1
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
2
|
Ren M, Lv X, Xu T, Sun J, Gao M, Lin H. Effects of atrazine and curcumin exposure on TCMK-1 cells: Oxidative damage, pyroptosis and cell cycle arrest. Food Chem Toxicol 2024; 185:114483. [PMID: 38301994 DOI: 10.1016/j.fct.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 μmol/L ATR and 20 μmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1β and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.
Collapse
Affiliation(s)
- Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Mohammed ET, Safwat GM, Bahnasawy EA, Abdel-Razik ARH, Mohamed DS. Zinc Oxide Nanoparticles and Vitamin C Ameliorate Atrazine-Induced Hepatic Apoptosis in Rat via CYP450s/ROS Pathway and Immunomodulation. Biol Trace Elem Res 2023; 201:5257-5271. [PMID: 36790584 PMCID: PMC10509061 DOI: 10.1007/s12011-023-03587-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt.
| | - Ghada M Safwat
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| | - Esraa A Bahnasawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Doaa Sh Mohamed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| |
Collapse
|
4
|
Rashad WA, Saadawy SF, Refaay NE. Mitigating effect of L-carnitine against atrazine-induced hepatotoxicity: histopathological and biochemical analyses in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22034-22045. [PMID: 36282381 PMCID: PMC9938065 DOI: 10.1007/s11356-022-23568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is an extensively used herbicide that is often found in drinking water and waterways. After metabolization and excretion in the liver, ATR residues or its metabolites were found in tissues causing harmful effects mainly to the endocrine system and liver. This study aimed to elucidate the toxic impact of ATR on the liver and possible ameliorative effects of L-carnitine (LC). It utilized 30 adult male albino rats divided into three equal groups; the control group received 0.5 cc distilled water orally for 14 days, an ATR-treated group received ATR in a dose of 400 mg/kg BW dissolved in distilled water by oral gavage daily for 14 days, and a protected group (ATR + LC) received 400 mg/kg BW of ATR dissolved in distilled water, plus 100 mg/kg LC dissolved in distilled water by oral gavage daily for 14 days. At the end of the experiment, the liver tissue was prepared for histological and biochemical analyses and showed significant elevation of liver enzymes and oxidative parameters, altered expression of apoptotic and antiapoptotic genes, and hepatic degenerative changes in the ATR-treated group. In conclusion, atrazine induces oxidative stress, inflammation, and apoptosis in the liver of rats, and these toxic effects can be alleviated by L-carnitine.
Collapse
Affiliation(s)
- Walaa A Rashad
- Faculty of Medicine, Human Anatomy & Embryology Department, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Faculty of Medicine, Medical Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Nehal E Refaay
- Faculty of Medicine, Human Anatomy & Embryology Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Gao M, Zhu H, Guo J, Lei Y, Sun W, Lin H. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:312-322. [PMID: 36220537 DOI: 10.1016/j.fsi.2022.09.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 μg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1β, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, β-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 μM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongiiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Ali WA, Moselhy WA, Ibrahim MA, Amin MM, Kamel S, Eldomany EB. Protective effect of rutin and β-cyclodextrin against hepatotoxicity and nephrotoxicity induced by lambda-cyhalothrin in Wistar rats: biochemical, pathological indices and molecular analysis. Biomarkers 2022; 27:625-636. [PMID: 35658761 DOI: 10.1080/1354750x.2022.2087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to assess hepatotoxicity and nephrotoxicity of Lambda-cyhalothrin (LCT) and the protective effect of rutin alone and in combination with β-cyclodextrin (β-CD). MATERIALS AND METHODS Male Wistar rats were divided into five groups: Group 1: was used as a control and received a standard diet and water. Group 2, 3, 4 and 5 were orally administered with LCT (7.6 mg/kg body weight), rutin (200 mg/kg body weight) LCT and rutin (at the same doses as in Group 2 and Group 3), and LCT and a mixture of rutin with β-CD (400 mg/kg body weight), respectively. All experimental animals were orally gavaged 5 days/week for 60 days. RESULTS Our data revealed that LCT-induced liver and kidney injuries were related to the up-regulated expression of TNF-α and down-regulated expression of NRF-2 genes mRNA, whereas these effects were reversed with rutin treatment. LCT-induced oxidative stress altered the histological picture, and the hematological and biochemical parameters. CONCLUSION Treatment with a rutin-β-CD complex had preventive potential against LCT via suppression of oxidative stress and augmentation of the antioxidant defense system.
