1
|
Zhang X, Wang SJ, Wan SC, Li X, Chen G. Ozone: complicated effects in central nervous system diseases. Med Gas Res 2025; 15:44-57. [PMID: 39436168 PMCID: PMC11515058 DOI: 10.4103/mgr.medgasres-d-24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/20/2024] [Accepted: 08/25/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress is closely related to various diseases. Ozone can produce redox reactions through its unique response. As a source of the oxidative stress response, the strong oxidizing nature of ozone can cause severe damage to the body. On the other hand, low ozone concentrations can activate various mechanisms to combat oxidative stress and achieve therapeutic effects. Some animal experiments and clinical studies have revealed the potential medical value of ozone, indicating that ozone is not just a toxic gas. By reviewing the mechanism of ozone and its therapeutic value in treating central nervous system diseases (especially ischemic stroke and Alzheimer's disease) and the toxic effects of ozone, we find that ozone inhalation and a lack of antioxidants or excessive exposure lead to harmful impacts. However, with adequate antioxidants, ozone can transmit oxidative stress signals, reduce inflammation, reduce amyloid β peptide levels, and improve tissue oxygenation. Similar mechanisms to those of possible new drugs for treating ischemic stroke and Alzheimer's disease indicate the potential of ozone. Nevertheless, limited research has restricted the application of ozone. More studies are needed to reveal the exact dose-effect relationship and healing effect of ozone.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Jun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Si-Cen Wan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Kamarehei B, Farhadi M, Sabzehzari M, Sepahvand A, Hayatolgheib F, Bayat M, Sepahvand A, Sabzian M, Seihei N, Namdaryan S, Farhadi A. Short-term and long-term exposure to particles and their consequences in Poldokhtar City (Iran). Toxicol Rep 2024; 13:101770. [PMID: 39497758 PMCID: PMC11533539 DOI: 10.1016/j.toxrep.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
In Iran's biggest towns, deaths and hospitalizations from respiratory and cardiovascular diseases have a strong association with PM2.5 pollution concentrations. The WHO recommends assessing the health impacts using the Air Quality and Health Evaluation approach (Air Q 2.2.3). Data of particulates on both clear, dusty days have been provided by the Meteorology Office for Lorestan. Results indicated that in terms of mean AQI, May (162.46), July (121.7), and April (110.23) are the most polluted months in Poldokhtar city in 2022. May (16 days), July (6 days), March (5 days), and April (4 days) are the most contaminated months of the total number of polluted days. The days having the highest amounts of pollution in terms of the daily mean AQI are May 17th (407), April 10th (402), May 24th (393), July 31st (351), and April 18th (341). The maps extracted from HYSPLIT showed that the origin of the dust entering the city of Poldokhtar is the arid and semi-arid regions of Saudi Arabia, Egypt, Kuwait, and Turkey. May shows the maximum amount of pollution in comparison to other months, as shown by the mean AQI of 162.46. Furthermore, with an AQI score of 407 on May 17, it is assumed to be the most polluted day of the year. Hospitalized people who had respiratory diseases were most severely impacted by the short-term adverse effects of fine dust inhalation.
Collapse
Affiliation(s)
- Bahram Kamarehei
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Educational Development Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Sabzehzari
- PhD Candidate of Meteorology, Director General of Khuzestan Meteorology, Ahvaz, Iran
| | - Arefeh Sepahvand
- Educational Development Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hayatolgheib
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Bayat
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayda Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoumeh Sabzian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Narges Seihei
- Student Research Committee, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Namdaryan
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Farhadi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Saha M, Kafy AA, Bakshi A, Nath H, Alsulamy S, Rahaman ZA, Saroar M. The urban air quality nexus: Assessing the interplay of land cover change and air pollution in emerging South Asian cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124877. [PMID: 39233268 DOI: 10.1016/j.envpol.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Air quality degradation presents a significant public health challenge, particularly in rapidly urbanizing regions where changes in land use/land cover (LULC) can dramatically influence pollution levels. This study investigates the association between LULC changes and air pollution (AP) in the five fastest-growing cities of Bangladesh from 1998 to 2021. Leveraging satellite data from Landsat and Sentinel-5P, the analysis reveals a substantial increase in urban areas and sparse vegetation, with declines in dense vegetation and water bodies over this period. Urban expansion was most pronounced in Sylhet (22-254%), while Khulna experienced the largest increase in sparse vegetation (2-124%). Dense vegetation loss was highest in Dhaka (20-77%) and water bodies (9-59%) over this period. Concentrations of six major air pollutants (APTs) - aerosol index, CO, HCHO, NO2, O3, and SO2 - were quantified, showing alarmingly high levels in densely populated industrial and commercial zones. Pearson's correlation indicates strong positive associations between APTs and urban land indices (R > 0.8), while negative correlations exist with vegetation indices. Geographically weighted regression modeling identifies city centers with dense urban built-up as pollution hotspots, where APTs exhibited stronger impacts on land cover changes (R2 > 0.8) compared to other land classes. The highest daily emissions were observed for O3 (1031 tons) and CO (356 tons) at Chittagong in 2021. In contrast, areas with substantial green cover displayed weaker pollutant-land cover associations. These findings underscore how unplanned urbanization drives AP by replacing natural land cover with emission sources, providing crucial insights to guide sustainable urban planning strategies integrating pollution mitigation and environmental resilience.
Collapse
Affiliation(s)
- Milan Saha
- Department of Urban & Regional Planning, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh; School of Environmental Science and Management, Independent University, Bangladesh.
| | - Abdulla Al Kafy
- Department of Geography & the Environment, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Arpita Bakshi
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh.
| | - Hrithik Nath
- Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh; Department of Civil Engineering, University of Creative Technology Chittagong (UCTC), Chattogram, 4212, Bangladesh.
| | - Saleh Alsulamy
- Department of Architecture, Architecture & Planning College, King Khalid University, 61421, Abha, Saudi Arabia.
| | - Zullyadini A Rahaman
- Department of Geography & Environment, Faculty of Human Sciences, Sultan Idris Education University, Tanjung Malim, 35900, Malaysia.
| | - Mustafa Saroar
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna, Bangladesh.
| |
Collapse
|
4
|
Naseri M, Sadeghi S, Malekipirbazari M, Nurzhan S, Gabdrashova R, Bekezhankyzy Z, Khanbabaie R, Crape B, Shah D, Amouei Torkmahalleh M. Interaction of Cooking-Generated Aerosols on the Human Nervous System and the Impact of Caloric Restriction Post-Exposure. Nutrients 2024; 16:3525. [PMID: 39458519 PMCID: PMC11510529 DOI: 10.3390/nu16203525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The inhalation of cooking-generated aerosols could lead to translocation to the brain and impact its function; therefore, the effects of cooking-generated aerosols on healthy adults were investigated using an electroencephalograph (EEG) during the 2 h period post-exposure. Methods: To explore any changes from the impact of exposure to cooking-generated aerosols on the human brain due to the absence of food intake during exposure, we divided the study participants into three groups: (A) no food intake for 2 h (2 h-zero calorie intake), (B) non-zero calorie intake, and (C) control group (simulated cooking). Results: The ultrafine particle concentrations increased from 9.0 × 103 particles/cm3 at the background level to approximately 8.74 × 104 particles/cm3 during cooking. EEGs were recorded before cooking (step 1), 60 min after cooking (step 2), 90 min after cooking (step 3), and 120 min after cooking (step 4). Comparing the non-zero calorie group with the control group, it was concluded that exposure to cooking-generated aerosols resulted in a 12.82% increase in the alpha band two hours post-exposure, compared to pre-exposure. The results revealed that zero calorie intake after exposure mitigated the impacts of cooking-generated aerosols for the alpha, beta3, theta, and delta bands, while it exacerbated effects on the whole brain for the beta1 and beta2 bands. Conclusions: While these are short-term studies, long-term exposure to cooking-generated ultrafine particles can be established through successive short-term exposures. These results underscore the need for further research into the health impacts of cooking-generated aerosols and the importance of implementing strategies to mitigate exposure.
Collapse
Affiliation(s)
- Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Sahar Sadeghi
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Milad Malekipirbazari
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Sholpan Nurzhan
- Department of Biological Sciences, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Raikhangul Gabdrashova
- Department of Biological Sciences, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhibek Bekezhankyzy
- Department of Chemistry, School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Khanbabaie
- Department of Physics, IKK Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Byron Crape
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Dhawal Shah
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Frías Ordóñez M, Sacco E, Scavini M, Cerrato G, Giordana A, Falletta E, Bianchi CL. Investigating the Synergistic Effect of Decoration and Doping in Silver/Strontium Titanate for Air Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1663. [PMID: 39452998 PMCID: PMC11510593 DOI: 10.3390/nano14201663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Strontium titanate (STO) and its variants have emerged as leading materials in photocatalysis, particularly for degrading nitrogen oxides (NOx), due to their non-toxic nature, structural adaptability, and exceptional thermal stability. Although the one-pot sol-gel method leads to high-quality photocatalysts, areas remain for improvement. This study examines the impact of ethanol as a cosolvent in STO synthesis, focusing on optimizing the water-to-ethanol volume ratio. The findings reveal that a 1:3 ratio significantly enhances macropore formation and photocatalytic efficiency, achieving 42% NOx degradation under LED within three hours. Furthermore, incorporating 8.0 wt.% Ag into STO substantially improves visible light absorption and enables complete NOx elimination, thanks to enhanced charge separation and localized surface plasmon resonance. Even at high temperatures (1100 °C), the Ag-STO photocatalyst maintains partial activity, despite exceeding silver's melting point. These results highlight the potential of STO-based materials for industrial applications, positioning them as a promising solution for effective NOx mitigation.
Collapse
Affiliation(s)
- Marcela Frías Ordóñez
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (M.F.O.); (E.S.); (M.S.); (C.L.B.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Florence, Italy; (G.C.); (A.G.)
| | - Elisabetta Sacco
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (M.F.O.); (E.S.); (M.S.); (C.L.B.)
| | - Marco Scavini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (M.F.O.); (E.S.); (M.S.); (C.L.B.)
| | - Giuseppina Cerrato
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Florence, Italy; (G.C.); (A.G.)
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Alessia Giordana
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Florence, Italy; (G.C.); (A.G.)
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Ermelinda Falletta
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (M.F.O.); (E.S.); (M.S.); (C.L.B.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Florence, Italy; (G.C.); (A.G.)
| | - Claudia Letizia Bianchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (M.F.O.); (E.S.); (M.S.); (C.L.B.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Florence, Italy; (G.C.); (A.G.)
| |
Collapse
|
6
|
Abhishek S, Ghosh A, Pandey B. A comprehensive review on phytoremediation of fly ash and red mud: exploring environmental impacts and biotechnological innovations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35217-2. [PMID: 39382806 DOI: 10.1007/s11356-024-35217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Fly ash (FA) and red mud (RM) are industrial byproducts generated by thermal power plants and the aluminum industry, respectively. The huge generation of FA and RM is a significant global issue, and finding a safe and sustainable disposal method remains a challenge. These dumps contain harmful trace elements that have a significant impact on the environment and human health. It contributes to air, water, and soil pollution, disrupting the delicate balance of the ecosystems. It also introduces toxins into the food chain through biomagnification. Utilizing a vegetation cover can assist in addressing environmental health concerns associated with FA and RM dumps. Nevertheless, the presence of alkaline pH, toxic metals, the absence of soil microbes, and the pozzolanic properties of both FA and RM pose challenges to plant growth. Taking a comprehensive approach to the ecological restoration of these dumps through phytoremediation is crucial. This review examines the role of various factors in the ecological restoration of FA and RM dumps, specifically the use of naturally occurring plants. However, the issue of slow plant growth due to a lack of nutrients and microbial activities is being resolved through various advances, such as amendments in conjunction with organic matter, microbial inoculants, and the use of genetically modified plants. Research has demonstrated the benefits of using amendments to stimulate vegetation growth on FA and RM dumps. In this review, we explore various approaches to restoring FA and RM dumps and transforming them into productive sites that enhance the ecosystem services.
