1
|
Xu J, Wei J, Guo R, Zhang S, Teng X, Wang Z, Qu R. Environmental transformation and hazards of decachlorobiphenyl on suspended particles under sunlight irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134630. [PMID: 38762988 DOI: 10.1016/j.jhazmat.2024.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Decachlorobiphenyl (PCB-209) can be widely detected in suspended particles and sediments due to its large hydrophobicity, and some of its transformation products may potentially threaten organisms through the food chain. Here we investigate the photochemical transformation of PCB-209 on suspended particles from the Yellow River. It was found that the suspended particles had an obvious shielding effect to largely inhibit the photodegradation of PCB-209. Meanwhile, the presence of inorganic ions (e.g. Mg2+ and NO3-) and organic matters (e.g. humic acid, HA) in the Yellow River water inhibited the reaction. The main transformation products of PCB-209 were lower-chlorinated and hydroxylated polychlorinated biphenyls (OH-PCBs), and small amounts of pentachlorophenol (PCP) and polychlorinated dibenzofurans (PCDFs) were also observed. The mechanisms of PCP formation by double •OH attacking carbon bridge and PCDFs formation by elimination reaction of ionic state OH-PCBs were proposed using theoretical calculations, which provided some new insights into the inter-transformations between persistent organic pollutants. In combination with VEGA and EPI Suite software, some intermediates such as PCDFs were more toxic to organisms than PCB-209. This study deepens the understanding of the transformation behavior of PCB-209 on suspended particles under sunlight.
Collapse
Affiliation(s)
- Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
2
|
Zhang Y, Wu N, Cao W, Guo R, Zhang S, Qi Y, Qu R, Wang Z. Photodegradation of 2-chlorodibenzo-p-dioxin (2-CDD) on the surface of municipal solid waste incineration fly ash: Kinetics and product analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123621. [PMID: 38402942 DOI: 10.1016/j.envpol.2024.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhang S, Wei J, Liu B, Wang W, Wang Z, Wang C, Wang L, Zhang W, Andersen HR, Qu R. Enhanced permanganate oxidation of phenolic pollutants by alumina and potential industrial application. WATER RESEARCH 2024; 251:121170. [PMID: 38277831 DOI: 10.1016/j.watres.2024.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wenjing Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
4
|
Guo R, Zhang S, Xiao X, Liang Y, Wang Z, Qu R. Potassium permanganate oxidation enhanced by infrared light and its application to natural water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133012. [PMID: 37984145 DOI: 10.1016/j.jhazmat.2023.133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Photocoupled permanganate (PM) is an effective way to enhance the oxidation efficiency of PM, however, the activation of PM by infrared has received little attention. This study aimed to investigate the ability of infrared light to activate PM. When coupled with infrared, the degradation rate of 4-chlorophenol (4-CP) is increased to 3.54 times of PM oxidation alone. The accelerated reaction was due to the formation of vibrationally excited PM by absorbing 3.1 kJ mol-1 infrared energy, which also leads to the primary reactive intermediates Mn(V/IV) in the reaction system. The infrared coupled PM system also showed 1.14-2.34 times promotion effect on other organic pollutants. Furthermore, solar composed of 45% infrared, coupled PM system showed excellent degradation performance, where the degradation of 4-CP in 10 L of tap water and river water was 68 and 23 times faster than in ultrapure water, respectively. The faster-increased degradation rate in natural waters is mainly due to the abundant inorganic ions, which can stabilize the manganese species, and then has a positive effect on 4-CP degradation. In summary, this work develops a energy-efficient photoactivated PM technology that utilizes infrared and provides new insights into the design of novel sunlight-powered oxidation processes for water treatment.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yeping Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
5
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
6
|
Martínez-Zamudio LY, González-González RB, Araújo RG, Rodríguez Hernández JA, Flores-Contreras EA, Melchor-Martínez EM, Parra-Saldívar R, Iqbal HM. Emerging pollutants removal from leachates and water bodies by nanozyme-based approaches. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 37:100522. [DOI: 10.1016/j.coesh.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
7
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Tian B, Wu N, Liu M, Wang Z, Qu R. Promoting Effect of Silver Oxide Nanoparticles on the Oxidation of Bisphenol B by Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15715-15724. [PMID: 37807513 DOI: 10.1021/acs.est.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 μM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.
