1
|
Bhuyan MS, Jenzri M, Pandit D, Adikari D, Alam MW, Kunda M. Microplastics occurrence in sea cucumbers and impacts on sea cucumbers & human health: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175792. [PMID: 39197778 DOI: 10.1016/j.scitotenv.2024.175792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Microplastics (MPs) are a developing concern in marine environments, with scientists concentrating more on their effects on various creatures. Sea cucumbers (SCs), as suspension and deposit feeders, are expected to be exposed to and consume MPs in their habitat. The purpose of this methodical review is to gather and integrate accessible research on the presence and effects of MPs on SCs. A systematic search of relevant databases yielded relevant papers exploring the occurrence of MPs in SC habitats as well as the possible effects of MP intake on SCs. Bibliometric analysis was also conducted to collect and analyze a large volume of data. Then the papers were sorted (a total of 249) related to the occurrence and effects of MPs in SCs. Finally, targeted data were collected from the articles for the study. The review emphasizes the ubiquity of MPs in SC ecosystems, citing studies that found high quantities in coastal areas and sediment. MPs have a variety of effects on SCs, with some studies indicating that they lower eating efficiency, affect behavior, and cause tissue damage. However, there is still no unanimity on the overall effects of MP exposure on SCs. This review gives a complete summary of the present state of information about the incidence and impact of MPs on SCs, highlighting the need for additional study in this area. Understanding the possible dangers of MPs on SCs is critical for the survival of these ecologically significant creatures.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| | - Debasish Pandit
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Oceanography, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna-3100, Bangladesh
| | - Diponkor Adikari
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Mrityunjoy Kunda
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
2
|
De Bernardi A, Bandini F, Marini E, Tagliabue F, Casucci C, Brunetti G, Vaccari F, Bellotti G, Tabaglio V, Fiorini A, Ilari A, Gnoffo C, Frache A, Taskin E, Rossa UB, Ricardo ESL, Martins AO, Duca D, Puglisi E, Pedretti EF, Vischetti C. Integrated assessment of the chemical, microbiological and ecotoxicological effects of a bio-packaging end-of-life in compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175403. [PMID: 39128510 DOI: 10.1016/j.scitotenv.2024.175403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome. The bioplastic residues did not influence the earthworms' fertility, but DNA damages were measured at the highest bioplastic dose tested. Furthermore bioplastic residues did not significantly affect the bacterial community during composting, but compost treated with 2 % bio-packaging exhibited greater variability in the fungal communities, including Mortierella, Mucor, and Alternaria genera, which can use bioplastics as a carbon source. Moreover, bioplastic residues influenced gut bacterial communities, with Paenibacillus, Bacillus, Rhizobium, Legionella, and Saccharimonadales genera being particularly abundant at 2 % bioplastic concentration. Higher concentrations affected microbial composition by favouring different genera such as Pseudomonas, Ureibacillus, and Streptococcus. For fungal communities, Pestalotiopsis sp. was found predominantly in earthworms exposed to 2 % bioplastic residues and is potentially linked to its role as a microplastics degrader. After composting, Attenuated Total Reflection analysis on bioplastic residues displayed evidence of ageing with the formation of hydroxyl groups and amidic groups after earthworm exposure.
Collapse
Affiliation(s)
- Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Bandini
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Enrica Marini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Tagliabue
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Gianluca Brunetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Future Industries Institute, University of South Australia, Mawson Lakes Boulevard, South Australia, SA 5095, Australia.
| | - Filippo Vaccari
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Chiara Gnoffo
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università, 5, 39100 Bolzano-Bozen, Italy.
| | - Uberson Boaretto Rossa
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | - Elisângela Silva Lopes Ricardo
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | | | - Daniele Duca
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
3
|
Corpuz MVA, Cairone S, Natale M, Giannattasio A, Iuliano V, Grassi A, Pollice A, Mannina G, Buonerba A, Belgiorno V, Naddeo V. Sustainable control of microplastics in wastewater using the electrochemically enhanced living membrane bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122649. [PMID: 39357446 DOI: 10.1016/j.jenvman.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Wastewater treatment plant (WWTP) discharges are major contributors to the release of microplastics (MPs) into the environment. This research work aimed to assess the performance of the novel living membrane bioreactor (LMBR), which utilizes a biological layer as a membrane filter for the removal of polyethylene (PE) MPs from wastewater. The impact of an intermittently applied low current density (0.5 mA/cm2) on the reduction of MPs in the electrochemically enhanced LMBR (e-LMBR) has also been examined. The reactors were also compared to a conventional membrane bioreactor (MBR) and an electro-MBR (e-MBR). 1H nuclear magnetic resonance spectroscopy (1H NMR) was implemented for the MPs detection and quantification in terms of mass per volume of sample. The LMBR and MBR achieved comparable mean PE MPs reduction at 95% and 96%, respectively. The MPs mass reduction in the e-LMBR slightly decreased by 2% compared to that achieved in the LMBR. This potentially indicated the partial breakdown of the MPs due to electrochemical processes. Decreasing and inconsistent NH4-N and PO4-P removal efficiencies were observed over time due to the addition of PE MPs in the MBR and LMBR. In contrast, the integration of electric field in the e-MBR and e-LMBR resulted in consistently high values of conventional contaminant removals of COD (99.72-99.77 %), NH4-N (97.96-98.67%), and PO4-P (98.44-100.00%), despite the MPs accumulation. Integrating electrochemical processes in the e-LMBR led to the development of a stable living membrane (LM) layer, as manifested in the consistently low effluent turbidity 0.49 ± 0.33 NTU. Despite the increasing MPs concentration in the mixed liquor, applying electrochemical processes reduced the fouling rates in the e-LMBR. The e-LMBR achieved comparable efficiencies in contaminant reductions as those observed in the e-MBR, while using a low-cost membrane material.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy
| | - Stefano Cairone
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy
| | - Mario Natale
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy
| | - Alessia Giannattasio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | - Veronica Iuliano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | - Alfonso Grassi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | | | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed. 8, Palermo, 90128, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy; Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
4
|
Alom N, Roy T, Sarkar T, Rasel M, Hossain MS, Jamal M. Removal of microplastics from aqueous media using activated jute stick charcoal. Heliyon 2024; 10:e37380. [PMID: 39309784 PMCID: PMC11414494 DOI: 10.1016/j.heliyon.2024.e37380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastics (MPs), which are repositories of various pollutants, have significant effects on the people and the environment. Therefore, there is an urgent need for efficient and eco-friendly techniques to eliminate microplastics from water-based environments. This study introduces a new method for producing jute stick-activated charcoal (JSAC) by placing jute sticks on high-temperature pyrolysis without oxygen, followed by chemical activation with HCl. This process greatly enhances the adsorption capacity of JSAC for polyvinylchloride-based microplastics (PVC-MPs). JSAC was characterized using UV-Vis, FT-IR, XRD, and SEM studies both before and after adsorption. The study investigated the influence of pH, adsorbent quantity, and contact time on the optimization of the JSAC process. The PVC-MPs exhibited a maximum adsorption capacity of 94.12 % for the target MPs (5 g L-1) within 120 min when 10 g L-1 of JSAC was added at pH 7. This work also examined adsorption rate and various isotherm models. Adsorption kinetics analysis reveals electrostatic, hydrogen bond, π-π, and hydrophobic interactions are the combined forces responsible for MPs adsorption onto JSAC. However, the decrease in hydrophobicity in acidic or basic media led to a decrease in adsorption. The isotherm analysis was conducted using the Langmuir isotherm model, and predicted the maximum adsorption capacity of PVC-MPs to be 4.4668 mg/g. Furthermore, by employing density functional theory, the interaction energy after PVC-MP adsorption was calculated to be -269 kcal/mol, demonstrating robust adsorption and agreement with the experimental findings. Due to its large surface area and porous structure containing many functional groups, JSAC can potentially be used to treat MP contamination in water.
