Aflatoxicosis can induce largescale toxicities in predisposed populations. Food fortification with adequate antioxidant sources may reduce the toxic burden from aflatoxicosis. We examined the individual and combined effect of Caffeic acid (CA) on the aflatoxin B1 (AFB1)-induced hepatic and renal injury in male rats. Five experimental rat cohort (n = 6) consisting of the control (2 mL/kg corn oil), AFB1 alone (50 μg/kg), CA alone (40 mg/kg), AFB1+CA1 (50 μg/kg + 20 mg/kg) and AFB1+CA2 (50 μg/kg + 40 mg/kg) were so treated for 28 consecutive days. Upon sacrifices, diagnostic markers of hepatorenal functions, oxidative stress, inflammation, oxidative deoxyribonucleic acid -DNA-damage and apoptosis were analysed. Our results showed that CA reduced AFB1-induced toxicities in rats' liver and kidneys by significantly increasing (p < 0.05) endogenous antioxidant and the anti-inflammatory IL-10 level. Caffeic acid simultaneously reduced hepatic and renal dysfunction biomarkers in the serum, oxidative stress, and lipid peroxidation levels. Besides, CA diminished reactive oxygen and nitrogen species, inflammatory nitric oxide levels, interleukin-1 β and the activities of xanthine oxidase and myeloperoxidase. Additionally, CA reduced DNA damage and caspase-mediated apoptotic responses and preserved the cytoarchitecture of rats' liver and kidneys treated with AFB1. These data suggest that CA can be used as a food additive to mitigate AFB1-induced toxicity in the examined organs.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria.
| | - Chioma E Irozuru
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
16
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
17
|
Yan G, Hong Y, Zhu H, Li C, Zhang B. Preparation and characterization of n-octylamine modified alginate/chitosan microspheres for controlled release of avermectin. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1785888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Guangyao Yan
- Institute of New Pesticide Innovation & Research, Qingdao Agricultural University, Qingdao, PR China
| | - Yuxi Hong
- Institute of New Pesticide Innovation & Research, Qingdao Agricultural University, Qingdao, PR China
| | - Haiyun Zhu
- College of Energy and Chemical Engineering, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan, PR China
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Baohua Zhang
- Institute of New Pesticide Innovation & Research, Qingdao Agricultural University, Qingdao, PR China
| |
Collapse
|
18
|
Hussein RM, Al-Dalain SM. Betaine downregulates microRNA 34a expression via a p53-dependent manner in cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2021; 35:e22856. [PMID: 34318554 DOI: 10.1002/jbt.22856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Cisplatin-induced nephrotoxicity limits its wide application as a chemotherapeutic drug. Betaine is a natural trimethylglycine compound involved in several biological reactions. In this study, the protective effect of betaine against cisplatin-induced nephrotoxicity through modulating the expression of microRNA 34a (miRNA 34a), p53, apoptosis, and inflammation was investigated. Adult Wistar rats were divided into normal group (received vehicle); betaine group (received 250 mg betaine/kg BW/day via oral gavage from Day 1 to Day 25); cisplatin group (received a single intraperitoneal dose of cisplatin at 5 mg/kg BW on Day 21) and betaine + cisplatin group (received the same doses of betaine and cisplatin). The results demonstrated that the cisplatin group exhibited severe kidney tissue damage and an increase in blood creatinine and urea levels. Furthermore, the cisplatin group showed a significant upregulation of miRNA 34a and higher levels of phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β compared to the normal group. Remarkably, the betaine + cisplatin group showed significantly decreased blood creatinine and urea concentrations, decreased levels of miRNA 34a, phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β as well as improved kidney tissue integrity compared to the cisplatin group. In conclusion, cisplatin-induced nephrotoxicity in rats was associated with upregulation of miRNA 34a expression, apoptosis, and inflammation in p53-dependent manner. These effects were reversed by betaine administration that ultimately improved the kidney function and tissue integrity.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Saed M Al-Dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
19
|
