1
|
Bian X, Wang L, Ma Y, Yu Y, Guo C, Gao W. A Flavonoid Concentrate from Moringa Oleifera Lam. Leaves Extends Exhaustive Swimming Time by Improving Energy Metabolism and Antioxidant Capacity in Mice. J Med Food 2024; 27:887-894. [PMID: 39052664 DOI: 10.1089/jmf.2023.k.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.
Collapse
Affiliation(s)
- Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuying Ma
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yijing Yu
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Cergel E, Tuzuner BA, Turkyilmaz IB, Oktay S, Magaji UF, Sacan O, Yanardag R, Yarat A. Reversal of Valproate-Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chem Biodivers 2024; 21:e202301959. [PMID: 38469951 DOI: 10.1002/cbdv.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.
Collapse
Affiliation(s)
- Eda Cergel
- Biochemistry Master of Science Student, Health Sciences Institute, Marmara University, Maltepe, Istanbul, Turkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, Eyupsultan, Istanbul, Turkiye
| | - Burcin Alev Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Sehkar Oktay
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| |
Collapse
|
3
|
Shokry DM, Badr MR, Sakr AAM, Elmesiry AM, Assy MM, Rawash Z, Abd Eldaim MA. Enhancement potential of Moringa oleifera leaves extract on buffalo bull cryopreserved semen quality and fertilization capacity. Anim Reprod Sci 2024; 262:107414. [PMID: 38330533 DOI: 10.1016/j.anireprosci.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The aim of the present study is to evaluate the effect of Moringa oleifera leave extract (MOLE) on buffalo bull cryopreserved semen quality and fertility. Sixty ejaculates were collected from ten fertile buffalo bulls on a weekly basis for 6 weeks (n = 10 bulls & n = 60) then semen samples were pooled and divided into five groups. The semen of the control group was without additives. The semen of other groups was supplemented with MOLE at doses of 200, 400, 600 and 800 µg/ mL, respectively. One hundred thirty multiparous buffaloes were artificially inseminated with semen supplemented without or with MOLE at dose of 600 µg/ mL. Inclusion of MOLE in semen extender at dose 600 µg/ mL significantly elevated the total motility, progressive motility, membrane integrity and fertilization capacity of the post-thawed spermatozoa, as well as the total antioxidant capacity. However, it significantly decreased acrosomal defects of spermatozoa, and the concentration of malondialdehyde. This study indicated that inclusion of MOLE to semen extender improved the quality and fertility of the post-thawed buffalo bulls' semen through enhancing the activities of the antioxidant enzyme system and decreasing cryodamage of the buffalo bull spermatozoa.
Collapse
Affiliation(s)
- Dina Mahdy Shokry
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Magdy Ramadan Badr
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Abdel-Aziz Mustafa Sakr
- Animal Production Research Institute, Agriculture Research Center, (APRI, ARC), Dokki, Giza, Egypt
| | - Ahmed Mohamed Elmesiry
- Diagnostic Imaging and Endoscopy Unit, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Mohamed Mahmoud Assy
- Department of Pathology, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Zaher Rawash
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center (ARC), 12556 Haram, Giza, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin Elkom 32512, Egypt.
| |
Collapse
|
4
|
Cortes-Alvarez SI, Delgado-Enciso I, Rodriguez-Hernandez A, Hernandez-Fuentes GA, Aurelien-Cabezas NS, Moy-Lopez NA, Cortes-Alvarez NY, Guzman-Muñiz J, Guzman-Esquivel J, Rodriguez-Sanchez IP, Martinez-Fierro ML, Mokay-Ramirez KA, Barajas-Saucedo CE, Sanchez-Ramirez CA. Efficacy of Hot Tea Infusion vs. Ethanolic Extract of Moringa oleifera for the Simultaneous Treatment of Nonalcoholic Fatty Liver, Hyperlipidemia, and Hyperglycemia in a Murine Model Fed with a High-Fat Diet. J Nutr Metab 2024; 2024:2209581. [PMID: 38375319 PMCID: PMC10876314 DOI: 10.1155/2024/2209581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera (MO) is a native tree of Asia and is cultivated in some areas of Mexico as part of traditional horticulture. The aim of the present study was to compare the efficacy of MO infusion vs. MO ethanolic extract for the simultaneous treatment of nonalcoholic fatty liver (NAFLD), hyperlipidemia, and hyperglycemia in a murine model fed with a high-fat diet (HFD). BALB/c mice were fed a balanced diet (healthy control) or an HFD for 6 months. With this, the NAFLD model was established before starting a therapeutic intervention with MO for two months. The phytochemical analysis by nuclear magnetic resonance in 1H and 13C experiments showed signals for pyrrole alkaloids and triterpenes as the main constituents of the extract and infusion preparation. A significant reduction of SGPT, SGOT, lipids, urea, and glucose in blood among NAFLD groups treated with MO (infusion or extract) was found, when compared to the NAFLD-placebo group. Steatosis and liver inflammation were found to be decreased in the MO groups, as infusion or ethanolic extract. Infusion produced a better therapeutic effect than the extract in all parameters, except glycemic control, where the extract was better. As an additional finding, it is noteworthy that treatment with MO, particularly through infusion, resulted in improved motor activity. Moreover, a reduction in anxiety-like behavior was observed exclusively with the administration of infusion. These observations provide valuable insights into the potential broader effects of Moringa oleifera beyond the primary aim of the study.