Collapse
Affiliation(s)
- Nur Alom
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tanny Sarkar
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Sanwar Hossain
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| |
Collapse
|
5
|
Büngener L, Galvão A, Postila H, Heiderscheidt E. Microplastic retention in green walls for nature-based and decentralized greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125047. [PMID: 39357553 DOI: 10.1016/j.envpol.2024.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
In wastewater treatment, two issues have recently received increased attention: nature-based solutions for addressing urban water stress through decentralized treatment and re-use; and emerging pollutants such as microplastics (MPs). At the interface of these, this study investigated living green walls for greywater treatment and their potential for MP removal. A large, pilot-scale green wall was irrigated with greywater (a mix of water collected from laundry, dishwasher, bathroom sinks, and synthetic greywater), and effluent from planted and unplanted sections was compared. MPs >50 μm were analyzed using μRaman spectroscopy and supplementary fluorescence microscopy imaging. The green wall proved efficient for the reduction of chemical oxygen demand (COD) (around 80%), removal of total suspended solids (TSS) (around 90%) and MPs, especially for MPs of the non-polar, hydrophobic polymer type polystyrene and MPs sized 100-500 μm. MP removal was improved in the planted (50-60%) compared to the unplanted section (20%), especially for the size fraction 100-500 μm. Physical filtration by the green wall growing media (a mix of perlite with a grain size of 1-5 mm, and coconut fiber), which was further enhanced by plant roots decreasing the effective pore size, can be considered the most important removal mechanism. Charge-mediated adsorption cannot be expected as MPs and growing media mix were both negatively charged at the prevailing water pH (7-8). Fluorescence imaging for MP analysis, using a merged UV/blue light fluorograph, overestimated MP concentrations in greywater (hundreds of MPs per sample were identified by fluorescence imaging versus tens of MPs by μRaman spectroscopy) and would benefit from further improvement before it can be reliably applied as a cheaper and faster alternative methodology for MP analysis.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland.
| | - Ana Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| |
Collapse
|
6
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Rondon R, Cárdenas CA, Cosseau C, Bergami E, Balbi T, Corsi I, González-Aravena M. Physiological and molecular effects of contaminants of emerging concerns of micro and nano-size in aquatic metazoans: overview and current gaps in Antarctic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34457-6. [PMID: 39066941 DOI: 10.1007/s11356-024-34457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Although Antarctica is the most isolated continent on Earth, its remote location does not protect it from the impacts of human activities. Antarctic metazoans such as filter-feeding invertebrates are a crucial component of the Antarctic benthos. They play a key role in the benthic-pelagic carbon flux in coastal areas by filtering particles and planktonic organisms from the sediment-water interface. Due to their peculiar ecological niche, these organisms can be considered a wasp-waist in the ecosystem, making them highly sensitive to marine pollution. Recently, anthropogenic particles such as micro-nanoplastics and manufactured nanoparticles (MNP) have been classified as contaminants of emerging concern (CEC) due to their small size range, which also overlaps with the preferred particle size ingested by aquatic metazoans. Indeed, it has been demonstrated that some species such as Antarctic krill can ingest, transform, and release MNPs, making them newly bioavailable for other Antarctic filter-feeding organisms. Similarly, the production and use of anthropogenic MNP are rapidly increasing, leading to a growing presence of materials, such as nano-sized metal-oxides, in the environment. For these reasons, it is important to provide evidence of the adverse effects of such emerging contaminants at sub-lethal concentrations in environmental risk assessments. These contaminants may cause cascade effects with consequences not only on individuals but also at the community and ecosystem levels. In this review, we discuss the state-of-the-art knowledge on the physiological and molecular effects of anthropogenic MNP in Antarctic aquatic metazoans. We further highlight the importance of identifying early biomarkers using sessile metazoans as sentinels of environmental health.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan "Via Domitia", Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
8
|
Carnevale Miino M, Galafassi S, Zullo R, Torretta V, Rada EC. Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172675. [PMID: 38670366 DOI: 10.1016/j.scitotenv.2024.172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
In last 10 years, the interest about the presence of microplastics (MPs) in the environment has strongly grown. Wastewaters function as a carrier for MPs contamination from source to the aquatic environment, so the knowledge of the fate of this emerging contaminant in wastewater treatment plants (WWTPs) is a priority. This work aims to review the presence of MPs in the influent wastewater (WW) and the effectiveness of the treatments of conventional WWTPs. Moreover, the negative impacts of MPs on the management of the processes have been also discussed. The work also focuses on the possible approaches to tackle MPs contamination enhancing the effectiveness of the WWTPs. Based on literature results, despite WWTPs are not designed for MPs removal from WW, they can effectively remove the MPs (up to 99 % in some references). Nevertheless, they normally act as "hotspots" of MPs contamination considering the remaining concentration of MPs in WWTPs' effluents can be several orders of magnitude higher than receiving waters. Moreover, MPs removed from WW are concentrated in sewage sludge (potentially >65 % of MPs entering the WWTP) posing a concern in case of the potential reuse as a soil improver. This work aims to present a paradigm shift intending WWTPs as key barriers for environmental protection. Approaches for increasing effectiveness against MPs have been discussed in order to define the optimal point(s) of the WWTP in which these technologies should be located. The need of a future legislation about MPs in water and sludge is discussed.
Collapse
Affiliation(s)
- Marco Carnevale Miino
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Rosa Zullo
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy.
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
9
|
Gani A, Pathak S, Hussain A, Shukla AK, Chand S. Emerging pollutant in surface water bodies: a review on monitoring, analysis, mitigation measures and removal technologies of micro-plastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:214. [PMID: 38842590 DOI: 10.1007/s10653-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Water bodies play a crucial role in supporting life, maintaining the environment, and preserving the ecology for the people of India. However, in recent decades, human activities have led to various alterations in aquatic environments, resulting in environmental degradation through pollution. The safety of utilizing surface water sources for drinking and other purposes has come under intense scrutiny due to rapid population growth and industrial expansion. Surface water pollution due to micro-plastics (MPs) (plastics < 5 mm in size) is one of the emerging pollutants in metropolitan cities of developing countries because of its utmost resilience and synthetic nature. Recent studies on the surface water bodies (river, pond, Lake etc.) portrait the correlation between the MPs level with different parameters of pollution such as specific conductivity, total phosphate, and biological oxygen demand. Fibers represent the predominant form of MPs discovered in surface water bodies, exhibiting fluctuations across seasons. Consequently, present study prioritizes understanding the adaptation, prevalence, attributes, fluctuations, and spatial dispersion of MPs in both sediment and surface water environments. Furthermore, the study aims to identify existing gaps in the current understanding and underscore opportunities for future investigation. From the present study, it has been reported that, the concentration of MPs in the range of 0.2-45.2 items/L at the Xisha Islands in the south China sea, whereas in India it was found in the range of 96 items/L in water samples and 259 items/kg in sediment samples. This would certainly assist the urban planners in achieving sustainable development goals to mitigate the increasing amount of emergent pollutant load.
Collapse
Affiliation(s)
- Abdul Gani
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Shray Pathak
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Athar Hussain
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Anoop Kumar Shukla
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
10
|
Bragato G, Piccolo G, Sattier G, Sada C. Identification of spectral responses of different plastic materials by means of multispectral imaging. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:802-813. [PMID: 38329100 DOI: 10.1039/d3em00324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this work, multispectral imaging (MSI) is introduced as an innovative, practical, and non-invasive solution capable of identifying and detecting (micro)plastics. MSI holds significant appeal for industry due to its flexibility, ease of implementation, and portability. The integration of MSI with Principal Components Analysis (PCA) enables precise identification of different plastics and differentiation of microplastics within mixtures. The technique successfully identifies and quantifies the pure spectral response (endmembers) of each microplastic in every pixel of the original image. As a result, the model excels in distinguishing specific plastic materials from their surrounding backgrounds. This novel approach facilitates the identification of randomly dispersed microplastics in water.
