1
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Zou R, Yang W, Rezaei B, Tang K, Guo K, Zhang P, Keller SS, Andersen HR, Zhang Y. Activation of peracetic acid by electrodes using biogenic electrons: A novel energy- and catalyst-free process to eliminate pharmaceuticals. WATER RESEARCH 2024; 261:122065. [PMID: 39002421 DOI: 10.1016/j.watres.2024.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Peracetic acid (PAA) has received increasing attention as an alternative oxidant for wastewater treatment. However, existing processes for PAA activation to generate reactive species typically require external energy input (e.g., electrically and UV-mediated activation) or catalysts (e.g., Co2+), inevitably increasing treatment costs or introducing potential new contaminants that necessitate additional removal. In this work, we developed a catalyst-free, self-sustaining bioelectrochemical approach within a two-chamber bioelectrochemical system (BES), where a cathode electrode in-situ activates PAA using renewable biogenic electrons generated by anodic exoelectrogens (e.g., Geobacter) degrading biodegradable organic matter (e.g., acetic acid) in wastewater at the anode. This innovative BES-PAA technique achieved 98 % and 81 % removal of 2 µM sulfamethoxazole (SMX) in two hours at pH 2 (cation exchange membrane) and pH 6 (bipolar membrane) using 100 μM PAA without external voltage. Mechanistic studies, including radical quenching, molecular probe validation, electron spin resonance (ESR) experiments, and density functional theory (DFT) calculations, revealed that SMX degradation was driven by reactive species generated via biogenic electron-mediated OO cleavage of PAA, with CH3C(O)OO• contributing 68.1 %, •OH of 18.4 %, and CH3C(O)O• of 9.4 %, where initial formation of •OH and CH3C(O)O• rapidly reacts with PAA to produce CH3C(O)OO•. The presence of common water constituents such as anions (e.g., Cl-, NO3-, and H2PO4-) and humic acid (HA) significantly hinders SMX removal via the BES-PAA technique, whereas CO32- and HCO3- ions have a comparatively minor impact. Additionally, the study investigated the removal of various pharmaceuticals present in secondary treated municipal wastewater, attributing differences in removal efficiency to the selective action of CH3C(O)OO•. This research demonstrates a novel PAA activation method that is ecologically benign, inexpensive, and capable of overcoming catalyst deactivation and secondary pollution issues.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Wenqiang Yang
- Department of Physics, Technical University of Denmark, Lyngby, DK 2800, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Kai Tang
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kuangxin Guo
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Pingping Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental & Ressource Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
3
|
Kubiak A. Comprehensive spectroscopy and photocatalytic activity analysis of TiO 2-Pt systems under LED irradiation. Sci Rep 2024; 14:13827. [PMID: 38879712 PMCID: PMC11180208 DOI: 10.1038/s41598-024-64748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
This study presents a thorough spectroscopic analysis of TiO2-Pt systems under LED irradiation, with a focus on elucidating the photodeposition process of Pt nanoparticles onto TiO2 surfaces. The methodology leverages an innovative LED photoreactor tailored to a specific spectral range, enabling precise characterization of the excitation spectrum of TiO2-Pt composites. Through the identification of Pt precursor species and their excitation under LED-UV light, a photodeposition mechanism is proposed involving concurrent excitation of both the TiO2 semiconductor and the H2PtCl6 precursor. The LED photoreactors are employed to scrutinize the excitation profile of TiO2-Pt materials, revealing that the incorporation of Pt nanoparticles does not expand TiO2's absorption spectrum. Furthermore, UV-A exposure in the absence of Pt did not induce the formation of surface defects, underscoring the lack of visible light activity in TiO2-Pt systems. Spectroscopic analyses, complemented by naproxen photooxidation experiments, indicate the absence of a significant plasmonic effect in Pt nanoparticles within the experimental framework. Mass spectroscopy results corroborate the presence of distinct naproxen degradation pathways, suggesting minimal influence from photocatalyst properties. This research provides a detailed spectroscopic insight into TiO2-Pt photocatalysis, enriching the knowledge of photocatalytic materials in LED lighting.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, PL-61614, Poznan, Poland.
