1
|
Bloomberg M, Steptoe A. Sex and education differences in trajectories of physiological ageing: longitudinal analysis of a prospective English cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320036. [PMID: 39830243 PMCID: PMC11741463 DOI: 10.1101/2025.01.06.25320036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Physiological age (PA) derived from clinical indicators including blood-based biomarkers and tests of physiological function can be compared with chronological age to examine disparities in health between older adults of the same age. Though education interacts with sex to lead to inequalities in healthy ageing, their combined influence on longitudinally-measured PA has not been explored. We derived PA based on longitudinally-measured clinical indicators and examined how sex and education interact to inform PA trajectories. Methods Three waves of clinical indicators (2004/05-2012/13) drawn from the English Longitudinal Study of Ageing (ages 50-100 years) were used to estimate PA, which was internally validated by confirming associations with incident chronic conditions, functional limitations, and memory impairment after adjustment for chronological age and sex. Joint models were used to construct PA trajectories in 8,891 ELSA participants to examine sex and educational disparities in PA. Findings Among the least educated participants, there were negligible sex differences in PA until age 60 (sex difference [men-women] age 50=-0.6 years [95% confidence interval=-2.2-0.6]; age 60=0.4 [-0.6-1.4]); at age 70, women were 1.5 years (0.7-2.2) older than men. Among the most educated participants, women were 3.8 years (1.6-6.0) younger than men at age 50, and 2.7 years (0.4-5.0) younger at age 60, with a non-significant sex difference at age 70. Interpretation Higher education provides a larger midlife buffer to physiological ageing for women than men. Policies to promote gender equity in higher education may contribute to improving women's health across a range of ageing-related outcomes.
Collapse
Affiliation(s)
- Mikaela Bloomberg
- Department of Behavioural Science and Health, University College London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, UK
| |
Collapse
|
2
|
Klopack ET, Seshadri G, Arpawong TE, Cole S, Thyagarajan B, Crimmins EM. Development of a novel transcriptomic measure of aging: Transcriptomic Mortality-risk Age (TraMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318517. [PMID: 39677460 PMCID: PMC11643192 DOI: 10.1101/2024.12.04.24318517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Increasingly, research suggests that aging is a coordinated multi-system decline in functioning that occurs at multiple biological levels. We developed and validated a transcriptomic (RNA-based) aging measure we call Transcriptomic Mortality-risk Age (TraMA) using RNA-seq data from the 2016 Health and Retirement Study using elastic net Cox regression analyses to predict 4-year mortality hazard. In a holdout test sample, TraMA was associated with earlier mortality, more chronic conditions, poorer cognitive functioning, and more limitations in activities of daily living. TraMA was also externally validated in the Long Life Family Study and several publicly available datasets. Results suggest that TraMA is a robust, portable RNAseq-based aging measure that is comparable, but independent from past biological aging measures (e.g., GrimAge). TraMA is likely to be of particular value to researchers interested in understanding the biological processes underlying health and aging, and for social, psychological, epidemiological, and demographic studies of health and aging.
Collapse
|
3
|
Machado AV, Silva JFDME, Colosimo EA, Needham BL, Maluf CB, Giatti L, Camelo LV, Barreto SM. Clinical biomarker-based biological age predicts deaths in Brazilian adults: the ELSA-Brasil study. GeroScience 2024; 46:6115-6126. [PMID: 38753229 PMCID: PMC11494676 DOI: 10.1007/s11357-024-01186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/29/2024] [Indexed: 10/23/2024] Open
Abstract
Biological age is a construct that seeks to evaluate the biological wear and tear process of the organism that cannot be observed by chronological age. We estimate individuals' biological age based on biomarkers from multiple systems and validate it through its association with mortality from natural causes. Biological age was estimated in 12,109 participants (6621 women and 5488 men) from the first visit of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) who had valid data for the biomarkers used in the analyses. Biological age was estimated using the Klemera and Doubal method. The difference between chronological age and biological age (Δage) was computed. Cox proportional hazard models stratified by sex were used to assess whether Δage was associated with mortality risk after a median follow-up of 9.1 years. The accuracy of the models was estimated by the area under the curve (AUC). Δage had equal mean for men and women, with greater variability for men. Cox models showed that every 1-year increase in Δage was associated with increased mortality in men (HR (95% CI) 1.21; 1.17-1.25) and women (HR (95% CI) 1.24; 1.15-1.34), independently of chronological age. Results of the AUC demonstrated that the predictive power of models that only included chronological age (AUC chronological age = 0.7396) or Δage (AUC Δage = 0.6842) was lower than those that included both, chronological age and Δage (AUC chronological age + Δage = 0.802), in men. This difference was not observed in women. We demonstrate that biological age is strongly related to mortality in both genders and is a valid predictor of death in Brazilian adults, especially among men.