Collapse
Affiliation(s)
- Walaa A Ali
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa A Moselhy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.,Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha M Amin
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ehab B Eldomany
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Putative abrogation impacts of Ajwa seeds on oxidative damage, liver dysfunction and associated complications in rats exposed to carbon tetrachloride. Mol Biol Rep 2021; 48:5305-5318. [PMID: 34244886 DOI: 10.1007/s11033-021-06544-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Industrial toxicants such as Carbon tetrachloride (CCl4) are known to disrupt the oxidative-antioxidative balance, which generates excessive amounts of free radicals leading to chronic or acute liver damage. Natural antioxidants, including Ajwa, play an important role in protecting against hepatotoxicity. METHODS AND RESULTS This study investigated the prophylactic impacts of ajwa seeds aqueous extract (ASE) against hepatic oxidative injury in rats induced by CCl4. Eighty male Wistar albino rats were equally assigned to eight groups: one group receive no treatment, four groups were received CCl4-olive oil mixture [1:1(v/v)] (0.2 ml/100 g body weight (bw), intraperitoneally) two times/week for 4 weeks/rat alone or with 200 mg Vit. C/kg bw or 5 ml ASE/rat or both, and three groups received olive oil, Vit. C, or ASE. Vitamin C and ASE were orally administrated two weeks before CCl4 injection and 4 weeks concomitant with CCl4. Lipid peroxidation, lipogenesis-related genes, hepatic histopathology, Bax immunostaining and DNA fragmentation were assessed. ASE protected hepatic damage by suppressing oxidative stress and elevating activities of antioxidant enzymes, including superoxide dismutase and catalase. ASE also regulated hepatic dyslipidemia, hepatic lipid accumulation and expression of SREBP-1 and FAS genes in CCl4-treated rats. ASE decreased apoptosis through inhibition of CCl4 induced Bax activation in hepatocytes. CONCLUSION These observations provide evidence for the hepatoprotective potential of ASE via inhibiting hepatic lipogenesis and oxidative stress, suggesting being used as a natural product in attenuating CCl4 induced oxidative damage, hepatotoxicity and associated dysfunction.
Collapse
|
8
|
Chang J, Liang C, Wang W, Yong L, Mao W, Yang H, Jia X, Liu Z, Song Y. Toxic effects of atrazine on immune function in BALB/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37978-37994. [PMID: 33728608 DOI: 10.1007/s11356-021-13360-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to evaluate the toxic effects of different concentrations (23, 90, 360 mg/kg BW) of atrazine (ATZ) on immune function in BALB/c mice. Some parameters of general immunotoxicity, humoral immunity, cellular immunity, and non-specific immunity were tested. The studies showed that the high-dose ATZ induced a significant reduction in the final body weight of mice, the absolute and relative weights of spleen, the counts of white blood cell (WBC), lymphocyte (LYM), monocyte (MON), and the number of splenocyte. An increase in the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and cholesterol (CHO) in the high-dose ATZ group was observed. Pathological examination showed that the medium- and high-doses of ATZ caused atrophy and destruction of thymus, spleen, and hepatorenal toxicity. The serum interleukin-5(IL-5) level of mice and the number of plaque-forming cell (PFC) in spleen cells in the high-dose ATZ group decreased significantly while there was a significant increase of the serum immunoglobulin G (IgG) in the high-dose ATZ group when compared to the negative control group. In the high-dose ATZ group, the proliferation ability of T and B lymphocytes as well as the delayed-type hypersensitivity (DTH) response were significantly decreased. The low-dose ATZ (23 mg/kg BW) caused a significant decrease in the number of WBC and neutrophil (NEUT), as well as the proportion of polychromatic and normoblast. In summary, we thought the low-dose ATZ has a slight effect on the immune system; it can be preliminarily concluded that the lowest observed adverse effect level (LOAEL) of atrazine is 23 mg/kg BW in mice. Atrazine can cause immunotoxicity mainly through cellular and humoral immunity pathways.