| |
Collapse
|
4
|
Juve JMA, Donoso Reece JA, Wong MS, Wei Z, Ateia M. Photocatalysts for chemical-free PFOA degradation - What we know and where we go from here? JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132651. [PMID: 37827098 DOI: 10.1016/j.jhazmat.2023.132651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic and recalcitrant perfluoroalkyl substance commonly detected in the environment. Its low concentration challenges the development of effective degradation techniques, which demands intensive chemical and energy consumption. The recent stringent health advisories and the upgrowth and advances in photocatalytic technologies claim the need to evaluate and compare the state-of-the-art. Among these systems, chemical-free photocatalysis emerges as a cost-effective and sustainable solution for PFOA degradation and potentially other perfluorinated carboxylic acids. This review (I) classifies the state-of-the-art of chemical-free photocatalysts for PFOA degradation in families of materials (Ti, Fe, In, Ga, Bi, Si, and BN), (II) describes the evolution of catalysts, identifies and discusses the strategies to enhance their performance, (III) proposes a simplified cost evaluation tool for simple techno-economical analysis of the materials; (IV) compares the features of the catalysts expanding the classic degradation focus to other essential parameters, and (V) identifies current research gaps and future research opportunities to enhance the photocatalyst performance. We aim that this critical review will assist researchers and practitioners to develop rational photocatalyst designs and identify research gaps for green and effective PFAS degradation.
Collapse
Affiliation(s)
- Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Juan A Donoso Reece
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Schnabel T, Honke R, Schmid A, Mehling S, Göhring R, Simek O, Wolfram A, Wetterauer A, Springer C. Low-cost test rig for characterization of photocatalytic planar materials using photonically sized UV-A LED light sources. HARDWAREX 2023; 16:e00487. [PMID: 38020539 PMCID: PMC10663667 DOI: 10.1016/j.ohx.2023.e00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
In the presented studies, a system for the characterization of planar photocatalysts was developed and tested. In the system, reference substances can be studied online with regard to their degradability and adsorption on photocatalytic materials. In order to perform accurate calculations of the quantum and photon efficiency of the catalysts, the LED arrays used were adjusted in their spacing by simulations so that a homogeneous light field is imaged on the catalysts. The system was tested with respect to measurement accuracy and reproducibility and the photocatalytic degradation of methylene blue, methyl orange and rhodamine B was investigated. Exemplarily, the reaction kinetics, photolysis and adsorption on the tested photocatalysts were determined for these compounds and the calculation was presented in detail. The exact construction plans and circuits as well as the sensors and their programming are presented in detail and should encourage other scientists to replicate the experimental setup, since especially in the field of photocatalysis research, often the results of publications cannot be compared with each other.
Collapse
Affiliation(s)
- Tobias Schnabel
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Robert Honke
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Andreas Schmid
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Simon Mehling
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Rene' Göhring
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Oldrich Simek
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Axel Wolfram
- Hof University of Applied Science, Alfons-Goppel Platz 1, 95028, Hof
| | - Andre Wetterauer
- Erfurt University of Applied Science, Altonaer Straße 25, 99085, Erfurt
| | | |
Collapse
|
6
|
Martín-Sómer M, Pablos C, Adán C, van Grieken R, Marugán J. A review on led technology in water photodisinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163963. [PMID: 37149196 DOI: 10.1016/j.scitotenv.2023.163963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
Collapse
Affiliation(s)
- Miguel Martín-Sómer
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Cristina Adán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rafael van Grieken
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
7
|
A Novel High-Energy Vacuum Ultraviolet Light Photofunctionalization Approach for Decomposing Organic Molecules around Titanium. Int J Mol Sci 2023; 24:ijms24031978. [PMID: 36768297 PMCID: PMC9916712 DOI: 10.3390/ijms24031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.