Collapse
Affiliation(s)
- Giovanni Bragato
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Giovanni Piccolo
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Gabriele Sattier
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| | - Cinzia Sada
- Physics and Astronomy Department "Galileo Galilei", University of Padova, Via F. Marzolo 8, Padova, Italy.
| |
Collapse
|
11
|
Afonso V, Borges R, Rodrigues B, Barros R, João Bebianno M, Raposo S. Are native microalgae consortia able to remove microplastics from wastewater effluents? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123931. [PMID: 38582186 DOI: 10.1016/j.envpol.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Wastewater Treatment Plants (WWTPs) are potential sources of microplastics (MPs) in the aquatic environment. This study aimed to investigate the potential of wastewater-native microalgae consortia to remove MPs from the effluent of two different types of WWTPs as a dual-purpose solution for MPs mitigation and biomass production. For that purpose, the occurrence of MPs from two types of WWTP effluents was analysed over one year. MPs were characterized in terms of morphology (microbead, foam, granule, irregular, filament and film), colour and size. The wastewater characterisation was followed by the removal of MP loads, using native microalgae consortia, pre-adapted to the wastewater effluent. Microalgae consortia evolved naturally through four mitigation assays, adapted to seasonal conditions, such as temperature, photoperiod, and wastewater composition. MPs were present in all the effluent samples, ranging from 52 to 233 MP L-1. The characterisation of MPs indicated a predominance of white and transparent particles, with irregular and filament shapes, mainly under 500 μm in size. The μFTIR analysis revealed that 43% of the selected particles were plastic, with a prevalence of polypropylene (PP) (34%) and polyethylene terephthalate (PET) (30 %). In the mitigation experiments, substantial biomass production was achieved (maximum of 2.6 g L-1 (d.w.)), with successful removal of MPs, ranging from 31 ± 25% to 82 ± 13%. These results show that microalgae growth in wastewater effluents efficiently promotes the removal of MPs, reducing this source of contamination in the aquatic environment, while generating valuable biomass. Additionally, the strategy employed, requires minimal control of culture conditions, simplifying the integration of these systems in real-world WWTP facilities for improved wastewater management.
Collapse
Affiliation(s)
- Valdemira Afonso
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Rodrigo Borges
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Brígida Rodrigues
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Raúl Barros
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - Sara Raposo
- CIMA, Centre of Marine and Environmental Research\\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
12
|
Vellore Mohan A, Kuttykattil A, Toshiaki I, Sudhakaran R. Assessment of microplastic contamination in commercially available fishes. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106412. [PMID: 38428316 DOI: 10.1016/j.marenvres.2024.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Plastics have widespread applications for human use, but their disposal poses a significant threat to living organisms and these plastics end up in the marine environment. They will be fragmented into small pieces as a result of ultraviolet exposure, climatic changes, and temperature changes; Microplastics (MPs) are plastics that are less than 5 mm in size. The level of MP (Microplastic) pollution in commercially harvested fish from different habitant in Vellore, India is currently unknown. Therefore, this study aimed to determine the presence and characteristics of ingested or inhaled MPs in marine and freshwater fishes highly consumed by the local population. Fish gills and gastrointestinal tracts were aseptically dissected and digested (30% hydrogen peroxide), then filtered and examined under a microscope for the presence of MPs. Further analysis was performed on the samples using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDAX). Of the samples analysed, a total of 875 MPs were recovered from 32 fishes, with 478 from marine fishes and 397 from freshwater fishes. The most common colours of the MPs were blue and black, while stereo microscopy analysis revealed that the majority of MPs were fibers (91%), followed by fragments (8%) and a small number of films. The ATR-FTIR analysis identified polyvinyl alcohol (39.76%), polyethylene (16.51%), methylcellulose (12.84%) and styrene (9.07%), as the predominant types of MPs in the fish samples. This study highlights the significant impact of MP pollution on marine ecosystems. The research provides insight into the nature and extent of MPs in fish from both marine and freshwater habitats, with an aim for policies and interventions aimed to reduce plastic pollution in the locality.
Collapse
Affiliation(s)
- Amrutha Vellore Mohan
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aswin Kuttykattil
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Itami Toshiaki
- Faculty of Agriculture, Fukuyama University, Fukuyama, Japan
| | - Raja Sudhakaran
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Talukdar A, Kundu P, Bhattacharya S, Dutta N. Microplastic contamination in wastewater: Sources, distribution, detection and remediation through physical and chemical-biological methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170254. [PMID: 38253100 DOI: 10.1016/j.scitotenv.2024.170254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Microplastics are tiny plastic particles smaller than 5 mm. that have been widely detected in the environment, including in wastewater. They originate from various sources including breakdown of larger plastic debris, release of plastic fibres from textiles, and microbeads commonly used in personal care products. In wastewater, microplastics can pass through the treatment process and enter the environment, causing harm to biodiversity by potentially entering the food chain. Additionally, microplastics can act as a vector for harmful pollutants, increasing their transport and distribution in the environment. To address this issue, there is a growing need for effective wastewater treatment methods that can effectively remove microplastics. Currently, several physical and chemical methods are available, including filtration, sedimentation, and chemical degradation. However, these methods are costly, low efficiency and generate secondary pollutants. Furthermore, lack of standardization in the measurement and reporting of microplastics in wastewater, makes it difficult to accurately assess microplastic impact on the environment. In order to effectively manage these issues, further research and development of effective and efficient methods for removing microplastics from wastewater, as well as standardization in measurement and reporting, are necessary to effectively manage these detrimental contaminants.
Collapse
Affiliation(s)
- Avishek Talukdar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | - Nalok Dutta
- Biochemical Engineering Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Xie Y, Chen Y, Wei Q, Yin H. A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant. WATER RESEARCH 2024; 250:121092. [PMID: 38171177 DOI: 10.1016/j.watres.2023.121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
Collapse
Affiliation(s)
- Yifan Xie
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongqi Chen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Qing Wei
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Hailong Yin
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| |
Collapse
|
17
|
Mendonça I, Faria M, Rodrigues F, Cordeiro N. Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168414. [PMID: 37963529 DOI: 10.1016/j.scitotenv.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Microalgae can play a crucial role in the environment due to their efficient capture of CO2 and their potential as a solution for a carbon-negative economy. Water quality is critical for the success and profitability of microalgal-based industries, and understanding their response to emergent pollutants, such as microplastics (MPs), is essential. Despite the published studies investigating the impact of MPs on microalgae, knowledge in this area remains limited. Most studies have mainly focused on microalgal growth, metabolite analysis, and photosynthetic activity, with significant discrepancies in what is known about the impact on biomass yield. Recent studies show that the yield of biomass production depends on the levels of water contamination by MPs, making it necessary to reduce the contamination levels in the water. However, present technologies for extracting and purifying water from MPs are limited, and further research and technological advancements are required. One promising solution is the use of bio-based polymer materials, such as bacterial cellulose, which offer biodegradability, cost-effectiveness, and environmentally friendly detoxifying properties. This review summarises the current knowledge on MPs pollution and its impact on the viability and proliferation of microalgae-based industries, highlights the need for further research, and discusses the potential of bio-solutions for MPs removal in microalgae-based industries.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Filipa Rodrigues
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
18
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
19
|
Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167785. [PMID: 37852500 DOI: 10.1016/j.scitotenv.2023.167785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MPs) are small plastic debris (<5 mm) that result from the fragmentation of plastic due to physical and physiochemical processes. MPs are emerging pollutants that pose a significant threat to the environment and human health, primarily due to their pervasive presence and potential bioaccumulation within the food web. Despite their importance, there is a lack of comprehensive studies on the fate, toxicity, and aging behavior of MPs. Therefore, this review aims to address this gap by providing a cohesive understanding of several key aspects. Firstly, it summarizes the sources and fate of MPs, highlighting their ubiquitous presence and the potential pathways through which they enter ecosystems. Secondly, it evaluates the aging process of MPs and the factors influencing it, including the morphological and physiological changes observed in crops and the release of pollutants from aged MPs, which can have detrimental effects on the environment and human health. Furthermore, the impacts of aging MPs on various processes are discussed, such as the mobilization of other pollutants in the environment. The influence of aged MPs on the soil environment, particularly their effect on heavy metal adsorption, is examined. Finally, the review explores strategies for the prevention technologies and remediation of MPs, highlighting the importance of developing effective approaches to tackle this issue. Overall, this review aims to contribute to our understanding of MPs, their aging process, and their impacts on the environment and human health. It underscores the urgency of addressing the issue of MPs and promoting research and remediation efforts to mitigate their adverse effects.