Collapse
Affiliation(s)
- Shubham Abhishek
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Annesha Ghosh
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Bhanu Pandey
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Agarwal S, Tomar N, Makwana M, Patra S, Chopade BA, Gupta V. Air pollution, dysbiosis and diseases: pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Future Microbiol 2024; 19:1497-1513. [PMID: 39345043 PMCID: PMC11492635 DOI: 10.1080/17460913.2024.2401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention. This review attempts to provide an overview of the types of air pollutants, their sources, their impact on the respiratory and gut dysbiotic patterns and their correlation with five major diseases including pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Deeper insights into the links between pollutants, dysbiosis and disease may pave the way for novel diagnostic biomarkers for prognosis and early detection of these diseases, as well as ways to ease the disease burden.
Collapse
Affiliation(s)
- Shelja Agarwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Tomar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Meet Makwana
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Balu A Chopade
- AKS University, Satna, Madhya Pradesh, India
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
8
|
Sajjad B, Siddique A, Rasool K, Jabbar KA, El-Malah SS, Almomani F, Alfarra MR. Seasonal and spatial variations in concentration, diversity, and antibiotic resistance of ambient bioaerosols in an arid region. ENVIRONMENTAL RESEARCH 2024; 262:119879. [PMID: 39243843 DOI: 10.1016/j.envres.2024.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The airborne microbiome significantly influences human health and atmospheric processes within Earth's troposphere and is a crucial focus for scientific research. This study aimed to analyze the composition, diversity, distribution, and spatiotemporal characteristics of airborne microbes in Qatar's ambient air. Air samples were collected using a sampler from ten geographically or functionally distinct locations during a period of one year. Spatial and seasonal variations significantly impacted microbial concentrations, with the highest average concentrations observed at 514 ± 77 CFU/m3 for bacteria over the dry-hot summer season and 134 ± 31 CFU/m3 for fungi over the mild winter season. Bacterial concentrations were notably high in 80% of the locations during the dry-hot summer sampling period, while fungal concentrations peaked in 70% of the locations during winter. The microbial diversity analysis revealed several health-significant bacteria including the genera Chryseobacterium, Pseudomonas, Pantoea, Proteus, Myroides, Yersinia, Pasteurella, Ochrobactrum, Vibrio, and fungal strains relating to the genera Aspergillus, Rhizopus Fusarium, and Penicillium. Detailed biochemical and microscopic analyses were employed to identify culturable species. The strongest antibiotic resistance (ABR) was observed during the humid-hot summer season, with widespread resistance to Metronidazole. Health risk assessments based on these findings indicated potential risks associated with exposure to high concentrations of specific bioaerosols. This study provides essential baseline data on the natural background concentrations of bioaerosols in Qatar, offering insights for air quality assessments and forming a basis for public health policy recommendations, particularly in arid regions.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Shimaa S El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - M Rami Alfarra
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|
9
|
Al-Dossary SK. Environmental and Occupational Triggers of Dry Eye Symptoms in the Ahsa Region of Saudi Arabia: A Cross-Sectional Study. Clin Ophthalmol 2024; 18:2427-2438. [PMID: 39224176 PMCID: PMC11368111 DOI: 10.2147/opth.s474832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This cross-sectional study aimed to investigate the associations between environmental and occupational factors and the prevalence of dry eye symptoms among participants from the Ahsa region of Saudi Arabia. Methods Participants from urban, rural, and suburban areas seeking medical care at primary health centers were recruited through systematic random sampling. Data on demographics, exposures, and ocular health were captured using a structured questionnaire. Dry eye symptoms were evaluated using the Ocular Surface Disease Index (OSDI), Impact of Dry Eye on Everyday Life (IDEEL), and Symptom Assessment in Dry Eye (SANDE) questionnaires. Logistic regression analysis examined the relationships between environmental/occupational factors and the prevalence of dry eye symptoms. Results Key exposures included particulate matter (PM) (60%), low humidity (55%), wind/dust (50%), prolonged computer use (65%), and chemical irritants (45%). These factors were significantly associated with an increased prevalence of dry eye symptoms, with the following odds ratios (ORs): PM (1.85, 95% CI: 1.35-2.52), low humidity (1.45, 95% CI: 1.05-2.00), wind and dust (1.60, 95% CI: 1.20-2.14), prolonged computer use (2.10, 95% CI: 1.55-2.85), and chemical irritants (1.75, 95% CI: 1.30-2.35). All associations were statistically significant (p < 0.05). The use of protective equipment was associated with reduced odds of dry eye symptoms (OR 0.60, 95% CI: 0.42-0.85, p = 0.03). Conclusion This study identifies significant associations between specific environmental and occupational exposures and the prevalence of dry eye symptoms. Reducing modifiable exposures through policy, workplace enhancements, and clinical preventative strategies is essential to mitigate the burden of dry eye symptoms related to modern lifestyles and technology.
Collapse
|
10
|
Choi YY, Lee KH. Short- and medium-term exposure to ambient air pollution and periodontal status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-11. [PMID: 39165084 DOI: 10.1080/09603123.2024.2393431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024]
Abstract
We investigated the association between ambient air pollutant exposure and periodontal health using data from 17,271 adults in the Korea National Health and Nutrition Examination Survey (2012-2015). Participants' periodontal status was categorized based on their community periodontal index (CPI) scores. Using multiple logistic regression models, we examined the relationship between air pollutant levels and poor periodontal status at various lag periods. After adjusting for potential confounders, PM10 exposure was associated with a poor periodontal status (short-term: 0-1 and 0-2 lag days; medium-term: 0-1 and 0-2 lag months). SO2 exposure showed similar associations (short-term, 0-2 to 0-7 lag days; medium-term, 0-4 to 0-6 lag months). Only increased medium-term O3 exposure (0-2 to 0-6 lag months) was associated with a poor periodontal status. NO2 exposure was inversely associated with poor periodontal status for both short- and medium-term durations.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Dental Hygiene, College of Health, Shinhan University, Uijeongbu, Republic of Korea
| | - Kyeong Hee Lee
- Department of Dental Hygiene, College of Health, Shinhan University, Uijeongbu, Republic of Korea
| |
Collapse
|
11
|
Ebrahimi AA, Baziar M, Zakeri HR. Investigating the impact of urban-environmental factors on air pollutants: a land use regression model approach and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:313. [PMID: 39001902 DOI: 10.1007/s10653-024-02103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
The presence of pollutants in the earth's atmosphere has a direct impact on human health and the environment. So that pollutants such as carbon monoxide (CO) and particulate matter (PM) cause respiratory diseases, cough headache, etc. Since the amount of pollutants in the air is related to environmental and urban factors, the aim of the current research is to investigate the relationship between the concentration of CO, PM2.5 and PM10 with urban-environmental factors including land use, wind speed and wind direction, topography, traffic, road network, and population through a Land use regression (LUR) model. The concentrations of CO, PM2.5 and PM10 were measured during four seasons from 26th of March 2022 to 16th of March 2023 at 25 monitoring stations and then the information about pollutant measurement points and Land use data were entered into the ArcGIS software. The annual average concentrations of CO, PM2.5 and PM10 were 0.7 ppm, 18.94 and 60.76 µg/m3, respectively, in which the values of annual average concentration of CO and PMs were outside the air quality guideline standard. The results of the health risk assessment showed that the hazard quotient values for all three investigated pollutants were lower than 1 and therefore, they were not in adverse conditions in terms of health effects. Among the urban-environmental factors affecting air pollution, the traffic variable is the most important factor affecting the annual LUR model of CO, PM2.5 and PM10, and then the topography variable is the second most effective factor on the annual LUR model of the aforementioned pollutants.
Collapse
Affiliation(s)
- Ali Asghar Ebrahimi
- Department of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Baziar
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Department of Environmental Health Engineering, Ferdows Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Zakeri
- Department of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
12
|
Kushwaha A, Goel N. A DFT study of superior adsorbate-surface bonding at Pt-WSe 2 vertically aligned heterostructures upon NO 2, SO 2, CO 2, and H 2 interactions. Sci Rep 2024; 14:15708. [PMID: 38977755 PMCID: PMC11231162 DOI: 10.1038/s41598-024-65213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigates the potential of platinum (Pt) decorated single-layer WSe2 (Pt-WSe2) monolayers as high-performance gas sensors for NO2, CO2, SO2, and H2 using first-principles calculations. We quantify the impact of Pt placement (basal plane vs. vertical edge) on WSe2's electronic properties, focusing on changes in bandgap (ΔEg). Pt decoration significantly alters the bandgap, with vertical edge sites (TV-WSe2) exhibiting a drastic reduction (0.062 eV) compared to pristine WSe2 and basal plane decorated structures (TBH: 0.720 eV, TBM: 1.237 eV). This substantial ΔEg reduction in TV-WSe2 suggests a potential enhancement in sensor response. Furthermore, TV-WSe2 displays the strongest binding capacity for all target gases due to a Pt-induced "spillover effect" that elongates adsorbed molecules. Specifically, TV-WSe2 exhibits adsorption energies of - 0.5243 eV (NO2), - 0.5777 eV (CO2), - 0.8391 eV (SO2), and - 0.1261 eV (H2), indicating its enhanced sensitivity. Notably, H2 adsorption on TV-WSe2 shows the highest conductivity modulation, suggesting exceptional H2 sensing capabilities. These findings demonstrate that Pt decoration, particularly along WSe2 vertical edges, significantly enhances gas sensing performance. This paves the way for Pt-WSe2 monolayers as highly selective and sensitive gas sensors for various applications, including environmental monitoring, leak detection, and breath analysis.
Collapse
Affiliation(s)
- Aditya Kushwaha
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
13
|
Guo X, Ren H, Sun P, Ding E, Fang J, Fang K, Ma X, Li C, Li C, Xu Y, Cao K, Lin EZ, Guo P, Pollitt KJG, Tong S, Tang S, Shi X. Personal exposure to airborne organic pollutants and lung function changes among healthy older adults. ENVIRONMENTAL RESEARCH 2024; 258:119411. [PMID: 38876423 DOI: 10.1016/j.envres.2024.119411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Epidemiological evidence on the impact of airborne organic pollutants on lung function among the elderly is limited, and their underlying biological mechanisms remain largely unexplored. Herein, a longitudinal panel study was conducted in Jinan, Shandong Province, China, involving 76 healthy older adults monitored over a span of five months repetitively. We systematically evaluated personal exposure to a diverse range of airborne organic pollutants using a wearable passive sampler and their effects on lung function. Participants' pulmonary function indicators were assessed, complemented by comprehensive multi-omics analyses of blood and urine samples. Leveraging the power of interaction analysis, causal inference test (CIT), and integrative pathway analysis (IPA), we explored intricate relationships between specific organic pollutants, biomolecules, and lung function deterioration, elucidating the biological mechanisms underpinning the adverse impacts of these pollutants. We observed that bis (2-chloro-1-methylethyl) ether (BCIE) was significantly associated with negative changes in the forced vital capacity (FVC), with glycerolipids mitigating this adverse effect. Additionally, 31 canonical pathways [e.g., high mobility group box 1 (HMGB1) signaling, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, epithelial mesenchymal transition, and heme and nicotinamide adenine dinucleotide (NAD) biosynthesis] were identified as potential mechanisms. These findings may hold significant implications for developing effective strategies to prevent and mitigate respiratory health risks arising from exposure to such airborne pollutants. However, due to certain limitations of the study, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenlong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
14
|
Zhang B, Mendes de Leon CF, Langa KM, Weuve J, Szpiro A, Faul J, D’Souza J, Kaufman JD, Hirth RA, Lisabeth LD, Gao J, Adar SD. Source-Specific Air Pollution and Loss of Independence in Older Adults Across the US. JAMA Netw Open 2024; 7:e2418460. [PMID: 38941096 PMCID: PMC11214115 DOI: 10.1001/jamanetworkopen.2024.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Importance Air pollution is a recognized risk factor associated with chronic diseases, including respiratory and cardiovascular conditions, which can lead to physical and cognitive impairments in later life. Although these losses of function, individually or in combination, reduce individuals' likelihood of living independently, little is known about the association of air pollution with this critical outcome. Objective To investigate associations between air pollution and loss of independence in later life. Design, Setting, and Participants This cohort study was conducted as part of the Environmental Predictors Of Cognitive Health and Aging study and used 1998 to 2016 data from the Health and Retirement Study. Participants included respondents from this nationally representative, population-based cohort who were older than 50 years and had not previously reported a loss of independence. Analyses were performed from August 31 to October 15, 2023. Exposures Mean 10-year pollutant concentrations (particulate matter less than 2.5 μm in diameter [PM2.5] or ranging from 2.5 μm to 10 μm in diameter [PM10-2.5], nitrogen dioxide [NO2], and ozone [O3]) were estimated at respondent addresses using spatiotemporal models along with PM2.5 levels from 9 emission sources. Main Outcomes and Measures Loss of independence was defined as newly receiving care for at least 1 activity of daily living or instrumental activity of daily living due to health and memory problems or moving to a nursing home. Associations were estimated with generalized estimating equation regression adjusting for potential confounders. Results Among 25 314 respondents older than 50 years (mean [SD] baseline age, 61.1 [9.4] years; 11 208 male [44.3%]), 9985 individuals (39.4%) experienced lost independence during a mean (SD) follow-up of 10.2 (5.5) years. Higher exposure levels of mean concentration were associated with increased risks of lost independence for total PM2.5 levels (risk ratio [RR] per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.10), PM2.5 levels from road traffic (RR per 1-IQR of 10-year mean, 1.09; 95% CI, 1.03-1.16) and nonroad traffic (RR per 1-IQR of 10-year mean, 1.13; 95% CI, 1.03-1.24), and NO2 levels (RR per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.08). Compared with other sources, traffic-generated pollutants were most consistently and robustly associated with loss of independence; only road traffic-related PM2.5 levels remained associated with increased risk after adjustment for PM2.5 from other sources (RR per 1-IQR increase in 10-year mean concentration, 1.10; 95% CI, 1.00-1.21). Other pollutant-outcome associations were null, except for O3 levels, which were associated with lower risks of lost independence (RR per 1-IQR increase in 10-year mean concentration, 0.94; 95% CI, 0.92-0.97). Conclusions and Relevance This study found that long-term exposure to air pollution was associated with the need for help for lost independence in later life, with especially large and consistent increases in risk for pollution generated by traffic-related sources. These findings suggest that controlling air pollution could be associated with diversion or delay of the need for care and prolonged ability to live independently.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | | | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Richard A. Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Lynda D. Lisabeth
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Jiaqi Gao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
15
|
de Castro KR, Almeida GHDR, Matsuda M, de Paula Vieira R, Martins MG, Rici REG, Saldiva PHN, Veras MM. Exposure to urban ambient particles (PM2.5) before pregnancy affects the expression of endometrial receptive markers to embryo implantation in mice: Preliminary results. Tissue Cell 2024; 88:102368. [PMID: 38583225 DOI: 10.1016/j.tice.2024.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.