Collapse
Grants
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Grant No 01 06 0010.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
- 01 06 0212.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
- 01 06 0300.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
- 01 06 0278.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
- 01 06 0115.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
- 01 06 0071.00 Brazilian Ministry of Health (Department of Science and Technology) and the Brazilian Ministry of Science, Technology and Innovation (FINEP, Financiadora de Estudos e Projetos and CNPq, National Research Council)
Collapse
Affiliation(s)
- Amanda Viana Machado
- Postgraduate Program in Public Health, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, Ann Arbor, USA
| | | | | | - Belinda L Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, Ann Arbor, USA
| | - Chams Bicalho Maluf
- Department of Clinic Pathology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luana Giatti
- School of Medicine & Clinical Hospital, Universidade Federal de Minas Gerais, Avenida Professor, Alfredo Balena, 190, Belo Horizonte, Minas Gerais, CEP, 30130-100, Brazil
| | - Lidyane V Camelo
- School of Medicine & Clinical Hospital, Universidade Federal de Minas Gerais, Avenida Professor, Alfredo Balena, 190, Belo Horizonte, Minas Gerais, CEP, 30130-100, Brazil
| | - Sandhi Maria Barreto
- School of Medicine & Clinical Hospital, Universidade Federal de Minas Gerais, Avenida Professor, Alfredo Balena, 190, Belo Horizonte, Minas Gerais, CEP, 30130-100, Brazil.
| |
Collapse
|
4
|
Shen T, O'Donnell J. Modeling Disability-Free Life Expectancy With Duration Dependence: A Research Note on the Bias in the Markov Assumption. Demography 2024; 61:1715-1730. [PMID: 39636076 DOI: 10.1215/00703370-11696463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Demographic studies on healthy life expectancy often rely on the Markov assumption, which fails to consider the duration of exposure to risk. To address this limitation, models like the duration-dependent multistate life table (DDMSLT) have been developed. However, these models cannot be directly applied to left-censored survey data, as they require knowledge of the time spent in the initial state, which is rarely known because of survey design. This research note presents a flexible approach for utilizing this type of survey data within the DDMSLT framework to estimate multistate life expectancies. The approach involves partially dropping left-censored observations and truncating the duration length after which duration dependence is assumed to be minimal. Utilizing the U.S. Health and Retirement Study, we apply this approach to compute disability-free/healthy life expectancy (HLE) among older adults in the United States and compare duration-dependent models to the typical multistate model with the Markov assumption. Findings suggest that while duration dependence is present in transition probabilities, its effect on HLE is averaged out. As a result, the bias in this case is minimal, and the Markov assumption provides a plausible and parsimonious estimate of HLE.
Collapse
Affiliation(s)
- Tianyu Shen
- School of Demography, Research School of Social Sciences, College of Arts and Social Sciences, Australian National University, Acton, Australian Capital Territory, Australia
| | - James O'Donnell
- School of Demography, Research School of Social Sciences, College of Arts and Social Sciences, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Abugroun A, Shah SJ, Fitzmaurice G, Hubbard C, Newman JC, Covinsky K, Fang MC. The Association Between Accelerated Biological Aging and Cardiovascular Outcomes in Older Adults with Hypertension. Am J Med 2024:S0002-9343(24)00702-2. [PMID: 39542075 DOI: 10.1016/j.amjmed.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Current hypertension treatments rely on chronological age, which may not reflect individual differences in aging and its impact on cardiovascular health. This study aimed to determine whether biological age can predict adverse outcomes in older adults with hypertension, independent of traditional risk factors including chronological age. METHODS An analysis of a prospective cohort was conducted using data from the Health and Retirement Study, a longitudinal survey of older adults in the United States. The Klemera-Doubal method was employed to calculate the biological age of the participants with hypertension at the time of enrollment in 2016. Discrete-time survival analysis was conducted to analyze the relationship between accelerated biological aging and the risk of mortality, heart disease, and stroke over four years of follow-up. RESULTS A total of 4,442 individuals were analyzed. Of these, 2,438 showed decelerated aging, whereas 2,004 experienced accelerated aging (biological age > chronological age). The median age of the patients in both groups was around 70 years. Both groups had similar racial and ethnic distributions and predominantly consisted of non-Hispanic whites. The accelerated aging group had a higher prevalence of chronic diseases, lower education levels, and less wealth than the decelerated aging group. After adjustment for these differences, accelerated aging was associated with a higher risk of a composite outcome of death, heart disease, and stroke, with an adjusted hazard ratio (a-HR) of 1.62 (95% confidence interval: 1.27-2.06, P = .001). CONCLUSIONS Accelerated biological age is a predictor of cardiovascular outcomes and death in patients with hypertension.
Collapse
Affiliation(s)
- Ashraf Abugroun
- Division of Hospital Medicine, University of California, San Francisco.