Collapse
Affiliation(s)
- Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
20
|
Sharara A, Samy M, Mossad M, Gar Alalm M. Photodegradation of polyethylene debris in water by sulfur-doped TiO 2: system optimization, degradation mechanism, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3951-3963. [PMID: 38097836 PMCID: PMC10794281 DOI: 10.1007/s11356-023-31460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Given the immense threats of microplastics, we herein investigate photodegrading the debris of polyethylene bags (PBs) by sulfur-doped titanium dioxide. The optimization of operating parameters showed that controlling the water pH at 3 and introducing PBs by 0.10 g/L under a catalyst dose of 1.25 g/L reduced the polyethylene mass by 3.10% in 7 h, whereas raising the catalyst dose to 3 g/L improved the mass reduction to 4.72%. The extension of degradation time to 100 h at pH 3, catalyst dosage of 3 g/L, and PBs concentration of 0.10 g/L increased the mass loss ratio to 21.74%. Scanning electron microscopy of PBs after 100 h of photodegradation showed cracks on the surface accompanied by the increase of carbonyl index from 0.52 to 1.41 confirming the breakdown of the polymeric chain. Total organic carbon increased from 0.80 to 7.76 mg/L in the first 10 h of photodegradation, then decreased to 1 mg/L after extending the reaction time to 100 h due to the mineralization of organic intermediates generated from the photodegradation of PBs. Trapping tests exhibited the major role of hydroxyl radicals in the degradation system, and the catalyst showed high stability under five repetitive runs. This study proposes an efficient treatment system that can be implemented on a wider scale utilizing the synthesized catalyst to degrade plastics efficiently before their release to water streams.
Collapse
Affiliation(s)
- Ahmed Sharara
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed Mossad
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Abbasi S. Uncovering the intricate relationship between plant nutrients and microplastics in agroecosystems. CHEMOSPHERE 2024; 346:140604. [PMID: 37926162 DOI: 10.1016/j.chemosphere.2023.140604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Recent scientific and media focus has increased on the impact of microplastics (MPs) on terrestrial and soil ecosystems. However, the interactions between MPs with macronutrients and micronutrients and their potential consequences for the agroecosystem are not well understood. Wheat (Triticum aestivum) is a staple food grown globally and has special importance for nations economies. Different elements can cause dangerous outcomes for wheat quality and production yield. In this study, batch adsorption experiments were done using 1 g of polyethylene tetra phthalate MP particles (PET-MPs) in varying concentrations of thirteen elements. The adsorption data were fitted by two common adsorption models (Langmuir and Freundlich). The effect of pH on the speciation of elements in aqueous solutions was investigated. The non-invasive characterization methods indicate the importance of O- and H-containing groups as the main component of selected MPs in controlling the adsorption of the elements ions. In the current study, adsorption and potential transport of the adsorbed macronutrients (K and Na) and micronutrients (Ni, Co, Cu, Al, Ba, Se, Fe, As, B, V and Ag) which include some beneficial (Na, Se, V), and non-essential or toxic elements (Al, As, Ag, Ba) onto MPs to the simulated roots of wheat were evaluated. The maximum sorption capacities of K+> Ni+2> Na+ > Co2+> Cu2+>Al+3 >Ba+2 >Se4+>Fe2+ >As5+ >B3+ >V5+> Ag + on PET-MPs at pH 5.8 and 25 ± 1 °C were 290.6 > 0.52> 0.51 > 0.20> 0.10 > 0.051> 0.024 > 0.003> 0.003 > 0.0015> 5.05 × 10-4> 1.7 × 10-4>3.7 × 10-6 mg g-1, respectively. The results highlight the importance of PET-MPs in controlling element adsorption in the rhizosphere. Our observations provide a good start for understanding the adsorption of multiple elements from the soil rhizosphere zone by PET-MPs.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran.
| |
Collapse
|
22
|
Wang J, Dong J, Tang M, Yao J, Li X, Kong D, Zhao K. Identification and detection of microplastic particles in marine environment by using improved faster R-CNN model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118802. [PMID: 37591094 DOI: 10.1016/j.jenvman.2023.118802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Microplastics refer to plastic particles measuring less than 5 mm, which has led to serious environmental problem and the detection of these tiny particles is crucial for understanding the corresponding distribution and impact on the marine environment. In this paper, an improved faster region-based convolutional neural network (R-CNN) model was developed for the identification and detection of microplastic particles. In the proposed model, the residual network-50 (ResNet-50) is employed as the backbone with the replacement of the traditional one to enhance the feature extraction capability and the feature pyramid networks (FPN) module is introduced together for solving the multi-scale target detection. By using the improved Faster R-CNN model, the network model performance is enhanced where the average confidence of detecting unique microplastic particles in the marine environment reaches as high as 99%. Moreover, the microparticles mixture was bounded precisely via the predicted bounding boxes without missing detection and wrong detection. In this way, the successful identification of polystyrene microplastic particles from the particles suspension with similar shapes but various conditions of backgrounds, brightness, distributions and object sizes, was achieved by employing the proposed improved Faster R-CNN model, enabling the accurate detection of microplastic particles in marine environment.
Collapse
Affiliation(s)
- Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Jianhong Dong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Mengrao Tang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Junzhu Yao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Xuan Li
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Dejian Kong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|
23
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
24
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
25
|
Muthulakshmi L, Mohan S, Tatarchuk T. Microplastics in water: types, detection, and removal strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84933-84948. [PMID: 37386221 DOI: 10.1007/s11356-023-28460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Microplastics are one of the most concerning groups of contaminants that pollute most of the surroundings of the Earth. The abundance of plastic materials available in the environment moved the scientific community in defining a new historical era known as Plasticene. Regardless of their minuscule size, microplastics have posed severe threats to the life forms like animals, plants, and other species present in the ecosystem. Ingestion of microplastics could lead to harmful health effects like teratogenic and mutagenic abnormalities. The source of microplastics could be either primary or secondary in which the components of microplastics are directly released into the atmosphere and the breakdown of larger units to generate the smaller molecules. Though numerous physical and chemical techniques are reported for the removal of microplastics, their increased cost prevents the large-scale applicability of the process. Coagulation, flocculation, sedimentation, and ultrafiltration are some of the methods used for the removal of microplastics. Certain species of microalgae are known to remove microplastics by their inherent nature. One of the biological treatment strategies for microplastic removal is the activated sludge strategy that is used for the separation of microplastic. The overall microplastic removal efficiency is significantly high compared to conventional techniques. Thus, the reported biological avenues like the bio-flocculant for microplastic removal are discussed in this review article.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Shalini Mohan
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Kraków, 30-387, Poland.