Collapse
|
8
|
Musial J, Mlynarczyk DT, Stanisz BJ. Photocatalytic degradation of sulfamethoxazole using TiO 2-based materials - Perspectives for the development of a sustainable water treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159122. [PMID: 36183772 DOI: 10.1016/j.scitotenv.2022.159122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous photocatalysis using titanium dioxide-based materials is considered a promising and innovative solution to the water pollution problem. However, due to the limitations concerning the use of the developed materials and the applied photodegradation conditions, the research on photoremediation using TiO2 often stays behind the lab door. The challenge is to convert the basic research into a successful innovation, leading to the implementation of this process into wastewater treatment. For this purpose, the most active materials and optimal photodegradation conditions must be chosen. This article collects and compares the studies on photocatalytic degradation of an emerging pollutant - sulfamethoxazole, an antibacterial drug - and attempts to find the best approaches to be successfully applied on an industrial scale. Various types of TiO2-based photocatalysts are compared, including different nanoforms, doped or polymer-based composites, composites with graphene, activated carbon, dyes or natural compounds, as well as possible supporting materials for TiO2. The paper covers the impact of the irradiation source (natural sunlight, LED, mercury or xenon lamps) and water matrix on the photodegradation process, considering the ecological and economic sustainability of the process. Emphasis is put on the stability, ease of separation and reuse of the photocatalyst, power and safety of the irradiation source, identification of photodegradation intermediates and toxicity assays. The main approaches are critically discussed, main challenges and perspectives for an effective photocatalytic water treatment technology are pointed out.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Beata J Stanisz
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
9
|
Decomposing Organic Molecules on Titanium with Vacuum Ultraviolet Light for Effective and Rapid Photofunctionalization. J Funct Biomater 2022; 14:jfb14010011. [PMID: 36662058 PMCID: PMC9861116 DOI: 10.3390/jfb14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.
Collapse
|
10
|
Ponce-Robles L, Mena E, Diaz S, Pagán-Muñoz A, Lara-Guillén AJ, Fellahi I, Alarcón JJ. Integrated full-scale solar CPC/UV-LED–filtration system as a tertiary treatment in a conventional WWTP for agricultural reuse purposes. Photochem Photobiol Sci 2022; 22:641-654. [PMID: 36401770 PMCID: PMC9676787 DOI: 10.1007/s43630-022-00342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
AbstractToday, the emergence of increasingly restrictive treatment and reuse policies make the implementation of full-scale tertiary treatment, capable of improving the quality of water, a priority. Full-scale TiO2 photocatalysis systems are resulting in a promising option, since TiO2 is commercially available. However, questions such as how to work continuously during day/night irradiation cycle, or the removing of TiO2 in outlet flow are still unresolved. In this work, a full-scale system integrating a solar CPC/UV-LED step combined with commercial microfiltration membranes was installed in a conventional WWTP for agricultural reuse purposes. After optimization, 0.5 g/L of catalyst and combined SOLAR + UV-LED showing the highest pharmaceutical removal percentages, while a self-designed UV-LED included in the own reaction tank resulting in higher efficiencies compared with commercial lamps. Longer membrane surface area decreased fouling problems in the system. However, 60 min of irradiation time was necessary to reach the most restrictive water quality values according with (EU 2020/741). After optimization step, total costs were reduced by 45%. However, it was shown that a reduction in operating and maintenance costs, along with the development of more effective and economical commercial filtration membranes is a key factor; therefore, working on these aspects is essential in the treated water cost reduction.
Graphical abstract
Collapse
|
11
|
Li C, Sun W, Lu Z, Ao X, Li S, Wang Z, Qi F, Ismailova O. Contribution of filtration and photocatalysis to DOM removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane process. WATER RESEARCH 2022; 226:119298. [PMID: 36327584 DOI: 10.1016/j.watres.2022.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The use of ceramic membranes and ultraviolet light-emitting diodes (UV-LEDs) has advanced the application of photocatalytic membrane for water treatment. We systematically evaluated the contribution of filtration and photocatalysis to dissolved organic matter (DOM) removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane filtration. The results showed that physical rejection primarily led to removal of 4-15 kDa molecules and photocatalysis further increased the removal of 1-4 kDa molecules, causing small sized microbial humic-like or protein-like materials in the permeate. In-situ UV-LED photocatalysis had an excellent effect on membrane fouling mitigation regardless of DOM sources. The dominant fouling mechanism changed from partial blockage to gel layer formation with increasing Ca2+ concentration but did not change with UV treatment. Correlation analysis revealed that the removal of 1-4 kDa molecules contributed to the mitigation of both reversible and irreversible fouling resistance, and the small molecules were the major cause of irreversible fouling resistance. Removal of 1-4 kDa terrestrial humic acid-like contributed to the pore blockage mechanism for synthetic water. Removal of 4-15 kDa protein-like materials was closely correlated to the pore blockage mechanism for real water. Trihalomethanes (THMs) and haloacetic acids (HAAs) formation potential (FP) were both significantly reduced after photocatalytic ceramic membrane process, but precursors of nitrogenous disinfection by-products (N-DBPs) with high toxicity were not removed by filtration or by photocatalysis, which deserves attention. Membrane rejection made higher contribution to better DBPFP control than photocatalysis. This study provides novel insights into the impact of UV-LED on DOM removal, DBPFP control and fouling mitigation, promoting the development of photocatalytic ceramic membrane filtration.
