1
|
Velloso LA, Donato J. Growth Hormone, Hypothalamic Inflammation, and Aging. J Obes Metab Syndr 2024; 33:302-313. [PMID: 39639711 PMCID: PMC11704225 DOI: 10.7570/jomes24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
While inflammation is a crucial response in injury repair and tissue regeneration, chronic inflammation is a prevalent feature in various chronic, non-communicable diseases such as obesity, diabetes, and cancer and in cardiovascular and neurodegenerative diseases. Long-term inflammation considerably affects disease prevalence, quality of life, and longevity. Our research indicates that the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis is a pivotal regulator of inflammation in some tissues, including the hypothalamus, which is a key player in systemic metabolism regulation. Moreover, the GH/IGF-1 axis is strongly linked to longevity, as GH- or GH receptor-deficient mice live approximately twice as long as wild-type animals and exhibit protection against aging-induced inflammation. Conversely, GH excess leads to increased neuroinflammation and reduced longevity. Our review studies the associations between the GH/IGF-1 axis, inflammation, and aging, with a particular focus on evidence suggesting that GH receptor signaling directly induces hypothalamic inflammation. This finding underscores the significant impact of changes in the GH axis on metabolism and on the predisposition to chronic, non-communicable diseases.
Collapse
Affiliation(s)
- Licio A. Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Campinas, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Noriega-Prieto JA, Maglio LE, Perez-Domper P, Dávila JC, Gutiérrez A, Torres-Alemán I, Fernández de Sevilla D. Bidirectional modulation of synaptic transmission by insulin-like growth factor-I. Front Cell Neurosci 2024; 18:1390663. [PMID: 38910964 PMCID: PMC11193368 DOI: 10.3389/fncel.2024.1390663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Insulin-like growth factor-I (IGF-I) plays a key role in the modulation of synaptic plasticity and is an essential factor in learning and memory processes. However, during aging, IGF-I levels are decreased, and the effect of this decrease in the induction of synaptic plasticity remains unknown. Here we show that the induction of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) at layer 2/3 pyramidal neurons (PNs) of the mouse barrel cortex is favored or prevented by IGF-I (10 nM) or IGF-I (7 nM), respectively, when IGF-I is applied 1 h before the induction of Hebbian LTP. Analyzing the cellular basis of this bidirectional control of synaptic plasticity, we observed that while 10 nM IGF-I generates LTP (LTPIGF-I) of the post-synaptic potentials (PSPs) by inducing long-term depression (LTD) of the inhibitory post-synaptic currents (IPSCs), 7 nM IGF-I generates LTD of the PSPs (LTDIGF-I) by inducing LTD of the excitatory post-synaptic currents (EPSCs). This bidirectional effect of IGF-I is supported by the observation of IGF-IR immunoreactivity at both excitatory and inhibitory synapses. Therefore, IGF-I controls the induction of Hebbian NMDAR-dependent plasticity depending on its concentration, revealing novel cellular mechanisms of IGF-I on synaptic plasticity and in the learning and memory machinery of the brain.
Collapse
Affiliation(s)
- José Antonio Noriega-Prieto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Laura Eva Maglio
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paloma Perez-Domper
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - José Carlos Dávila
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biología Celular, Genética y Fisiología. Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutiérrez
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biología Celular, Genética y Fisiología. Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ignacio Torres-Alemán
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Donato J, Kopchick JJ. New findings on brain actions of growth hormone and potential clinical implications. Rev Endocr Metab Disord 2024; 25:541-553. [PMID: 38060062 PMCID: PMC11156798 DOI: 10.1007/s11154-023-09861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Growth hormone (GH) is secreted by somatotropic cells of the anterior pituitary gland. The classical effects of GH comprise the stimulation of cell proliferation, tissue and body growth, lipolysis, and insulin resistance. The GH receptor (GHR) is expressed in numerous brain regions. Notably, a growing body of evidence indicates that GH-induced GHR signaling in specific neuronal populations regulates multiple physiological functions, including energy balance, glucose homeostasis, stress response, behavior, and several neurological/cognitive aspects. The importance of central GHR signaling is particularly evident when the organism is under metabolic stress, such as pregnancy, chronic food deprivation, hypoglycemia, and prolonged exercise. These particular situations are associated with elevated GH secretion. Thus, central GH action represents an internal signal that coordinates metabolic, neurological, neuroendocrine, and behavioral adaptations that are evolutionarily advantageous to increase the chances of survival. This review summarizes and discusses recent findings indicating that the brain is an important target of GH, and GHR signaling in different neuronal populations regulates essential physiological functions.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Lineu Prestes, 1524, Sao Paulo, SP, 05508-000, Brazil.