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
26
|
Rex M C, Debroy A, Nirmala MJ, Mukherjee A. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Adv 2023; 13:22905-22917. [PMID: 37520083 PMCID: PMC10375451 DOI: 10.1039/d3ra04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600036 India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
27
|
Hettiarachchi H, Meegoda JN. Microplastic Pollution Prevention: The Need for Robust Policy Interventions to Close the Loopholes in Current Waste Management Practices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6434. [PMID: 37510666 PMCID: PMC10379618 DOI: 10.3390/ijerph20146434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Plastic materials that are less than 5 mm in size are defined as Microplastics (MPs). MPs that are intentionally produced are called primary MPs; however, the most abundant type in the environment consists of the remainder created by the fragmentation of large plastic debris through physical, chemical, and oxidative processes, which are called secondary MPs. Due to their abundance in the environment, poor degradability, toxicological properties, and negative impact on aquatic and terrestrial organisms, including humans, MP pollution has become a global environmental issue. Combatting MP pollution requires both remediation and preventive measures. Although remediation is a must, considering where the technology stands today, it may take long time to make it happen. Prevention, on the other hand, can be and should be done now. However, the effectiveness of preventive measures depends heavily on how well MP escape routes are researched and understood. In this research, we argue that such escape routes (rather, loopholes) exist not only due to mismanaged plastic waste, but also due to cracks in the current waste management systems. One known MP loophole is facilitated by wastewater treatment plants (WWTP). The inability of existing WWTP to retain finer MPs, which are finally released to water bodies together with the treated wastewater, along with the return of captured larger MPs back to landfills and their release into the environment through land applications, are a few examples. Organic waste composting and upcycling of waste incineration ash provide other MP escape pathways. In addition, it is important to understand that the plastics that are in current circulation (active use as well as idling) are responsible for producing MPs through regular wear and tear. Closing these loopholes may be best attempted through policy interventions.
Collapse
Affiliation(s)
| | - Jay N Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
28
|
Devi A, Hansa A, Gupta H, Syam K, Upadhyay M, Kaur M, Lajayer BA, Sharma R. Microplastics as an emerging menace to environment: Insights into their uptake, prevalence, fate, and sustainable solutions. ENVIRONMENTAL RESEARCH 2023; 229:115922. [PMID: 37086886 DOI: 10.1016/j.envres.2023.115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The inflated demand for plastic products has led to tremendous rise in plastic debris in different environmental matrices, thereby resulting in plastic pollution. This affects plants, animals, and even humans, as microplastics can enter the food chain and cause several health implications. Microplastics are the small plastic particles (size below 5 mm) that are largely debated nowadays owing to their environmental risk assessment. Their potential to interact with other toxic contaminants, their tendency to be ingested or taken up by living organisms and their longevity is a serious threat to our environment. However, despite wealth of recent information, still there is a gap, particularly in eco-toxicology studies, fate, prevalence and feasible solutions to cope up with the menace of microplastics pollution. This review unravels the environmental fate and behaviour of microplastics as well as their global distribution in the marine and terrestrial environment. Furthermore, we aim to contribute to the international debate on the microplastics global paradigm. We briefly suggest sustainable solutions and recommendations to achieve future research goals on microplastics. Our review reveals some of the newest biological (green algae and modified sponges) and physical (nano-particles and membrane treatment) remediation solutions to eradicate microplastics from different types of environment. This review presents a critical evaluation of the state of knowledge of micro-plastics and suggested some recommendations which can help in identifying some important key questions for future research.
Collapse
Affiliation(s)
- Anjali Devi
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Hitakshi Gupta
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Karri Syam
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Manyata Upadhyay
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Mandeep Kaur
- Henan Key Laboratory of Earth System Observation and Modelling, Henan University, Kaifeng, 475004, China
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture University of Tabriz, Tabriz, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| |
Collapse
|
29
|
Meegoda JN, Hettiarachchi MC. A Path to a Reduction in Micro and Nanoplastics Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085555. [PMID: 37107837 PMCID: PMC10139116 DOI: 10.3390/ijerph20085555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Microplastics (MP) are plastic particles less than 5 mm in size. There are two categories of MP: primary and secondary. Primary or microscopic-sized MP are intentionally produced material. Fragmentation of large plastic debris through physical, chemical, and oxidative processes creates secondary MP, the most abundant type in the environment. Microplastic pollution has become a global environmental problem due to their abundance, poor biodegradability, toxicological properties, and negative impact on aquatic and terrestrial organisms including humans. Plastic debris enters the aquatic environment via direct dumping or uncontrolled land-based sources. While plastic debris slowly degrades into MP, wastewater and stormwater outlets discharge a large amount of MP directly into water bodies. Additionally, stormwater carries MP from sources such as tire wear, artificial turf, fertilizers, and land-applied biosolids. To protect the environment and human health, the entry of MP into the environment must be reduced or eliminated. Source control is one of the best methods available. The existing and growing abundance of MP in the environment requires the use of multiple strategies to combat pollution. These strategies include reducing the usage, public outreach to eliminate littering, reevaluation and use of new wastewater treatment and sludge disposal methods, regulations on macro and MP sources, and a wide implementation of appropriate stormwater management practices such as filtration, bioretention, and wetlands.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: ; Tel.: +1-973-596-2464
| | | |
Collapse
|
30
|
Dey TK, Rasel M, Roy T, Uddin ME, Pramanik BK, Jamal M. Post-pandemic micro/nanoplastic pollution: Toward a sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161390. [PMID: 36621482 PMCID: PMC9814273 DOI: 10.1016/j.scitotenv.2023.161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The global health crisis caused by the COVID-19 pandemic has resulted in massive plastic pollution from the use of personal protection equipment (PPE), with polypropylene (PP) being a major component. Owing to the weathering of exposed PPEs, such contamination causes microplastic (MP) and nanoplastic (NP) pollution and is extremely likely to act as a vector for the transportation of COVID-19 from one area to another. Thus, a post-pandemic scenario can forecast with certainty that a significant amount of plastic garbage combined with MP/NP formation has an adverse effect on the ecosystem. Therefore, updating traditional waste management practices, such as landfilling and incineration, is essential for making plastic waste management sustainable to avert this looming catastrophe. This study investigates the post-pandemic scenario of MP/NP pollution and provides an outlook on an integrated approach to the recycling of PP-based plastic wastes. The recovery of crude oil, solid char, hydrocarbon gases, and construction materials by approximately 75, 33, 55, and 2 %, respectively, could be achieved in an environmentally friendly and cost-effective manner. Furthermore, the development of biodegradable and self-sanitizing smart PPEs has been identified as a promising alternative for drastically reducing plastic pollution.
Collapse
Affiliation(s)
- Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Biplob K Pramanik
- Department of Civil and Infrastructure Engineering, RMIT University, Australia
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
31
|
Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes (Basel) 2023. [DOI: 10.3390/pr11030810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Since the 1950s, plastic production has skyrocketed. Various environmental and human activities are leading to the formation and accumulation of microplastics (MPs) in aquatic and terrestrial ecosystems, causing detrimental effects on water, soil, plants, and living creatures. Wastewater treatment plants (WWTPs) are one of the primary MP management centers meant to check their entry into the natural systems. However, there are considerable limitations in effectively capturing, detecting, and characterizing these MPs in the inlet and outlet of WWTPs leading to “unaccounted MPs” that are eventually discharged into our ecosystems. In order to assess the holistic picture of the MPs’ distribution in the ecosystems, prevent the release of these omitted MPs into the environment, and formulate regulatory policies, it is vital to develop protocols that can be standardized across the globe to accurately detect and account for MPs in different sample types. This review will cover the details of current WWTP adoption procedures for MP management. Specifically, the following aspects are discussed: (i) several processes involved in the workflow of estimating MPs in the outlet of WWTPs; (ii) key limitations or challenges in each process that would increase the uncertainty in accurately estimating MPs; (iii) favorable recommendations that would lead to the standardization of protocols in the workflow and facilitate more accurate analysis of MPs; (iv) research opportunities to tackle the problem of ‘missing MPs’; and (v) future research directions for the efficient management of MPs. Considering the burgeoning research interest in the area of MPs, this work would help early scientists in understanding the current status in the field of MP analysis in the outlet of WWTPs.