Collapse
Affiliation(s)
- Karla Ribeiro de Castro
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | | | - Monique Matsuda
- Division of Ophthalmology and Laboratory of Investigation in Ophthalmology (LIM33), School of Medicine, University of São Paulo, São Paulo State, Brazil
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation Post-Graduation Program, Evangelical University of Goiás -UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Marco Garcia Martins
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of the Veterinary Medicine and Animal Science, University of São Paulo, São Paulo State, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil.
| |
Collapse
|
16
|
Anand A, Castiglia E, Zamora ML. The Association Between Personal Air Pollution Exposures and Fractional Exhaled Nitric Oxide (FeNO): A Systematic Review. Curr Environ Health Rep 2024; 11:210-224. [PMID: 38386269 PMCID: PMC11180488 DOI: 10.1007/s40572-024-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW Airway inflammation is a common biological response to many types of environmental exposures and can lead to increased nitric oxide (NO) concentrations in exhaled breath. In recent years, several studies have evaluated airway inflammation using fractional exhaled nitric oxide (FeNO) as a biomarker of exposures to a range of air pollutants. This systematic review aims to summarize the studies that collected personal-level air pollution data to assess the air pollution-induced FeNO responses and to determine if utilizing personal-level data resulted in an improved characterization of the relationship between air pollution exposures and FeNO compared to using only ambient air pollution exposure data. RECENT FINDINGS Thirty-six eligible studies were identified. Overall, the studies included in this review establish that an increase in personal exposure to particulate and gaseous air pollutants can significantly increase FeNO. Nine out of the 12 studies reported statistically significant FeNO increases with increasing personal PM2.5 exposures, and up to 11.5% increase in FeNO per IQR increase in exposure has also been reported between FeNO and exposure to gas-phase pollutants, such as ozone, NO2, and benzene. Furthermore, factors such as chronic respiratory diseases, allergies, and medication use were found to be effect modifiers for air pollution-induced FeNO responses. About half of the studies that compared the effect estimates using both personal and ambient air pollution exposure methods reported that only personal exposure yielded significant associations with FeNO response. The evidence from the reviewed studies confirms that FeNO is a sensitive biomarker for air pollutant-induced airway inflammation. Personal air pollution exposure assessment is recommended to accurately assess the air pollution-induced FeNO responses. Furthermore, comprehensive adjustments for the potential confounding factors including the personal exposures of the co-pollutants, respiratory disease status, allergy status, and usage of medications for asthma and allergies are recommended while assessing the air pollution-induced FeNO responses.
Collapse
Affiliation(s)
- Abhay Anand
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Elliana Castiglia
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Misti Levy Zamora
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA.
| |
Collapse
|
17
|
Zhang W, Zhu A, Ling J, Zhang R, Liu T, Tian T, Niu J, Dong J, Ruan Y. Short-term effects of nitrogen dioxide on inpatient acute myocardial infarction in Lanzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:449-456. [PMID: 38739852 DOI: 10.1080/10962247.2024.2350441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Nitrogen dioxide (NO2) represents a deleterious effect on acute myocardial infarction (AMI), but few relevant studies have been conducted in China. We aim to evaluate the acute effects of NO2 exposure on hospitalization for AMI in Lanzhou, China. In this study, we applied a distributional lag nonlinear model (DLNM) to assess the association between NO2 exposure and AMI hospitalization. We explored the sensitivity of various groups through stratified analysis by gender, age, and season. The daily average concentration of NO2 is 47.50 ± 17.38 µg/m3. We observed a significant exposure-response relationship between NO2 concentration and AMI hospitalization. The single pollutant model analysis shows that NO2 is positively correlated with AMI hospitalization at lag1, lag01, lag02, and lag03. The greatest lag effect estimate occurs at lag01, where a 10 µg/m3 increase in NO2 concentrations is significantly associated with a relative risk (RR) of hospitalization due to AMI of 1.027 [95% confidence interval (CI): 1.013, 1.042]. The results of the stratified analysis by gender, age, and season indicate that males, those aged ≥65 years, and the cold season are more sensitive to the deleterious effects caused by NO2 exposure. Short-term exposure to NO2 can enhance the risk of AMI hospitalization in urban Lanzhou.Implications: Exposure to particulate matter can lead to an increased incidence of AMI. Our study once again shows that NO2 exposure increases the risk of AMI hospital admission. AMI is a common and expensive fatal condition. Reducing NO2 exposure will benefit cardiovascular health and save on healthcare costs.
Collapse
Affiliation(s)
- Wancheng Zhang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Anning Zhu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Runping Zhang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Tong Liu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
18
|
Hui L. Changes in threats from chronic obstructive pulmonary disorder and lung cancer with environmental improvements in China: Quantitative evaluation and prediction based on a model with age as a probe. Heliyon 2024; 10:e28977. [PMID: 38601596 PMCID: PMC11004806 DOI: 10.1016/j.heliyon.2024.e28977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Various indicators can be used to assess threats from chronic diseases. This study presented new indicators of quantitative evaluation and prediction of threats from chronic obstructive pulmonary disorder (COPD) and lung cancer and assessed relevant changes in these indicators occurring with environmental improvements. Age at zero mortality (AM0) and age at average mortality (AMa) values were calculated based on the regression of the linear relationship of age with mortality for COPD or lung cancer. The lower the AM0 or AMa of a chronic disease, the greater the threats from the disease to a population were considered to be. AM0 values of both diseases were higher in 2019 than in 2004. Moreover, AM0 was lower for lung cancer than for COPD (0.365 vs. 41.643); however, lung cancer and COPD demonstrated almost identical values for age-standardized mortality. AMa values of both the diseases in 2004 and 2019 were within the range of the median age group (70-74 years). In recent years, the overall mortality risk for lung cancer and COPD has decreased with environmental improvement, and aging has played a major role in lung cancer and COPD development. AM0 and AMa values may be used as a theoretical basis for further research on chronic diseases, particularly lung cancer and COPD.
Collapse
Affiliation(s)
- Liu Hui
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
19
|
Luque-García L, Muxika-Legorburu J, Mendia-Berasategui O, Lertxundi A, García-Baquero G, Ibarluzea J. Green and blue space exposure and non-communicable disease related hospitalizations: A systematic review. ENVIRONMENTAL RESEARCH 2024; 245:118059. [PMID: 38157973 DOI: 10.1016/j.envres.2023.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global increase in non-communicable diseases (NCDs) presents a critical public health concern. Emerging evidence suggests that exposure to natural environments may reduce the risk of developing NCDs through multiple pathways. The present systematic review aims to synthesize and evaluate the observational evidence regarding associations between exposure to green and blue spaces and hospital admissions related to NCDs. A comprehensive literature search strategy was conducted in Embase (Ovid), PubMed, and Web of Science. The risk of bias and quality of the evidence were assessed using The Navigation Guide methodology, an approach specifically designed for environmental health research. Of 3060 search results, 17 articles were included. Notably, the majority of the studies (n = 14; 82.4%) were published from 2020 onwards. Most studies were conducted in the United States (n = 6; 35.3%) and China (n = 4; 23.5%). Exposure to green spaces was assessed through all studies, while only three included blue spaces. In terms of study design, cohort design was employed in nearly half of the studies (n = 8; 47.1%), followed by case-crossover design (n = 3, 17.6%). Over 75% of the included studies (n = 13) had a high or probably high rating in the risk of bias assessment. The studies encompassed diverse NCD outcome domains; cardiovascular diseases (CVDs) (n = 10), respiratory diseases (RSDs) (n = 2), heat-related diseases (n = 1), metabolic diseases (n = 2), cancer (n = 1), neurodegenerative diseases (NDDs) (n = 2), and mental health disorders (n = 2). The present review suggests that a clear link between blue space exposure and NCD hospital admissions is not evident. However, exposure to green spaces appears to predominantly have a protective effect, although the direction of the association varies across different outcome domains. The heterogeneity among the outcome domains together with the limited number of studies, emphasizes the need for more robust evidence.
Collapse
Affiliation(s)
- L Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain.
| | - J Muxika-Legorburu
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - O Mendia-Berasategui
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - A Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - G García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto S/n, 37007, Salamanca, Spain
| | - J Ibarluzea
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain
| |
Collapse
|
20
|
Chaudhary AK, Telee LBS, Karki M, Kumar V. Statistical analysis of air quality dataset of Kathmandu, Nepal, with a New Extended Kumaraswamy Exponential Distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21073-21088. [PMID: 38381289 DOI: 10.1007/s11356-024-32129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
This paper aims to create a new probability distribution and conducts statistical analysis on air quality dataset from Kathmandu. Using this innovative distribution, we have studied the ground reality of air quality conditions of Kathmandu, Nepal. In our research, we have developed a new probability distribution known as the New Extended Kumaraswamy Exponential Distribution by introducing an additional shape parameter to the Extended Kumaraswamy Exponential (EKwE) Distribution. Statistical characteristics such as cumulative distribution function, probability density function, hazard function, reversed hazard function, skewness, kurtosis, survival function, and hazard rate function are studied. The suggested model is non-normal and positively skewed with increasing and inverted bathtub-shaped hazard rate curves. To assess the model's suitability, we utilized a real dataset comprising air quality data from Kathmandu, Nepal, during the year 2021. Study shows that the air quality data exhibit an increasing failure rate, but the P2.5, P10, and total suspended particle concentrations exhibited its lowest levels during the monsoon season and its highest levels during the winter season. Parameters of the model are estimated by using the least square estimation (LSE), maximum likelihood estimation (MLE), and Cramér-von Mises (CVM) approach for P10 at Ratnapark Station, Kathmandu. To assess the model's validity, P-P plots and Q-Q plots are employed. Model comparisons are carried out using Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC). Furthermore, the goodness of fit of the proposed model is evaluated using test statistics such as Anderson-Darling (A2) test, Cramér-von Mises (CVM) test, and the Kolmogorov-Smirnov (KS) test along with their respective p-values. From the findings, we have found that the air quality status of Kathmandu, Nepal, was found to be poor. Proposed distribution provides a better fit with greater flexibility for forecasting air quality data and conducting reliability data analyses. Dataset is analyzed and visualized using R programming.