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
4
|
Zamora-Bello I, Martínez A, Beltrán-Parrazal L, Santiago-Roque I, Juárez-Aguilar E, López-Meraz ML. Evaluation of the anticonvulsant and neuroprotective effect of intracerebral administration of growth hormone in rats. Neurologia 2024; 39:1-9. [PMID: 38161069 DOI: 10.1016/j.nrleng.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION The growth hormone (GH) has been reported as a crucial neuronal survival factor in the hippocampus against insults of diverse nature. Status epilepticus (SE) is a prolonged seizure that produces extensive neuronal cell death. The goal of this study was to evaluate the effect of intracerebroventricular administration of GH on seizure severity and SE-induced hippocampal neurodegeneration. METHODOLOGY Adult male rats were implanted with a guide cannula in the left ventricle and different amounts of GH (70, 120 or 220ng/3μl) were microinjected for 5 days; artificial cerebrospinal fluid was used as the vehicle. Seizures were induced by the lithium-pilocarpine model (3mEq/kg LiCl and 30mg/kg pilocarpine hydrochloride) one day after the last GH administration. Neuronal injury was assessed by Fluoro-Jade B (F-JB) staining. RESULTS Rats injected with 120ng of GH did not had SE after 30mg/kg pilocarpine, they required a higher number of pilocarpine injections to develop SE than the rats pretreated with the vehicle, 70ng or 220ng GH. Prefrontal and parietal cortex EEG recordings confirmed that latency to generalized seizures and SE was also significantly higher in the 120ng group when compared with all the experimental groups. FJ-B positive cells were detected in the hippocampus after SE in all rats, and no significant differences in the number of F-JB cells in the CA1 area and the hilus was observed between experimental groups. CONCLUSION Our results indicate that, although GH has an anticonvulsive effect in the lithium-pilocarpine model of SE, it does not exert hippocampal neuroprotection after SE.
Collapse
Affiliation(s)
- I Zamora-Bello
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - A Martínez
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México C.P. 14370, Mexico
| | - L Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - I Santiago-Roque
- Laboratorio de Neurotoxicología, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Xalapa, Veracruz C.P. 91010, Mexico
| | - E Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, Veracruz C.P. 91190, Mexico
| | - M L López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico.
| |
Collapse
|
5
|
Herodes M, Le N, Anderson LJ, Migula D, Miranda G, Paulsen L, Garcia JM. Metabolic and quality of life effects of growth hormone replacement in patients with TBI and AGHD: A pilot study. Growth Horm IGF Res 2023; 71:101544. [PMID: 37295336 PMCID: PMC10527000 DOI: 10.1016/j.ghir.2023.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI), a common cause of adult growth hormone deficiency (AGHD), affects 20% of Veterans returning from Iraq and Afghanistan (OEF/OIF/OND). Growth hormone replacement therapy (GHRT) improves quality of life (QoL) in AGHD but remains unexplored in this population. This pilot, observational study investigates the feasibility and efficacy of GHRT in AGHD following TBI. DESIGN In this 6-month study of combat Veterans with AGHD and TBI starting GHRT (N = 7), feasibility (completion rate and rhGH adherence) and efficacy (improvements in self-reported QoL) of GHRT were measured (primary outcomes). Secondary outcomes included body composition, physical and cognitive function, psychological and somatic symptoms, physical activity, IGF-1 levels and safety parameters. It was hypothesized that participants would adhere to GHRT and that QoL would significantly improve after six months. RESULTS Five subjects (71%) completed all study visits. All patients administered daily rhGH injections, 6 (86%) of whom consistently administered the clinically-prescribed dose. While QoL demonstrated numeric improvement, this change did not reach statistical significance (p = 0.17). Significant improvements were observed in total lean mass (p = 0.02), latissimus dorsi strength (p = 0.05), verbal learning (Trial 1, p = 0.02; Trial 5, p = 0.03), attention (p = 0.02), short-term memory (p = 0.04), and post-traumatic stress disorder (PTSD) symptoms (p = 0.03). Body weight (p = 0.02) and total fat mass (p = 0.03) increased significantly. CONCLUSION GHRT is a feasible and well-tolerated intervention for U.S. Veterans with TBI-related AGHD. It improved key areas impacted by AGHD and symptoms of PTSD. Larger, placebo-controlled studies testing the efficacy and safety of this intervention in this population are warranted.