Collapse
|
32
|
Kristanti RA, Hadibarata T, Wulandari NF, Sibero MT, Darmayati Y, Hatmanti A. Overview of microplastics in the environment: type, source, potential effects and removal strategies. Bioprocess Biosyst Eng 2023; 46:429-441. [PMID: 36149484 DOI: 10.1007/s00449-022-02784-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
The introduction of plastic sectors has resulted in the presence of microplastics (MPs) in water systems, which has become a global issue that has attracted scientific and community awareness. MPs can be detected in a variety of sources such as beauty products, manufacturing effluent, or fishing activities. This study examined the repercussions posed by MPs' prevalence on land and marine environments and human health issues. Henceforth, remediation technologies must be introduced to shift out MPs from the water supplies in order to sustain the environmental quality for future generations, the benefits and drawbacks of the technology applied. This study also portrays difficulties encountered in MP research as the hurdles must be mastered in order to properly comprehend the MPs. The cooperation between nations is the most critical aspect in fully tackling MP issues as it can be easily carried by wind or water and its damage can be larger than predicted.
Collapse
Affiliation(s)
- Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia.
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Nilam Fadmaulidha Wulandari
- Research Center for Biosystematic and Evolution, Research Organization of Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM 46, Cibinong, 16911, Indonesia
| | - Mada Triandala Sibero
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Yeti Darmayati
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Ariani Hatmanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| |
Collapse
|
33
|
Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, Sharma P, Kumar S, Singh P, Raizada P. Prevalence and implications of microplastics in potable water system: An update. CHEMOSPHERE 2023; 317:137848. [PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
Collapse
Affiliation(s)
- Vikas Menon
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, 140307, Punjab, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India.
| | - Shreya Gupta
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Anujit Ghosal
- Department of Food & Human Nutritional Sciences, University of Manitoba, MB, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, MB, R3T 6C5, Canada
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Rajan Jose
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia; Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Kuantan, Malaysia
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Sunil Kumar
- Waste Reprocessing Division (WRD), CSIR- National Engineering Environmental Research Institute, Nagpur, 440 020, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
34
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
35
|
Zhou Y, Ashokkumar V, Amobonye A, Bhattacharjee G, Sirohi R, Singh V, Flora G, Kumar V, Pillai S, Zhang Z, Awasthi MK. Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121106. [PMID: 36681374 DOI: 10.1016/j.envpol.2023.121106] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Since the advent of microplastics, it has become a vital component, directly or indirectly, in our daily lives. With advancements in their use, microplastics have become an integral part of personal care, cosmetics, and cleaning products (PCCPs) and emerged as a domestic source of environmental pollution. Over the years, researchers have ascertained the harmful effects of microplastics on the environment. In this context, the assessment and monitoring of microplastics in PCCPs require considerable attention. In addition, it raises concern regarding the need to develop innovative, sustainable, and environmentally safe technologies to combat microplastic pollution. Therefore, this review is an endeavor to uncover the fate, route and degradation mechanism of cosmetic microplastics. In addition, the major technological advancement in cosmetic microplastic removal and the steps directed toward mitigating cosmetic microplastic pollution are also discussed.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001, Uttarakhand, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
36
|
Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int J Mol Sci 2023; 24:3877. [PMID: 36835289 PMCID: PMC9967032 DOI: 10.3390/ijms24043877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Pietro Castellani
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| |
Collapse
|
37
|
Sotiropoulou M, Stefanatou A, Schiza S, Petousi I, Stasinakis AS, Fountoulakis MS. Removal of microfiber in vertical flow constructed wetlands treating greywater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159723. [PMID: 36309266 DOI: 10.1016/j.scitotenv.2022.159723] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nature-based solutions such as constructed wetlands (CW) are considered as a sustainable, green technology for greywater treatment. However, their efficiency to remove microplastics is not well-known even though greywater is considered as a significant source of microfiber pollution. In this study, the removal of fiber microplastics from greywater using a vertical flow constructed wetland (VFCW) was investigated. For the purposes of this study, an experimental wetland was constructed, planted with the flowering plant Zantedeschia aethiopica and filled with a substrate made of sand/gravel of several sizes. The system's performance was monitored for five months during which it received real laundry wastewater. Promising results were obtained showing the significant removal of microfibers from the influent (> 95 %). Moreover, the ability of the system to remove microfibers from laundry wastewater was not significantly affected from the hydraulic loading rate (HLR) applied. The average microfibers concentration decreased from 71 ± 25 microparticles/L in the influent to 1 ± 1 microparticles/L in the effluent of VFCW when an HLR of 63.7 mm/d was applied. High removal efficiencies were also observed for COD and turbidity (93 % and 94 %, respectively). Thus, the results indicate a significant improvement in the overall quality of laundry wastewater due to the use of the VFCW.
Collapse
Affiliation(s)
- M Sotiropoulou
- Department of Environment, University of the Aegean, Mytilene, Greece.
| | - A Stefanatou
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - S Schiza
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - I Petousi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - A S Stasinakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - M S Fountoulakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| |
Collapse
|
38
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
39
|
Mendonça I, Sousa J, Cunha C, Faria M, Ferreira A, Cordeiro N. Solving urban water microplastics with bacterial cellulose hydrogels: Leveraging predictive computational models. CHEMOSPHERE 2023; 314:137719. [PMID: 36592831 DOI: 10.1016/j.chemosphere.2022.137719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of microplastics (MPs) in both urban and aquatic ecosystems is concerning, with wastewater treatment plants being considered one of the major sources of the issue. As the focus on developing sustainable solutions increases, unused remnants from bacterial cellulose (BC) membranes were ground to form BC hydrogels as potential bioflocculants of MPs. The influence of operational parameters such as BC:MPs ratio, hydrogel grinding, immersion and mixing time, temperature, pH, ionic strength, and metal cations on MPs flocculation and dispersion were evaluated. A response surface methodology based on experimental data sets was computed to understand how these parameters influence the flocculation process. Further, both the BC hydrogel and the hetero-aggregation of MPs were characterised by UV-Vis, ATR-FTIR, IGC, water uptake assays, fluorescence, and scanning electron microscopy. These highlights that the BC hydrogel would be fully effective at hetero-aggregating MPs in naturally-occurring concentrations, thereby not constituting a limiting performance factor for MPs' optimal flocculation and aggregation. Even considering exceptionally high concentrations of MPs (2 g/L) that far exceed naturally-occurring concentrations, the BC hydrogel was shown to have elevated MPs flocculation activity (reaching 88.6%: 1.77 g/L). The computation of bioflocculation activity showed high reliability in predicting flocculation performance, unveiling that the BC:MPs ratio and grinding times were the most critical variables modulating flocculation rates. Also, short exposure times (5 min) were sufficient to drive robust particle aggregation. The microporous nature of the hydrogel revealed by electron microscopy is the likely driver of strong MPs bioflocculant activity, far outperforming dispersive commercial bioflocculants like xanthan gum and alginate. This pilot study provides convincing evidence that even BC remainings can be used to produce highly potent and circular bioflocculators of MPs, with prospective application in the wastewater treatment industry.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Jessica Sousa
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - César Cunha
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Artur Ferreira
- CICECO - Aveiro Institute of Materials and Águeda School of Technology and Management, University of Aveiro, 3754-909, Águeda, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
40
|
Acarer S. Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:685-710. [PMID: 36789712 DOI: 10.2166/wst.2023.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Since wastewater treatment plants (WWTPs) cannot completely remove microplastics (MPs) from wastewater, WWTPs are responsible for the release of millions of MPs into the environment even in 1 day. Therefore, knowing the sources, properties, removal efficiencies and removal mechanisms of MPs in WWTPs is of great importance for the management of MPs. In this paper, firstly the sources of MPs in WWTPs and the quantities and properties (polymer type, shape, size, and color) of MPs in influents, effluents, and sludges of WWTPs are presented. Following this, the MP removal efficiency of different treatment units (primary settling, flotation, biological treatment, secondary settling, filtration-based treatment technologies, and coagulation) in WWTPs is discussed. In the next section, details about MP removal mechanisms in critical treatment units (settling and flotation tanks, bioreactors, sand filters, membrane filters, and coagulation units) in WWTPs are given. In the last section, the mechanisms and factors that are effective in adsorbing organic-inorganic pollutants in wastewater to MPs are presented. Finally, the current situation and research gap in these areas are identified and suggestions are provided for topics that need further research in the future.