Collapse
Affiliation(s)
- Salma I. Cortes-Alvarez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Alejandrina Rodriguez-Hernandez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| | - Gustavo A. Hernandez-Fuentes
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| | - Nomely S. Aurelien-Cabezas
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Norma A. Moy-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
| | - Nadia Y. Cortes-Alvarez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
- Department of Nursing and Midwifery, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Jorge Guzman-Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima, Mexico
| | - Jose Guzman-Esquivel
- Department of Research, Mexican Social Security Institute, Villa de Alvarez, Colima, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University, Zacatecas, Zacatecas, Mexico
| | - Karen A. Mokay-Ramirez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Carlos E. Barajas-Saucedo
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima, Colima, Mexico
| | - Carmen A. Sanchez-Ramirez
- Department of Molecular Medicine and Nutrition Laboratory at School of Medicine, University of Colima, Colima, Colima, Mexico
| |
Collapse
|
5
|
Asif M, Kosar N, Sajid H, Qureshi S, Gilani MA, Ayub K, Arshad M, Imran M, Hamid MHS, Bayach I, Sheikh NS, Mahmood T. Exploring the Sensing Potential of g-C 3N 4 versus Li/g-C 3N 4 Nanoflakes toward Hazardous Organic Volatiles: A DFT Simulation Study. ACS OMEGA 2024; 9:3541-3553. [PMID: 38284053 PMCID: PMC10810007 DOI: 10.1021/acsomega.3c07350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Ab initio calculations were performed to determine the sensing behavior of g-C3N4 and Li metal-doped g-C3N4 (Li/g-C3N4) quantum dots toward toxic compounds acetamide (AA), benzamide (BA), and their thio-analogues, namely, thioacetamide (TAA) and thiobenzamide (TAA). For optimization and interaction energies, the ωB97XD/6-31G(d,p) level of theory was used. Interaction energies (Eint) illustrate the high thermodynamic stabilities of the designed complexes due to the presence of the noncovalent interactions. The presence of electrostatic forces in some complexes is also observed. The observed trend of Eint in g-C3N4 complexes was BA > TAA > AA > TBA, while in Li/g-C3N4, the trend was BA > AA > TBA > TAA. The electronic properties were studied by frontier molecular orbital (FMO) and natural bond orbital analyses. According to FMO, lithium metal doping greatly enhanced the conductivity of the complexes by generating new HOMOs near the Fermi level. A significant amount of charge transfer was also observed in complexes, reflecting the increase in charge conductivity. NCI and QTAIM analyses evidenced the presence of significant noncovalent dispersion and electrostatic forces in Li/g-C3N4 and respective complexes. Charge decomposition analysis gave an idea of the transfer of charge density between quantum dots and analytes. Finally, TD-DFT explained the optical behavior of the reported complexes. The findings of this study suggested that both bare g-C3N4 and Li/g-C3N4 can effectively be used as atmospheric sensors having excellent adsorbing properties toward toxic analytes.
Collapse
Affiliation(s)
- Misbah Asif
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Naveen Kosar
- Department
of Chemistry, University of Management and
Technology (UMT), C-11, Johar Town, Lahore 54782, Pakistan
| | - Hasnain Sajid
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Sana Qureshi
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department
of Chemistry, COMSATS University Islamabad,
Lahore Campus, Lahore 54000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Arshad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Malai Haniti S.
A. Hamid
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku
Link, Gadong BE1410, Brunei Darussalam
| | - Imene Bayach
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nadeem S. Sheikh
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku
Link, Gadong BE1410, Brunei Darussalam
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, P.O. Box 32038, Sakhir 1054, Bahrain
| |
Collapse
|
6
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
7
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
8
|
Jabbar AA, Mothana RA, Ameen Abdulla M, Othman Abdullah F, Abdul-Aziz Ahmed K, Rizgar Hussen R, Hawwal MF, Fantoukh OI, Hasson S. Mechanisms of anti-ulcer actions of Prangos pabularia (L.) in ethanol-induced gastric ulcer in rats. Saudi Pharm J 2023; 31:101850. [PMID: 37965491 PMCID: PMC10641563 DOI: 10.1016/j.jsps.2023.101850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).
Collapse
Affiliation(s)
- Ahmed A.J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rawaz Rizgar Hussen
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
9
|
Ibrahim MY, Alamri ZZ, Juma ASM, Hamood SA, Shareef SH, Abdulla MA, Jayash SN. Hepatoprotective Effects of Biochanin A on Thioacetamide-Induced Liver Cirrhosis in Experimental Rats. Molecules 2023; 28:7608. [PMID: 38005330 PMCID: PMC10674479 DOI: 10.3390/molecules28227608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The protective effect of biochanin A (BCA) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in vivo was investigated. There was a significant reduction in liver weight and hepatocyte propagation, with much lower cell injury in rat groups treated with BCA (25 mg/kg and 50 mg/kg) following a TAA induction. These groups had significantly lower levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA). The liver homogenates showed increased antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as decreased malondialdehyde (MDA) levels. The serum biomarkers associated with liver function, namely alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transaminase (GGT), returned to normal levels, comparable to those observed in both the normal control group and the reference control group. Taken together, the normal microanatomy of hepatocytes, the inhibition of PCNA and α-SMA, improved antioxidant enzymes (SOD, CAT, and GPx), and condensed MDA with repairs of liver biomarkers validated BCA's hepatoprotective effect.