Collapse
Affiliation(s)
- Arun Kumar Chaudhary
- Department of Statistics, Nepal Commerce Campus, Tribhuvan University, New Baneshwor, Minbhawan, Kathmandu, Nepal.
| | - Lal Babu Sah Telee
- Department of Statistics, Nepal Commerce Campus, Tribhuvan University, New Baneshwor, Minbhawan, Kathmandu, Nepal
| | - Murari Karki
- Department of Statistics, Saraswati Multiple College, Tribhuvan University, Lekhnathmarg, Thamel, Kathmandu, Nepal
| | - Vijay Kumar
- Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
21
|
Javan K, Altaee A, BaniHashemi S, Darestani M, Zhou J, Pignatta G. A review of interconnected challenges in the water-energy-food nexus: Urban pollution perspective towards sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169319. [PMID: 38110094 DOI: 10.1016/j.scitotenv.2023.169319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
The swift growth of cities worldwide poses significant challenges in ensuring a sufficient water, energy, and food supply. The Nexus has innovated valuable systems to address these challenges. However, a crucial issue is the potential for pollution resulting from these systems, which directly and indirectly impacts public health and the overall quality of urban living. This study comprehensively reviews the interconnected challenges of the water-energy-food (WEF) nexus and various forms of pollution in cities. The primary focus of this review article is to showcase the findings of WEF nexus studies regarding various pollutions across different geographical regions and spatial scales. It aims to examine the problems resulting from these pollutions, specifically their effects on human health and urban life. It also delves into the sources of pollution as identified in these studies. Furthermore, the article will highlight the proposed solutions from the research aimed at effectively mitigating pollution in each sector studied. This article is a systematic review which analyses research sources from the Scopus database. It extensively reviewed 2463 peer-reviewed published articles and focused explicitly on articles related to the WEF nexus that discussed pollution. Our study emphasizes, firstly, raising awareness about the crucial link between the WEF nexus, pollution, urban environments, and human health among policymakers and key stakeholders, including urban planners, industry partners and municipalities. This is to promote the development of policies that encourage sustainable practices and key stakeholders. Secondly, it evaluates WEF nexus and pollution research methods and findings, aiding in identifying research gaps technological innovation and potential, as well as enhancing decision-making. Lastly, it outlines future research challenges, providing a roadmap for researchers and policymakers to advance understanding in this domain and identify opportunities for resource efficiency and collaboration between different sectors.
Collapse
Affiliation(s)
- Kazem Javan
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, Australia.
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, Australia
| | - Saeed BaniHashemi
- School of Design and Built Environment, University of Canberra, Canberra, Australia
| | - Mariam Darestani
- School of Civil and Environmental Environment, Western Sydney University, Sydney, Australia
| | - John Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, Australia
| | - Gloria Pignatta
- School of Built Environment, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
22
|
Amodu IO, Olaojotule FA, Ogbogu MN, Olaiya OA, Benjamin I, Adeyinka AS, Louis H. Adsorption and sensor performance of transition metal-decorated zirconium-doped silicon carbide nanotubes for NO 2 gas application: a computational insight. RSC Adv 2024; 14:5351-5369. [PMID: 38348297 PMCID: PMC10859909 DOI: 10.1039/d3ra08796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.
Collapse
Affiliation(s)
- Ismail O Amodu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Mathematics, University of Calabar Calabar Nigeria
| | - Faith A Olaojotule
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | - Miracle N Ogbogu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg Pretoria South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
23
|
White PJ, Ardoin NM, Eames C, Monroe MC. Agency in the Anthropocene: education for planetary health. Lancet Planet Health 2024; 8:e117-e123. [PMID: 38331528 DOI: 10.1016/s2542-5196(23)00271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
Collective action is essential to address planetary health as current and future environmental challenges are socioecological and require coordinated, informed, and sustained action from all societal sectors. Education that engages intergenerational communities is a crucial means of building collective action as it provides opportunities to develop an informed citizenry capable of making the necessary decisions to work towards planetary health. Schools are valuable sites of community learning and action, and will benefit from a new orientation towards and commitment to educator training, curriculum development, and youth agency. This orientation is supported by the Organisation for Economic Co-operation and Development's Programme for International Student Assessment's (PISA) 2025 Science Framework, which measures the competence (skills and knowledge) of 15-year-old students. This Personal View describes a new concept, Agency in the Anthropocene, a contributing element of the 2025 Science Framework that defines the way science education could develop agency and hope in this era of socioecological challenges that are impacting planetary health.
Collapse
Affiliation(s)
- Peta J White
- School of Education, Deakin University, Burwood, VIC, Australia.
| | - Nicole M Ardoin
- Social Sciences Division, Stanford Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | - Chris Eames
- Te Kura Toi Tangata School of Education, University of Waikato, Hamilton, Aotearoa New Zealand
| | - Martha C Monroe
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Wright CY, Kapwata T, Naidoo N, Asante KP, Arku RE, Cissé G, Simane B, Atuyambe L, Berhane K. Climate Change and Human Health in Africa in Relation to Opportunities to Strengthen Mitigating Potential and Adaptive Capacity: Strategies to Inform an African "Brains Trust". Ann Glob Health 2024; 90:7. [PMID: 38312714 PMCID: PMC10836170 DOI: 10.5334/aogh.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background Africa faces diverse and complex population/human health challenges due to climate change. Understanding the health impacts of climate change in Africa in all its complexity is essential for implementing effective strategies and policies to mitigate risks and protect vulnerable populations. This study aimed to outline the major climate change-related health impacts in Africa in the context of economic resilience and to seek solutions and provide strategies to prevent or reduce adverse effects of climate change on human health and well-being in Africa. Methods For this narrative review, a literature search was conducted in the Web of Science, Scopus, CAB Abstracts, MEDLINE and EMBASE electronic databases. We also searched the reference lists of retrieved articles for additional records as well as reports. We followed a conceptual framework to ensure all aspects of climate change and health impacts in Africa were identified. Results The average temperatures in all six eco-regions of Africa have risen since the early twentieth century, and heat exposure, extreme events, and sea level rise are projected to disproportionately affect Africa, resulting in a larger burden of health impacts than other continents. Given that climate change already poses substantial challenges to African health and well-being, this will necessitate significant effort, financial investment, and dedication to climate change mitigation and adaptation. This review offers African leaders and decision-makers data-driven and action-oriented strategies that will ensure a more resilient healthcare system and safe, healthy populations-in ways that contribute to economic resiliency. Conclusions The urgency of climate-health action integrated with sustainable development in Africa cannot be overstated, given the multiple economic gains from reducing current impacts and projected risks of climate change on the continent's population health and well-being. Climate action must be integrated into Africa's development plan to meet the Sustainable Development Goals, protect vulnerable populations from the detrimental effects of climate change, and promote economic development.
Collapse
Affiliation(s)
- Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Natasha Naidoo
- Environment and Health Research Unit, South African Medical Research Council, Durban, South Africa
| | | | - Raphael E. Arku
- School of Public Health & Health Sciences, University of Massachusetts Amherst, USA
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Lynn Atuyambe
- Makerere University, School of Public Health, Uganda
| | | |
Collapse
|
25
|
Lan D, Fermoyle CC, Troy LK, Knibbs LD, Corte TJ. The impact of air pollution on interstitial lung disease: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 10:1321038. [PMID: 38298511 PMCID: PMC10827982 DOI: 10.3389/fmed.2023.1321038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction There is a growing body of evidence suggesting a causal relationship between interstitial lung disease (ILD) and air pollution, both for the development of the disease, and driving disease progression. We aim to provide a comprehensive literature review of the association between air pollution, and ILD, including idiopathic pulmonary fibrosis (IPF). Methods We systematically searched from six online database. Two independent authors (DL and CF) selected studies and critically appraised the risk of bias using the Newcastle-Ottawa Scale (NOS). Findings are presented through a narrative synthesis and meta-analysis. Meta-analyses were performed exclusively when there was a minimum of three studies examining identical pollutant-health outcome pairs, all evaluating equivalent increments in pollutant concentration, using a random effects model. Results 24 observational studies conducted in 13 countries or regions were identified. Pollutants under investigation encompassed ozone (O3), nitrogen dioxide (NO2), Particulate matter with diameters of 10 micrometers or less (PM10) and 2.5 micrometers or less (PM2.5), sulfur dioxide (SO2), carbon monoxide (CO), nitric oxide (NO) and nitrogen oxides (NOx). We conducted meta-analyses to assess the estimated Risk Ratios (RRs) for acute exacerbations (AE)-IPF in relation to exposure to every 10 μg/m3 increment in air pollutant concentrations, including O3, NO2, PM10, and PM2.5. The meta-analysis revealed a significant association between the increased risk of AE-IPF in PM2.5, yielding RR 1.94 (95% CI 1.30-2.90; p = 0.001). Findings across all the included studies suggest that increased exposure to air pollutants may be linked to a range of health issues in individuals with ILDs. Conclusion A scarcity of available studies on the air pollutants and ILD relationship underscores the imperative for further comprehensive research in this domain. The available data suggest that reducing levels of PM2.5 in the atmosphere could potentially reduce AE frequency and severity in ILD patients.
Collapse
Affiliation(s)
- Doris Lan
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Caitlin C. Fermoyle
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Lauren K. Troy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Luke D. Knibbs
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Public Health Unit, Public Health Research Analytics and Methods for Evidence (PHRAME), Sydney Local Health District, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
26
|
Hunter R, Baird B, Garcia M, Begay J, Goitom S, Lucas S, Herbert G, Scieszka D, Padilla J, Brayer K, Ottens AK, Suter MA, Barrozo ER, Hines C, Bleske B, Campen MJ. Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicol Sci 2023; 196:238-249. [PMID: 37695302 PMCID: PMC10682975 DOI: 10.1093/toxsci/kfad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brenna Baird
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Siem Goitom
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jamie Padilla
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kathryn Brayer
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Enrico R Barrozo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Curt Hines
- Department of Biochemistry & Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
27
|
D'Oliveira A, Dominski FH, De Souza LC, Branco JHL, Matte DL, da Cruz WM, Andrade A. Impact of air pollution on the health of the older adults during physical activity and sedentary behavior: A systematic review. ENVIRONMENTAL RESEARCH 2023; 234:116519. [PMID: 37392827 DOI: 10.1016/j.envres.2023.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Air pollution, in addition to presenting health risks, can impact the practice of physical activity (PA) and sedentary behavior (SB) in older adults. This study analyzed the impact of air pollution on the health of older adults during PA and SB, through a systematic review. METHODS A keyword and reference search was performed in PubMed, SCOPUS, SPORTDiscus, and Web of Science. Predetermined selection criteria included study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies and case-control studies; population: older adults aged 60 years or older; exposures: specific air pollutants (particulate matter (PM), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), black carbon (CN), ultrafine particles (PU), nitrogen oxides (NOx) and biomass fuels) indoors and outdoors; and outcomes: physical activity and/or sedentary behavior. RESULTS The beneficial effects of PA were attenuated or harmed in 11 studies, showing negative impacts on the health of the older adults, mainly by PM2.5 pollutants. On the other hand, in 10 studies the effects of PA were greater than the negative effects of air pollutants, with a greater frequency in relation to PM2.5. In general, even the articles presenting controversial results suggest that practicing PA in polluted environments is more favorable to the health of older adults than remaining in SB. DISCUSSION AND CONCLUSIONS On the one hand, air pollution negatively impacted the health of the older adults during PA practices, while on the other hand, PA can mitigate the negative effects of pollutants on the health of older adults during the practices. Evidence shows that practicing PA in environments with low concentrations of pollutants can provide gains and reduce health risks. Remaining in SB in environments with high levels of air pollution worsens the health of older adults.