Collapse
Affiliation(s)
- Chen Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing 100084, China; Beijing General Municipal Engineering Design and Research Institute Co. Ltd., Beijing China
| | - Zhenbei Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Oksana Ismailova
- Uzbekistan-Japan Innovation Center of Youth, Tashkent, Uzbekistan
| |
Collapse
|
12
|
Li D, Feng Z, Zhou B, Chen H, Yuan R. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157162. [PMID: 35798102 DOI: 10.1016/j.scitotenv.2022.157162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.
Collapse
Affiliation(s)
- Danping Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Silerio-Vázquez F, Proal Nájera JB, Bundschuh J, Alarcon-Herrera MT. Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61594-61607. [PMID: 34533752 DOI: 10.1007/s11356-021-16507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.
Collapse
Affiliation(s)
- Felipe Silerio-Vázquez
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México
| | - José B Proal Nájera
- Instituto Politécnico Nacional, CIIDIR-Durango, Calle Sigma 119, Fraccionamiento 20 de Noviembre II, C. P, 34220, Durango, México
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, and School of Civil Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia
| | - María T Alarcon-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México.
| |
Collapse
|
14
|
Leem YC, Myoung N, Hong SH, Jeong S, Seo O, Park SJ, Yim SY, Kim JH. Near-UV light emitting diode with on-chip photocatalysts for purification applications. NANOSCALE ADVANCES 2022; 4:3585-3591. [PMID: 36134344 PMCID: PMC9400512 DOI: 10.1039/d2na00305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
A new design for light-emitting diodes (LEDs) with on-chip photocatalysts is presented for purification applications. An array of disk-shaped TiO2, with a diameter of several hundred nanometers, combined with SiO2 pedestals was fabricated directly on the surface of an InGaN-based near-ultraviolet (UV) LED using a dry etching process. The high refractive-index contrast at the boundary and the circular shape can effectively confine the near-UV light generated from the LED through multiple internal reflections inside the TiO2 nanodisks. Such a feature results in the enhancement of light absorption by the photocatalytic TiO2. The degradation of the organic dye malachite green was monitored as a model photocatalytic reaction. The proposed structure of LEDs with TiO2/SiO2 nanodisk/pedestal array exhibited a photocatalytic activity that was three times higher than the activity of LEDs with a TiO2 planar layer. The integration of photocatalytic materials with near-UV LEDs in a single system is promising for various purification applications, such as sterilization and disinfection.
Collapse
Affiliation(s)
- Young-Chul Leem
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology Gwangju 61005 Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| | - NoSoung Myoung
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| | - Sang-Hyun Hong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology Gwangju 61005 Korea
- GIST Central Research Facilities, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| | - Sehee Jeong
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| | - Okkyun Seo
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) 1-1-1, Kouto, Sayo Hyogo 679-5198 Japan
| | - Seong-Ju Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology Gwangju 61005 Korea
- School of Energy Engineering, Korea Institute of Energy Technology Naju Jeonnam 58217 Korea
| | - Sang-Youp Yim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology Gwangju 61005 Korea
| |
Collapse
|
15
|
NOx Photooxidation over Different Noble Metals Modified TiO2. Catalysts 2022. [DOI: 10.3390/catal12080857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). All catalysts together with pure TiO2 obtained by sol-gel (SG) technique were tested for their photocatalytic activity towards nitrogen oxide oxidation (high concentrations of 50, 150 and 250 ppm). FTIR spectrometry was used to determine the gas phase composition and identify TiO2 surface species. The Ag0.1 sample turned out to be deactivated within 60 min of UV/Vis irradiation. Photocatalytic oxidation rate towards NO2 turned to be the highest over SG (photocatalyst without metal deposition). NO2 formation was also observed for Au0.1, Au0.5, Pt0.1, Pt0.5 and Pd0.1. The best NOx removal, i.e., conversion to final product HNO3 was obtained with the Au0.5 photocatalyst.