Collapse
Affiliation(s)
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ameena S. M. Juma
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Iraq; (A.S.M.J.); (M.A.A.)
| | - Sarah Ashour Hamood
- Biomedical Engineering Department, Al-Essra University College, Baghdad 10011, Iraq;
| | - Suhayla Hamad Shareef
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Iraq; (A.S.M.J.); (M.A.A.)
| | - Soher Nagi Jayash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
10
|
Alam MN, Singh L, Khan NA, Asiri YI, Hassan MZ, Afzal O, Altamimi ASA, Hussain MS. Ameliorative Effect of Ethanolic Extract of Moringa oleifera Leaves in Combination with Curcumin against PTZ-Induced Kindled Epilepsy in Rats: In Vivo and In Silico. Pharmaceuticals (Basel) 2023; 16:1223. [PMID: 37765031 PMCID: PMC10534968 DOI: 10.3390/ph16091223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.
Collapse
Affiliation(s)
- Md. Niyaz Alam
- Faculty of Pharmacy, IFTM University, Moradabad 244102, Uttar Pradesh, India
- Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Subharti University, Meerut 250005, Uttar Pradesh, India;
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpure, Amroha 244221, Uttar Pradesh, India;
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Md. Sarfaraj Hussain
- Lord Buddha Koshi College of Pharmacy, Baijnathpur, Saharsa 852201, Bihar, India;
| |
Collapse
|
11
|
Mohamed EK, Hafez DM. Gallic acid and metformin co-administration reduce oxidative stress, apoptosis and inflammation via Fas/caspase-3 and NF-κB signaling pathways in thioacetamide-induced acute hepatic encephalopathy in rats. BMC Complement Med Ther 2023; 23:265. [PMID: 37491245 PMCID: PMC10367384 DOI: 10.1186/s12906-023-04067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a consequence of chronic or acute liver diseases. This study evaluates the combined effect of gallic acid (GA), and metformin (Met) on the liver and brain damage associated with HE. METHODS Acute HE was induced by a single dose of thioacetamide (TAA) (300 mg/kg) as an I.P. injection. Treated groups received GA group (100 mg/kg/day, p.o), Met (200 mg/kg/day, p.o), or their combination for 25 consecutive days before TAA injection. RESULTS The administration of TAA induced various biochemical and histopathological alterations. In contrast, treatment with GA either alone or combined with Met resulted in improved liver functions by the significant reduction in serum ALT, AST, and ALP activities, and ammonia levels. Inflammatory mediators; TNF-α, IL-6, and NFkβ levels were decreased by these treatments as well as apoptotic cascade via down-regulation of FAS and caspase-3 (CASP-3) expression in hepatic tissues. Furthermore, GA and Met either alone or combined protected the liver and brain tissues from damage by increased glutathione concentration while decreasing malondialdehyde. In addition, it was accompanied by the improvement of the brain neurotransmitter profile via the restoration of norepinephrine, dopamine, and serotonin levels. Based on our data, this is the first study to report a novel combined hepatoprotective and cognitive enhancing effect of GA and Met against TAA-induced acute liver and brain injury. CONCLUSION GA and Met combination resulted in a prominent improvement in HE complications, relative to monotherapy. Both agents potentiated the antioxidant, anti-inflammatory, and anti-apoptotic effects of each other.
Collapse
Affiliation(s)
- Ehsan Khedre Mohamed
- Biochemistry department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Dawlat Mohamed Hafez
- Histology department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
12
|
Ardila-Suárez OM, Oriz-Benjumea L, Arteta AA, Guevara-Casallas LG. Drug-induced liver injury: Relation between the R ratio and histopathology. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2023; 88:19-27. [PMID: 35523682 DOI: 10.1016/j.rgmxen.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 10/18/2022]
Abstract
INTRODUCTION AND AIM Drug-induced liver injury (DILI) is a diagnosis based on the ruling out of potential liver diseases and consolidated by establishing causality through the temporal relation between a potentially hepatotoxic substance and altered liver biochemistry. Incidence fluctuates greatly worldwide, with very few reports of causal agents of DILI in Colombia. A retrospective study on patients treated at the Centro de Estudios en Salud (CES), within the time frame of January 2015 and June 2020, was conducted to document the causal substances of DILI in patients with liver biopsy and to correlate the types of histologic patterns with the biochemical pattern of liver injury (R ratio). RESULTS Of the 254 adult patients with liver biopsy and no tumor etiology, 20 patients were identified as cases of DILI (7.87%). The two most frequently found causal substances were efavirenz, in three HIV-positive patients, and Moringa oleifera (moringa), in two patients. There was a statistically significant association between cholestatic patterns (p = 0.037) and mixed patterns (p = 0.031), in the comparison of the histopathologic categories and the R ratio. CONCLUSION To the best of our knowledge, there are no reports on DILI secondary to Moringa oleifera (moringa). The R ratio could be a useful tool, in relation to the histologic pattern of injury, in cases of mixed and cholestatic patterns.