Collapse
Affiliation(s)
- Megan Herodes
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nancy Le
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Dorota Migula
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Gary Miranda
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lauren Paulsen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
7
|
Li GY, Wu QZ, Song TJ, Zhen XC, Yu X. Dynamic regulation of excitatory and inhibitory synaptic transmission by growth hormone in the developing mouse brain. Acta Pharmacol Sin 2023; 44:1109-1121. [PMID: 36476808 PMCID: PMC10202927 DOI: 10.1038/s41401-022-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022] Open
Abstract
Normal sensory and cognitive function of the brain relies on its intricate and complex neural network. Synaptogenesis and synaptic plasticity are critical to neural circuit formation and maintenance, which are regulated by coordinated intracellular and extracellular signaling. Growth hormone (GH) is the most abundant anterior pituitary hormone. Its deficiencies could alter brain development and impair learning and memory, while GH replacement therapy in human patients and animal models has been shown to ameliorate cognitive deficits caused by GH deficiency. However, the underlying mechanism remains largely unknown. In this study, we investigated the neuromodulatory function of GH in young (pre-weaning) mice at two developmental time points and in two different brain regions. Neonatal mice were subcutaneously injected with recombinant human growth hormone (rhGH) on postnatal day (P) 14 or 21. Excitatory and inhibitory synaptic transmission was measured using whole-cell recordings in acute cortical slices 2 h after the injection. We showed that injection of rhGH (2 mg/kg) in P14 mice significantly increased the frequency of mEPSCs, but not that of mIPSCs, in both hippocampal CA1 pyramidal neurons and L2/3 pyramidal neurons of the barrel field of the primary somatosensory cortex (S1BF). Injection of rhGH (2 mg/kg) in P21 mice significantly increased the frequency of mEPSCs and mIPSCs in both brain regions. Perfusion of rhGH (1 μM) onto acute brain slices in P14 mice had similar effects. Consistent with the electrophysiological results, the dendritic spine density of CA1 pyramidal neurons and S1BF L2/3 pyramidal neurons increased following in vivo injection of rhGH. Furthermore, NMDA receptors and postsynaptic calcium-dependent signaling contributed to rhGH-dependent regulation of both excitatory and inhibitory synaptic transmission. Together, these results demonstrate that regulation of excitatory and inhibitory synaptic transmission by rhGH occurs in a developmentally dynamic manner, and have important implication for identifying GH treatment strategies without disturbing excitation/inhibition balance.
Collapse
Affiliation(s)
- Guang-Ying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
| | - Qiu-Zi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Jia Song
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Wasinski F, Tavares MR, Gusmao DO, List EO, Kopchick JJ, Alves GA, Frazao R, Donato J. Central growth hormone action regulates neuroglial and proinflammatory markers in the hypothalamus of male mice. Neurosci Lett 2023; 806:137236. [PMID: 37030549 PMCID: PMC10133206 DOI: 10.1016/j.neulet.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.