Collapse
|
16
|
Bertagna Silva D, Buttiglieri G, Babić B, Ašperger D, Babić S. Performance of TiO 2/UV-LED-Based Processes for Degradation of Pharmaceuticals: Effect of Matrix Composition and Process Variables. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:295. [PMID: 35055312 PMCID: PMC8780436 DOI: 10.3390/nano12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Ultra-violet light-emitting diode (UV-LED)-based processes for water treatment have shown the potential to surpass the hurdles that prevent the adoption of photocatalysis at a large scale due to UV-LEDs' unique features and design flexibility. In this work, the degradation of five EU Watch List 2020/1161 pharmaceutical compounds was comprehensively investigated. Initially, the UV-A and UV-C photolytic and photocatalytic degradation of individual compounds and their mixtures were explored. A design of experiments (DoE) approach was used to quantify the effects of numerous variables on the compounds' degradation rate constant, total organic carbon abatement, and toxicity. The reaction mechanisms of UV-A photocatalysis were investigated by adding different radical scavengers to the mix. The influence of the initial pH was tested and a second DoE helped evaluate the impact of matrix constituents on degradation rates during UV-A photocatalysis. The results showed that each compound had widely different responses to each treatment/scenario, meaning that the optimized design will depend on matrix composition, target pollutant reactivity, and required effluent standards. Each situation should be analyzed individually with care. The levels of the electrical energy per order are still unfeasible for practical applications, but LEDs of lower wavelengths (UV-C) are now approaching UV-A performance levels.
Collapse
Affiliation(s)
- Danilo Bertagna Silva
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit, 101, 17003 Girona, Spain;
- Universitat de Girona, Girona, Spain
| | - Bruna Babić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Danijela Ašperger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Sandra Babić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| |
Collapse
|
17
|
Optimization of process parameters for photoreforming of hydrogen evolution via response surface methodology (RSM): A study using Carbon@exfoliated g–C3N4. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Wong SS, Hülsey MJ, An H, Yan N. Quantum yield enhancement in the photocatalytic HCOOH decomposition to H 2 under periodic illumination. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite numerous studies on controlled periodic illumination to improve the quantum yield of photocatalytic reactions, debates still exist on the nature of such effect. In our system, we proposed that enhanced electron transfer is the promotion mechanism.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Max Joshua Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Hua An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
19
|
Náfrádi M, Alapi T, Farkas L, Bencsik G, Kozma G, Hernádi K. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO 2 and ZnO Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2021; 15:49. [PMID: 35009197 PMCID: PMC8745830 DOI: 10.3390/ma15010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 05/04/2023]
Abstract
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Luca Farkas
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Klára Hernádi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, C/2-5 Building 209, H-3515 Miskolc-Egyetemvaros, Hungary;
| |
Collapse
|
20
|
Náfrádi M, Alapi T, Bencsik G, Janáky C. Impact of Reaction Parameters and Water Matrices on the Removal of Organic Pollutants by TiO 2/LED and ZnO/LED Heterogeneous Photocatalysis Using 365 and 398 nm Radiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010005. [PMID: 35009961 PMCID: PMC8746656 DOI: 10.3390/nano12010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 05/05/2023]
Abstract