Collapse
Affiliation(s)
- O M Ardila-Suárez
- Departamento de Gastroenterología y Hepatología, Clínica CES, Medellín, Colombia.
| | - L Oriz-Benjumea
- Unidad de Cuidados Intensivos, Clínica CES, Medellín, Colombia
| | - A A Arteta
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Investigaciones en Patología, Universidad de Antioquia (GRIP-UdeA), Medellín, Colombia
| | - L G Guevara-Casallas
- Departamento de Gastroenterología y Hepatología, Clínica CES, Medellín, Colombia
| |
Collapse
|
13
|
Younis N, Khan MI, Zahoor T, Faisal MN. Phytochemical and antioxidant screening of Moringa oleifera for its utilization in the management of hepatic injury. Front Nutr 2022; 9:1078896. [PMID: 36590207 PMCID: PMC9797499 DOI: 10.3389/fnut.2022.1078896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Phytochemicals present in Moringa oleifera (M. oleifera) leaves have performed several physiological functions in human system such as anticarcinogenic, antidiabetic, antioxidant, immunomodulatory, hepatoprotective and antiatherogenic functions. Methods Phytochemical and antioxidant potential of M. oleifera leaves extracts were measured. Histopathology, biochemical analysis, and gene expression tests were performed on serum, blood, and liver in animal model. Results and discussions The toxic dose of N-acetyl-para-aminophenol (APAP) induced severe structural and functional changes in liver. Pre-treatment with M. oleifera ameliorated organ injury by normalizing the level of liver biomarkers and serum proteins. A low expression level of MAPK-8, TRAF-4, and TRAF-6 genes was observed in the M. oleifera treated group in comparison to positive control (hepatotoxic rats). M. oleifera leaves pretreatment amended APAP induced apoptosis and replenished hepatic cells. M. oleifera leaves extract as low-cost and sustainable treatment could be used in pharmaceutical industry for reducing hepatic degenerative changes in non-communicable diseases.
Collapse
Affiliation(s)
- Noor Younis
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan,*Correspondence: Muhammad Issa Khan,
| | - Tahir Zahoor
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Hamad Shareef S, Al-Medhtiy MH, Al Rashdi AS, Aziz PY, Abdulla MA. Hepatoprotective Effect of Pinostrobin against Thioacetamide-Induced Liver Cirrhosis in Rats. Saudi J Biol Sci 2022; 30:103506. [DOI: 10.1016/j.sjbs.2022.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
15
|
Mohamed Anter H, Mokhtar Aman R, Abdelaziz Shaaban A, Ibrahim Abu Hashim I, Mohamed Meshali M. Propitious maneuvering for delivery of the phytopharmaceutical "apocynin" to induced fulminant hepatitis in BALB/c mice: In vitro and in vivo assessments. Int J Pharm 2022; 626:122165. [PMID: 36089210 DOI: 10.1016/j.ijpharm.2022.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Apocynin (APO), a specific nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase, NOX) inhibitor, has recently emerged as a bioactive phytochemical with eminent anti-inflammatory and anti-oxidant activities. To our knowledge, no research has been conducted to fabricate a mucoadhesive nanostructured delivery system of APO that targets the liver. Accordingly, chitosan (CS) surface decorated polymeric nanoparticulate delivery system (PNDS) was victoriously fabricated by double emulsion-solvent evaporation method. Herein, a randomized full 33 factorial design was employed to assess the impact of the independently processing parameters (IPPs) namely; (poly(d,l-lactide-co-glycolide) (PLGA) amount (A)), (polyvinyl alcohol (PVA) concentration (B)), and (CS concentration (C)), on different dependently measured attributes (DMAs). The optimal APO-loaded chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded CS-coated PLGA NPs) formula (F19) would be extensively appraised through meticulous in vitro-in vivo studies. Crucially, the results revealed that oral pre-treatment with the optimal formula evoked a prodigious in vivo hepatoprotective efficacy against lipopolysaccharide (LPS)/D-(+)-galactosamine (D-GalN) induced fulminant hepatitis (FH) in BALB/c mice when compared with pure APO, uncoated F19, and plain NPs (P NPs) pretreated groups. In conclusion, APO-loaded CS-coated PLGA NPs could be considered as a promising oral mucoadhesive phytopharmaceutical PNDS to open new prospects for therapeutic intervention in inflammatory based liver diseases.
Collapse
Affiliation(s)
- Hend Mohamed Anter
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt.
| | - Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Ahmed Abdelaziz Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| |
Collapse
|
16
|
Abd-Elnaby YA, ElSayed IE, AbdEldaim MA, Badr EA, Abdelhafez MM, Elmadbouh I. Anti-inflammatory and antioxidant effect of Moringa oleifera against bisphenol-A-induced hepatotoxicity. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-pharmacological exposure or pharmacological drug-induced hepatic injury is the most common cause of hepatotoxicity. This study was conducted to evaluate the effect of Moringa oleifera leaf extract against bisphenol-A (BPA)-induced hepatic toxicity in rats.
Methods
Rats (n=56) were randomized into 7 groups (8 rats/each). Control groups: rats received olive oil or Moringa oleifera (400mg/kg) orally for 42 days. Hepatotoxicity groups: rats received BPA (50mg/kg BW) orally in a 1-ml olive oil for 42 days. Reversal groups: rats received Moringa oleifera (200 or 400mg/kg) and BPA (50mg/kg BW) for 42 days. Preventive groups: rats received Moringa oleifera (200 or 400mg/kg) for 30 days followed by BPA (50mg/kg BW) for 14 days. At the end of the experiments, blood samples were collected for glucose and liver function assay, while the liver tissue samples were collected and homogenated for measuring the inflammatory/oxidant and antioxidant markers.