Collapse
Affiliation(s)
- Frederick Wasinski
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP 04039-032, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Guilherme A Alves
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
9
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
10
|
Zamora-Bello I, Martínez A, Beltrán-Parrazal L, Santiago-Roque I, Juárez-Aguilar E, López-Meraz ML. Evaluation of the anticonvulsant and neuroprotective effect of intracerebral administration of growth hormone in rats. Neurologia 2021; 39:S0213-4853(21)00074-8. [PMID: 34030900 DOI: 10.1016/j.nrl.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The growth hormone (GH) has been reported as a crucial neuronal survival factor in the hippocampus against insults of diverse nature. Status epilepticus (SE) is a prolonged seizure that produces extensive neuronal cell death. The goal of this study was to evaluate the effect of intracerebroventricular administration of GH on seizure severity and SE-induced hippocampal neurodegeneration. METHODOLOGY Adult male rats were implanted with a guide cannula in the left ventricle and different amounts of GH (70, 120 or 220ng/3μl) were microinjected for 5 days; artificial cerebrospinal fluid was used as the vehicle. Seizures were induced by the lithium-pilocarpine model (3mEq/kg LiCl and 30mg/kg pilocarpine hydrochloride) one day after the last GH administration. Neuronal injury was assessed by Fluoro-Jade B (F-JB) staining. RESULTS Rats injected with 120ng of GH did not had SE after 30mg/kg pilocarpine, they required a higher number of pilocarpine injections to develop SE than the rats pretreated with the vehicle, 70ng or 220ng GH. Prefrontal and parietal cortex EEG recordings confirmed that latency to generalized seizures and SE was also significantly higher in the 120ng group when compared with all the experimental groups. FJ-B positive cells were detected in the hippocampus after SE in all rats, and no significant differences in the number of F-JB cells in the CA1 area and the hilus was observed between experimental groups. CONCLUSION Our results indicate that, although GH has an anticonvulsive effect in the lithium-pilocarpine model of SE, it does not exert hippocampal neuroprotection after SE.
Collapse
Affiliation(s)
- I Zamora-Bello
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - A Martínez
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México C.P. 14370, Mexico
| | - L Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - I Santiago-Roque
- Laboratorio de Neurotoxicología, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Xalapa, Veracruz C.P. 91010, Mexico
| | - E Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, Veracruz C.P. 91190, Mexico
| | - M L López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico.
| |
Collapse
|
11
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
12
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
13
|
Chao XL, Jiang SZ, Xiong JW, Zhan JQ, Yan K, Yang YJ, Jiang LP. The association between serum insulin-like growth factor 1 and cognitive impairments in patients with schizophrenia. Psychiatry Res 2020; 285:112731. [PMID: 31839419 DOI: 10.1016/j.psychres.2019.112731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023]
Abstract
Accumulating evidence has shown that insulin-like growth factors (IGFs) are implicated in schizophrenia. Altered serum levels of IGF-1 have been found in schizophrenia patients and are associated with psychopathological symptoms. However, whether there is a relationship between IGF-1 and cognitive impairment in schizophrenia remains unknown. Thirty schizophrenia patients and 26 healthy controls were recruited for this study. The Positive and Negative Syndrome Scale was adopted to assess schizophrenic symptoms, and a battery of neuropsychological tests was employed to evaluate cognitive function. Serum IGF-1 content was determined by enzyme-linked immunosorbent assay (ELISA). We found that patients with schizophrenia performed more poorly than healthy controls in most cognitive tasks, excluding visual memory. The serum IGF-1 concentrations in schizophrenia patients were much lower than those in controls. Correlation analyses revealed that the levels of serum IGF-1 were positively correlated with executive function and attention scores in patients. Furthermore, IGF-1 was an independent contributor to deficits in executive function and attention among schizophrenia patients. Collectively, serum IGF-1 levels were significantly correlated with cognitive performance in schizophrenia patients, indicating that decreased IGF-1 levels might contribute to the pathophysiology of schizophrenia-associated cognitive impairments. The regulation of IGF-1 signaling might be a potential treatment strategy for cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Xue-Lin Chao
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Shu-Zhen Jiang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Kun Yan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China; Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China.
| | - Li-Ping Jiang
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
14
|
Haugland KG, Olberg A, Lande A, Kjelstrup KB, Brun VH. Hippocampal growth hormone modulates relational memory and the dendritic spine density in CA1. ACTA ACUST UNITED AC 2020; 27:33-44. [PMID: 31949035 PMCID: PMC6970428 DOI: 10.1101/lm.050229.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) deficiency is associated with cognitive decline which occur both in normal aging and in endocrine disorders. Several brain areas express receptors for GH although their functional role is unclear. To determine how GH affects the capacity for learning and memory by specific actions in one of the key areas, the hippocampus, we injected recombinant adeno-associated viruses (rAAVs) in male rats to express green fluorescent protein (GFP) combined with either GH, antagonizing GH (aGH), or no hormone, in the dorsal CA1. We found that aGH disrupted memory in the Morris water maze task, and that aGH treated animals needed more training to relearn a novel goal location. In a one-trial spontaneous location recognition test, the GH treated rats had better memory performance for object locations than the two other groups. Histological examinations revealed that GH increased the dendritic spine density on apical dendrites of CA1, while aGH reduced the spine density. GH increased the relative amount of immature spines, while aGH decreased the same amount. Our results imply that GH is a neuromodulator with strong influence over hippocampal plasticity and relational memory by mechanisms involving modulation of dendritic spines. The findings are significant to the increasing aging population and GH deficiency patients.