| | - Sachin J Shah
- Department of Medicine, Harvard Medical School, Boston, Mass
| | - Garrett Fitzmaurice
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Colin Hubbard
- Division of Hospital Medicine, University of California, San Francisco
| | - John C Newman
- Division of Geriatrics, University of California, San Francisco; Buck Institute for Research on Aging, Novato, Calif
| | | | - Margaret C Fang
- Division of Hospital Medicine, University of California, San Francisco
| |
Collapse
|
6
|
Sharif AF, Eid H, Ghalab MAA, Elfeky AAA, Badawy MM, Habib NM, El-Farouny RH, Mabrouk HAA. Evaluation of two scoring systems assessing the epiphyseal union at shoulder joint as predictors of chronological age among a sample of Egyptians. Leg Med (Tokyo) 2024; 71:102546. [PMID: 39500123 DOI: 10.1016/j.legalmed.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
Age estimation has extensive medicolegal implications in civil and criminal identification. Despite the surge in adopting radiological investigations to assess developmental bony changes, the shoulder joint is understudied. A cross-sectional study was conducted, enrolling 283 shoulder radiographs of Egyptians, investigating the reliability of two previously established scores as predictors of chronological age using the epiphyseal maturation of proximal humerus and acromion process. Epiphyseal union of proximal humerus commenced at age of 16.1-17 and completed around 21, while complete acromial union was observed around the age of 20.8. Females significantly preceded males and showed lower mean total Scores A and B at different maturation stages. There was a significant strong positive correlation between the chronological age and the epiphyseal maturation of humerus, acromion and total shoulder scores with correlation coefficients between 0.84 and 0.9. The receiver operating characteristic curves showed significant discriminating power of the total shoulder Scores A and B as predictors of the ages of 14 and 16, with area under curves above 0.9, minimal accuracy of 96.5 % and p values of 0.001. Six proposed models were established where the model "age = 0.318 + (0.388) total shoulder Score A + (2.842) total shoulder Score B + 1.931 (sex)" showed the best significant prediction power of radiographic evaluation of epiphyseal maturation in the proximal humerus and acromion in estimating the ages between 8 and around 20 years (R2 of 0.812). Applying this model to assess the chronological age, especially if the results from the hand and teeth are inconclusive, is promising.
Collapse
Affiliation(s)
- Asmaa F Sharif
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia.
| | - Hadeel Eid
- Department of Diagnostic Imaging, Menoufia University Hospitals, Menoufia, Egypt
| | | | - Asmaa Ali Ahmed Elfeky
- Occupational Medicine, Public Health and Community Medicine Department, Faculty of Medicine, Tanta University, Egypt
| | - Mohamed Moharram Badawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Egypt; Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Delta University For Science and Technology, Gamasa, Egypt
| | - Nagwa Mahmoud Habib
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Reham Hassan El-Farouny
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Heba A A Mabrouk
- Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
7
|
Pala D, Xu J, Xie Y, Zhang Y, Shen L. Identifying biological markers and sociodemographic factors that influence the gap between phenotypic and chronological ages. Inform Health Soc Care 2024; 49:162-176. [PMID: 39318145 PMCID: PMC11576235 DOI: 10.1080/17538157.2024.2400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The world's population is aging rapidly, leading to increased public health and economic burdens due to age-related cardiovascular and neurodegenerative diseases. Early risk detection is essential for prevention and to improve the quality of life in elderly individuals. Plus, health risks associated with aging are not directly tied to chronological age, but are also influenced by a combination of environmental exposures. Past research has introduced the concept of "Phenotypic Age," which combines age with biomarkers to estimate an individual's health risk. METHODS This study explores which factors contribute most to the gap between chronological and phenotypic ages. We combined ten machine learning regression techniques applied to the NHANES dataset, containing demographic, laboratory and socioeconomic data from 41,474 patients, to identify the most important features. We then used clustering analysis and a mixed-effects model to stratify by sex, ethnicity, and education. RESULTS We identified 28 demographic, biological and environmental factors related to a significant gap between phenotypic and chronological ages. Stratifying for sex, education and ethnicity, we found statistically significant differences in the outcome distributions. CONCLUSION By showing that health risk prevention should consider both biological and sociodemographic factors, we offer a new approach to predict aging rates and potentially improve targeted prevention strategies for age-related conditions.
Collapse
Affiliation(s)
- Daniele Pala
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Jia Xu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuezhi Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuqin Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Crimmins EM, Klopack ET, Kim JK. Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics 2024; 16:1031-1042. [PMID: 39023350 PMCID: PMC11404624 DOI: 10.1080/17501911.2024.2373682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: This is a brief description of links between nine epigenetic clocks related to human aging and socioeconomic and behavioral characteristics as well as health outcomes.Materials & methods: We estimate frequently used and novel clocks from one data source, the Health and Retirement Study.Results: While all of these clocks are thought to reflect "aging," they use different CpG sites and do not strongly relate to each other. First and fourth generation clocks are not as linked to socioeconomic status or health outcomes as second and third generation clocks.Conclusion: Epigenetic clocks reflect exciting new tools and their continued evolution is likely to improve our understanding of how exposures get under the skin to accelerate aging.
Collapse
Affiliation(s)
- Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Eric T Klopack
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Jung Ki Kim
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
9
|
Collinge CW, Razzoli M, Mansk R, McGonigle S, Lamming DW, Pacak CA, van der Pluijm I, Niedernhofer L, Bartolomucci A. The mouse Social Frailty Index (mSFI): a novel behavioral assessment for impaired social functioning in aging mice. GeroScience 2024:10.1007/s11357-024-01263-4. [PMID: 38987495 DOI: 10.1007/s11357-024-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Abstract
Various approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of "social frailty" has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1-/Δ and Xpg-/- mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.