Vukićević D, Rovčanin B, Gopčević K, Stanković S, Vučević D, Jorgačević B, Mladenović D, Vesković M, Samardžić J, Ješić R, Radosavljević T. The Role of MIF in Hepatic Function, Oxidative Stress, and Inflammation in Thioacetamide-induced Liver Injury in Mice: Protective Effects of Betaine. Curr Med Chem 2021; 28:3249-3268. [PMID: 33148149 DOI: 10.2174/0929867327666201104151025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that contributes to the inflammatory response to chemical liver injury. This cytokine exhibits pro- and anti-inflammatory effects depending on the etiology and stage of liver disease. OBJECTIVE Our study aimed to investigate the role of MIF in oxidative stress and inflammation in the liver, and modulatory effects of betaine on MIF in thioacetamide (TAA)-induced chronic hepatic damage in mice. METHODS The experiment was performed on wild type and knockout MIF-/- C57BL/6 mice. They were divided into the following groups: control; Bet-group that received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/-+Bet; TAA-group that received TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/-+TAA+Bet. In TAA- and Bet-treated groups, animals received the same doses. After eight weeks of treatment, blood samples were collected for biochemical analysis, and liver specimens were prepared for the assessment of parameters of oxidative stress and inflammation. RESULTS In MIF-/-mice, TAA reduced transaminases, γ-glutamyltranspeptidase, bilirubin, malondialdehyde (MDA), oxidative protein products (AOPP), total oxidant status (TOS), C-reactive protein (CRP), IL-6, IFN-γ, and increased thiols and total antioxidant status (TAS). Betaine attenuated the mechanism of MIF and mediated effects in TAA-induced liver injury, reducing transaminases, γ-glutamyltranspeptidase, bilirubin, MDA, AOPP, TOS, CRP, IL-6, IFN-g, and increasing thiols. CONCLUSION MIF is a mediator in hepatotoxic, pro-oxidative, and proinflammatoryeffects of TAA-induced liver injury. MIF-targeted therapy can potentially mitigate oxidative stress and inflammation in the liver, but the exact mechanism of its action requires further investigation. Betaine increases anti-oxidative defense and attenuates hepatotoxic effects of MIF, suggesting that betaine can be used for the prevention and treatment of liver damage.
Collapse
Affiliation(s)
- Dušan Vukićević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Rovčanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Kristina Gopčević
- Institute of Chemistry in Medicine "Prof. Dr. Petar Matavulj", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgačević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11000 Belgrade, Serbia
| | - Rada Ješić
- Institute of Digestive Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Kulyar MFEA, Yao W, Ding Y, Du H, Li K, Zhang L, Li A, Huachun P, Waqas M, Mehmood K, Li J. Cluster of differentiation 147 (CD147) expression is linked with thiram induced chondrocyte's apoptosis via Bcl-2/Bax/Caspase-3 signalling in tibial growth plate under chlorogenic acid repercussion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112059. [PMID: 33647747 DOI: 10.1016/j.ecoenv.2021.112059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Tibial dyschondroplasia (TD) is a metabolic disease of young poultry that affects bone andcartilage's growth. It mostly occurs in broilers due to thiram toxicity in the feed. In this disease, tibial cartilage is not yet ripe for ossification, but it also results in lameness, death, and moral convictions of commercial poultry due to numerous apoptotic changes on cell level. These changes serve a cardinal role in this situation. Many potential problems indicate that chlorogenic acid (CGA) performs an extensive role in controlling apoptosis's perception. However, the actual role of CGA in TD affected chondrocytes in-vitro is still unidentified. The current study investigates the imperceptible insight of CGA on chondrocyte's apoptosis via B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x-protein (Bax), and Caspase-3 with CD147 signalling. The expression of these markers was investigated by Immunofluorescence, western blot analysis, and reverse transcription-quantitative polymerase chain (RT-qPCR). Chondrocytes from the growth plate of tibia were isolated, cultured, and processed. A sub-lethal thiram (2.5 μg/mL) was used to induce cytotoxicity and then treated with an optimum dose (40 μg/ mL) of CGA. According to the results, thiram distorted chondrocyte cells with enhanced apoptotic rate. But, in case of CGA, high expression of CD147 enhanced cell viability of chondrocytes, accompanied by downregulation of Bax/Caspase-3 signalling with the upregulation of Bcl-2. The first possibility has ruled out in the present study by the observation that the cells apoptosis marker, Caspase-3 showed a significant change in CD147 overexpressing cells. Conversely, immunodepletion of CD147 with enhanced cleavage of Caspase-3, indicating the activation of apoptosis in chondrocytes cells. Therefore, these findings suggest a novel insight about CD147 in thiram induced TD about the regulation of Bcl-2/Bax/Caspase-3 apoptosis-signalling axis.