Collapse
Affiliation(s)
- Kamilla G Haugland
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Anniken Olberg
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Andreas Lande
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kirsten B Kjelstrup
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| | - Vegard H Brun
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| |
Collapse
|
15
|
Di Benedetto S, Müller L, Rauskolb S, Sendtner M, Deutschbein T, Pawelec G, Müller V. Network topology dynamics of circulating biomarkers and cognitive performance in older Cytomegalovirus-seropositive or -seronegative men and women. IMMUNITY & AGEING 2019; 16:31. [PMID: 31827568 PMCID: PMC6894301 DOI: 10.1186/s12979-019-0171-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023]
Abstract
Background Cytokines are signaling molecules operating within complex cascade patterns and having exceptional modulatory functions. They impact various physiological processes such as neuroendocrine and metabolic interactions, neurotrophins’ metabolism, neuroplasticity, and may affect behavior and cognition. In our previous study, we found that sex and Cytomegalovirus (CMV)-serostatus may modulate levels of circulating pro- and anti-inflammatory cytokines, metabolic factors, immune cells, and cognitive performance, as well as associations between them. Results In the present study, we used a graph-theoretical approach to investigate the network topology dynamics of 22 circulating biomarkers and 11 measures of cognitive performance in 161 older participants recruited to undergo a six-months training intervention. For network construction, we applied coefficient of determination (R2) that was calculated for all possible pairs of variables (N = 33) in four groups (CMV− men and women; CMV+ men and women). Network topology has been evaluated by clustering coefficient (CC) and characteristic path length (CPL) as well as local (Elocal) and global (Eglobal) efficiency, showing the degree of network segregation (CC and Elocal) and integration (CPL and Eglobal). We found that networks under consideration showed small-world networks properties with more random characteristics. Mean CC, as well as local and global efficiency were highest and CPL shortest in CMV− males (having lowest inflammatory status and highest cognitive performance). CMV− and CMV+ females did not show any significant differences. Modularity analyses showed that the networks exhibit in all cases highly differentiated modular organization (with Q-value ranged between 0.397 and 0.453). Conclusions In this work, we found that segregation and integration properties of the network were notably stronger in the group with balanced inflammatory status. We were also able to confirm our previous findings that CMV-infection and sex modulate multiple circulating biomarkers and cognitive performance and that balanced inflammatory and metabolic status in elderly contributes to better cognitive functioning. Thus, network analyses provide a useful strategy for visualization and quantitative description of multiple interactions between various circulating pro- and anti-inflammatory biomarkers, hormones, neurotrophic and metabolic factors, immune cells, and measures of cognitive performance and can be in general applied for analyzing interactions between different physiological systems.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- 1Max Planck Institute for Human Development, Berlin, Germany.,2University of Tübingen, Tübingen, Germany
| | - Ludmila Müller
- 1Max Planck Institute for Human Development, Berlin, Germany
| | | | | | - Timo Deutschbein
- 4Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, Germany
| | | | - Viktor Müller
- 1Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
16
|
Howell S, Griesbach GS. The interplay between neuroendocrine and sleep alterations following traumatic brain injury. NeuroRehabilitation 2019; 43:327-345. [PMID: 30347624 DOI: 10.3233/nre-182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sleep and endocrine disruptions are prevalent after traumatic brain injury (TBI) and are likely to contribute to morbidity. OBJECTIVE To describe the interaction between sleep and hormonal regulation following TBI and elucidate the impact that alterations of these systems have on cognitive responses during the posttraumatic chronic period. METHODS Review of preclinical and clinical literature describing long-lasting endocrine dysregulation and sleep alterations following TBI. The bidirectional relationship between sleep and hormones is described. Literature describing co-occurrence between sleep-wake disturbances and hormonal dysregulation will be presented. Review of literature describing cognitive effects of seep and hormones. The cognitive and functional impact of sleep disturbances and hormonal dysregulation is discussed within the context of TBI. RESULTS/CONCLUSIONS Sleep and hormonal alterations impact cognitive and functional outcome after TBI. Diagnosis and treatment of these disturbances will impact recovery following TBI and should be considered in the post-acute rehabilitative setting.