Collapse
Affiliation(s)
- Seren Acarer
- Environmental Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey E-mail:
| |
Collapse
|
41
|
Narloch I, Gackowska A, Wejnerowska G. Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120453. [PMID: 36272601 DOI: 10.1016/j.envpol.2022.120453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Microplastics pollution is an issue of great concern for scientists, governmental bodies, ecological organisations, and the general public. Microplastics pollution is widespread and is a great environmental problem on account of its potential toxicity for marine biota and human health. Today, almost all the world's seas and oceans are polluted with microplastics. The Baltic Sea is a semi-enclosed reservoir of brackish water and is a hotspot for contamination in terms of eutrophication and the presence of organic matter. Microplastics are quite intense, based on data from studies of marine litter and microplastics in the Baltic Sea. The number of microplastics in the Baltic Sea water is 0.07-3300 particles/m3, and in sediments 0-10179 particles/kg. These amounts prove that the waters and sediments of the Baltic Sea are heavily contaminated with microplastics. This article provides a comprehensive review of the microplastic origins and transport routes to the Baltic Sea. The data is presented as the concentration of microplastics in surface waters, sediments, and sea sand. The extraction methods used and the microplastics techniques are also presented. The possibilities and limitations of water and sediment sampling methods for microplastics determination were summarised, taking into account sampling tools, volume and depth. Extraction, separation, filtration, and visual sorting are outlined as sample preparation techniques for microplastic analysis. This review also focuses on the problems of obtaining data relevant to the development of the mathematical models necessary to monitor trends in the spread of microplastics in the Baltic Sea. Finally, several important laws and policies, which are in place in the Baltic States to control and manage microplastic pollution in the region, are highlighted.
Collapse
Affiliation(s)
- Izabela Narloch
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-236, Bydgoszcz, Poland
| | - Alicja Gackowska
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-236, Bydgoszcz, Poland.
| | - Grażyna Wejnerowska
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-236, Bydgoszcz, Poland
| |
Collapse
|
42
|
Chun S, Muthu M, Gopal J. Mass Spectrometry as an Analytical Tool for Detection of Microplastics in the Environment. CHEMOSENSORS 2022; 10:530. [DOI: 10.3390/chemosensors10120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plastic particles smaller than 5 mm accumulate in aqueous, terrestrial, and atmospheric environments and their discovery has been a serious concern when it comes to eco-toxicology and human health risk assessment. In the following review, the potential of mass spectrometry (MS) for the detection of microplastic (MP) pollutants has been elaborately reviewed. The use of various mass spectrometric techniques ranging from gas chromatography–mass spectrometry (GC-MS), liquid chromatographic mass spectrometric (LC-MS) to matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), including their variants, have been reviewed. The lapses in the detection system have been addressed and future recommendations proposed. The challenges facing microplastics and their detection have been discussed and future directions, including mitigation methods, have been presented.
Collapse
|
43
|
Khan NA, Khan AH, López-Maldonado EA, Alam SS, López López JR, Méndez Herrera PF, Mohamed BA, Mahmoud AED, Abutaleb A, Singh L. Microplastics: Occurrences, treatment methods, regulations and foreseen environmental impacts. ENVIRONMENTAL RESEARCH 2022; 215:114224. [PMID: 36058276 DOI: 10.1016/j.envres.2022.114224] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are a silent threat that represent a high degree of danger to the environment in its different ecosystems and of course will also have an important impact on the health of living organisms. It is evident the need to have effective treatments for their treatment, however this is not a simple task, this as a result of the behavior of microplastics in wastewater treatment plants due to their different types and nature, their long molecular chain, reactivity against water, size, shape and the functional groups they carry. Wastewater treatment plants are at the circumference of the release of these wastes into the environment. They often act as a source of many contaminations, which makes this problem more complex. Challenges such as detection in the current scenario using the latest analytical techniques impede the correct understanding of the problem. Due to microplastics, treatment plants have operational and process stability problems. This review paper will present the in-depth situation of occurrence of microplastics, their detection, conventional and advanced treatment methods as well as implementation of legislations worldwide in a comprehensive manner. It has been observed that no innovative or new technologies have emerged to treat microplastics. Therefore, in this article, technologies targeting wastewater treatment plants are critically analyzed. This will help to understand their fate, but also to develop state-of-the-art technologies or combinations of them for the selective treatment of microplastics. The pros and cons of the treatment methods adopted and the knowledge gaps in legislation regarding their implementation are also comprehensively analyzed. This critical work will offer the development of new strategies to restrict microplastics.
Collapse
Affiliation(s)
- Nadeem A Khan
- Department of Civil Engineering, Jamia Millia Islamia Central University, New Delhi, 110025, India; Department of Civil Engineering, Mewat Engineering College, Nuh, Haryana, 122107, India.
| | - Afzal Husain Khan
- Engineering Department, College of Engineering, Jazan University, 45142, Jazan, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP, 22390, Tijuana, Baja California, Mexico.
| | - Shah Saud Alam
- Department of Mechanical Engineering, The University of Kansas, 1530W 15th St., Lawrence, KS, 66045, USA.
| | - Juan Ramon López López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las. Américas S/N, C.P. 80000, Culiacán, Sinaloa, Mexico
| | - Perla Fabiola Méndez Herrera
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las. Américas S/N, C.P. 80000, Culiacán, Sinaloa, Mexico
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt.
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt; Green Technology Group, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt.
| | - Ahmad Abutaleb
- Department of Chemical Engineering, College of Engineering, Jazan University, 45142, Jazan, Saudi Arabia.
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh 175001, India; Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India.
| |
Collapse
|
44
|
Mishra S, Dash D, Das AP. Detection, characterization and possible biofragmentation of synthetic microfibers released from domestic laundering wastewater as an emerging source of marine pollution. MARINE POLLUTION BULLETIN 2022; 185:114254. [PMID: 36306713 DOI: 10.1016/j.marpolbul.2022.114254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Synthetic microfibers are universally recognized as an emerging pollutant in all ecosystems. The present investigation focuses on the evaluation and quantification of synthetic microfiber released from domestic laundering wastewater from different regions of Bhubaneswar city of Odisha state of India. The estimated number of microfibers collected from 500 ml of sample varied from 200 to 500 in numbers with an average amount of biomass in the range of 0.4-4 g. The surface morphology of the samples was assessed by Scanning Electron Microscopic analysis which revealed that the fibers were having a length of approximately 10-30 mm and diameter of 10-20 μm. Carbonyl (CO) stretching band at 1711 cm-1 and Aldehyde (CH) Weak bond at 2917.38 cm-1 absorption were recorded from Fourier transform infrared spectroscopic analysis. As microfibers released from synthetic apparels are major source of environmental microplastic pollution their precise detection could help in controlling this problem.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, India
| | - Debasis Dash
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, India
| | - Alok Prasad Das
- Department of Life Science, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
45
|
Multimodal collective swimming of magnetically articulated modular nanocomposite robots. Nat Commun 2022; 13:6750. [PMID: 36347849 PMCID: PMC9643480 DOI: 10.1038/s41467-022-34430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetically responsive composites can impart maneuverability to miniaturized robots. However, collective actuation of these composite robots has rarely been achieved, although conducting cooperative tasks is a promising strategy for accomplishing difficult missions with a single robot. Here, we report multimodal collective swimming of ternary-nanocomposite-based magnetic robots capable of on-demand switching between rectilinear translational swimming and rotational swimming. The nanocomposite robots comprise a stiff yet lightweight carbon nanotube yarn (CNTY) framework surrounded by a magnetic polymer composite, which mimics the hierarchical architecture of musculoskeletal systems, yielding magnetically articulated multiple robots with an agile above-water swimmability (~180 body lengths per second) and modularity. The multiple robots with multimodal swimming facilitate the generation and regulation of vortices, enabling novel vortex-induced transportation of thousands of floating microparticles and heavy semi-submerged cargos. The controllable collective actuation of these biomimetic nanocomposite robots can lead to versatile robotic functions, including microplastic removal, microfluidic vortex control, and transportation of pharmaceuticals.