Collapse
Affiliation(s)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pan Huachun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, PR China.
| |
Collapse
|
21
|
Phenolic Compounds of Propolis Alleviate Lipid Metabolism Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7615830. [PMID: 33688365 PMCID: PMC7914084 DOI: 10.1155/2021/7615830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022]
Abstract
Lipid metabolism disorder is one of the significant risk factors for a multitude of human diseases and has become a serious threat to human health. The present study aimed to evaluate the effects of phenolics from poplar-type propolis on regulating lipid metabolism by using cell models of steatosis induced by palmitic acid (PA). Our study shows that phenolic esters have higher lipid-lowering activities than phenolic acids, especially for three caffeic acid esters, including caffeic acid phenethyl ester (CAPE), caffeic acid cinnamyl ester (CACE), and caffeic acid benzyl ester (CABE). Most notably, CACE presents prominent properties to prevent intracellular lipid accumulation and to amend extracellular adipokine secretion abnormalities. In addition, our results firstly reveal that CACE can alleviate lipid metabolism disorder through mediating protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6) signaling pathway-associated protein expression, suppressing endoplasmic reticulum (ER) stress, and activating peroxisome proliferator-activated receptors (PPARs) by distinct upregulation of PPARα and downregulation of PPARγ.
Collapse
|
22
|
Ceylan T, Kaymak E, Cantürk Tan F, Yakan B. Research on the protective effect of caffeic acid phenethyl ester on testicular damage caused by cisplatin. Turk J Med Sci 2020; 50:2032-2039. [PMID: 32628437 PMCID: PMC7775695 DOI: 10.3906/sag-2002-58] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background/aim Cisplatin (CP), a chemotherapeutic drug, causes damage to spermatogenic serial cells, Sertoli cells, and Leydig cells in rat testicles. It was aimed to investigate the protective effect of caffeic acid phenethyl ester (CAPE), one of the active ingredients of propolis, in eliminating CP-induced testicular damage. Materials and methods Group 1 (control group) was given physiological saline solution intraperitoneally (IP) throughout the experiment. Group 2 (CP group) was given a single dose of CP (7 mg/kg) IP on the day 7. Group 3 (CP + CAPE group), was given CAPE (10 µmol/kg/day) IP for 12 days and a single dose of CP (7 mg/kg) IP on day 7. Group 4 (CAPE group) was given CAPE (10 µmol/kg/day) IP for 12 days. On day 14 of the experiment, the rats were decapitated under xylazine and ketamine anesthesia and their testicles were removed. The sections obtained from the testicles were stained with hematoxylin-eosin and histopathological damage was evaluated. Malondialdehyde (MDA) levels, and superoxide dismutase (SOD) and catalase (CAT) enzymatic activities were measured in the testicular tissue samples. Testosterone (TES) levels were measured in the blood serum. The Johnsen testicular biopsy score (JTBS) was used to evaluate testicular tubules. DNA damage was evaluated in sperm samples taken from the ductus epididymis using the comet assay technique. Results In Group 2, which was given CP, the testicles were severely damaged. It was observed that histological damage was reduced in the testes by administering CAPE in Group 3. Moreover, according to the JTBS, the value was significantly higher in the testicular tubules (P < 0.05). Moreover, the MDA level decreased in Group 3. However, the SOD, CAT, and TES levels increased in Group 3. DNA damage also decreased significantly in Group 3 when compared to Group 2 (P < 0.05). Conclusion The results showed that CAPE may be protective against damage caused by CP in the testicles of rats.
