1
|
Pavlíková N, Šrámek J, Němcová V, Bajard L. Effects of novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) on function and homeostasis in human and rat pancreatic beta-cell lines. Arch Toxicol 2024; 98:3859-3874. [PMID: 39192017 PMCID: PMC11489283 DOI: 10.1007/s00204-024-03841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Despite the fact that environmental pollution has been implicated in the global rise of diabetes, the research on the impact of emerging pollutants such as novel flame retardants remains limited. In line with the shift towards the use of non-animal approaches in toxicological testing, this study aimed to investigate the effects of two novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) in rat (INS1E) and human (NES2Y) pancreatic beta-cell lines. One-week exposure to 1 μM and 10 μM TDCIPP and TPhP altered intracellular insulin and proinsulin levels, but not the levels of secreted insulin (despite the presence of a statistically insignificant trend). The exposures also altered the protein expression of several factors involved in beta-cell metabolic pathways and signaling, including ATP citrate lyase, isocitrate dehydrogenase 1, perilipins, glucose transporters, ER stress-related factors, and antioxidant enzymes. This study has brought new and valuable insights into the toxicity of TDCIPP and TPhP on beta-cell function and revealed alterations that might impact insulin secretion after more extended exposure. It also adds to the scarce studies using in vitro pancreatic beta-cells models in toxicological testing, thereby promoting the development of non-animal testing strategy for identifying pro-diabetic effects of chemical pollutants.
Collapse
Affiliation(s)
- Nela Pavlíková
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic.
| | - Jan Šrámek
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Vlasta Němcová
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
2
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Rawn DFK, Corrigan C, Ménard C, Sun WF, Breton F, Arbuckle TE. Novel halogenated flame retardants in Canadian human milk from the MIREC study (2008-2011). CHEMOSPHERE 2024; 350:141065. [PMID: 38159732 DOI: 10.1016/j.chemosphere.2023.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Novel halogenated flame retardants (NHFRs) have been developed to replace those brominated flame retardants that have been restricted due to their persistence, bioaccumulation potential and toxicity, therefore, it is important to determine whether these replacement products are present at detectable concentrations in Canadians. NHFRs were measured in human milk samples (n = 541) collected from across Canada between 2008 and 2011, which is the first pan-Canadian dataset for these chemicals in human milk. Among the 15 measured NHFRs and eight methoxy-polybrominated diphenyl ethers (MeO-PBDEs), nine NHFRs and two MeO-PBDEs (6-MeO-PBDE 47 and 2-MeO-PBDE 68) were detected at a frequency of more than 9%. Despite benzene, 1,1'-(1,2-ethanediyl)bis [2,3,4,5,6-pentabromo-]/decabromodiphenylethane [DBDPE] being detected less frequently than the other observed NHFRs, its relative contribution to the sum of nine NHFRs was important when it was present. The maximum ΣNHFR concentration in Canadian human milk was 6930 pg g-1 lipid while the maximum ΣMeO-PBDEs was 1600 pg g-1 lipid. While most NHFR concentrations were significantly correlated with each other, no relationships between maternal age, parity or pre-pregnancy BMI were identified with ΣNHFR concentrations in the milk. In contrast, maternal age was significantly correlated with ΣMeO-PBDE concentrations (r = 0.237, p < 0.001). ΣNHFR concentrations were similarly not related to maternal education, although ΣMeO-PBDE concentrations were found to be higher in milk from women who had graduated from trade schools relative to the other education levels considered. NHFR detection frequency and concentrations observed in the Canadian human milk seem to align well with Europe.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Catherine Corrigan
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Cathie Ménard
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Wing-Fung Sun
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - François Breton
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada; Generic Drugs Division, Bureau of Pharmaceutical Sciences, Health Products and Food Branch, Health Canada, 101 Tunney's Pasture Driveway, Address Locator 0201D, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
5
|
Xu X, Zhang D, Zhao K, Liu Z, Ren X, Zhang X, Lu Z, Qin C, Wang J, Wang S. Comprehensive analysis of the impact of emerging flame retardants on prostate cancer progression: The potential molecular mechanisms and immune infiltration landscape. Toxicology 2024; 501:153681. [PMID: 38006928 DOI: 10.1016/j.tox.2023.153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Emerging flame retardants have been used to replace traditional flame retardants, but their potential impact on cancer, especially prostate cancer, is not well understood. Our study aimed to explore the link between flame retardants and prostate cancer, and identify potential carcinogenic mechanisms among populations exposed to emerging flame retardants. We screened flame retardant interacting genes differentially expressed in prostate cancer patients and identified hub genes by protein-protein interaction (PPI) analysis based on the STRING database. Univariate and multivariate Cox regression analyses were performed to construct risk models and identify flame retardant-related prognostic genes. We calculated the proportion of immune cell infiltration to explore the potential mechanism of the prognostic gene, and verified the target cell population of the prognostic gene in the single-cell transcriptome dataset. Our study revealed a significant link between emerging flame retardants and prostate cancer. We constructed a risk model with good predictive ability for prostate cancer prognosis using TCGA dataset, and identified six flame retardant-related prognostic genes validated in the GSE70769 dataset. We found that the expression of M2 macrophages was up-regulated in patients with high expression of prognostic genes, and the single-cell dataset confirmed the expression of prognostic genes in macrophages. Our study confirms the link between emerging flame retardants and prostate cancer, and highlights the role of immune-related pathways in the high-risk population exposed to these flame retardants.