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Encino, CA, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
17
|
Treatment with Growth Hormone (GH) Increased the Metabolic Activity of the Brain in an Elder Patient, Not GH-Deficient, Who Suffered Mild Cognitive Alterations and Had an ApoE 4/3 Genotype. Int J Mol Sci 2018; 19:ijms19082294. [PMID: 30081594 PMCID: PMC6121435 DOI: 10.3390/ijms19082294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
(1) Background: We analyzed, using PET-SCAN and cognitive tests, how growth hormone (GH) could act in the brain of an older woman, not deficient in GH, who showed mild cognitive alterations (MCI) and had a genotype of ApoE 4/3 and familial dyslipidemia. (2) Methods: After performing a first psychometric study (TAVEC verbal learning test), the metabolic activity of brain structures related to knowledge, memory, and behavior was analyzed using 18-F fluorodeoxyglucose PET-SCAN. The patient was then treated with GH (0.4 mg/day, subcutaneous) for three weeks and on the last day under this treatment, a new PET-SCAN was performed. One month after beginning treatment with GH, a new TAVEC test was performed. (3) Results: GH administration normalized the cognitive deficits observed in the first psychometric test and significantly (p < 0.025) increased the metabolic activity in practically all brain cortical areas, specifically in the left hippocampus and left amygdala, although not in the left parahippocampus. (4) Conclusions: This study demonstrates for the first time the positive effects of GH on cerebral metabolism in a patient without GH deficiency, recovering the function of affected areas related to knowledge, memory, and behavior in an elderly patient with MCI.
Collapse
|
18
|
Lee TK, Chen BH, Lee JC, Shin MC, Cho JH, Lee HA, Choi JH, Hwang IK, Kang IJ, Ahn JH, Park JH, Choi SY, Won MH. Age‑dependent decreases in insulin‑like growth factor‑I and its receptor expressions in the gerbil olfactory bulb. Mol Med Rep 2018; 17:8161-8166. [PMID: 29658594 PMCID: PMC5983990 DOI: 10.3892/mmr.2018.8886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is a multifunctional protein present in the central nervous system. A number of previous studies have revealed alterations in IGF-I and its receptor (IGF-IR) expression in various regions of the brain. However, there are few reports on age-dependent alterations in IGF-I and IGF-IR expressions in the olfactory bulb, which contains the secondary neurons of the olfactory system. The present study examined the cellular morphology in the olfactory bulb by using cresyl violet (CV) staining at postnatal month (PM) 3 in the young group, PM 6 in the adult group and PM 24 in the aged group in gerbils. In addition, detailed examinations were performed of the protein levels and immunoreactivities of IGF-I and IGF-IR in the olfactory bulb in each group. There were no significant changes in the cellular morphology between the three groups. The protein levels and immunoreactivities of the IGF-I and IGF-IR were the highest in the young group and they decreased with age. He protein levels and immunoreactivities of the IGF-I and IGF-IR were the lowest in the aged group. In brief, our results indicate that IGF-I and IGF-IR expressions are strong in young olfactory bulbs and significantly reduced in aged olfactory bulbs. In conclusion, subsequent decreases in IGF-I and IGF-IR expression with age may be associated with olfactory decline. Further studies are required to investigate the roles of IFG-I and IGF-IR in disorders of the olfactory system.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
19
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
20
|
Brain STAT5 signaling modulates learning and memory formation. Brain Struct Funct 2018; 223:2229-2241. [PMID: 29460051 DOI: 10.1007/s00429-018-1627-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.