Collapse
|
46
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
47
|
Roy T, Dey TK, Jamal M. Microplastic/nanoplastic toxicity in plants: an imminent concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:27. [PMID: 36279030 PMCID: PMC9589797 DOI: 10.1007/s10661-022-10654-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 05/04/2023]
Abstract
The toxic impact of microplastics/nanoplastics (MPs/NPs) in plants and the food chain has recently become a top priority. Several research articles highlighted the impact of MPs/NPs on the aquatic food chain; however, very little has been done in the terrestrial ecosystem. A number of studies revealed that MPs/NPs uptake and subsequent translocation in plants alter plant morphological, physiological, biochemical, and genetic properties to varying degrees. However, there is a research gap regarding MPs/NPs entry into plants, associated factors influencing phytotoxicity levels, and potential remediation plans in terms of food safety and security. To address these issues, all sources of MPs/NPs intrusion in agroecosystems should be revised to avoid these hazardous materials with special consideration as preventive measures. Furthermore, this review focuses on the routes of accumulation and transmission of MPs/NPs into plant tissues, related aspects influencing the intensity of plant stress, and potential solutions to improve food quality and quantity. This paper also concludes by providing an outlook approach of applying exogenous melatonin and introducing engineered plants that would enhance stress tolerance against MPs/NPs. In addition, an overview of inoculation of beneficial microorganisms and encapsulated enzymes in soil has been addressed, which would make the degradation of MPs/NPs faster.
Collapse
Affiliation(s)
- Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
48
|
Junaid M, Liu S, Liao H, Liu X, Wu Y, Wang J. Wastewater plastisphere enhances antibiotic resistant elements, bacterial pathogens, and toxicological impacts in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156805. [PMID: 35724789 DOI: 10.1016/j.scitotenv.2022.156805] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are plastic particles with a size <5 mm that have raised alarming concerns owing to their ecological and human health impacts. They are largely released into the environment through the dumping of plastic waste and wastewater from treatment plants, domestic sewage, agricultural runoff, and industrial sources. Conventional wastewater treatment plants (WWTPs) are unable to remove micro and nano-sized plastic particles, which end up in the natural aquatic and terrestrial environment, causing multifaceted toxic impacts. Moreover, plastics in wastewater generate biofilm that potentially enriches antibiotic resistant bacteria (ARBs), antibiotic resistant genes (ARGs), and bacterial pathogens, which can largely impact antibiotic resistance development among organisms in the environment and transfer to humans through the food chain. Therefore, the current review aims to highlight the potential role of wastewater plastisphere in the enrichment and dissemination of ARBs, ARGs, and potential bacterial pathogens through mobile genetic elements (MGEs) in the environment. Further, the interaction of wastewater MPs with organic and inorganic contaminants and the associated ecological and human health impacts have been presented. Last but not the least, control strategies and future research perspectives on wastewater plastisphere are also highlighted.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liu
- Guangzhou Dublin International College of Life Sciences and Technology, College of International Education, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangzhou Environmental Monitoring Centre, Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
49
|
Mukherjee AG, Wanjari UR, Bradu P, Patil M, Biswas A, Murali R, Renu K, Dey A, Vellingiri B, Raja G, Iyer M, Valsala Gopalakrishnan A. Elimination of microplastics from the aquatic milieu: A dream to achieve. CHEMOSPHERE 2022; 303:135232. [PMID: 35671819 DOI: 10.1016/j.chemosphere.2022.135232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have become a significant source of concern as they have emerged as a widespread pollutant that harms the aquatic environment. It has become an enormous challenge, having the capacity to biomagnify and eventually affect human health, biodiversity, aquatic animals, and the environment. This review provides in-depth knowledge of how MPs interact with different toxic organic chemicals, antibiotics, and heavy metals in the aquatic environment and its consequences. Membrane technologies like ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), and dynamic membranes can be highly effective techniques for the removal of MPs. Also, hybrid membrane techniques like advanced oxidation processes (AOPs), membrane fouling, electrochemical processes, and adsorption processes can be incorporated for superior efficiency. The review also focuses on the reactor design and performance of several membrane-based filters and bioreactors to develop practical, feasible, and sustainable membrane technologies. The main aim of this work is to throw light on the alarming scenario of microplastic pollution in the aquatic milieu and strategies that can be adopted to tackle it.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ganesan Raja
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Mahalaxmi Iyer
- Livestock Farming & Bioresources Technology, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
50
|
Yaseen A, Assad I, Sofi MS, Hashmi MZ, Bhat SU. A global review of microplastics in wastewater treatment plants: Understanding their occurrence, fate and impact. ENVIRONMENTAL RESEARCH 2022; 212:113258. [PMID: 35430276 DOI: 10.1016/j.envres.2022.113258] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are emerging as a serious environmental concern, with wastewater treatment plants (WWTPs) acting as the main entry routes for MPs into aquatic and terrestrial ecosystems. On a global scale, our literature review found that MP research in WWTPs has only been conducted on 121 WWTPs in 17 countries, with the majority of the work being done in Europe (53%), followed by the United States of America and Canada (24%), Asia (18%), and Australia (5%) in recent years. MPs in WWTPs are primarily derived from Personal Care and Cosmetic Products (PCCPs), which are primarily composed of polyethylene (PE) derivatives. Based on the studies, microfibers (57%) and fragments (47%) are observed to be the most common MP forms in influents and effluents of WWTPs. The chemical characterization of MPs detected in WWTPs, showed the occurrence of polyethylene (PE) (22%), polystyrene (PS) (21%), and polypropylene (13%). Although MP retention/removal efficiencies of different treatment technologies vary from medium to high, deliberations on sludge disposal on agricultural soils containing MPs and MP intrusion into groundwater are required to sustainably regulate MP contaminant transport. Thus, the development of efficient detection methods and understanding their fate are of immense significance for the management of MPs. Despite the fact that ongoing research in MPs and WWTPs has unquestionably improved our understanding, many questions and concerns remain unanswered. In this review, the current status of the detection, occurrence, and impact of MPs in WWTPs across the world are systematically reviewed to prioritize policy-making to recognize the WWTPs as global conduits of MPs.
Collapse
Affiliation(s)
- Aarif Yaseen
- Department of Environmental Science, University of Kashmir, 190006, India
| | - Irfana Assad
- Department of Environmental Science, University of Kashmir, 190006, India
| | - Mohd Sharjeel Sofi
- Department of Environmental Science, University of Kashmir, 190006, India
| | | | - Sami Ullah Bhat
- Department of Environmental Science, University of Kashmir, 190006, India.
| |
Collapse
|