In this work, the application of high-power LED365nm and commercial, low-price LED398nm for heterogeneous photocatalysis with TiO2 and ZnO photocatalysts are studied and compared, focusing on the effect of light intensity, photon energy, quantum yield, electrical energy consumption, and effect of matrices and inorganic components on radical formation. Coumarin (COU) and its hydroxylated product (7-HC) were used to investigate operating parameters on the •OH formation rate. In addition to COU, two neonicotinoids, imidacloprid and thiacloprid, were also used to study the effect of various LEDs, matrices, and inorganic ions. The transformation of COU was slower for LED398nm than for LED365nm, but r07-HC/r0COU ratio was significantly higher for LED398nm. The COU mineralization rate was the same for both photocatalysts using LED365nm, but a significant difference was observed using LED398nm. The impact of matrices and their main inorganic components Cl- and HCO3- were significantly different for ZnO and TiO2. The negative effect of HCO3- was evident, however, in the case of high-power LED365nm and TiO2, and the formation of CO3•- almost doubled the r07-HC and contributes to the conversion of neonicotinoids by altering the product distribution and mineralization rate.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
- Correspondence:
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| |
Collapse
|
21
|
Marchão L, Fernandes JR, Sampaio A, Peres JA, Tavares PB, Lucas MS. Microalgae and immobilized TiO 2/UV-A LEDs as a sustainable alternative for winery wastewater treatment. WATER RESEARCH 2021; 203:117464. [PMID: 34371233 DOI: 10.1016/j.watres.2021.117464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 05/28/2023]
Abstract
This work intends to promote the growth of microalgae biomass with simultaneous remediation of an agro-industrial wastewater. Winery wastewater (WW) was used as growth media for the cyanobacteria Arthrospira maxima and the green microalgae Scenedesmus obliquus, Auxenochlorella protothecoides and Chlorella vulgaris, under mixotrophic and heterotrophic conditions. The latter species stands out under mixotrophic conditions, with removals of TOC and TN above 90%. Biomass production and pollutant removal were influenced by the initial WW concentration. Maximum removal values within 8 days of incubation were 92, 91, 49 and 40% for COD, TN, polyphenols and P-PO4, respectively, and 147.5 mg L-1 d-1 of biomass productivity. C. vulgaris biomass showed higher carotenoid content (maximum of 8.7 mg/g) when grown in WW, compared to autotrophic conditions (6.5 mg/g), making the bioremediation process more viable with the production of valuable by-products such as pigments. As the pollutant load removed by the microalgae does not allow reach the legal limits of release treated waters in natural water courses, a tertiary treatment process was applied. A post-treatment by photocatalysis in a UV LEDs photoreactor with TiO2-supported in Raschig rings was proposed for the removal of COD and polyphenols from a high loaded WW. The heterogeneous photocatalytic process was efficient in removing 80% of total polyphenols and 40% of COD, allowing the release of the treated water in superficial water courses since complies with the legal limits (COD below 150 mg L-1).
Collapse
Affiliation(s)
- Leonilde Marchão
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José R Fernandes
- Chemistry Centre, Vila Real (CQVR) and Department of Physics, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Sampaio
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José A Peres
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Pedro B Tavares
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Marco S Lucas
- Chemistry Centre, Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
| |
Collapse
|
22
|
The Evolution of Photocatalytic Membrane Reactors over the Last 20 Years: A State of the Art Perspective. Catalysts 2021. [DOI: 10.3390/catal11070775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research on photocatalytic membrane reactors (PMRs) started around the year 2000 with the study of wastewater treatment by degradation reactions of recalcitrant organic pollutants, and since then the evolution of our scientific knowledge has increased significantly, broadening interest in reactions such as the synthesis of organic chemicals. In this paper, we focus on some initial problems and how they have been solved/reduced over time to improve the performance of processes in PMRs. Some know-how gained during these last two decades of research concerns decreasing/avoiding the degradation of the polymeric membranes, improving photocatalyst reuse, decreasing membrane fouling, enhancing visible light photocatalysts, and improving selectivity towards the reaction product(s) in synthesis reactions (partial oxidation and reduction). All these aspects are discussed in detail in this review. This technology seems quite mature in the case of water and wastewater treatment using submerged photocatalytic membrane reactors (SPMRs), while for applications concerning synthesis reactions, additional knowledge is required.
Collapse
|