Collapse
Affiliation(s)
- Charles W Collinge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Christina A Pacak
- Greg Marzolf Jr. Muscular Dystrophy Center & Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, and Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Lin WY. Gene-Environment Interactions and Gene-Gene Interactions on Two Biological Age Measures: Evidence from Taiwan Biobank Participants. Adv Biol (Weinh) 2024; 8:e2400149. [PMID: 38684452 DOI: 10.1002/adbi.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/14/2024] [Indexed: 05/02/2024]
Abstract
PhenoAge and BioAge are two commonly used biological age (BA) measures. The author here searched for gene-environment interactions (GxE) and gene-gene interactions (GxG) on PhenoAgeAccel (age-adjusted PhenoAge) and BioAgeAccel (age-adjusted BioAge) of 111,996 Taiwan Biobank (TWB) participants, including a discovery set of 86,536 TWB2 individuals and a replication set of 25,460 TWB1 individuals. Searching for variance quantitative trait loci (vQTLs) provides a convenient way to evaluate GxE and GxG. A total of 4 nearly independent (linkage disequilibrium measure r2 < 0.01) PhenoAgeAccel-vQTLs are identified from 5,303,039 autosomal TWB2 SNPs (p < 5E-8), whereas no vQTLs are found from BioAgeAccel. These 4 PhenoAgeAccel-vQTLs (rs35276921, rs141927875, rs10903013, and rs76038336) are further replicated by TWB1 (p < 5E-8). They are located in the OR51B5, FAM234A, and AXIN1 genes. All 4 PhenoAgeAccel-vQTLs are significantly associated with PhenoAgeAccel (p < 5E-8). A phylogenetic heat map of the GxE analyses showed that smoking exacerbated the PhenoAgeAccel-vQTLs' aging effects, while higher educational attainment attenuated the PhenoAgeAccel-vQTLs' aging effects. Body mass index, chronological age, alcohol consumption, and sex do not prominently modulate PhenoAgeAccel-vQTLs' aging effects. Based on these vQTL results, rs141927875-rs35276921 interaction (p = 4.7E-61) and rs76038336-rs10903013 interaction (p = 3.3E-116) on PhenoAgeAccel are detected.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
11
|
Man GM, Popa RI, Man M. Blaming the young is always more accessible rather than accusing the older employees: an experimental view over age and health in organizations. Front Psychol 2024; 15:1340711. [PMID: 38993333 PMCID: PMC11238820 DOI: 10.3389/fpsyg.2024.1340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction The stereotype content model postulates that different groups evoke different emotions and reactions based on two dimensions: intention toward others (warmth) and competence. Methods In this study, we used an experimental design and a qualitative approach to investigate how managerial strategies are selected and motivated when a subordinate makes a work task related error but belongs to a group that is stereotypical perceived differently in terms of warmth and competence (age groups with or without a medical condition). Thus 75 employees analyzed one of the five hypothetical cases and described the managerial strategy and motivation for usage. Results Data revealed that managerial strategies incorporate more active harm elements for younger employees in contrast with vulnerable groups (older employees with unspecified medical conditions, younger or older employees with a medical condition), who benefit from more active facilitation strategies. The strategy usage motivation is also different in the case of younger employees, the control group and the vulnerable groups. Discussion The study outcomes bring additional evidence to support the stereotype content model theory and the socioemotional selectivity theory, enriching applicability on organizational practice and human resources management.
Collapse
Affiliation(s)
- Gabriela-Maria Man
- Department of Psychology, Faculty of Social Sciences and Humanities, "Lucian Blaga" University of Sibiu, Sibiu, Romania
| | - Radu-Ioan Popa
- Department of Social Work, Journalism, Public Relations and Sociology, Faculty of Social Sciences and Humanities, "Lucian Blaga" University of Sibiu, Sibiu, Romania
| | - Mihaela Man
- Department of Psychology, Faculty of Social Sciences and Humanities, "Lucian Blaga" University of Sibiu, Sibiu, Romania
| |
Collapse
|
12
|
Kim JK, Arpawong TE, Klopack ET, Crimmins EM. Parental Divorce in Childhood and the Accelerated Epigenetic Aging for Earlier and Later Cohorts: Role of Mediators of Chronic Depressive Symptoms, Education, Smoking, Obesity, and Own Marital Disruption. JOURNAL OF POPULATION AGEING 2024; 17:297-313. [PMID: 39131698 PMCID: PMC11313353 DOI: 10.1007/s12062-023-09434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/23/2023] [Indexed: 08/13/2024]
Abstract
We examine effects of parental divorce on epigenetic aging in later adulthood for two birth cohorts: one born in the early 20th century and the other born in the later 20th century. Using data from the Health and Retirement Study (n = 1,545), we examine the relationship between parental divorce in childhood and accelerated epigenetic aging in older adulthood as indicated by the Dunedin methylation Pace of Aging score. We assess how this relationship is mediated by chronic depressive symptoms, education, lifetime smoking, body mass index (BMI), and an older adult's own divorce. The mean age of the earlier cohort is 85.8 (SD = 3.9) and that of the later cohort is 60.2 (SD = 2.8). We find that parental divorce was related to faster aging in the later-born cohort, and that 56% of this relationship (b = 0.060) was mediated by chronic depressive symptoms (b = 0.013), lower education levels (b = 0.005), and smoking (b = 0.019). For the earlier cohort, there was no effect of parental divorce on epigenetic aging. Parental divorce in childhood may have lasting effects on later-life health, as reflected in the rate of epigenetic aging. However, the effects and mechanisms of this relationship differ across cohorts living in different social environments.