Collapse
Affiliation(s)
- Bingru Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
9
|
Liu B, Wei J, Zhang S, Shad A, Tang X, Allam AA, Wang Z, Qu R. Insights into oxidation of pentachlorophenol (PCP) by low-dose ferrate(VI) catalyzed with α-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131983. [PMID: 37406528 DOI: 10.1016/j.jhazmat.2023.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Asam Shad
- Department of Environmental Sciences, Comsats University, Abbottabad Campus, Islamabad, Pakistan
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
10
|
Tu Z, Qi Y, Tang X, Wang Z, Qu R. Photochemical transformation of anthracene (ANT) in surface soil: Chlorination and hydroxylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131252. [PMID: 36963191 DOI: 10.1016/j.jhazmat.2023.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
To reveal the fate of anthracene (ANT) in soil, the photodegradation behavior of ANT was systematically studied using SiO2 to simulate a soil environment. Under xenon lamp irradiation, more than 90% of ANT loaded on SiO2 could be removed after 240 min. Moreover, the effects of water content, chloride ions (Cl-) and humic acid (HA) were examined. It was found that the presence of water and HA can significantly inhibit the photolysis of ANT on SiO2, while the addition of chloride alone has no obvious effect. However, when water is present, the inhibition effect of chloride became more obvious. According to radical quenching experiments and electron paramagnetic resonance (EPR) spectra, hydroxyl radicals (•OH) and chlorine radicals (Cl•) were formed in the system. Possible reaction pathways were speculated based on products identified by mass spectrometry. ANT was attacked by •OH to form hydroxylated products, which can be further hydroxylated and oxidized with the final formation of ring-opening products. ANT directly excited by light may also react with Cl• to produce chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs). Finally, the experimental results were verified on real soil. This study provides important information for understanding the photochemical transformation mechanism of ANT at the soil/air interface.
Collapse
Affiliation(s)
- Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, Jiangsu 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
11
|
Qi Y, Yu Y, Allam AA, Ajarem JS, Altoom NG, Dar AA, Tang X, Wang Z, Qu R. Comparative study on the removal of 1- naphthol and 2-naphthol by ferrate (VI): Kinetics, reaction mechanisms and theoretical calculations. CHEMOSPHERE 2023:139189. [PMID: 37307926 DOI: 10.1016/j.chemosphere.2023.139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
In this study, the oxidation of 1-naphthol (1-NAP) and 2-T (2-NAP) by Fe(VI) was investigated. The impacts of operating factors were investigated through a series of kinetic experiments, including Fe(VI) dosages, pH and coexisting ions (Ca2+, Mg2+, Cu2+, Fe3+, Cl-, SO42-, NO3- and CO32-). Almost 100% elimination of both 1-NAP and 2-NAP could be achieved within 300 s at pH 9.0 and 25 °C. Cu2+ could significantly improve the degradation efficiency of 1-NAP and 2-NAP, but the impacts of other ions were negligible. The liquid chromatography-mass spectrometry was used to identify the transformation products of 1-NAP and 2-NAP in Fe(VI) system, and the degradation pathways were proposed accordingly. Electron transfer mediated polymerization reaction was the dominant transformation pathway in the elimination of NAP by Fe(VI) oxidation. After 300 s of oxidation, heptamers and hexamers were found as the final coupling products during the removal of 1-NAP and 2-NAP, respectively. Theoretical calculations demonstrated that the hydrogen abstraction and electron transfer reaction would easily occur at the hydroxyl groups of 1-NAP and 2-NAP, producing NAP phenoxy radicals for subsequent coupling reaction. Moreover, since the electron transfer reactions between Fe(VI) and NAP molecules were barrierless and could occur spontaneously, the theoretical calculation results also confirmed the priority of coupling reaction in Fe(VI) system. This work indicated that the Fe(VI) oxidation was an effective way for removing naphthol, which may help us understand the reaction mechanism between phenolic compounds with Fe(VI).
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif G Altoom
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Afzal Ahmed Dar
- Department of Physics, Polytechnique Montreal, C.P. 6079, Succ Centre-ville, Montreal, QC H3C 3A7, Canada
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, 213100, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
12
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
13
|
Zhang Y, Sun B, Rao D, Zhang J, Liang S. Could manganate be an alternative of permanganate for micropollutant abatement? CHEMOSPHERE 2023; 321:138094. [PMID: 36758814 DOI: 10.1016/j.chemosphere.2023.138094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Permanganate (MnO4-), an oxidant that has been applied in water treatment, has highly varied reactivity toward pollutants. In this study, we found manganate (MnO42-) could destruct diverse functional groups, with oxidation rates being higher than that of permanganate under acidic and neutral conditions. Mechanistic study revealed manganate rapidly disproportionated to permanganate and colloidal MnO2 in solution. Under acidic conditions, the in-situ formed colloidal MnO2 possess higher reactivity than permanganate and primarily contributed to the degradation of pollutants. The reactivity of in-situ formed colloidal MnO2 is highly sensitive to pH and decreased dramatically with increasing pH. Consequently, the contribution of MnO2 to pollutant removal decreased with elevating pH, which also leads to the decreased degradation efficiency of micropollutants at high pH. Manganate is an intermediate produced during the manufacturing process of permanganate. This study indicates that manganate might be an alternative of permanganate for water purification under acidic and neutral conditions.