Collapse
Affiliation(s)
- Anderson D'Oliveira
- Health and Sports Science Center, Department of Physical Education, Santa Catarina State University, Florianópolis, 88035-901, Brazil.
| | - Fábio Hech Dominski
- Health and Sports Science Center, Department of Physical Education, Santa Catarina State University, Florianópolis, 88035-901, Brazil.
| | - Loiane Cristina De Souza
- Health and Sports Science Center, Department of Physical Education, Santa Catarina State University, Florianópolis, 88035-901, Brazil.
| | | | - Darlan Lauricio Matte
- Physical Therapy Graduate Program, Santa Catarina State University, 88080-350, Florianópolis, SC, Brazil.
| | - Whyllerton Mayron da Cruz
- Health and Sports Science Center, Department of Physical Education, Santa Catarina State University, Florianópolis, 88035-901, Brazil.
| | - Alexandro Andrade
- Health and Sports Science Center, Department of Physical Education, Santa Catarina State University, Florianópolis, 88035-901, Brazil.
| |
Collapse
|
28
|
Han X, Wu W, Wang S. Krüppel-like factor 15 counteracts endoplasmic reticulum stress and suppresses lung fibroblast proliferation and extracellular matrix accumulation. Tissue Cell 2023; 84:102183. [PMID: 37531874 DOI: 10.1016/j.tice.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The incidence of pulmonary fibrosis is on the rise, and existing treatments have limited efficacy in improving patient survival. The purpose of this study was to reveal the potential of Krüppel-like factor (KLF)15 activation in alleviating pulmonary fibrosis. Transforming growth factor beta (TGF-β) was utilized to induce lung fibroblasts to establish an in vitro model of pulmonary fibrosis. The impacts of TGF-β and KLF15 level on cell proliferation, migration, extracellular matrix (ECM) accumulation, and endoplasmic reticulum stress (ERS) were assessed. Additionally, tunicamycin, an ERS agonist, was used to investigate the role of ERS in KLF15 regulation. The results showed that KLF15 was dropped in response to TGF-β treatment. However, KLF15 overexpression reduced cell proliferation, migration, ECM accumulation, and ERS, alleviating the effects of TGF-β stimulation. Subsequent treatment with tunicamycin diminished the effects of KLF15 overexpression, demonstrating that ERS mediated the modulation of KLF15. KLF15 acts against ERS and suppresses excessive proliferation and ECM accumulation in lung fibroblast. These findings suggest that activating KLF15 is a promising strategy for alleviating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Weiqin Wu
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Shuming Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
29
|
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023; 11:2427. [PMID: 37760868 PMCID: PMC10525278 DOI: 10.3390/biomedicines11092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disorder. Recent clinical and experimental studies reveal that environmental pollutants, including organophosphorus-organochloride pesticides and air pollution, may contribute to the development of cardiac arrhythmias including AF. Here, we discussed the unifying cascade of events that may explain the role of pollutant exposure in the development of AF. Following ingestion and inhalation of pollution-promoting toxic compounds, damage-associated molecular pattern (DAMP) stimuli activate the inflammatory response and oxidative stress that may negatively affect the respiratory, cognitive, digestive, and cardiac systems. Although the detailed mechanisms underlying the association between pollutant exposure and the incidence of AF are not completely elucidated, some clinical reports and fundamental research data support the idea that pollutant poisoning can provoke perturbed ion channel function, myocardial electrical abnormalities, decreased action potential duration, slowed conduction, contractile dysfunction, cardiac fibrosis, and arrhythmias including AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Alexia Fundere
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| |
Collapse
|
30
|
Tang W, Sun L, Wang J, Li K, Liu S, Wang M, Cheng Y, Dai L. Exploring Associations Between Short-Term Air Pollution and Daily Outpatient Visits for Allergic Rhinitis. Risk Manag Healthc Policy 2023; 16:1455-1465. [PMID: 37575684 PMCID: PMC10417714 DOI: 10.2147/rmhp.s416365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Many studies have reported that exposure to air pollution increases the likelihood of acquiring allergic rhinitis (AR). This study investigated associations between short-term air pollution exposure and AR outpatient visits. Patients and Methods The Department of Otorhinolaryngology, Affiliated Hospital of Hangzhou Normal University provided AR outpatient data from January 1, 2019 to December 31, 2021. Daily air quality information for that period was gathered from the Hangzhou Air Quality Inspection Station. We used the Poisson's generalized additive model (GAM) to investigate relationships between daily outpatient AR visits and air pollution, and investigated lag-exposure relationships across days. Subgroup analyses were performed by age (adult (>18 years) and non-adult (<18 years)) and sex (male and female). Results We recorded 20,653 instances of AR during the study period. Each 10 g/m3 increase in fine particulate matter (PM10 and PM2.5) and carbon monoxide (CO) concentrations was associated with significant increases in AR outpatient Visits. The relative risks (RR) were: 1.007 (95% confidence interval (CI): 1.001-1.013), 1.026 (95% CI: 1.008-1.413), and 1.019 (95% CI: 1.008-1.047). AR visits were more likely due to elevated PM2.5, PM10, and CO levels. Additionally, children were more affected than adults. Conclusion To better understand the possible effects of air pollution on AR, short-term exposure to ambient air pollution (PM2.5, PM10, and CO) may be linked to increased daily outpatient AR visits.
Collapse
Affiliation(s)
- Wei Tang
- Department of Otolaryngology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Department of Otolaryngology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Lixia Sun
- Mathematics Teaching and Research Office of the Ministry of Basic Education of Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, People’s Republic of China
| | - Jie Wang
- Hangzhou Zhenqi Technology Co., Ltd, Hangzhou, Zhejiang, People’s Republic of China
| | - Kaijie Li
- Clinical Medicine Department of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Shuhan Liu
- Clinical Medicine Department of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Mingwei Wang
- Metabolic Disease Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lili Dai
- Department of Otolaryngology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
31
|
Morales-Bautista J, Guillén-Bonilla H, Guillén-Bonilla A, Rodríguez-Betancourtt VM, Ramírez-Ortega JA, Guillén-Bonilla JT. Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb 2O 6) Powders. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5024. [PMID: 37512298 PMCID: PMC10385575 DOI: 10.3390/ma16145024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Nickel antimonate (NiSb2O6) powders were synthesized using a wet chemistry process assisted by microwave radiation and calcination from 600 to 700 °C to evaluate their photocatalytic and gas-sensing properties. The crystalline phase obtained at 800 °C of trirutile-type nickel antimonate was confirmed with powder X-ray diffraction. The morphology and size of the nanostructures were analyzed employing electron microscopy (SEM and TEM), identifying irregular particles and microrods (~277 nm, made up of polyhedral shapes of size ~65 nm), nanorods with an average length of ~77 nm, and nanostructures of polyhedral type of different sizes. UV-vis analysis determined that the bandgap of the powders obtained at 800 °C was ~3.2 eV. The gas sensing tests obtained a maximum response of ~5 for CO (300 ppm) at 300 °C and ~10 for C3H8 (500 ppm) at 300 °C. According to these results, we consider that NiSb2O6 can be applied as a gas sensor. On the other hand, the photocatalytic properties of the antimonate were examined by monitoring the discoloration of malachite green (MG) at five ppm. MG concentration monitoring was carried out using UV-visible spectroscopy, and 85% discoloration was achieved after 200 min of photocatalytic reaction.
Collapse
Affiliation(s)
- Jacob Morales-Bautista
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Guadalajara 44410, Mexico
| | - Héctor Guillén-Bonilla
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Guadalajara 44410, Mexico
| | - Alex Guillén-Bonilla
- Departamento de Ciencias Computacionales e Ingenierías, CUVALLES, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Mexico
| | | | - Jorge Alberto Ramírez-Ortega
- Departamento de Física, CUCEI, Universidad de Guadalajara, Guadalajara 44410, Mexico
- Campus Guadalajara, UNITEC MÉXICO, Universidad Tecnológica de México, Calz. Lázaro Cárdenas 405, San Pedro Tlaquepaque 45559, Mexico
| | | |
Collapse
|
32
|
Muchlis N, Yusuf RA, Rusydi AR, Mahmud NU, Hikmah N, Qanitha A, Ahsan A. Cigarette Smoke Exposure and Stunting Among Under-five Children in Rural and Poor Families in Indonesia. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231185210. [PMID: 37434666 PMCID: PMC10331105 DOI: 10.1177/11786302231185210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Cigarette smoke exposure in mothers and children is highly prevalent in Asia, especially among rural and poor families. Second-hand smoke exposure might affect the nutritional status of children. Despite the emerging double burden of malnutrition and the very high prevalence of smoking in Indonesia, few studies have examined the effects of parental smoking on children's nutritional status. This study aims to measure the relationship between family smoking behavior and the occurrence of stunting in children under 5 years. This cross-sectional study used a purposive sampling technique, with 221 households with children aged 0 to 59 months from poor areas in Indonesia. Exposure to cigarette smoke is assessed using The Secondhand Smoke Exposure Scale questionnaire. The outcome measured is child stunting (height-for-age Z-score). The prevalence of stunting was estimated at 145 (65.6%). Children living with smoking parents were counted for 157 (71%), and most smoking exposure comes from fathers 147 (67.4%). The predictors of stunting in children under 5 years were a smoker father with (AOR 1.8; 95% CI 1.281-4.641), both parents are smokers increasing the risk of stunting with (COR 3.591; 95% CI 1.67-3.77), being exposed of smoke for more than 3 hours a day increase the risk of stunted children (COR 2.05; 95% CI 1.214-3.629), and using traditional cigarette or kretek expand the risk of stunting (AOR 3.19; 95% CI 1.139-67.785). The findings demonstrate the negative impact of parental smoking on children's growth, reinforcing the importance of reducing smoking prevalence by imposing a smoke-free home policy in the stunting prevention strategy.
Collapse
Affiliation(s)
- Nurmiati Muchlis
- Faculty of Public Health, Universitas
Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Rezky Aulia Yusuf
- Faculty of Public Health, Universitas
Muslim Indonesia, Makassar, South Sulawesi, Indonesia
- Save The Teenager Indonesia, Makassar,
Indonesia
| | - Arni Rizqiani Rusydi
- Faculty of Public Health, Universitas
Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Nur Ulmy Mahmud
- Faculty of Public Health, Universitas
Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Nurul Hikmah
- Faculty of Public Health, Universitas
Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Andriany Qanitha
- Faculty of Medicine, Universitas
Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Abdillah Ahsan
- Faculty of Economics and Business,
University of Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
33
|
Ronaldson A, Stewart R, Mueller C, Das-Munshi J, Newbury JB, Mudway IS, Broadbent M, Fisher HL, Beevers S, Dajnak D, Hotopf M, Hatch SL, Bakolis I. Associations between air pollution and mental health service use in dementia: a retrospective cohort study. BMJ MENTAL HEALTH 2023; 26:e300762. [PMID: 37550086 PMCID: PMC10577765 DOI: 10.1136/bmjment-2023-300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/11/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Little is known about the role of air pollution in how people with dementia use mental health services. OBJECTIVE We examined longitudinal associations between air pollution exposure and mental health service use in people with dementia. METHODS In 5024 people aged 65 years or older with dementia in South London, high resolution estimates of nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) levels in ambient air were linked to residential addresses. Associations between air pollution and Community Mental Health Team (CMHT) events (recorded over 9 years) were examined using negative binomial regression models. Cognitive function was measured using the Mini Mental State Examination (MMSE) and health and social functioning was measured using the Health of the Nation Outcomes Scale (HoNOS65+). Associations between air pollution and both MMSE and HoNOS65+ scores were assessed using linear regression models. FINDINGS In the first year of follow-up, increased exposure to all air pollutants was associated with an increase in the use of CMHTs in a dose-response manner. These associations were strongest when we compared the highest air pollution quartile (quartile 4: Q4) with the lowest quartile (Q1) (eg, NO2: adjusted incidence rate ratio (aIRR) 1.27, 95% CI 1.11 to 1.45, p<0.001). Dose-response patterns between PM2.5 and CMHT events remained at 5 and 9 years. Associations were strongest for patients with vascular dementia. NO2 levels were linked with poor functional status, but not cognitive function. CONCLUSIONS Residential air pollution exposure is associated with increased CMHT usage among people with dementia. CLINICAL IMPLICATIONS Efforts to reduce pollutant exposures in urban settings might reduce the use of mental health services in people with dementia, freeing up resources in already considerably stretched psychiatric services.