Collapse
Affiliation(s)
- Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Eric T. Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
13
|
Farina MP, Klopack ET, Umberson D, Crimmins EM. The embodiment of parental death in early life through accelerated epigenetic aging: Implications for understanding how parental death before 18 shapes age-related health risk among older adults. SSM Popul Health 2024; 26:101648. [PMID: 38596364 PMCID: PMC11002886 DOI: 10.1016/j.ssmph.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Parental death in early life has been linked to various adverse health outcomes in older adulthood. This study extends prior research to evaluate how parental death in early life is tied to accelerated epigenetic aging, a potentially important biological mechanism from which social and environmental exposures impact age-related health. We used data from the 2016 Venous Blood Study (VBS), a component of the Health and Retirement Study (HRS), to examine the association between parental death in early life and accelerated epigenetic aging as measured by three widely used epigenetic clocks (PCPhenoAge, PCGrimAge, and DunedinPACE). We also assessed whether some of the association is explained by differences in educational attainment, depressive symptoms, and smoking behavior. Methods included a series of linear regression models and formal mediation analysis. Findings indicated that parental death in early life is associated with accelerated epigenetic aging for PCPhenoAge and DunedinPACE. The inclusion of educational attainment, depressive symptoms, and smoking behavior attenuated this association, with formal mediation analysis providing additional support for these observations. Parental death in early life may be one of the most difficult experiences an individual may face. The elevated biological risk associated with parental death in early life may operate through immediate changes but also through more downstream risk factors. This study highlights how early life adversity can set in motion biological changes that have lifelong consequences.
Collapse
Affiliation(s)
- Mateo P. Farina
- Department of Human Development and Family Sciences, University of Texas at Austin, United States
- Population Research Center, University of Texas at Austin, United States
| | - Eric T. Klopack
- Davis School of Gerontology, University of Southern California, United States
| | - Debra Umberson
- Population Research Center, University of Texas at Austin, United States
- Department of Sociology, University of Texas at Austin, United States
| | - Eileen M. Crimmins
- Davis School of Gerontology, University of Southern California, United States
| |
Collapse
|
14
|
Caspi A, Shireby G, Mill J, Moffitt TE, Sugden K, Hannon E. Accelerated Pace of Aging in Schizophrenia: Five Case-Control Studies. Biol Psychiatry 2024; 95:1038-1047. [PMID: 37924924 PMCID: PMC11063120 DOI: 10.1016/j.biopsych.2023.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Schizophrenia is associated with increased risk of developing multiple aging-related diseases, including metabolic, respiratory, and cardiovascular diseases, and Alzheimer's and related dementias, leading to the hypothesis that schizophrenia is accompanied by accelerated biological aging. This has been difficult to test because there is no widely accepted measure of biological aging. Epigenetic clocks are promising algorithms that are used to calculate biological age on the basis of information from combined cytosine-phosphate-guanine sites (CpGs) across the genome, but they have yielded inconsistent and often negative results about the association between schizophrenia and accelerated aging. Here, we tested the schizophrenia-aging hypothesis using a DNA methylation measure that is uniquely designed to predict an individual's rate of aging. METHODS We brought together 5 case-control datasets to calculate DunedinPACE (Pace of Aging Calculated from the Epigenome), a new measure trained on longitudinal data to detect differences between people in their pace of aging over time. Data were available from 1812 psychosis cases (schizophrenia or first-episode psychosis) and 1753 controls. Mean chronological age was 38.9 (SD = 13.6) years. RESULTS We observed consistent associations across datasets between schizophrenia and accelerated aging as measured by DunedinPACE. These associations were not attributable to tobacco smoking or clozapine medication. CONCLUSIONS Schizophrenia is accompanied by accelerated biological aging by midlife. This may explain the wide-ranging risk among people with schizophrenia for developing multiple different age-related physical diseases, including metabolic, respiratory, and cardiovascular diseases, and dementia. Measures of biological aging could prove valuable for assessing patients' risk for physical and cognitive decline and for evaluating intervention effectiveness.
Collapse
Affiliation(s)
- Avshalom Caspi
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, United Kingdom; PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Gemma Shireby
- Centre of Longitudinal Studies, University College London, Exeter, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Terrie E Moffitt
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, United Kingdom; PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karen Sugden
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Furuya S, Fletcher JM. Retirement Makes You Old? Causal Effect of Retirement on Biological Age. Demography 2024; 61:901-931. [PMID: 38779956 DOI: 10.1215/00703370-11380637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Retirement is a critical life event for older people. Health scholars have scrutinized the health effects of retirement, but its consequences on age-related diseases and mortality are unclear. We extend this body of research by integrating measurements of biological age, representing the physiological decline preceding disease onset. Using data from the UK Biobank and a fuzzy regression discontinuity design, we estimated the effects of retirement on two biomarker-based biological age measures. Results showed that retirement significantly increases biological age for those induced to retire by the State Pension eligibility by 0.871-2.503 years, depending on sex and specific biological age measurement. Given the emerging scientific discussion about direct interventions to biological age to achieve additional improvements in population health, the positive effect of retirement on biological age has important implications for an increase in the State Pension eligibility age and its potential consequences on population health, public health care policy, and older people's labor force participation. Overall, this study provides novel empirical evidence contributing to the question of what social factors make people old.