Results
Rats with BPA-induced hepatotoxicity have significantly increased serum aspartate transaminase (AST), alanine transaminase (ALT), and glucose; liver lysate malondialdehyde (MDA); tumor necrosis factor (TNF-α); and macrophage migrating inhibitory factor (MIF) but significantly decreased levels of liver lysate reduced glutathione (GSH) and total antioxidant capacity (TAC) levels. The administration of Moringa oleifera (especially 400mg/kg BW) in both reversal and preventive groups ameliorate the toxic effects of BPA in rats, as it decreased the activities of AST, ALT, glucose, MDA, TNF-α, and MIF levels and increased the antioxidant levels of GSH and TAC.
Conclusion
Moringa oleifera has hepatoprotective effects against BPA-induced liver damage through the regulation of antioxidants and inflammatory biomarkers.
Collapse
|
17
|
Abo-Elsoud RAEA, Ahmed Mohamed Abdelaziz S, Attia Abd Eldaim M, Hazzaa SM. Moringa oleifera alcoholic extract protected stomach from bisphenol A-induced gastric ulcer in rats via its anti-oxidant and anti-inflammatory activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68830-68841. [PMID: 35554805 PMCID: PMC9508220 DOI: 10.1007/s11356-022-20543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the protective potentials of Moringa oleifera leaf alcoholic extract (MOLE) against bisphenol A (BPA)-induced stomach ulceration and inflammation in rats. Control rats received olive oil. Second group administered MOLE (200 mg/kg bwt) by oral gavage. Third group was given BPA (50 mg/ kg bwt) for 4 weeks. Fourth group administrated BPA and MOLE simultaneously. Fifth group was given MOLE for 4 weeks then administered BPA and MOLE for another 4 weeks. Bisphenol A induced gastric ulceration and decreased the volume of gastric juice, prostaglandin E2 (PGE2), reduced glutathione (GSH) and interleukin 10 (IL-10) contents, superoxide dismutase (SOD) activity, and proliferating cell nuclear antigen (PCNA) protein in stomach tissues, while increased the titratable acidity, malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) contents, and caspase-3 and NF‑κB proteins in stomach tissue. However, MOLE ameliorated BPA-induced gastric ulceration and significantly increased the volume of gastric juice, PGE2, GSH and IL-10 contents, SOD activity, and PCNA protein while significantly decreased titratable acidity, MDA, TNF-α and IL-6 contents, and of NF‑κB and caspase-3 proteins in gastric tissue. This study indicated that MOLE protected stomach against BPA-induced gastric injury via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
| | | | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-Kom, Egypt.
| | - Suzan Moustafa Hazzaa
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
18
|
Histopathological Evaluation of Annona muricata in TAA-Induced Liver Injury in Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10081613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This research in vivo assessed the impact of the ethanolic extract of Annona muricata (A. muricata) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in Sprague Dawley rats. The rats, gavaged precisely with two doses of A. muricata (250 mg/kg and 500 mg/kg) with TAA, presented a substantial reduction in the liver index and hepatocyte propagation, with much lower cell injury. These groups showed meaningfully down-regulated proliferating cell nuclear antigen (PCNA) in the liver and spleen, α-smooth muscle actin (α-SMA), and transforming growth factor-beta 1 (TGF-β1) in liver parenchymal tissue. The liver homogenate displayed enhanced antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) activity, along with a decrease in malondialdehyde (MDA) levels. The serum levels of bilirubin, total protein, albumin, and liver enzymes alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were returned to normal and were similar to that of the normal control and silymarin with TAA-treated groups. Oral acute toxicity revealed no evidence of any toxic symbols or mortality in rats, indicating the safety of A. muricata. Therefore, the normal microanatomy of hepatocytes, the clampdown of PCNA, α-SMA, TGF-β, improved antioxidant enzymes (SOD and CAT), and condensed MDA with repairs of liver biomarkers validate the hepatoprotective effect of A. muricata.