Collapse
|
21
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
22
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|
23
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
24
|
Trueba-Saiz A, Torres Aleman I. Insulin-like peptides signaling in Alzheimer's disease: on the road to alternative therapeutics. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2015.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Distribution of growth hormone-responsive cells in the mouse brain. Brain Struct Funct 2016; 222:341-363. [PMID: 27072946 DOI: 10.1007/s00429-016-1221-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized.
Collapse
|
26
|
Tong JJ, Chen GH, Wang F, Li XW, Cao L, Sui X, Tao F, Yan WW, Wei ZJ. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res 2015; 284:138-52. [DOI: 10.1016/j.bbr.2015.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
|
27
|
Sowa J, Bobula B, Glombik K, Slusarczyk J, Basta-Kaim A, Hess G. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats. PLoS One 2015; 10:e0119407. [PMID: 25749097 PMCID: PMC4352064 DOI: 10.1371/journal.pone.0119407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.
Collapse
Affiliation(s)
- Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bartosz Bobula
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail:
| | - Grzegorz Hess
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
28
|
Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, Blalock EM, Porter NM, Thibault O. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging. J Gerontol A Biol Sci Med Sci 2015; 71:30-9. [PMID: 25659889 DOI: 10.1093/gerona/glu314] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022] Open
Abstract
Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Chris DeMoll
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Benjamin A Rauh
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - John C Gant
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
29
|
Mahmoud GS, Amer AS. Co-Application of Corticosterone and Growth Hormone Upregulates NR2B Protein and Increases the NR2B:NR2A Ratio and Synaptic Transmission in the Hippocampus. Sultan Qaboos Univ Med J 2014; 14:e486-e494. [PMID: 25364551 PMCID: PMC4205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVES This in vitro study aimed to investigate the possible mechanism underlying the protective effect of growth hormone (GH) on hippocampal function during periods of heightened glucocorticoid exposure. METHODS This study was conducted between January and June 2005 at the Joan C. Edwards School of Medicine, Marshall University, in Huntington, West Virginia, USA. The effects of the co-application of GH and corticosterone (CORT) were tested at different concentrations on the field excitatory postsynaptic potentials (fEPSPs) of the hippocampal slices of rats in two different age groups. Changes in the protein expression of N-methyl-D-aspartate receptor (NMDAR) subunits NR1, NR2B and NR2A were measured in hippocampal brain slices treated with either artificial cerebrospinal fluid (ACSF), low doses of CORT alone or both CORT and GH for three hours. RESULTS The co-application of CORT and GH was found to have an additive effect on hippocampal synaptic transmission compared to either drug alone. Furthermore, the combined use of low concentrations of GH and CORT was found to have significantly higher effects on the enhancement of fEPSPs in older rats compared to young ones. Both GH and CORT enhanced the protein expression of the NR2A subunit. Simultaneous exposure to low concentrations of GH and CORT significantly enhanced NR2B expression and increased the NR2B:NR2A ratio. In contrast, perfusion with CORT alone caused significant suppression in the NR1 and NR2B protein expression and a decrease in the NR2B:NR2A ratio. CONCLUSION These results suggest that NMDARs provide a potential target for mediating the GH potential protective effect against stress and age-related memory and cognitive impairment.
Collapse
Affiliation(s)
- Ghada S. Mahmoud
- Departments of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ayman S. Amer
- Human Anatomy & Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol 2014; 68:76-81. [PMID: 25300732 DOI: 10.1016/j.exger.2014.10.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan.