Collapse
Affiliation(s)
- Amy Ronaldson
- Health Service and Population Research Department, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK
| | - Robert Stewart
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Christoph Mueller
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Jayati Das-Munshi
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Joanne B Newbury
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, UK
| | - Ian S Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Matthew Broadbent
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Helen L Fisher
- ESRC Centre for Society and Mental Health, King's College London, London, UK
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - David Dajnak
- MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephani L Hatch
- Department of Psychological Medicine, IoPPN, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Ioannis Bakolis
- Health Service and Population Research Department, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK
- Department of Biostatistics and Health Informatics, IoPPN, King's College London, London, UK
| |
Collapse
|
34
|
Li W, Zong X, He YS, Meng T, Tang Y, Yang Q, Huang Q, Wang Y, Li S, Pan HF. Association between short-term exposure to ambient air pollution and outpatient visits for pulpitis in Hefei, China: a time series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28095-7. [PMID: 37273044 DOI: 10.1007/s11356-023-28095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Evidence suggests a possible association between ambient air pollutants and oral diseases. Nevertheless, information regarding the relationship between air pollutants and pulpitis is scarce and inconclusive. In view of this, the present study aimed to investigate the relationship between short-term exposure to air pollution and outpatient visits for pulpitis. Daily data on outpatient visits for pulpitis, air pollutants, and meteorological data in Hefei, China, was collected from January 1, 2015 to December 31, 2021. The association between exposure to air pollutants and pulpitis outpatient visits was evaluated using distributed lag non-linear model (DLNM) and a generalized linear model (GLM). Furthermore, stratified analyses were performed by gender, age and season. A total of 93,324 records of outpatient visits for pulpitis were included in this study. The results showed that exposure to NO2, PM2.5, and CO were positively correlated with an increased risk of pulpitis outpatient visits. Each 10 μg/m3 increase in NO2 and PM2.5 concentration, at lag 0-2 day, was associated with a 2.4% (relative risk (RR) = 1.024, 95% confidence interval (CI): 1.014-1.035) and 0.5% (RR = 1.005, 95% CI: 1.000-1.010) increase in pulpitis outpatient visits, respectively. With a 1 mg/m3 increase in CO concentration, the risk of pulpitis outpatient visits increased by 9.1% (RR = 1.091, 95% CI: 1.031-1.154, lag 0-1 day). Intriguingly, exposure to O3 was associated with a decreased risk of pulpitis outpatient visits (RR = 0.990, 95% CI: 0.984-0.995, lag 0-5 day). Subgroup analysis revealed that in the warm season, exposure to PM2.5, O3, and CO was related with a significantly higher outpatient risk of pulpitis than in the cold season. Additionally, the influence of PM2.5 and CO exposure at age < 65 years was significantly stronger than at age ≥ 65 years. In conclusion, exposure to ambient NO2, PM2.5, and CO is associated with an increase in pulpitis outpatient visits in Hefei, China. Conversely, exposure to O3 reduces the risk of outpatient visits for pulpitis. Age and season are effect modifiers of these associations.
Collapse
Affiliation(s)
- Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xirun Zong
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ying Tang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qi Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qing Huang
- Department of Oral and Maxillofacial Surgery, Hefei Second People's Hospital, Hefei, 230011, China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hai-Feng Pan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Wang CW, Chen SC, Hung CH, Kuo CH. Urinary copper levels are associated with bronchiectasis in non-smokers living near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27502-3. [PMID: 37217814 DOI: 10.1007/s11356-023-27502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
The incidence of respiratory diseases has been associated with copper in particulate matter; however, the relationship between urinary copper levels and interstitial lung changes remains unclear. Therefore, we conducted a population-based study in southern Taiwan between 2016 and 2018, excluding individuals with a history of lung carcinoma, pneumonia, and cigarette smoking. Low-dose computed tomography (LDCT) was performed to detect lung interstitial changes, including the presence of ground-glass opacity or bronchiectasis in LDCT images. We categorized urinary copper levels into quartiles (Q1: ≤10.3; Q2: >10.4 and ≤14.2; Q3: >14.3 and ≤18.9; and Q4: >19.0 μg/L) and analyzed the risk of interstitial lung changes using multiple logistic regression analysis. The urinary copper levels were significantly positively correlated with age, body mass index, serum white blood cell count, aspartate aminotransferase, alanine aminotransferase, creatinine, triglycerides, fasting glucose, and glycated hemoglobin and significantly negatively correlated with platelet count and high-density lipoprotein cholesterol. The study found that the highest quartile of urinary copper levels (Q4) was significantly associated with an increased risk of bronchiectasis compared to the lowest quartile (Q1) of urinary copper levels, with an odds ratio (OR) of 3.49 and a 95% confidence interval (CI) of 1.12-10.88. However, the association between urinary copper levels and interstitial lung disease needs further investigation in future studies.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Park MS, Kim YJ, Shin HJ, Kwon YJ, Chu J, Lee I, Kim KH, Kim BK, Kim SH, Seo HW, Kim TW. Protective Effect of Novel Lactobacillus plantarum KC3 Isolated from Fermented Kimchi on Gut and Respiratory Disorders. Microorganisms 2023; 11:microorganisms11040967. [PMID: 37110390 PMCID: PMC10141104 DOI: 10.3390/microorganisms11040967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics have been shown to possess anti-inflammatory effects in the gut by directly reducing the production of pro-inflammatory cytokines and by secreting anti-inflammatory molecules. However, their systemic anti-inflammatory effects have not been thoroughly investigated. In this study, we aimed to develop probiotics that have efficacy in both intestinal and lung inflammation. Lactobacillus plantarum KC3 (KC3), which was isolated from kimchi, was selected as a pre-candidate based on its inhibitory effects on the production of pro-inflammatory cytokines in vitro. To further validate the effectiveness of KC3, we used ear edema, DSS-induced colitis, and ambient particulate-matter-induced lung inflammation models. First, KC3 exhibited direct anti-inflammatory effects on intestinal cells with the inhibition of IL-1β and TNF-α production. Additionally, KC3 treatment alleviated ear edema and DSS-induced colic inflammation, improving colon length and increasing the number of regulatory T cells. Beyond its local intestinal anti-inflammatory activity, KC3 inhibited pro-inflammatory cytokines in the bronchoalveolar fluid and prevented neutrophil infiltration in the lungs. These results suggest that KC3 could be a potential functional ingredient with respiratory protective effects against air-pollutant-derived inflammation, as well as for the treatment of local gut disorders.
Collapse
Affiliation(s)
- Min-Seon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| | - Yu-Jeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Han-Jae Shin
- KT&G Research Institute, Daejeon 34128, Republic of Korea
| | - Yoo Jin Kwon
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Jaeryang Chu
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Inock Lee
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| |
Collapse
|
37
|
Hutchings H, Zhang Q, Grady S, Mabe L, Okereke IC. Gentrification and Air Quality in a Large Urban County in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4762. [PMID: 36981672 PMCID: PMC10049340 DOI: 10.3390/ijerph20064762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Introduction: Increases in industrialization and manufacturing have led to worsening pollution in some components of air quality. In addition, gentrification is occurring in large cities throughout the world. As these socioeconomic and demographic changes occur, there have been no studies examining the association of gentrification with air quality. To investigate this association, we studied the trends of gentrification, changes in racial distribution and changes in air quality in each zip code of a large urban county over a 40-year period. Methods: We conducted a retrospective longitudinal study over 40 years in Wayne County, Michigan using socioeconomic and demographic data from the National Historical Geographic Information System (NHGIS) and air quality data from the United States Environmental Protection Agency (EPA). To assess gentrification, longitudinal analyses were performed to examine median household income, percentage with a college education, median housing value, median gross rent and employment level. The racial distribution was evaluated in each zip code during the time period. Gentrification was studied in relation to air quality using nonparametric 2-sample Wilcon-Mann-Whitney tests and Binomial Generalized Linear Regression models. Results: Although air quality improved overall over the 40-year period, there was a lesser rate of improvement in gentrified areas. Furthermore, gentrification was strongly associated with racial distribution. The most substantial gentrification occurred from 2010 to 2020, in which a specific cluster of adjacent zip codes in downtown Detroit experienced intense gentrification and a drop in the percentage of African-American residents. Conclusions: Gentrified areas seem to have a less pronounced improvement in air quality over time. This reduction in air quality improvement is likely associated with demolitions and the construction of new buildings, such as sporting arenas and accompanying traffic density. Gentrification is also strongly associated with an increase in non-minority residents in an area. Although previous definitions of gentrification in the literature have not included racial distribution, we suggest that future definitions should include this metric given the strong association. Minority residents who are displaced as a result of gentrification do not experience the improvements in housing quality, accessibility to healthy foods and other associations of gentrification.
Collapse
Affiliation(s)
- Hollis Hutchings
- Department of Surgery, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, USA
| | - Qiong Zhang
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Sue Grady
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lainie Mabe
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ikenna C. Okereke
- Department of Surgery, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI 48202, USA
| |
Collapse
|
38
|
Outdoor Air Pollution and Childhood Respiratory Disease: The Role of Oxidative Stress. Int J Mol Sci 2023; 24:ijms24054345. [PMID: 36901776 PMCID: PMC10001616 DOI: 10.3390/ijms24054345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The leading mechanisms through which air pollutants exert their damaging effects are the promotion of oxidative stress, the induction of an inflammatory response, and the deregulation of the immune system by reducing its ability to limit infectious agents' spreading. This influence starts in the prenatal age and continues during childhood, the most susceptible period of life, due to a lower efficiency of oxidative damage detoxification, a higher metabolic and breathing rate, and enhanced oxygen consumption per unit of body mass. Air pollution is involved in acute disorders like asthma exacerbations and upper and lower respiratory infections, including bronchiolitis, tuberculosis, and pneumoniae. Pollutants can also contribute to the onset of chronic asthma, and they can lead to a deficit in lung function and growth, long-term respiratory damage, and eventually chronic respiratory illness. Air pollution abatement policies, applied in the last decades, are contributing to mitigating air quality issues, but more efforts should be encouraged to improve acute childhood respiratory disease with possible positive long-term effects on lung function. This narrative review aims to summarize the most recent studies on the links between air pollution and childhood respiratory illness.
Collapse
|
39
|
Andrade A, D’Oliveira A, De Souza LC, Bastos ACRDF, Dominski FH, Stabile L, Buonanno G. Effects of Air Pollution on the Health of Older Adults during Physical Activities: Mapping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3506. [PMID: 36834200 PMCID: PMC9960154 DOI: 10.3390/ijerph20043506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric pollutants present environmental threats to health and have been investigated in different environments, such as highways, squares, parks, and gyms. These environments are frequented by older adults, who are considered fragile to the harmful impacts of pollution present in the air. The aim was to analyze the state of the art on the effects of air pollution on the health of older adults during physical activities (PAs) through a mapping review. The search was performed in PubMed, Web of Science, Scopus, and Cinahl databases until June 2022. Of the 10,109 studies initially identified, 58 met the inclusion criteria. The most investigated health outcome was cardiovascular disease, followed by respiratory outcomes. Particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and ozone (O3) were the most investigated pollutants. Of the 75 health outcomes investigated, in 29, air pollution had harmful effects on the health of the older adults during the practice of PA, more frequently in cardiovascular diseases. In 25 outcomes, the beneficial effects of PA to the health of the older adults remained, despite exposure to high and low concentrations of pollutants, most often in terms of mental disorders. We conclude that poor air quality is a harmful factor for the health of older adults during the practice of PAs, more frequently in cardiovascular and respiratory diseases. On the other hand, for mental-health-related outcomes (depression and cognition), in most studies, the beneficial effects of PA in older adults were maintained, even after exposure to pollutants.