Collapse
Affiliation(s)
- Tayfun Ceylan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
23
|
Xing ZY. Abamectin poisoning with severely abnormal electroencephalogram: A case report. Toxicol Ind Health 2020; 36:946-950. [PMID: 33094704 DOI: 10.1177/0748233720966506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cases of abamectin poisoning have been reported previously, but cases of severe brain dysfunction after poisoning are rarely reported, and abnormal electroencephalograms (EEGs) have not been reported. We report a case of a 46-year-old female who intentionally drank 400 mL of 5% abamectin pesticide. We describe in detail the clinical and EEG characteristics of the patient. The patient was discharged in good condition after 10 days. The study indicates that serious brain dysfunction and abnormal EEG caused by abamectin poisoning are treatable. Despite poor clinical and EEG findings at the outset, recovery is still possible. This is the first report on EEG after abamectin poisoning.
Collapse
Affiliation(s)
- Zhao-Yang Xing
- Department of Critical Medicine, 159414Guangyuan First People's Hospital, Guangyuan City, Sichuan Province, People's Republic of China
| |
Collapse
|
24
|
Temiz Ö. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23199-23205. [PMID: 32333357 DOI: 10.1007/s11356-020-08923-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Emamectin benzoate (EMB), which is used as a pesticide in agriculture, household, and veterinary medicine, can cause tissue damage with oxidative toxicity and can be considered as inducing apoptosis. In the present study, male mice were conducted by oral administration in EMB doses 25, 50, and 100 (mg/kg/day) for 14 days. Glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) levels using spectrophotometric methods were measured. 8-hydroxy-2'-deoxyguanosine (8-OHdG) which is DNA oxidation biomarker and, stress protein (HSP70) levels, caspase 3 enzyme activities were measured by ELISA techniques. This study shows that in vivo administration of EMB caused a marked induction of oxidative damage in liver tissue as demonstrated by an increased level of TBARS and reduced GSH level. The increase in HSP70 level did not prevent the apoptosis caused by the increase of caspase 3 enzyme activity. Toxicity caused by EMB also showed the formation of genotoxicity with an increase in DNA oxidation biomarker 8-OHdG levels. As a result of the study, the effects of toxicity caused by EMB on lipid; protein; and DNA, structural macromolecules in cells, and the importance of enzymatic and non-enzymatic bonds of the cell's protective systems were determined. Consequently, under experimental conditions, EMB exposure caused toxicity in the liver of male mice, and significant adverse effects were determined with biomarkers.
Collapse
Affiliation(s)
- Özge Temiz
- Department of Biology, Faculty of Science and Letters, University of Cukurova, Adana, Turkey.