Collapse
Affiliation(s)
- Shiro Furuya
- Department of Sociology, Center for Demography and Ecology, and Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason M Fletcher
- Center for Demography and Ecology, La Follette School of Public Affairs, Department of Population Health Science, and Department of Agricultural and Applied Economics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Cortez BN, Pan H, Hinthorn S, Sun H, Neretti N, Gloyn AL, Aguayo-Mazzucato C. Heterogeneity of increased biological age in type 2 diabetes correlates with differential tissue DNA methylation, biological variables, and pharmacological treatments. GeroScience 2024; 46:2441-2461. [PMID: 37987887 PMCID: PMC10828255 DOI: 10.1007/s11357-023-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Biological age (BA) closely depicts age-related changes at a cellular level. Type 2 diabetes mellitus (T2D) accelerates BA when calculated using clinical biomarkers, but there is a large spread in the magnitude of individuals' age acceleration in T2D suggesting additional factors contributing to BA. Additionally, it is unknown whether BA can be changed with treatment. We hypothesized that potential determinants of the heterogeneous BA distribution in T2D could be due to differential tissue aging as reflected at the DNA methylation (DNAm) level, or biological variables and their respective therapeutic treatments. Publicly available DNAm samples were obtained to calculate BA using the DNAm phenotypic age (DNAmPhenoAge) algorithm. DNAmPhenoAge showed age acceleration in T2D samples of whole blood, pancreatic islets, and liver, but not in adipose tissue or skeletal muscle. Analysis of genes associated with differentially methylated CpG sites found a significant correlation between eight individual CpG methylation sites and gene expression. Clinical biomarkers from participants in the NHANES 2017-2018 and ACCORD cohorts were used to calculate BA using the Klemera and Doubal (KDM) method. Cardiovascular and glycemic biomarkers associated with increased BA while intensive blood pressure and glycemic management reduced BA to CA levels, demonstrating that accelerated BA can be restored in the setting of T2D.
Collapse
Affiliation(s)
- Briana N Cortez
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Samuel Hinthorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
17
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
18
|
Ungvari Z, Tabák AG, Adany R, Purebl G, Kaposvári C, Fazekas-Pongor V, Csípő T, Szarvas Z, Horváth K, Mukli P, Balog P, Bodizs R, Ujma P, Stauder A, Belsky DW, Kovács I, Yabluchanskiy A, Maier AB, Moizs M, Östlin P, Yon Y, Varga P, Vokó Z, Papp M, Takács I, Vásárhelyi B, Torzsa P, Ferdinandy P, Csiszar A, Benyó Z, Szabó AJ, Dörnyei G, Kivimäki M, Kellermayer M, Merkely B. The Semmelweis Study: a longitudinal occupational cohort study within the framework of the Semmelweis Caring University Model Program for supporting healthy aging. GeroScience 2024; 46:191-218. [PMID: 38060158 PMCID: PMC10828351 DOI: 10.1007/s11357-023-01018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
The Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases. An important goal of the Semmelweis Study is to identify groups of people who are aging unsuccessfully and therefore have an increased risk of developing age-associated diseases. To achieve this, the study takes a multidisciplinary approach, collecting economic, social, psychological, cognitive, health, and biological data. The Semmelweis Study comprises a baseline data collection with open healthcare data linkage, followed by repeated data collection waves every 5 years. Data are collected through computer-assisted self-completed questionnaires, followed by a physical health examination, physiological measurements, and the assessment of biomarkers. This article provides a comprehensive overview of the Semmelweis Study, including its origin, context, objectives, design, relevance, and expected contributions.
Collapse
Affiliation(s)
- Zoltan Ungvari
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Adam G Tabák
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Roza Adany
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Purebl
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Kaposvári
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Csípő
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Horváth
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- International Training Program in Geroscience/Healthy Aging Program, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Piroska Balog
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Robert Bodizs
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Ujma
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Adrienne Stauder
- Institute of Behavioral Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Daniel W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Illés Kovács
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mariann Moizs
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Ministry of Interior of Hungary, Budapest, Hungary
| | | | - Yongjie Yon
- WHO Regional Office for Europe, Copenhagen, Denmark
| | - Péter Varga
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Clinical Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Vokó
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | - Magor Papp
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - István Takács
- UCL Brain Sciences, University College London, London, UK
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Torzsa
- Department of Family Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, The Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltán Benyó
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Attila J Szabó
- First Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, Semmelweis University, Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
20
|
Zhang F, Chang H, Schaefer SM, Gou J. Biological age and brain age in midlife: relationship to multimorbidity and mental health. Neurobiol Aging 2023; 132:145-153. [PMID: 37804610 PMCID: PMC10803130 DOI: 10.1016/j.neurobiolaging.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Biological age and brain age estimated using biological and neuroimaging measures have recently emerged as surrogate aging biomarkers shown to be predictive of diverse health outcomes. As aging underlies the development of many chronic conditions, surrogate aging biomarkers capture health at the whole person level, having the potential to improve our understanding of multimorbidity. Our study investigates whether elevated biological age and brain age are associated with an increased risk of multimorbidity using a large dataset from the Midlife in the United States Refresher study. Ensemble learning is utilized to combine multiple machine learning models to estimate biological age using a comprehensive set of biological markers. Brain age is obtained using Gaussian processes regression and neuroimaging data. Our study is the first to examine the relationship between accelerated brain age and multimorbidity. Furthermore, it is the first attempt to explore how biological age and brain age are related to multimorbidity in mental health. Our findings hold the potential to advance the understanding of disease accumulation and their relationship with aging.