Collapse
Affiliation(s)
- Jiongjiong Chang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
- Ningxia Medical University, Yinchuan, 750001, China
| | - Chunlai Liang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Weifeng Mao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Hui Yang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, 37 Guangqu Road Building 2, Beijing, 100022, China.
| |
Collapse
|
9
|
Galal MK, Morgan AM, Ibrahim MA, Hussien AM. Atrazine-induced cell-mediated immunotoxicity in rabbits and the ameliorating role of glycyrrhizic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:32027-32034. [PMID: 33624241 DOI: 10.1007/s11356-021-12999-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The present study aimed to explain the mechanisms involved in cell-mediated immunotoxicity of atrazine (ATR) in rabbits and to evaluate the ameliorative role of glycyrrhizic acid (GA) against such toxic effects. Forty rabbits were assigned into 4 equal groups: control, ATR, GA, and ATR + GA groups. ATR (2475 ppm) and GA (60 μg of GA/ml of water) were administrated via food and drinking water, respectively, for 60 consecutive days. The cell-mediated immunotoxicity of ATR was clarified by the induced thymus immunotoxicity through downregulation of interleukin (IL)-9 gene and interferon-γ (IFN-γ) gene expression, upregulation in caspase-3, and significant decrease in the total leukocytic and lymphocyte counts. Histopathological investigations demonstrated severe depletion of lymphoid follicles in the medulla of the thymus gland. On the other hand, co-administration of GA for group 4 improved most of the undesirable impacts of ATR. In conclusion, the alteration in IL-9/IFN-γ expression may involve ATR-induced thymocyte apoptosis which may explain the mechanisms of ATR-induced cell-mediated immunotoxicity with a possible amelioration influence of GA administration.
Collapse
Affiliation(s)
- Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Ashraf M Morgan
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Abdelhady AY, El-Safty SA, Hashim M, Ibrahim MA, Mohammed FF, Elbaz AM, Abdel-Moneim AME. Comparative evaluation of single or combined anticoccidials on performance, antioxidant status, immune response, and intestinal architecture of broiler chickens challenged with mixed Eimeria species. Poult Sci 2021; 100:101162. [PMID: 33975034 PMCID: PMC8122173 DOI: 10.1016/j.psj.2021.101162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Poultry production faces several threats and challenges, one of the most important of which is avian coccidiosis which causes annual losses exceeding US$ 3 billion. Discovering new drugs or combinations of existing anticoccidials has become inevitable to overcome the emergence of coccidiosis resistance. This study evaluated a new combination of maduramicin and diclazuril in comparison to the well-known product Maxiban72 which consisted of narasin and nicarbazin, and the single effect of monensin as treatments for avian coccidiosis. A total of 750 1-day-old Indian River broiler chicks were allocated equally into 5 experimental groups with 6 replicates each as follows: 1) negative unchallenged control group (NC) fed the basal diet; 2) positive control group (PC) received the basal diet and inoculated with Eimeria; 3) PC + 100 mg monensin sodium (Atomonsin)/kg diet (MS); 4) PC + 5 mg maduramicin ammonium (Madramycin) + 2.5 mg diclazuril (Atozuril)/kg diet (MMD); and 5) PC + 40 mg narasin + 40 mg nicarbazin (MaxibanT72)/kg diet (NN). Anticoccidials improved (P < 0.01) growth performance, dressing (%) and carcass yield of inoculated birds compared to untreated-inoculated ones. Erythrogram and leukogram parameters were affected by Eimeria challenge. Total protein, globulin, cholesterol, triglycerides, superoxide dismutase and glutathione peroxidase levels in PC birds' serum were reduced (P < 0.05) while their values of liver enzymes, malondialdehyde and catalase were elevated (P < 0.01) when compared to NC ones. Serum immunoglobulin A, and jejunal gene expressions of interleukin-6 and interferon gamma were increased (P < 0.05) in PC group compared to NC group. Anticoccidial drugs restored values of the aforementioned biomarkers near to those of NC. Jejunal architecture in inoculated birds was improved by the anticoccidial treatments in MS, MMD, and NN. Fecal oocyst counts were significantly reduced in MMD, NN, and MS groups compared to PC group. Conclusively, although all examined anticoccidial drugs were effective in treating Eimeriosis, the anticoccidial combinations in MMD and NN groups were more effective than the single administration of MS in treating avian coccidiosis.