| |
Collapse
|
25
|
Zheng S, Wang S, Zhang Q, Zhang Z, Xu S. Avermectin inhibits neutrophil extracellular traps release by activating PTEN demethylation to negatively regulate the PI3K-ERK pathway and reducing respiratory burst in carp. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121885. [PMID: 31879111 DOI: 10.1016/j.jhazmat.2019.121885] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Excessive residual avermectin (AVM) in the environment can have toxic effects on non-target organisms. AVM can exert immunotoxicity by inducing genomic demethylation, but its effect on neutrophil extracellular traps (NETs) release in carp is unclear. In this study, carp neutrophils were pretreated with 5 μg/L AVM or 4 μM DNA demethylation inhibitor (aurintricarboxylic acid, ATA), alone or in combination, and then treated with 4 μM phorbol 12-myristate 13-acetate (PMA) to stimulate NETs release. The results showed that exposure of carp neutrophils to AVM significantly suppressed NETs release and MPO expression, increased ROS production, and dramatically reduced PMA-induced cellular respiratory burst. In addition, AVM could bind to the MBD2 molecule, markedly upregulate MBD2 expression to cause demethylation, and clearly activate PTEN expression, thereby inhibiting the expression of PI3K, AKT, Raf, MEK, and ERK. However, these effects were alleviated by ATA. In conclusion, our study showed that AVM could inhibit NETs release in carp by inducing demethylation of PTEN to negatively regulate NETs synthesis pathways and reducing respiratory burst level. Our findings clarify the mechanism of AVM immunotoxicity to fish and are of great significance for efforts to protect the ecological environment and human health.
Collapse
Affiliation(s)
- Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, HaRbin 150030, PR China.
| |
Collapse
|
26
|
Hamdaoui L, Naifar M, Rahmouni F, Ayadi F, Rebai T. Sub-chronic exposure to Kalach 360 SL-induced damage in rats' liver and hematological system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36634-36646. [PMID: 31732955 DOI: 10.1007/s11356-019-06491-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
We investigated the effects of sub-chronic exposure to Kalach 360 SL (KL), glyphosate-based herbicide used in Tunisia, on liver and hematological system in different groups of female rats. Group 1 was used as a control, while animals of groups 2 and 3 received orally 0.07 mL and 0.175 mL of KL, respectively (126 and 315 mg of glyphosate/kg), for 60 days. As a result, the KL-exposed groups exhibited hypochromic microcytic anemia, systemic inflammation, cytolysis, decrease in hepatic enzyme activity, and cholestasis. Exposure to different doses of KL could induce erythrocyte destruction (hemolysis) in hematopoietic organs (bones). Moreover, lipid peroxidation contents and protein oxidation markers significantly increased in exposed groups, while enzymatic and non-enzymatic antioxidant activities decreased considerably, in both erythrocytes and liver tissues, compared with those in controls. Liver histological studies confirmed the presence of inflammatory reaction with pathology involving the damage or necrosis of hepatocytes, however, without fibrosis remodulation. Thus, KL sub-chronic exposure caused hepatonecrosis, systemic inflammation, and hemolysis.
Collapse
Affiliation(s)
- Latifa Hamdaoui
- Histology-Embryology Laboratory, UR 12ES15 Faculty of Medicine of Sfax, University of Sfax, Street Majida Boulila, 3029, Sfax, Tunisia.
| | - Manel Naifar
- Biochemistry Laboratory, UR 12ES17 Faculty of Medicine of Sfax, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Rahmouni
- Histology-Embryology Laboratory, UR 12ES15 Faculty of Medicine of Sfax, University of Sfax, Street Majida Boulila, 3029, Sfax, Tunisia
| | - Fatma Ayadi
- Biochemistry Laboratory, UR 12ES17 Faculty of Medicine of Sfax, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Tarek Rebai
- Histology-Embryology Laboratory, UR 12ES15 Faculty of Medicine of Sfax, University of Sfax, Street Majida Boulila, 3029, Sfax, Tunisia
| |
Collapse
|
27
|
Kaur S, Sharma D, Singh AP, Kaur S. Amelioration of hepatic function, oxidative stress, and histopathologic damages by Cassia fistula L. fraction in thioacetamide-induced liver toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29930-29945. [PMID: 31407268 DOI: 10.1007/s11356-019-06158-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Cassia fistula L. (Caesalpinioideae) is a highly admirable medicinal plant and is traditionally recommended for the treatment of rheumatism, liver disorders, jaundice, and other inflammatory diseases. This study was designed to investigate the hepatoprotective properties of ethyl acetate fraction from C. fistula leaves in an animal model. Treatment with thioacetamide significantly elevated the level of serum glutamic-oxaloacetic transaminase (1.75-fold), alkaline phosphatase (4.07-fold), and total bilirubin (2.29-fold) as compared to the control. It was found that pretreatment of fraction followed by consecutive 2 days thioacetamide reduced the conversion of thioacetamide carcinogen to its reactive metabolites by phase I enzymes and increased the level of detoxification phase II along with antioxidative enzymes. The histopathological studies revealed the hepatoprotective nature of the fraction in restoring the normal architecture of thioacetamide-intoxicated damaged liver. The fraction showed downregulation in the expression level of p-PI3K, p-Akt, and p-mTOR pointing towards its chemopreventive potential. The HPLC analysis of the fraction had shown the dominance of three phenolic compounds namely, catechin, epicatechin, and chlorogenic acid. The above studies comprising histopathological, immunohistochemical, and hepatic enzymes are strong indicative of the potential protective ability of ethyl acetate fraction phytoconstituents against thioacetamide-induced toxicity. Graphical abstract.