Collapse
Affiliation(s)
- Alexandro Andrade
- Health and Sports Science Center, Department of Physical Education, CEFID, Santa Catarina State University, Florianópolis 88035-901, Brazil
| | - Anderson D’Oliveira
- Health and Sports Science Center, Department of Physical Education, CEFID, Santa Catarina State University, Florianópolis 88035-901, Brazil
| | - Loiane Cristina De Souza
- Health and Sports Science Center, Department of Physical Education, CEFID, Santa Catarina State University, Florianópolis 88035-901, Brazil
| | | | - Fábio Hech Dominski
- Department of Physical Education, Univille University, Joinville 89219-710, Brazil
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, Italy
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane 4001, Australia
| |
Collapse
|
40
|
Ruiz-Páez R, Díaz J, López-Bueno JA, Asensio C, Ascaso MS, Saez M, Luna MY, Barceló MA, Navas MA, Linares C. Short-term effects of air pollution and noise on emergency hospital admissions in Madrid and economic assessment. ENVIRONMENTAL RESEARCH 2023; 219:115147. [PMID: 36580986 DOI: 10.1016/j.envres.2022.115147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The aim of this study was to study the effect of air pollution and noise has on the population in Madrid Community (MAR) in the period 2013-2018, and its economic impact. METHODS Time series study analysing emergency hospital admissions in the MAR due to all causes (ICD-10: A00-R99), respiratory causes (ICD-10: J00-J99) and circulatory causes (ICD-10: I00-I99) across the period 2013-2018. The main independent variables were mean daily PM2.5, PM10, NO2, 8-h ozone concentrations, and noise. We controlled for meteorological variables, Public Holidays, seasonality, and the trend and autoregressive nature of the series, and fitted generalised linear models with a Poisson regression link to ascertain the relative risks and attributable risks. In addition, we made an economic assessment of these hospitalisations. RESULTS The following associations were found: NO2 with admissions due to natural (RR: 1.007, 95% CI: 1.004-1.011) and respiratory causes (RR: 1.012, 95% CI: 1.005-1.019); 8-h ozone with admissions due to natural (RR: 1.049, 95% CI: 1.014-1.046) and circulatory causes (RR: 1.088, 95% CI: 1.039-1.140); and diurnal noise (LAeq7-23h) with admissions due to natural (RR: 1.001, 95% CI: 1.001-1.002), respiratory (RR: 1.002, 95% CI: 1.001-1.003) and circulatory causes (RR: 1.003, 95% CI: 1.002-1.005). Every year, a total of 8246 (95% CI: 4580-11,905) natural-cause admissions are attributable to NO2, with an estimated cost of close on €120 million and 5685 (95% CI: 2533-8835) attributed to LAeq7-23h with an estimated cost of close on €82 million. CONCLUSIONS Nitrogen dioxide, ozone and noise are the main pollutants to which a large number of hospitalisations in the MAR are attributed, and are thus responsible for a marked deterioration in population health and high related economic impact.
Collapse
Affiliation(s)
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.
| | | | - C Asensio
- Universidad Politéctnica de Madrid. Grupo de Investigación en Instrumentación y Acústica Aplicada, Ctra. Valencia Km 7, Campus sur, 28031, Madrid, Spain
| | - M S Ascaso
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - M Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M Y Luna
- Meteorological Statal Agency. (AEMET), Madrid, Spain
| | - M A Barceló
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M A Navas
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| |
Collapse
|
41
|
Gu K, Li Y, Jia X, Liu C. Multiple Impacts of Urban Built and Natural Environment on Lung Cancer Incidence: A Case Study in Bengbu. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4876404. [PMID: 36785840 PMCID: PMC9922188 DOI: 10.1155/2023/4876404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Tumours are the main disease affecting the health of the Chinese population, and lung cancer is the malignancy with the highest incidence. Hence, the need to study and analyse the population of lung cancer incidence in order to effectively control and prevent it. In this research, we discuss the demographic characteristics of lung cancer incidence population of 2014 to 2020 from the perspective of multiple urban environmental factors, taking Bengbu city in the Huaihe River Basin of China as the research area, analyse the correlation between environmental indicators and lung cancer incidence population through the Spearman's rank correlation assessment model, and analyse the interaction between the influence factors of a geographic detector to analyse the influence of urban environmental factors. The results showed the followings: (1) The distribution characteristics of lung cancer incidence population were mainly geriatric population and spatially mainly fell in the old urban area of the study area, and the population distribution had clustered characteristics. (2) Through Spearman's rank correlation analysis, the land use, road traffic, spatial form, service facilities, and the open space of green space of the urban-built environment as well as the natural environment are all correlated with the incidence of lung cancer. (3) Factor detection and interaction analysis revealed a greater effect of spring and winter on lung cancer prevalence. In addition, the road intersection density and the distance to industrial are the most important potential influencing factors, and the interaction of any two factors will increase the risk of lung cancer.
Collapse
Affiliation(s)
- Kangkang Gu
- School of Architecture & Planning, Anhui Jianzhu University, Hefei, Anhui, China
- Research Center of Urbanization Development in Anhui Province, Hefei, Anhui, China
| | - Yuwei Li
- School of Architecture & Planning, Anhui Jianzhu University, Hefei, Anhui, China
- Research Center of Urbanization Development in Anhui Province, Hefei, Anhui, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu 233000, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
42
|
Liu W, Zhang J, Dai Z, Luo N, Qu J, Sun P, Li D, Liao W, Wei J, Zhang H. A novel hollow microsphere composite MnOx/PAA: effective catalyst for ozone decomposition at high humidity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17994-18013. [PMID: 36205873 DOI: 10.1007/s11356-022-23440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Ozone air pollution poses a serious threat to human health and ecological environment. Manganese oxide (MnOx) is a popular material for ozone decomposition with excellent catalytic performance. However, the catalytic activity may be reduced under high-humidity conditions because of oxygen vacancy of MnOx from the water evaporation. In this paper, a new type of MnOx/poly(acrylic acid-co-divinylbenzene) (PAA) catalyst with MnOx supported on hollow PAA was successfully prepared, which greatly improved the ozone decomposition efficiency under high humidity. It was shown that when the acrylic acid (AA) content was more than 50%, the PAA polymer layer was hydrophilic and the ozone decomposition efficiency would keep high activity for both the low- and high-humidity conditions. The best performance of ozone decomposition was identified for the methanol reduction and AA content of 60%, in which the efficiencies reached 94.5% and 85% at 50% and 90% humidity levels, respectively. It is the synergetic effect of the hydrophilic PAA support and hollow structure that retains and improves the decomposition activity, which can absorb the water vapor molecules and increase the ozone retention time. Therefore, the hollow microsphere catalyst prepared in this paper has great potential in solving the problem of ozone air pollution.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China.
- Tianjin Colouroad Coatings & Chemicals Co., Ltd., Tianjin, 300457, China.
| | - Jingwen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
| | - Zhao Dai
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Ning Luo
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
| | - Jing Qu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Peiyun Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
| | - Da Li
- Tianjin Colouroad Coatings & Chemicals Co., Ltd., Tianjin, 300457, China
| | - Weilong Liao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Textile Materials for Soil Treatment in Textile Industry, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
43
|
Li J, Cai YS, Kelly FJ, Wooster MJ, Han Y, Zheng Y, Guan T, Li P, Zhu T, Xue T. Landscape fire smoke enhances the association between fine particulate matter exposure and acute respiratory infection among children under 5 years of age: Findings of a case-crossover study for 48 low- and middle-income countries. ENVIRONMENT INTERNATIONAL 2023; 171:107665. [PMID: 36493611 DOI: 10.1016/j.envint.2022.107665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) produced by landscape fires is thought to be more toxic than that from non-fire sources. However, the effects of "fire-sourced" PM2.5 on acute respiratory infection (ARI) are unknown. METHODS We combined Demographic and Health Survey (DHS) data from 48 countries with gridded global estimates of PM2.5 concentrations from 2003 to 2014. The proportions of fire-sourced PM2.5 were assessed by a chemical transport model using a variety of PM2.5 source data. We tested for associations between ARI and short-term exposure to fire- and "non-fire-sourced" PM2.5 using a bidirectional case-crossover analysis. The robustness and homogeneity of the associations were examined by sensitivity analyses. We also established a nonlinear exposure-response relationship between fire- and non-fire-sourced PM2.5 and ARI using a two-dimensional spline function. RESULTS The study included 36,432 children under 5 years who reported ARI symptoms. Each 1 µg/m3 increment of fire-sourced PM2.5 was associated with a 3.2 % (95 % confidence interval [CI] 0.2, 6.2) increment in the risk of ARI. This effect was comparable to that of each ∼5 µg/m3 increment in PM2.5 from non-fire sources (3.1 %; 95 % CI 2.4, 3.7). The association between ARI and total PM2.5 concentration was significantly mediated by the proportion of fire-sourced particles. Nonlinear analysis showed that the risk of ARI was increased by both fire- and non-fire-sourced PM2.5, but especially by the former. CONCLUSIONS PM2.5 produced by landscape fire was more strongly associated to ARI among children under 5 years than that from non-fire sources.
Collapse
Affiliation(s)
- Jiajianghui Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing 100191, China.
| | - Yutong Samuel Cai
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK; National Institute for Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester, UK.
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Martin J Wooster
- Leverhulme Centre for Wildfires, Environment & Society and NERC National Centre for Earth Observation, Department of Geography, King's College London, London, UK.
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Yixuan Zheng
- Department of Health Policy, School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Tianjia Guan
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, China.
| | - Pengfei Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing 100191, China.
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University Beijing, China.
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
44
|
Sun S, Chang Q, He J, Wei X, Sun H, Xu Y, Soares Magalhaes RJ, Guo Y, Cui Z, Zhang W. The association between air pollutants, meteorological factors and tuberculosis cases in Beijing, China: A seven-year time series study. ENVIRONMENTAL RESEARCH 2023; 216:114581. [PMID: 36244443 DOI: 10.1016/j.envres.2022.114581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a severe public health problem globally. Previous studies have revealed insufficient and inconsistent associations between air pollutants, meteorological factors and TB cases. Yet few studies have examined the associations between air pollutants, meteorological factors and TB cases in Beijing. OBJECTIVE The purpose of this study was to explore the impact of air pollutants and meteorological factors on TB in Beijing, and to provide novel insights into public health managers to formulate control strategies of TB. METHODS Data on the daily case of TB in Beijing during 2014-2020 were obtained from Chinese tuberculosis information management system. Concurrent data on the daily PM10, PM2.5, SO2, NO2, CO and O3, were obtained from the online publication platform of the Chinese National Environmental Monitoring Center. Daily average temperature, average wind speed, relative humidity, sunshine duration and total precipitation were collected from the China Meteorological Science Data Sharing Service System. A distributed lag non-linear model was fitted to identify the non-linear exposure-response relationship and the lag effects between air pollutions, meteorological factors and TB cases in Beijing. RESULTS In the single-factor model, the excess risk (ER) of TB was significantly positively associated with every 10 μg/m3 increase in NO2 in lag 1 week (ER: 1.3%; 95% confidence interval [CI]: 0.4%, 2.3%) and every 0.1 m/s increase in average wind speed in lag 5 weeks (ER: 0.3%; 95% CI: 0.1%, 0.5%), and was negatively associated with every 10 μg/m3 increase in O3 in lag 1 week (ER: -1.2%; 95% CI: -1.8%, -0.5%), every 5 °C increase in average temperature (ER: -1.7%; 95% CI: -2.9%, -0.4%) and every 10% increase in average relative humidity (ER: -0.4%; 95% CI: -0.8%, -0.1%) in lag 10 weeks, respectively. In the multi-factor model, the lag effects between TB cases and air pollutants, meteorological factors were similar. The subgroup analysis suggests that the effects of NO2, O3, average wind speed and relative humidity on TB were greater in male or labor age subgroup, while the effect of CO was greater in the elderly. In addition, no significant associations were found between PM2.5, SO2, sunshine duration and TB cases. CONCLUSION Our findings provide a better understanding of air pollutants and meteorological factors driving tuberculosis occurrence in Beijing, which enhances the capacity of public health manager to target early warning and disease control policy-making.