Collapse
|
19
|
Hamad Shareef S, Abdel Aziz Ibrahim I, Alzahrani AR, Al-Medhtiy MH, Ameen Abdulla M. Hepatoprotective effects of methanolic extract of green tea against Thioacetamide-Induced liver injury in Sprague Dawley rats. Saudi J Biol Sci 2022; 29:564-573. [PMID: 35002452 PMCID: PMC8716963 DOI: 10.1016/j.sjbs.2021.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Since ancient times, herbal medicines have been applied in the treatment of cancer. Tea, derivative from the dried leaves of Camellia sinensis (L.) Kuntze plant is the most popular beverage globally after water and is available in various forms. Green tea has been expansively investigated for its beneficial properties of cancer prevention and therapy. The goal of the research: The current study was conducted to evaluate the hepaprotective character of methanolic green tea extract and its mechanism of action contrary to thioacetamide (TAA)-produced liver fibrosis of Sprague Dawley rats. MATERIALS AND METHODS Thirty rodents were equally placed in 5 clusters including normal control, TAA group as a positive control, silymarin as standard drug control, and treatment groups consisting of high dose and a low dose Camellia sinensis. Rats in experimental clusters by mouth fed with C. sinensis at 250 mg/kg or 500 mg/kg daily for 2 months. After 60 days, all rats were sacrificed. Blood specimens were gathered for liver biochemical examination. Livers of all groups were dissected out and subjected to histopathological examination through the Hematoxylin and Eosin stain, Masson trichrome, and immunohistochemistry stains (PCNA). Liver tissue homogenate was also analyzed for antioxidant activity parameters. RESULTS Gross morphological examination showed a regular liver architecture in C. sinensis fed collections compared to the TAA sets. Histology of rat's liver fed with C. sinensis showed an important decrease in the liver index with hepatic cells propagation, mild cellular injury, and immunostaining showed significant down-expression of proliferating cell nuclear antigen (PCNA). TAA produced liver fibrosis through a significant increase in serum alanine transferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin. Total protein and albumin also decreased in the TAA group. Moreover, the reduction of antioxidant enzyme activity including superoxide dismutase and catalase as well as the increase in malondialdehyde was detected in the TAA control group. Meanwhile, an abnormal level of liver biochemical parameters was restored closer to the normal levels in serum of the C. sinensis-fed clusters. In addition, C. sinensis fed assemblies showed elevated antioxidative enzymes activity with a reduction in malondialdehyde level comparable to the levels in silymarin-treated rats. CONCLUSIONS Green tea potentially inhibited the progression of liver cirrhosis, down -regulation of PCNA proliferation, prevented oxidation of hepatocytes, recovered SOD and CAT enzymes, condensed MDA and reduced cellular inflammation.
Collapse
Affiliation(s)
- Suhayla Hamad Shareef
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Morteta H. Al-Medhtiy
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Kufa, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
20
|
Sakr S, A Rashad W, Abaza MT. The ameliorative effect of Moringa oleifera oil on tributyltin-induced brain toxicity in albino rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2025-2039. [PMID: 34227745 DOI: 10.1002/tox.23320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/30/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Tributyltin (TBT) is an organotin compound widely used as a biocide in antifouling paints. Moringa oleifera oil (MOO) has a promising antioxidant potential, which necessitates further exploration. This study was conducted to investigate the potential protective effect of MOO against TBT-induced brain toxicity. The 30 rats were grouped into five groups (six each), Group I negative control, Group II positive control (vehicle), Group III MOO (5 ml/kg body weight [b.wt.]), Group IV TBT (10 mg/kg b.wt.), and Group V TBT & MOO. All treatments were given orally for 28 days. Thereafter, brains were exposed to oxidative stress and neurological parameters analyses. Histopathological and immunohistochemical (caspase-3, Bax, Bcl-2) examinations were also carried out. In rats administered TBT, increased malondialdehyde level, decreased reduced glutathione, and low total antioxidant capacity levels were in support of oxidative stress mechanism. Neurotoxicity was indicated by high nitric oxide level and increased acetylcholinestrase activity. Along with the histopathological alterations, the dysregulated expression of caspase-3, Bax, and Bcl-2 were indicative of the apoptotic mechanism mediated by TBT. Co-administration of MOO with TBT ameliorated the aforementioned toxic effects. In conclusion, TBT causes brain toxicity via oxidative, nitrosative, and apoptotic mechanisms. MOO demonstrates protective effect against TBT-induced brain toxicity mostly via potent antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa A Rashad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa T Abaza
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Shokry DM, Abd Eldaim MA, Badr MR, Khalifa HK, Orabi SH, Hassan AM, Dohreig R. Enhancement impact of Moringa oleifera leaves extract–base extender on cryopreservation and fertilization of Barki ram sperms: comparative study with vitamin E and selenium combination. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1953411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dina M. Shokry
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt
| | - Magdy R. Badr
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Sahar H. Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aziza M. Hassan
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ragab Dohreig
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
22
|
Abd Eldaim MA, Tousson E, Soliman MM, El Sayed IET, Abdel Aleem AAH, Elsharkawy HN. Grape seed extract ameliorated Ehrlich solid tumor-induced hepatic tissue and DNA damage with reduction of PCNA and P53 protein expression in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44226-44238. [PMID: 33851294 DOI: 10.1007/s11356-021-13904-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the ameliorative potential of grape seed extract (GSE) against Ehrlich solid tumor (EST)-induced hepatic tissue alterations in mice. The control group was infused with physiological saline. The second group received GSE (50 mg/kg day by day orally) for 2 weeks. The third group was subcutaneously injected with 2.5 million of EST cells. The fourth group was injected with EST cells and treated with GSE extract simultaneously. The fifth group was injected with EST cells and kept for 2 weeks until the appearance of a solid tumor, then treated with GSE for 2 weeks. The phytochemical analysis of GSE revealed the presence of total phenols (17.442 mg GAE/g) and total flavonoid (6.687 mg CE/g) with antioxidant activity of 81.506 mg TE/g DPPH. The Ehrlich solid tumor significantly raised the activities of ALT, AST, and ALP; the level of alpha fetoprotein (AFP) in serum; and the protein expressions of hepatic proliferating cell nuclear antigen (PCNA) and tumor suppressor protein (P53), as well as induced DNA damage and pathological alterations in liver tissue. However, it significantly reduced serum albumin and total protein levels. In contrast, the co- or post-treatment of EST-bearing mice with GSE reduced the activities of ALT, AST, and ALP; the level AFP in serum; and hepatic P53 and PCNA protein expressions. In addition, it reduced EST-induced hepatic DNA damage and pathological alterations, while it increased serum albumin and total protein levels. This study suggested that GSE is a potent hepatoprotective agent and both co- and post-treatment of EST-bearing mice with GSE almost had the same effects.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt.