Collapse
Affiliation(s)
- Sandeep Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Dipakshi Sharma
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinderjeet Kaur
- Genetic Toxicology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
28
|
Ibrahim KA, Khwanes SA, El-Desouky MA, Elhakim HKA. Propolis relieves the cardiotoxicity of chlorpyrifos in diabetic rats via alleviations of paraoxonase-1 and xanthine oxidase genes expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:127-135. [PMID: 31400774 DOI: 10.1016/j.pestbp.2019.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Pesticides cardiotoxicity in case of diabetic-induced cardiac complications is unidentified. The probable amelioration role of propolis is gauged against the cardiotoxic effects of chlorpyrifos in the diabetic rats through paraoxonase-1 (PON1) and xanthine oxidase (XO) genes dysregulation. Fifty-six male rats were distributed (n = 7) into eight groups. The first one saved as control whereas the 2nd, 3rd, and 4th were kept for propolis aqueous extract (100 mg/kg), diabetes (60 mg/kg streptozotocin) and chlorpyrifos (2.5 mg/kg), respectively. The 5th was diabetes/chlorpyrifos combination, while 6th, 7th, and 8th were intubated with propolis for four weeks after diabetic induction, chlorpyrifos intoxication, and their combination, respectively. The plasma glucose, lipid profiles, cardiac enzymes and interleukin-6 (IL-6) significantly elevated, while insulin decreased in the diabetic and combination groups. Although the cardiac acetylcholinesterase, total thiols, and PON1 significantly reduced after diabetic and/or chlorpyrifos gavage, the protein carbonyl, superoxide dismutase, catalase, and XO significantly elevated. The mRNA genes expression of PON1 and XO have also confirmed the enzymatic activities. Interestingly, propolis significantly restored the hyperglycemia, hypoinsulinemia, hyperlipidemia, IL-6 elevations, and antioxidant defense system disorder. These records revealed that the immunomodulatory, anti-diabetic and antioxidant tasks are fine pointers for the cardiovascular defender of propolis especially during diabetes and/or pesticides exposure.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | | | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
29
|
Kaya E, Yılmaz S, Ceribasi S. Protective Role of Propolis on Low and High Dose Furan-induced Hepatotoxicity and Oxidative Stress in Rats. J Vet Res 2019; 63:423-431. [PMID: 31572824 PMCID: PMC6749730 DOI: 10.2478/jvetres-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate potential protective effects of propolis on furan-induced hepatic damage by assessing the levels of malondialdehyde (MDA) and reduced glutathione (GSH), antioxidant enzyme activities, and histopathological changes in the liver. MATERIAL AND METHODS Albino Wistar rats were divided into six groups: a control, propolis-treated (100 mg/kg b.w./day), low-dose furan-treated (furan-L group; 2 mg/kg b.w./day), high-dose furan-treated (furan-H group; 16 mg/kg b.w./day), furan-L+propolis treated, and furan-H+propolis treated group. Propolis and furan were applied by gavage; propolis for 8 days, and furan for 20 days in furan-L groups and 10 days in furan-H groups. RESULTS While MDA levels were elevated in furan-treated groups, levels of GSH and activities of antioxidant enzymes decreased (p < 0.001). The levels of MDA and GSH and activities of antioxidant enzymes were normal in the furan+propolis groups, especially in the furan-L+propolis group (p < 0.001). While the aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate pdehydrogenase activities were elevated in the furan-H treated group (p < 0.05 and p < 0.001), they were unchanged in the furan-L treated group. Histopathologically, several lesions were observed in the liver tissues of the furan-treated groups, especially in the higher-dose group. It was determined that these changes were milder in both of the furan+propolis groups. CONCLUSION The results indicate that propolis exhibits good hepatoprotective and antioxidant potential against furan-induced hepatocellular damage in rats.