Collapse
Affiliation(s)
- Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Dandan Rao
- Department of Chemical & Environmental Engineering, University of California, Riverside, CA, 92521, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China; School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Wang A, Cui J, Zhang L, Liang L, Cao Y, Liu Q. Monitoring of COS, SO 2, H 2S, and CS 2 gases by Al 24P 24 nanoclusters: a DFT inspection. J Mol Model 2023; 29:98. [PMID: 36922423 DOI: 10.1007/s00894-023-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Through utilizing density functional theory (DFT), the current work investigates the potential uses of Al24P24 fullerene for detecting CS2, H2S, SO2, and COS. The interaction order for the stability of these gases was SO2 > H2S > COS > CS2. The moment of electric dipole and molecules' adsorption energy seems correlated. Al24P24 fullerene is regarded as an electronic sensor of the Ф-type for detecting SO2 and CS2. According to the findings, CS2 and SO2 might act as Al24P24 fullerenes when H2S is present. Nevertheless, we cannot presume it to be a COS and H2S sensor of Ф-type. At room temperature, the fullerene of Al24P24 has a quick recovery time of 0.50 μs and 0.17 s in CS2 and SO2 desorption from the surface. It can thus be inferred that it has the ability to function in moist media.
Collapse
Affiliation(s)
- Aide Wang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China.
| | - Jinde Cui
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Linhan Zhang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Lili Liang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Yuncan Cao
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Qingrun Liu
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| |
Collapse
|
15
|
Yin L, Wu N, Qu R, Zhu F, Ajarem JS, Allam AA, Wang Z, Huo Z. Insight into the photodegradation and universal interactive products of 2,2',4,4'-tetrabromodiphenyl ether on three microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130475. [PMID: 36455331 DOI: 10.1016/j.jhazmat.2022.130475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Qi Y, Zou M, Ajarem JS, Allam AA, Wang Z, Qu R, Zhu F, Huo Z. Catalytic degradation of pharmaceutical and personal care products in aqueous solution by persulfate activated with nanoscale FeCoNi-ternary mixed metal oxides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Qin C, Qi Y, Teng X, Ajarem JS, Allam AA, Qu R. Degradation of Bisphonel AF (BPAF) by zero-valent iron activated persulfate: Kinetics, mechanisms, theoretical calculations, and effect of co-existing chloride. CHEMOSPHERE 2023; 316:137774. [PMID: 36642137 DOI: 10.1016/j.chemosphere.2023.137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The removal of Bisphonel AF (BPAF) by zero-valent iron activated persulfate (Fe0/PS) system was systematically evaluated in this work. 30.0 μM BPAF was removed by 94.4% in 60 min of treatment under optimal conditions of pH = 3.0 and [PS] = [Fe0] = 3.0 mM. Cl- significantly accelerated the removal of BPAF, resulting from accelerated Fe2+ release and reactive chlorine species (RCS) formation. Liquid chromatography-time-of-flight-mass spectrometry identified thirteen degradation products, and bond breaking, coupling reactions, hydroxylation and sulfate addition were considered as the major transformation pathways. When Cl- was present, six new chlorinated byproducts were also generated. Based on density functional theory (DFT) calculations, the occurrence of radical addition reactions was verified and the preferential reaction channels were determined. Significantly BPAF degradation products were less toxic, according to toxicity assessment by the ECOSAR program. Moreover, a high removal efficiency of BPAF (>90%) was also obtained in the three actual water matrixes. The present work demonstrates the feasibility of Fe0/PS system for treating BPAF, which could also provide new insights into the influence of coexisting Cl- on the environmental fate of organic pollutants in sulfate radicals based advanced oxidation processes.