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | | | | | | |
Collapse
|
23
|
Amara I, Ontario ML, Scuto M, Lo Dico GM, Sciuto S, Greco V, Abid-Essefi S, Signorile A, Salinaro AT, Calabrese V. Moringa oleifera Protects SH-SY5YCells from DEHP-Induced Endoplasmic Reticulum Stress and Apoptosis. Antioxidants (Basel) 2021; 10:532. [PMID: 33805396 PMCID: PMC8065568 DOI: 10.3390/antiox10040532] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Moringa oleifera (MO) is a medicinal plant that has been shown to possess antioxidant, anticarcinogenic and antibiotic activities. In a rat model, MO extract (MOe) has been shown to have a protective effect against brain damage and memory decline. As an extending study, here, we have examined the protective effect of MOe against oxidative stress and apoptosis caused in human neuroblastome (SH-SY5Y) cells by di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to induce neurotoxicity. Our data show that MOe prevents oxidative damage by lowering reactive oxygen species (ROS) formation, restoring mitochondrial respiratory chain complex activities, and, in addition, by modulating the expression of vitagenes, i.e., antioxidant proteins Nrf2 and HO-1. Moreover, MOe prevented neuronal damage by partly inhibiting endoplasmic reticulum (ER) stress response, as indicated by decreased expression of CCAAT-enhancer-binding protein homologous protein (CHOP) and Glucose-regulated protein 78 (GRP78) proteins. MOe also protected SH-SY5Y cells from DEHP-induced apoptosis, preserving mitochondrial membrane permeability and caspase-3 activation. Our findings provide insight into understanding of molecular mechanisms involved in neuroprotective effects by MOe against DEHP damage.
Collapse
Affiliation(s)
- Ines Amara
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia;
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gianluigi Maria Lo Dico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia;
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (I.A.); (M.L.O.); (M.S.); (G.M.L.D.); (S.S.); (V.G.); (V.C.)
| |
Collapse
|
24
|
Larrazábal-Fuentes MJ, Fernández-Galleguillos C, Palma-Ramírez J, Romero-Parra J, Sepúlveda K, Galetovic A, González J, Paredes A, Bórquez J, Simirgiotis MJ, Echeverría J. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia copa Phil. (Asteraceae). Front Pharmacol 2020; 11:594174. [PMID: 33343365 PMCID: PMC7746865 DOI: 10.3389/fphar.2020.594174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisia copa Phil. (Asteraceae) (known as copa-copa) is a native species of Chile used as an infusion in traditional medicine by Atacameños people in the Altiplano, highlands of northern Chile. In this research, we have investigated for the first time the cholinesterase inhibition potential against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the chemical profiling of the infusions prepared from the aerial parts of A. copa by high resolution spectrometry. In addition, total phenolic, total flavonoid content, antioxidant (DPPH, FRAP, and ORAC) and antiprozoal activity were tested. Artemisia copa showed good inhibitory activity against AChE and BChE (3.92 ± 0.08 µg/ml and 44.13 ± 0.10 µg/ml). The infusion displayed a total phenolics content of 155.6 ± 2.9 mg of gallic acid equivalents/g and total flavonoid content of 5.5 ± 0.2 mg quercetin equivalents/g. Additionally, trypanocidal activity against Trypanosoma cruzi was found (LD50 of 131.8 µg/ml). Forty-seven metabolites were detected in the infusion of A. copa including several phenolic acids and flavonoids which were rapidly identified using ultrahigh performance liquid chromatography orbitrap mass spectrometry analysis (UHPLC-Orbitrap-MS) for chemical profiling. The major compounds identified in the infusions were studied by molecular docking against AChE and BChE. The UHPLC-MS fingerprints generated can be also used for the authentication of these endemic species. These findings reveal that A. copa infusions can be used as beverages with protective effects.