Collapse
|
31
|
Peiffer AM, Creer RM, Linville C, Olson J, Kulkarni P, Brown JA, Riddle DR, Robbins ME, Brunso-Bechtold JE. Radiation-induced cognitive impairment and altered diffusion tensor imaging in a juvenile rat model of cranial radiotherapy. Int J Radiat Biol 2014; 90:799-806. [PMID: 24991879 DOI: 10.3109/09553002.2014.938278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To assess the long-term effects of fractionated whole brain irradiation (fWBI) using diffusion tensor imaging (DTI) and behavior in a pediatric rodent model for the clinical presentation of adult pediatric cancer survivors. MATERIALS AND METHODS Five-week-old, male F344xBN rats were randomized to receive 0, 5, or 6.5 Gy fractions biweekly for 3 weeks, resulting in Sham, Irradiated-30 (IR-30) and IR-39 Gy total dose groups. Magnetic Resonance Imaging occurred at 1, 3, 6 and 9 months with behavioral assessment at 10-11 months post-fWBI. RESULTS Irradiation reduced brain size (p < 0.001) and body weight (p < 0.001) proportionate to dose. At 1 month post-fWBI and throughout follow-up, diffusion was reduced in IR-30 and IR-39 relative to shams (p < 0.001). IR-30 but not IR-39 rats were impaired relative to Shams on the reversal trial of the Morris Water Maze (p < 0.05), and IR-30 rats preferred a striatum- mediated strategy (p < 0.06). CONCLUSIONS Hippocampal performance was impaired in IR-30 but not IR-39 animals. While gross size differences exist, white matter integrity is preserved in rats after fWBI at 5 weeks. This significant departure from childhood cancer survivors and single fraction rodent studies where white matter degradation is a prominent feature are discussed.
Collapse
Affiliation(s)
- Ann M Peiffer
- Department of Radiation Oncology, Wake Forest School of Medicine , Winston-Salem, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arámburo C, Alba-Betancourt C, Luna M, Harvey S. Expression and function of growth hormone in the nervous system: a brief review. Gen Comp Endocrinol 2014; 203:35-42. [PMID: 24837495 DOI: 10.1016/j.ygcen.2014.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that growth hormone (GH) expression is not confined exclusively to the pituitary somatotrophs as it is synthesized in many extrapituitary locations. The nervous system is one of those extrapituitary sites. In this brief review we summarize data that substantiate the expression, distribution and characterization of neural GH and detail its roles in neural function, including cellular growth, proliferation, differentiation, neuroprotection and survival, as well as its functional roles in behavior, cognition and neurotransmission. Although systemic GH may exert some of these effects, it is increasingly evident that locally expressed neural GH, acting through intracrine, autocrine or paracrine mechanisms, may also be causally involved as a neurotrophic factor.
Collapse
Affiliation(s)
- Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México.
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
33
|
Neal-Perry G, Yao D, Shu J, Sun Y, Etgen AM. Insulin-like growth factor-I regulates LH release by modulation of kisspeptin and NMDA-mediated neurotransmission in young and middle-aged female rats. Endocrinology 2014; 155:1827-37. [PMID: 24617524 PMCID: PMC3990844 DOI: 10.1210/en.2013-1682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling.
Collapse
MESH Headings
- Aging
- Animals
- Female
- Gene Expression Regulation, Developmental/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/growth & development
- Hypothalamus/metabolism
- Infusions, Intraventricular
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/analogs & derivatives
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/metabolism
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- N-Methylaspartate/metabolism
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroendocrine Cells/cytology
- Neuroendocrine Cells/drug effects
- Neuroendocrine Cells/metabolism
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Kisspeptin-1
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Genevieve Neal-Perry
- Department of Obstetrics and Gynecology (G.N.-P., J.S., Y.S., A.M.E.) and the Dominick P. Purpura Department of Neuroscience (G.N.-P., A.M.E.), Albert Einstein College of Medicine, Bronx, New York 10461; and Internal Medicine of Tongji Hospital (D.Y.), Huazhong University of Science and Technology, Wuhan 430030, R.P. China
| | | | | | | | | |
Collapse
|
34
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
35
|
Abstract
Emerging data indicate that growth hormone (GH) therapy could have a role in improving cognitive function. GH replacement therapy in experimental animals and human patients counteracts the dysfunction of many behaviours related to the central nervous system (CNS). Various behaviours, such as cognitive behaviours related to learning and memory, are known to be induced by GH; the hormone might interact with specific receptors located in areas of the CNS that are associated with the functional anatomy of these behaviours. GH is believed to affect excitatory circuits involved in synaptic plasticity, which alters cognitive capacity. GH also has a protective effect on the CNS, as indicated by its beneficial effects in patients with spinal cord injury. Data collected from animal models indicates that GH might also stimulate neurogenesis. This Review discusses the mechanisms underlying the interactions between GH and the CNS, and the data emerging from animal and human studies on the relationship between GH and cognitive function. In this article, particular emphasis is given to the role of GH as a treatment for patients with cognitive impairment resulting from deficiency of the hormone.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|