Collapse
Affiliation(s)
- Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| | - Hansoo Chang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Stacey M Schaefer
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| |
Collapse
|
21
|
Shaaban CE, Rosano C, Zhu X, Rutherford BR, Witonsky KR, Rosso AL, Yaffe K, Brown PJ. Discordant Biological and Chronological Age: Implications for Cognitive Decline and Frailty. J Gerontol A Biol Sci Med Sci 2023; 78:2152-2161. [PMID: 37480573 PMCID: PMC10613009 DOI: 10.1093/gerona/glad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Older adults with discordant biological and chronological ages (BA and CA) may vary in cognitive and physical function from those with concordant BA and CA. METHODS To make our approach clinically accessible, we created easy-to-interpret participant groups in the Health, Aging, and Body Composition Study (N = 2 458, 52% female participants, 65% White participants, age: 73.5 ± 2.8) based on medians of CA, and a previously validated BA index comprised of readily available clinical tests. Joint models estimated associations of BA-CA group with cognition (Modified Mini-Mental State Examination [3MS] and Digit Symbol Substitution Test [DSST]) and frailty over 10 years. RESULTS The sample included the following: 32%, Young group (BA and CA < median); 21%, Prematurely Aging group (BA ≥ median, CA < median), 27%, Old group (BA and CA ≥ median), and 20%, Resilient group (BA < median, CA ≥ median). In education-adjusted models of cognition, among those with CA < median, the Prematurely Aging group performed worse than the Young at baseline (3MS and DSST p < .0001), but among those with CA ≥ median, the Resilient group did not outperform the Old group (3MS p = .31; DSST p = .25). For frailty, the Prematurely Aging group performed worse than the Young group at baseline (p = .0001), and the Resilient group outperformed the Old group (p = .003). For all outcomes, groups did not differ on change over time based on the same pairwise comparisons (p ≥ .40). CONCLUSIONS Discordant BA and CA identify groups who have greater cognitive and physical functional decline or are more protected than their CA would suggest. This information can be used for risk stratification.
Collapse
Affiliation(s)
- C Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bret R Rutherford
- Neurobiology and Therapeutics of Aging Division, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| | - Kailyn R Witonsky
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristine Yaffe
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Departments of Psychiatry and Neurology, University of California, San Francisco, California, USA
| | - Patrick J Brown
- Neurobiology and Therapeutics of Aging Division, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
22
|
Muscari A, Forti P, Brizi M, Magalotti D, Capelli E, Potì S, Piro F, Pandolfi P, Perlangeli V, Ramazzotti E, Barbara G. Can We Slow Down Biological Age Progression? Study Protocol for the proBNPage Reduction (PBAR) Randomized, Double-Blind, Placebo-Controlled Trial (Effects of 4 "Anti-Aging" Food Supplements in Healthy Older Adults). Clin Interv Aging 2023; 18:1813-1825. [PMID: 37915546 PMCID: PMC10617523 DOI: 10.2147/cia.s422371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose The availability of a simple and reliable marker of biological age might allow an acceleration of the research in the field of longevity extension. Previous studies suggest that this marker might be the N-terminal of B-type natriuretic peptide precursor (NT-proBNP), from which proBNPage, a biological age surrogate, can be calculated. Objectives of the study: 1) To fine-tune the method of proBNPage progression assessment and 2) To establish whether 4 "anti-aging" treatments, which provided promising results in previous studies, can modify proBNPage progression. Patients and Methods This is a double-blind randomized placebo-controlled clinical trial on 120 adults aged 65-80 years, free of cardiovascular diseases. Participants will be randomized into 3 groups: A) Coenzyme Q10 100 mg bid + Selenium 100 mcg; B) Resveratrol 350 mg bid + TA-65 (Astragalus Membranaceus extract) 100U; C) Placebo-1 bid + Placebo-2. They will be followed for 2 years and checked 8 times, to assess both proBNPage progression and treatment safety. Secondary variables (handgrip strength, aerobic capacity at the step test and quality of life) will also be assessed. Primary outcome will be the demonstration of significant changes of proBNPage, compared to baseline, in the 3 groups at 6, 12, 18 and 24 months. Secondary outcome will be the demonstration of similar changes of secondary variables. Statistical analyses will be mainly performed by repeated measures ANOVA (both according to intention to treat and per protocol) and paired t tests. The study was approved by the Ethics Committee Area Vasta Emilia Centro, Emilia-Romagna Region, ID: 64/2022/Sper/AOUBo. Trial registration: ClinicalTrials.gov, NCT05500742. Conclusion The use of proBNPage as a surrogate of biological age may prove an easy method to select anti-aging treatments worthy of further, more complex assessments.