Collapse
Affiliation(s)
- Emre Kaya
- Department of Biochemistry, Elaziğ, Turkey
| | | | - Songul Ceribasi
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119, Elaziğ, Turkey
| |
Collapse
|
30
|
Meydan S, Esrefoglu M, Selek S, Akbas Tosunoglu E, Ozturk O, Kurbetli N, Bayındır N, Bulut H, Meral I. Protective effects of caffeic acid phenethyl ester and thymoquinone on toluene induced liver toxicity. Biotech Histochem 2019; 94:277-282. [PMID: 30821514 DOI: 10.1080/10520295.2018.1554825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toluene is an organic solvent that is toxic to humans. Caffeic acid phenethyl ester (CAPE) and thymoquinone (TQ) exhibit antioxidant and antitoxic effects. We investigated the protective effects of CAPE and TQ on toluene induced hepatotoxicity. Wistar albino rats were divided into seven groups of eight. The animals were injected intraperitoneally (i.p.) with 0.1 ml/10 g/day corn oil (control I), 0.1 ml/10 g/day corn oil + 2 ml/kg/day 10% ethanol (control II), 20 mg/kg/day TQ dissolved in 0.1 ml/10 g corn oil (TQ), 10 µmol/kg/day CAPE dissolved in 10% ethanol (CAPE), 500 mg/kg/day toluene (T), toluene and TQ together (T + TQ), or toluene and CAPE together (T + CAPE). All rats were sacrificed on day 15. Liver samples were obtained for histological analysis. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to evaluate liver function. Liver sections from the control I and TQ groups exhibited normal histology. Sections from the T group exhibited sinusoid dilation, hemorrhage, vacuolization and necrosis. TQ and CAPE protected against toluene induced histopathological changes. AST and ALT levels were increased significantly in T group compared to both control groups. CAPE decreased significantly the toluene induced increase in AST and ALT levels, while TQ did not. CAPE and TQ exhibited some antitoxic and hepato-protective effects on toluene induced liver damage.
Collapse
Affiliation(s)
- S Meydan
- a School of Medicine, Department of Anatomy , Bezmialem Vakif University , Istanbul , Turkey
| | - M Esrefoglu
- b School of Medicine, Department of Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| | - S Selek
- c School of Medicine, Department of Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - E Akbas Tosunoglu
- d School of Medicine, Department of Anatomy , Biruni University , Istanbul , Turkey
| | - O Ozturk
- e Faculty of Health Sciences, Department of Midwifery , Biruni University , Istanbul , Turkey
| | - N Kurbetli
- f School of Medicine, Department of Anatomy , Pamukkale University , Istanbul , Turkey
| | - N Bayındır
- b School of Medicine, Department of Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| | - H Bulut
- c School of Medicine, Department of Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - I Meral
- g School of Medicine, Department of Physiology , Bezmialem Vakif University , Istanbul , Turkey
| |
Collapse
|