Collapse
Affiliation(s)
- María José Larrazábal-Fuentes
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jenifer Palma-Ramírez
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Kevin Sepúlveda
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jorge González
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Adrián Paredes
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
25
|
Abood WN, Bradosty SW, Shaikh FK, Salehen N, Farghadani R, Agha NFS, Al-Medhtiy MH, Kamil TDA, Agha AS, Abdulla MA. Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver cirrhosis in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Elrasoul ASA, Mousa AA, Orabi SH, Mohamed MAEG, Gad-Allah SM, Almeer R, Abdel-Daim MM, Khalifa SAM, El-Seedi HR, Eldaim MAA. Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects of Azolla pinnata Ethanolic Extract against Lead-Induced Hepatotoxicity in Rats. Antioxidants (Basel) 2020; 9:antiox9101014. [PMID: 33086604 PMCID: PMC7603163 DOI: 10.3390/antiox9101014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The current study investigated the protective potential of Azolla pinnate ethanolic extract (APE) against lead-induced hepatotoxicity in rats. Sixty male Wistar albino rats were randomly allocated into six groups (n = 10). The control group was orally administrated with saline. The second group received lead acetate (100 mg/kg body weight (BW) orally for 60 days). The third group was fed with APE (10 mg/kg BW orally for 60 days). The fourth group was administrated with lead acetate like the second group and APE like the third group, concomitantly, for 60 days. The fifth group was administrated with APE like the third group for 30 days, then orally administrated with the lead acetate like the second group for another 30 days. The sixth group was administrated with lead acetate like the second group for 30 days, then with APE like the third group for a further 30 days. Phytochemical analysis of APE indicated the presence of peonidin 3-O-glucoside cation, vitexin, rutin, thiamine, choline, tamarixetin, hyperoside, astragalin, and quercetin. The latter has been elucidated using one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and liquid chromatography–mass spectrometry (LC–MS-MS). Lead acetate increased the serum levels of alanine and aspartate aminotransferases and that of urea, creatinine, tumor necrosis factor alpha, and interleukin 1β, hepatic tissue malondialdehyde contents, and caspase 3 protein expression, as well as altering the hepatic tissue architecture. However, it decreased the serum levels of interleukin 10 and glutathione (GSH) contents, and the activities of catalase and superoxide dismutase in hepatic tissue. In contrast, the administration of APE ameliorated the lead-induced alterations in liver function and structure, exemplifying the benefits of Azolla’s phytochemical contents. Collectively, A. pinnate extract is a protective and curative agent against lead-induced hepatotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Ahmed Shaaban Abd Elrasoul
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | | | - Shaban M. Gad-Allah
- Department of Surgery, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32958, Egypt;
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (H.R.E.-S.); (M.A.A.E.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia 32512, Egypt
- Correspondence: (H.R.E.-S.); (M.A.A.E.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| |
Collapse
|
27
|
Abdel-Daim MM, Alkahtani S, Almeer R, Albasher G. Alleviation of lead acetate-induced nephrotoxicity by Moringa oleifera extract in rats: highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33723-33731. [PMID: 32529628 DOI: 10.1007/s11356-020-09643-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an environmental toxicant; its consumption can induce renal deficits. In this study, we explored the possible protective efficiency of Moringa oleifera extract (MOE) against lead acetate (PbAc)-mediated reprotoxicity. Four experimental groups of seven rats each were used: control, PbAc, MOE, and MOE+PbAc groups. All groups were given their respective treatment for 4 weeks. PbAc impaired the oxidative/antioxidative balance in the renal tissue, as shown by the decreased antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) and increased oxidants (lipid peroxidation and nitric oxide). Additionally, PbAc enhanced the progression of kidney inflammation by increasing tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B associated with upregulation of inducible nitric oxide synthase. Moreover, a dysregulation in the apoptotic-regulating proteins (Bax, caspase-3, and Bcl2) were recorded upon PbAc exposure. Remarkably, MOE oral administration restored redox homeostasis, suppressed the inflammatory and apoptotic responses in the kidney tissue. Our findings point out that MOE could be used as an alternative remedy to overcome the adverse effects of Pb exposure, which may be due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
28
|
The ameliorative impacts of Moringa oleifera leaf extract against oxidative stress and methotrexate-induced hepato-renal dysfunction. Biomed Pharmacother 2020; 128:110259. [DOI: 10.1016/j.biopha.2020.110259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
|
29
|
Souid G, Sfar M, Timoumi R, Romdhane MH, Essefi SA, Majdoub H. Protective effect assessment of Moringa oleifera against cadmium-induced toxicity in HCT116 and HEK293 cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23783-23792. [PMID: 32297115 DOI: 10.1007/s11356-020-08730-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The cadmium (Cd) is considered one of the widespread toxic metals in the aquatic and terrestrial environments, which is due to its long half-life, non-degradable characteristic, and toxicity. Aqueous extract of freeze-dried Moringa oleifera (Moringaceae family) leaves was examined for protective effect and antioxidant power against Cd toxicity. The results revealed that Moringa aqueous extract (MAE) has contents of total polyphenols and flavonoids about 30.14 mg GAE/g and 18.35 mg QE/g respectively. Furthermore, phenolic compounds in leaves of Moringa were studied using a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Results showed that the largest number of phenolic compounds determined in leaves of Moringa belongs to flavonoids. Moreover, biological properties were determined by radical scavenging capacity (DPPH) and ferric-reducing power (FRAP). Cytoprotective effect and antioxidant power of Moringa extract were assessed using the mitochondrial activity testing method (MTT test), malondialdehyde (MDA), and reactive oxygen species (ROS) production. Results indicate that Moringa aqueous extract have a significant (i) proliferative, (ii) antioxidant, and (iii) cytoprotective effect on HCT116 and HEK293 cells against metal toxicity.
Collapse
Affiliation(s)
- Ghada Souid
- Viral Genomic and Antiviral Strategy (VR17ES30), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, 5000, Monastir, Tunisia
| | - Manel Sfar
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC: LR01SE17), Faculty of Dental Medicine, University of Monastir, 5000, Monastir, Tunisia
| | - Mariem Hadj Romdhane
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Salwa Abid Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC: LR01SE17), Faculty of Dental Medicine, University of Monastir, 5000, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia.
| |
Collapse
|