Collapse
Affiliation(s)
- AbdelRahman Y Abdelhady
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra 11241, Cairo, Egypt; Applied Feed Research House (AFRH), Orabi Community, Qalyobia, Egypt
| | - Salah A El-Safty
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra 11241, Cairo, Egypt; Applied Feed Research House (AFRH), Orabi Community, Qalyobia, Egypt
| | - Mosaad Hashim
- Applied Feed Research House (AFRH), Orabi Community, Qalyobia, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt.
| |
Collapse
|
11
|
Khalaf AA, Ibrahim MA, Galal MK, Abdallah AA, Mansour R, Afify MM. The protective effects of Terminalia laxiflora extract on hepato-nephrotoxicity induced by fipronil in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39507-39515. [PMID: 32651782 DOI: 10.1007/s11356-020-10018-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The present study was led to investigate the defensive role of Terminalia laxiflora extract (TLE) on fipronil (FPN) induced hepatotoxicity and nephrotoxicity in male rats. Rats were administered with TLE (100 mg/kg) against the renal toxicity and hepatotoxicity induced by administration of FPN (10.5 mg/kg) for 30 days. At the end of the experimental period, the serum, liver, and kidneys were harvested and assessed for subsequent analysis. FPN administration to rats resulted in a significant elevation of serum transaminases, urea, and creatinine. Also, FPN-treated groups exhibited a marked reduction in total protein and albumin levels. Compared with the control group, the level of malondialdehyde (MDA) was elevated in groups treated with FPN, whereas superoxide dismutase (SOD), catalase (CAT) activities, and glutathione levels were distinctly reduced in this group. Significant increases in genomic DNA fragmentation and the expression level of the caspase-3 gene were also recorded. The biochemical result was supported by histopathological findings. Co-administration of TLE along with FPN significantly diminished the liver and kidney function tests decreased the level of lipid peroxidation, and enhanced all the antioxidant enzymes, while also diminishing the expression of caspase-3 and DNA laddering, indicating amelioration of DNA damage. These results indicate that TLE plays a vital role in diminishing FPN-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- A A Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mona K Galal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amr A Abdallah
- Mammalian Toxicology Department, Central Agricultural Pesticides Lab, CAPL., Agriculture Research Center, ARC., Dokki, Giza, Egypt
| | | | - Mostafa M Afify
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, P.O.62511, Egypt
| |
Collapse
|
12
|
Hassanen EI, Morsy EA, Hussien AM, Ibrahim MA, Farroh KY. The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci Rep 2020; 40:BSR20194296. [PMID: 32124930 PMCID: PMC7103588 DOI: 10.1042/bsr20194296] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate what dosage of gold nanoparticles (GNPs) would improve growth performance, antioxidant levels and immune defense in broiler chickens. The experiment was carried out on 90 one-day-old mixbred Cobb chicks. The birds were allocated into three groups with three replicates. Group (1) kept as a negative control. Groups (2) and (3) received 5, 15 ppm GNPs via drinking water weekly for 35 days of chicks' life. Blood samples were collected at 8, 15, 22 and 36 days for oxidative stress evaluations and immunological studies. The birds were slaughtered at the ages of 36 days and thymus, spleen, busa of Fabricius and liver were collected for histopathological description, RT-PCR analysis and DNA fragmentation assay. Our results confirmed that adding of 15ppm GNPs in drinking water were induced remarkable blood oxidative stress damage, histopathological alterations, up-regulation of IL-6, Nrf2 gene expression, and DNA fragmentation in the examined immune organs of the broiler chickens as well as a significant reduction in the antibody titer against Newcastle (ND) and avian influenza (AI) viruses were noticed. On the other hand, the group received 5 ppm GNPs noticed better growth performance with the enhancement of the final food conversion ratio (FCR) without any significant difference in the previous toxicological and immunological parameters compared with the control groups. We suggest that feeding of 5ppm GNPs could improve the antioxidant capacity, immunity and performance in poultry but further food quality assurance tests are required in the future to confirm its safety for people.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department of Pathology, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman A. Morsy
- Department of Poultry Diseases, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M. Hussien
- Department of Toxicology and Forensic Medicine, Veterinary Medicine, Cairo University, Egypt
| | - Marwa A. Ibrahim
- Department of Biochemistry and Molecular Biology, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y. Farroh
- Department of Nanotechnology, Agricultural Research Center, Giza, Egypt
| |
Collapse
|