Collapse
Affiliation(s)
- Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China; Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China
| | - Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Kai Zhao
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhanpeng Liu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China.
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
6
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
7
|
Zheng K, Zeng Z, Lin Y, Wang Q, Tian Q, Huo X. Current status of indoor dust PBDE pollution and its physical burden and health effects on children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19642-19661. [PMID: 36648715 DOI: 10.1007/s11356-022-24723-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in indoor dust, which has been identified as a more important route of PBDE exposure for children than food intake. The physical burden and health hazards to children of PBDE exposure in house dust have not been adequately summarized; therefore, this article reviews the current status of PBDE pollution in indoor dust associated with children, highlighting the epidemiological evidence for physical burden and health risks in children. We find that PBDEs remain at high levels in indoor dust, including in homes, schools, and cars, especially in cars showing a significant upward trend. There is a trend towards an increase in the proportion of BDE-209 in household dust, which is indicative of recent PBDE contamination. Conversely, PBDE congeners in car and school indoor dust tended to shift from highly brominated to low brominated, suggesting a shift in current pollution patterns. Indoor dust exposure causes significantly higher PBDE burdens in children, especially infants in early life, than in adults. Exposure to dust also affects breast milk, putting infants at high risk of exposure. Although evidence is limited, available epidemiological studies suggest that exposure to indoor dust PBDEs promotes neurobehavioral problems and cancer development in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Yucong Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, Berkeley, USA
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
8
|
Hoang AQ, Karyu R, Tue NM, Goto A, Tuyen LH, Matsukami H, Suzuki G, Takahashi S, Viet PH, Kunisue T. Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119809. [PMID: 35931384 DOI: 10.1016/j.envpol.2022.119809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
9
|
Ding J, Liu W, Zhang H, Zhu L, Zhu L, Feng J. Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312469. [PMID: 34886193 PMCID: PMC8657049 DOI: 10.3390/ijerph182312469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate esters (OPEs) are widely used and harmful to organisms and human health. Dust ingestion is an important exposure route for OPEs to humans. In this study, by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based Toxicokinetic (PBTK) modeling, we assessed the hepatocyte-based health risk for humans around the world due to exposure to two typical OPEs (TPHP and TDCPP) through the dust ingestion exposure route. Results showed that the health guidance value of TPHP and TCDPP obtained in this study was lower than the value obtained through animal experiments. In addition, probabilistic risk assessment results indicate that populations worldwide are at low risk of exposure to TPHP and TDCPP through dust ingestion due to low estimated daily intakes (EDIs) which are much lower than the reference dose (RfDs) published by the US EPA, except in some regional cases. Most margin of exposure (MOE) ranges of TDCPP for children are less than 100, which indicates a moderately high risk. Researchers should be concerned about exposure to TDCPP in this area. The method proposed in this study is expected to be applied to the health risk assessment of other chemicals.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
10
|
Yuan J, Sun X, Che S, Zhang L, Ruan Z, Li X, Yang J. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol Lett 2021; 352:26-33. [PMID: 34571075 DOI: 10.1016/j.toxlet.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants. They are constantly detected in terrestrial, ocean, and atmospheric systems, and it is of particular concern that these fat-soluble xenobiotics may have a negative impact on human health. This study aimed to evaluate the toxic effect and underlying mechanism of decabromodiphenyl ether (BDE-209) on human liver in a HepG2 cell model. The results showed that BDE-209 significantly induced HepG2 cells apoptosis, increased intracellular reactive oxygen species (ROS), disturbed [Ca 2+] homeostasis and mitochondrial membrane potential (MMP), and caused nuclear shrinkage and DNA double-strand breaks. BDE-209 also significantly decreased the activities of antioxidant parameters, superoxide dismutase (SOD), total antioxygenic capacity (T-AOC), glutathione (GSH), and total glutathione (T-GSH). The up-regulation of the Aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 (CYP1A1) signaling pathway indicates that after long-term and high-dose exposure, BDE-209 may be a liver carcinogen. Interestingly, HepG2 cells attempt to metabolize BDE-209 through the Nrf2-mediated antioxidant pathway. These findings help elucidate the mechanisms of BDE-209-induced hepatotoxicity in humans.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|