Collapse
Affiliation(s)
- Cheng Qin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
18
|
He L, Yang S, Li Y, Kong D, Wu L, Li B, Chen X, Zhang Z, Yang L. Sludge biochar as an electron shuttle between periodate and sulfamethoxazole: The dominant role of ball mill-loaded Mn2O3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
19
|
Isabel Cadena-Aizaga M, Montesdeoca-Esponda S, Sosa-Ferrera Z, Juan Santana-Rodríguez J. Occurrence and bioconcentration of organic UV filters in primary marine consumers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Laszakovits JR, Kerr A, MacKay AA. Permanganate Oxidation of Organic Contaminants and Model Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4728-4748. [PMID: 35356836 DOI: 10.1021/acs.est.1c03621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Permanganate oxidation is an attractive environmental remediation strategy due to its low cost, ease of use, and wide range in reactivity. Here, permanganate reactivity trends are investigated for model organic compounds and organic contaminants. Second-order permanganate reaction rate constants were compiled for 215 compounds from 82 references (journal articles, conference proceedings, master's theses, and dissertations). Additionally, we validated some phenol rate constants and contribute a few additional phenol rate constants. Commonalities between contaminant oxidation products are also discussed, and we tentatively identify several model compound oxidation products. Aromatic rings, alcohols, and ether groups had low reaction rate constants with permanganate. Alkene reaction sites had the highest reaction rate constants, followed by phenols, anilines, and benzylic carbon-hydrogen bonds. Generally, permanganate reactivity follows electrophilic substitution trends at the reaction site where electron donating groups increase the rate of reaction, while electron withdrawing groups decrease the rate of reaction. Solution conditions, specifically, buffer type and concentration, may impact the rate of reaction, which could be due to either an ionic strength effect or the buffer ions acting as ligands. The impact of these solution conditions, unfortunately, precludes the development of a quantitative structure-activity relationship for permanganate reaction rate constants with the currently available data. We note that critical experimental details are often missing in the literature, which posed a challenge when comparing rate constants between studies. Future research directions on permanganate oxidation should seek to improve our understanding of buffer effects and to identify oxidation products for model compounds so that extrapolations can be made to more complex contaminant structures.
Collapse
Affiliation(s)
- Juliana R Laszakovits
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adaline Kerr
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado 80903, United States
| | - Allison A MacKay
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Liu M, Wu N, Tian B, Zhou D, Yan C, Huo Z, Qu R. Experimental and theoretical study on the degradation of Benzophenone-1 by Ferrate(VI): New insights into the oxidation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127877. [PMID: 34883381 DOI: 10.1016/j.jhazmat.2021.127877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of Benzophenone-1 (BP-1) by ferrate (Fe(VI)) was systemically investigated in this study. Neutral pH and high oxidant dose were favorable for the reaction, and the second order rate constant was 1.03 × 103 M-1·s-1 at pH = 7.0 and [Fe(VI)]0:[BP-1]0 = 10:1. The removal efficiency of BP-1 was enhanced by cations (K+, Ca2+, Mg2+, Cu2+, and Fe3+), while inhibited by high concentrations of anions (Cl- and HCO3-) and low concentrations of humic acid. Moreover, intermediates were identified by LC-MS, and five dominating reaction pathways were predicted, involving single hydroxylation, dioxygen transfer, bond breaking, polymerization and carboxylation. Theoretical calculations showed the dioxygen transfer could occur by Fe(VI) attacking the CC double-bond in benzene ring of BP-1 to form a five-membered ring intermediate, which was hydrolyzed twice followed by H-abstraction to generate the dihydroxy-added product directly from the parent compound. Dissolved CO2 or HCO3- might be fixed to produce carboxylated products, and Cl- led to the formation of two chlorinated products. In addition, the toxicity assessments showed the reaction reduced the environmental risk of BP-1. This work illustrates Fe(VI) could remove BP-1 in water environments efficiently, and the newly proposed dioxygen transfer mechanism herein may contribute to the development of Fe(VI) chemistry.