Collapse
Affiliation(s)
- Shanhua Sun
- Beijing Institute of Tuberculosis Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Qinxue Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China
| | - Xianyu Wei
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hailong Sun
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuanyong Xu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ricardo J Soares Magalhaes
- Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Brisbane, Australia; Child Health Research Center, The University of Queensland, Brisbane, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
45
|
Soares da Silva M, Pimentel LCG, Duda FP, Aragão L, Silva C, Dragaud ICDV, Vicentini PC. Assessment of meteorological settings on air quality modeling system-a proposal for UN-SDG and regulatory studies in non-homogeneous regions in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1737-1760. [PMID: 35922592 DOI: 10.1007/s11356-022-22146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air quality models are essential tools to meet the United Nations Sustainable Development Goals (UN-SDG) because they are effective in guiding public policies for the management of air pollutant emissions and their impacts on the environment and human health. Despite its importance, Brazil still lacks a guide for choosing and setting air quality models for regulatory purposes. Based on this, the current research aims to assess the combined WRF/CALMET/CALPUFF models for representing SO2 dispersion over non-homogeneous regions as a regulatory model for policies in Brazilian Metropolitan Regions to satisfy the UN-SDG. The combined system was applied to the Rio de Janeiro Metropolitan Area (RJMA), which is known for its physiographic complexity. In the first step, the WRF model was evaluated against surface-observed data. The local circulation was underestimated, while the prevailing observational winds were well represented. In the second step, it was verified that all CALMET three meteorological configurations performed better for the most frequent wind speed classes so that the largest SO2 concentrations errors occurred during light winds. Among the meteorological settings in WRF/CALMET/CALPUFF, the joined use of observed and modeled meteorological data yielded the best results for the dispersion of pollutants. This result emphasizes the relevance of meteorological data composition in complex regions with unsatisfactory monitoring given the inherent limitations of prognostic models and the excessive extrapolation of observed data that can generate distortions of reality. This research concludes with the proposal of the WRF/CALMET/CALPUFF air quality regulatory system as a supporting tool for policies in the Brazilian Metropolitan Regions in the framework of the UN-SDG, particularly in non-homogeneous regions where steady-state Gaussian models are not applicable.
Collapse
Affiliation(s)
| | | | - Fernando Pereira Duda
- Mechanical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Aragão
- Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corbiniano Silva
- Civil Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
46
|
Ronaldson A, Arias de la Torre J, Ashworth M, Hansell AL, Hotopf M, Mudway I, Stewart R, Dregan A, Bakolis I. Associations between air pollution and multimorbidity in the UK Biobank: A cross-sectional study. Front Public Health 2022; 10:1035415. [PMID: 36530697 PMCID: PMC9755180 DOI: 10.3389/fpubh.2022.1035415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Long-term exposure to air pollution concentrations is known to be adversely associated with a broad range of single non-communicable diseases, but its role in multimorbidity has not been investigated in the UK. We aimed to assess associations between long-term air pollution exposure and multimorbidity status, severity, and patterns using the UK Biobank cohort. Methods Multimorbidity status was calculated based on 41 physical and mental conditions. We assessed cross-sectional associations between annual modeled particulate matter (PM)2.5, PMcoarse, PM10, and nitrogen dioxide (NO2) concentrations (μg/m3-modeled to residential address) and multimorbidity status at the baseline assessment (2006-2010) in 364,144 people (mean age: 52.2 ± 8.1 years, 52.6% female). Air pollutants were categorized into quartiles to assess dose-response associations. Among those with multimorbidity (≥2 conditions; n = 156,395) we assessed associations between air pollutant exposure levels and multimorbidity severity and multimorbidity patterns, which were identified using exploratory factor analysis. Associations were explored using generalized linear models adjusted for sociodemographic, behavioral, and environmental indicators. Results Higher exposures to PM2.5, and NO2 were associated with multimorbidity status in a dose-dependent manner. These associations were strongest when we compared the highest air pollution quartile (quartile 4: Q4) with the lowest quartile (Q1) [PM2.5: adjusted odds ratio (adjOR) = 1.21 (95% CI = 1.18, 1.24); NO2: adjOR = 1.19 (95 % CI = 1.16, 1.23)]. We also observed dose-response associations between air pollutant exposures and multimorbidity severity scores. We identified 11 multimorbidity patterns. Air pollution was associated with several multimorbidity patterns with strongest associations (Q4 vs. Q1) observed for neurological (stroke, epilepsy, alcohol/substance dependency) [PM2.5: adjOR = 1.31 (95% CI = 1.14, 1.51); NO2: adjOR = 1.33 (95% CI = 1.11, 1.60)] and respiratory patterns (COPD, asthma) [PM2.5: adjOR = 1.24 (95% CI = 1.16, 1.33); NO2: adjOR = 1.26 (95% CI = 1.15, 1.38)]. Conclusions This cross-sectional study provides evidence that exposure to air pollution might be associated with having multimorbid, multi-organ conditions. Longitudinal studies are needed to further explore these associations.
Collapse
Affiliation(s)
- Amy Ronaldson
- Centre for Implementation Science, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Jorge Arias de la Torre
- Centre for Implementation Science, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Mark Ashworth
- School of Life Course and Population Sciences, King's College London, London, United Kingdom
| | - Anna L. Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research, Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, Leicester, United Kingdom
| | - Matthew Hotopf
- Department of Psychological Medicine, King's College London, IoPPN and South London and Maudsley NHS Foundation Trust, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Ian Mudway
- National Institute for Health and Care Research, Health Protection Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- MRC Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rob Stewart
- Department of Psychological Medicine, King's College London, IoPPN and South London and Maudsley NHS Foundation Trust, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Alex Dregan
- Department of Psychological Medicine, King's College London, IoPPN and South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Ioannis Bakolis
- Centre for Implementation Science, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, IoPPN, King's College London, London, United Kingdom
| |
Collapse
|
47
|
Shetty BSP, D’souza G, Padukudru Anand M, Prasad MR. Outdoor air pollution impacts chronic obstructive pulmonary disease deaths in South Asia and China: a systematic review and meta-analysis. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.16995.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Chronic obstructive lung disease is among leading causes of death globally. Exposure to outdoor pollution is an important cause for increased mortality and morbidity. Objective: To present a systemic synthesis evidence regarding impact of outdoor pollution on COPD mortality in south asia and china. Methods: A systematic search on studies with statistical power has been conducted from 1990 - June 30th 2021, in English electronic databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines from MEDLINE and PUBMED databases with terms: Chronic Obstructive Pulmonary disease OR COPD OR Chronic Bronchitis OR Emphysema OR COPD Deaths OR Chronic Obstructive Lung Disease OR Airflow Obstruction OR Chronic Airflow Obstruction OR Airflow Obstruction, Chronic OR Bronchitis, Chronic AND Mortality OR Death OR Deceased AND Outdoor pollution, ambient pollution was conducted. Results: Out of 1899 papers screened only 16 found eligible to be included in the study. Subjects with COPD exposed to higher levels of outdoor air pollution had a 49 % higher risk of death as compared to COPD subjects exposed to lower levels of outdoor air pollution. When taken individual pollutants into consideration, common air pollutants like PM10 had an OR of 1.06 at CI 95%, where as SO2 had OR of 0.66 at 95% CI , and NO2 with 1.01 OR at 95% CI. These values suggest that there is an effect of outdoor pollution on COPD but not to a significant level. Conclusion: Despite heterogeneity across selected studies, exposure to outdoor pollutants found to have risk of COPD mortality. Though it appears to have risk, COPD mortality was not significantly associated with outdoor pollutants. Controlling air pollution can substantially decrease the risk of COPD in South Asia and China. Further research including more prospective and longitudinal studies are urgently needed in COPD sub-groups.
Collapse
|
48
|
Long L, Zhu LT, Huang Q. Correlation between lung cancer markers and air pollutants in western China population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64022-64030. [PMID: 35467186 DOI: 10.1007/s11356-022-20354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The relationship between serum lung cancer markers and the air pollution remains unclear. To further reveal the correlation between air pollutants and lung cancer, a retrospective analysis of 446,032 asymptomatic healthy people and symptomatic healthy people from the Health Management Center of the First Affiliated Hospital of Chongqing Medical University from 2014 to 2019 was performed. The distribution characteristics of serum lung cancer markers, cancer embryo antigens (CEA), cytokeratin 19 fragment (CYFRA211), squamous cell carcinoma antigen (SCC), and nerve-specific enolase (NSE) was analyzed in these population. Two independent sample man-Whitney U test was used to analyze the correlation of lung cancer markers and age, and a Chi-square test was used to analyze the relationship between lung cancer markers and gender. The daily change trend was profiled for six main air quality indicators PM10, PM2.5, SO2, NO2, CO, O3 during the same period. The correlation between lung markers and air pollutants was investigated by Spearman and multiple linear regression. The results showed that CYFRA211 had the highest excess rate in the screening population. There were differences in the number of cases with concentrated expression of lung cancer markers in the different age groups. Among them, the people with NSE exceeding the standard were the youngest, and most of them were 40-55 years old. Besides SCC, the expression levels of other markers increased with age, and the expression levels of the four markers in males were significantly higher than those in females. Although the levels of PM10 and PM2.5 exceeded the WHO standard (World Health Organization. 2011), they were not correlated with lung cancer markers. Multiple comparisons showed that the air pollutants SO2 and CYFRA211, as well as NO2 and NSE were closely related, but there was no significant linear relationship between CEA, SCC, and air pollutants. In conclusion, among the four lung cancer markers, CYFRA211 had the highest abnormal excess rate in total screening population, and the expression levels of these markers varied by gender and age, with males showing significantly higher expression levels than females, and they increased significantly with age except for SCC. The differential expression of these lung cancer markers may provide more strategies for lung cancer screening in the corresponding population. Lung cancer markers, CYFRA211 and NSE, can be used as sensitive biomarkers for exposure to certain air pollutants and provide references for the prevention and management of air pollution.
Collapse
Affiliation(s)
- Li Long
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li-Ting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- National Basic Science Data Center, Beijing, 100190, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- National Basic Science Data Center, Beijing, 100190, China
| |
Collapse
|
49
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
50
|
Bălă GP, Timar B, Gorun F, Motisan R, Pescaru C, Tudorache E, Marc M, Manolescu D, Citu C, Oancea C. The Impact of Air Pollution on Frequent Exacerbations among COPD Patients: An Observational Study on the Population of Western Romania. J Clin Med 2022; 11:jcm11154352. [PMID: 35955970 PMCID: PMC9369358 DOI: 10.3390/jcm11154352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
Patients with respiratory pathologies are the risk group most affected by air pollution, being directly exposed, especially those diagnosed with chronic obstructive pulmonary disease (COPD). In this observational study, which included 79 patients, we evaluated whether COPD patients with the frequent exacerbating phenotype or the infrequent exacerbating phenotype live in residences with higher values of air pollution. An air quality monitoring station was installed in each patient’s house for at least 24 h and PM 1.0, PM 2.5, and PM 10 were measured. Average PM 1.0, PM 2.5, and PM 10 values were lower in the group of infrequently exacerbating patients compared to the frequently exacerbating ones. For every 1 µg/m3 increase in the average values of PM 1.0, PM 2.5, and PM 10, there is an increase of 1.7%, 1.8% and 1%, respectively, in the risk of developing exacerbations. More importantly, an average value of PM 1.0, PM 2.5, and PM 10 above 32.21 µg/m3, 82.32 µg/m3 and 42.89 µg/m3 increases the probability of developing an exacerbation by 3.83, 10.14, and 4.12 times, respectively. Our analysis showed that COPD patients with a frequently exacerbating phenotype live in residences with high levels of air pollution compared to infrequently exacerbating ones.
Collapse
Affiliation(s)
- Gabriel-Petrică Bălă
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (G.-P.B.); (C.P.); (E.T.); (M.M.); (C.O.)
| | - Bogdan Timar
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Correspondence:
| | - Florin Gorun
- Department of Obstetrics and Gynecology, Municipal Emergency Clinical Hospital Timisoara, 1-3 Alexandru Odobescu Street, 300202 Timisoara, Romania;
| | - Radu Motisan
- MagnaSCI SRL, 7 Luceafarul Street, 300414 Timisoara, Romania;
| | - Camelia Pescaru
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (G.-P.B.); (C.P.); (E.T.); (M.M.); (C.O.)
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (G.-P.B.); (C.P.); (E.T.); (M.M.); (C.O.)
| | - Monica Marc
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (G.-P.B.); (C.P.); (E.T.); (M.M.); (C.O.)
| | - Diana Manolescu
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Cosmin Citu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (G.-P.B.); (C.P.); (E.T.); (M.M.); (C.O.)
| |
Collapse
|