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bingru Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Chao Yan
- School of the Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
22
|
Zhao D, Li Y, Xu M, Li Z, Zhang H, Yu L. Identification of sulfur gases (environmental pollution) by BeO fullerenes: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Heravi MRP, Habibzadeh S, Ebadi AG, Nezhad PDK, Vessally E. Substituent effects of fused Hammick silylenes via density functional theory survey. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch Islamic Azad University Jouybar Iran
| | | | | |
Collapse
|
24
|
Zhang Y, Vessally E. Direct halosulfonylation of alkynes: an overview. RSC Adv 2021; 11:33447-33460. [PMID: 35497552 PMCID: PMC9042254 DOI: 10.1039/d1ra03443j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
The difunctionalization reactions of easily available and inexpensive alkynes have emerged as a reliable, powerful, and step-economical approach for the construction of highly substituted complex alkenes in a one-pot manner, without the need for isolation of intermediates. A wide variety of transformations based on this concept have been successfully achieved for the preparation of synthetically and biologically important β-halovinyl sulfone scaffolds. In this Review, we summarize the recent advances and developments in this field and present a comprehensive overview of halosulfonylation of alkyne substrates with emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yujun Zhang
- School of Chemistry and Environmental Engineering, Hanshan Normal University Chaozhou 521041 Guangdong P. R. China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
25
|
Ehsanullah S, Tran QH, Sadiq M, Bashir S, Mohsin M, Iram R. How energy insecurity leads to energy poverty? Do environmental consideration and climate change concerns matters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55041-55052. [PMID: 34125387 DOI: 10.1007/s11356-021-14415-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
The aim of the study is to estimate the nexus between energy insecurity and energy poverty with the role of climate change and other environmental concerns. We used DEA like WP methods and properties of MCDA, a most common form of data envelopment analysis (DEA) to estimate the nexus between constructs. This paper presents a measurement and analysis of G7 countries' energy, economic, social, and environmental performance associated with energy poverty indexes. The study used the multiple, comprehensive, and relevant set of indicators, including energy economics and environmental consideration of energy poverty. The net energy consumption of al G7 economies is equal to 34 percent of the entire world along with the net estimate GDP score of around 50 percent. Using DEA modelling and estimation technique, our research presented valuable insights for readers, theorists and policy makers on energy, environment, energy poverty and climate change mitigation. For this reasons, all these indicators combined in a mathematical composite indicator to measure energy, economic, social, and environmental performance index (EPI). Results show that Canada has the highest EPII score, which shows that Canada's capacity to deal with energy self-sufficiency, economic development, and environmental performance is greater than the other G7 countries. France and Italy rank second and third. Japan comes next with 0.50 EPI scores, while the USA has the lowest average EPI score environment vulnerable even though have higher economic development among the G7 group countries. We suggest a policy framework to strengthen the subject matter of the study.
Collapse
Affiliation(s)
- Syed Ehsanullah
- Tunku Puteri Intan Safinaz School of Accountancy, Universiti Utara, Malaysia, Changlun, Malaysia
| | - Quyen Ha Tran
- University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Muhammad Sadiq
- School of Accounting and Finance, Faculty of Business and Law, Taylor's University, Subang Jaya, Malaysia
| | - Shahid Bashir
- Business Studies Department, Namal Institute Mianwali, Mianwali, Pakistan
| | - Muhammad Mohsin
- School of Finance and Economics, Jiangsu University, Zhenjiang, China.
| | - Robina Iram
- School of Finance and Economics, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Lin YH, Li J, Qin Y, Wang H, Gupta S. Carbodiimide scaffolds: Efficient and versatile reagents in synthesis of heterocycles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1953533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yue Hua Lin
- Zhongshan Polytechnic, Zhongshan, Gudong, China
| | - JiChang Li
- Zhongshan Polytechnic, Zhongshan, Gudong, China
| | - YanXin Qin
- Medical College, Shantou University, Shantou, Gudong, China
| | - HaiKun Wang
- Zhongshan Polytechnic, Zhongshan, Gudong, China
| | - Srinivasa Gupta
- Mumbai University Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
27
|
Yan-Mei L, Jin-Feng F, Long-Qiang H, Wei-Na L, Vessally E. Recent advances in intermolecular 1,2-difunctionalization of alkenes involving trifluoromethylthiolation. RSC Adv 2021; 11:24474-24486. [PMID: 35481061 PMCID: PMC9037010 DOI: 10.1039/d1ra02606b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Trifluoromethylthiolative difunctionalization of alkenes, a cheap and abundant feedstock, which installs a trifluoromethylthiol (SCF3) group and another unique functional group across the carbon-carbon double bonds, provides an ideal strategy for the preparation of β-functionalized alkyl trifluoromethyl sulfides and has become a hot topic recently. This review aims to summarize the major progress in this exciting research area, with particular emphasis on the mechanistic aspects of the reaction pathways.
Collapse
Affiliation(s)
- Li Yan-Mei
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Fu Jin-Feng
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - He Long-Qiang
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Li Wei-Na
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|