Collapse
Affiliation(s)
- Antonio Muscari
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paola Forti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mara Brizi
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Donatella Magalotti
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Capelli
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Potì
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Filomena Piro
- Pharmaceutical Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Pandolfi
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| | - Vincenza Perlangeli
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| | | | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - On behalf of PBAR Study Group
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical-Surgical Department of Digestive, Hepatic and Endocrine-Metabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Pharmaceutical Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| |
Collapse
|
23
|
Sugden K, Moffitt TE, Arpawong TE, Arseneault L, Belsky DW, Corcoran DL, Crimmins EM, Hannon E, Houts R, Mill JS, Poulton R, Ramrakha S, Wertz J, Williams BS, Caspi A. Cross-National and Cross-Generational Evidence That Educational Attainment May Slow the Pace of Aging in European-Descent Individuals. J Gerontol B Psychol Sci Soc Sci 2023; 78:1375-1385. [PMID: 37058531 PMCID: PMC10394986 DOI: 10.1093/geronb/gbad056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVES Individuals with more education are at lower risk of developing multiple, different age-related diseases than their less-educated peers. A reason for this might be that individuals with more education age slower. There are 2 complications in testing this hypothesis. First, there exists no definitive measure of biological aging. Second, shared genetic factors contribute toward both lower educational attainment and the development of age-related diseases. Here, we tested whether the protective effect of educational attainment was associated with the pace of aging after accounting for genetic factors. METHODS We examined data from 5 studies together totaling almost 17,000 individuals with European ancestry born in different countries during different historical periods, ranging in age from 16 to 98 years old. To assess the pace of aging, we used DunedinPACE, a DNA methylation algorithm that reflects an individual's rate of aging and predicts age-related decline and Alzheimer's disease and related disorders. To assess genetic factors related to education, we created a polygenic score based on the results of a genome-wide association study of educational attainment. RESULTS Across the 5 studies, and across the life span, higher educational attainment was associated with a slower pace of aging even after accounting for genetic factors (meta-analysis effect size = -0.20; 95% confidence interval [CI]: -0.30 to -0.10; p = .006). Further, this effect persisted after taking into account tobacco smoking (meta-analysis effect size = -0.13; 95% CI: -0.21 to -0.05; p = .01). DISCUSSION These results indicate that higher levels of education have positive effects on the pace of aging, and that the benefits can be realized irrespective of individuals' genetics.
Collapse
Affiliation(s)
- Karen Sugden
- Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Terrie E Moffitt
- Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Thalida Em Arpawong
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Louise Arseneault
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Daniel W Belsky
- Department of Epidemiology and Butler Columbia Aging Center, Columbia University Mailman School of Public Health, Columbia University, New York, New York, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Eilis Hannon
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Renate Houts
- Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Jonathan S Mill
- Complex Disease Epigenetics Group, University of Exeter Medical School, Exeter, UK
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Jasmin Wertz
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Avshalom Caspi
- Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
24
|
Andrasfay T, Kim JK, Ailshire JA, Crimmins E. Aging on the Job? The Association Between Occupational Characteristics and Accelerated Biological Aging. J Gerontol B Psychol Sci Soc Sci 2023; 78:1236-1245. [PMID: 37004243 PMCID: PMC10292835 DOI: 10.1093/geronb/gbad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES There is a common belief that demanding jobs can make workers age faster, but there is little empirical evidence linking occupational characteristics to accelerated biological aging. We examine how occupational categorizations and self-reported working conditions are associated with expanded biological age, which incorporates 22 biomarkers and captures physiologic dysregulation throughout several bodily systems. METHODS Data are from 1,133 participants in the Health and Retirement Study who were aged 51-60 and working for pay in the 2010 or 2012 wave and who participated in the 2016 Venous Blood Study. We estimate associations between occupational category (professional/managerial, sales/clerical, service, and manual) and self-reported working conditions (psychosocial demands, job control, heavy lifting, and working 55 or more hours per week) and expanded biological age. RESULTS Compared to same-age individuals working in professional or managerial positions, those working in service jobs appear 1.65 years older biologically even after adjusting for social and economic characteristics, self-reported working conditions, health insurance, and lifestyle-related risk factors. Low job control is associated with 1.40 years, heavy lifting with 2.08 years, and long working hours with 1.87 years of accelerated biological aging. DISCUSSION Adverse occupational characteristics held at midlife, particularly service work, low job control, heavy lifting, and long work hours, are associated with accelerated biological aging. These findings suggest that work may be important for the overall aging process beyond its associations with specific diseases or risk factors.
Collapse
Affiliation(s)
- Theresa Andrasfay
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Jennifer A Ailshire
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Eileen Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
25
|
Farina MP, Kim JK, Crimmins EM. Racial/Ethnic Differences in Biological Aging and Their Life Course Socioeconomic Determinants: The 2016 Health and Retirement Study. J Aging Health 2023; 35:209-220. [PMID: 35984401 PMCID: PMC9898094 DOI: 10.1177/08982643221120743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: This study examined differences in accelerated biological aging among non-Hispanic Blacks, Hispanics, and non-Hispanic Whites in the United States and assessed whether including life course socioeconomic conditions attenuated observed racial/ethnic differences. Methods: Data came from the Venous Blood Collection Subsample of the Health and Retirement Study. We used a comprehensive summary measure of biological age (BA-22). We determined whether key lifetime socioeconomic conditions contributed to racial/ethnic differences in biological aging. Results: Findings indicated that non-Hispanic Blacks and Hispanics have accelerated aging, and non-Hispanic Whites have decelerated aging. Racial/ethnic differences were strongly tied to educational attainment. We also observed a significant difference by birthplace for Hispanics. US-born Hispanics had accelerated biological aging, whereas foreign-born Hispanics did not. In age-stratified analyses, these racial/ethnic differences were found for adults aged 56-74, but not for adults aged 75+. Conclusions: These findings provide insight into biological differences underlying racial/ethnic disparities in health.
Collapse
Affiliation(s)
- Mateo P Farina
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
| | - Jung Ki Kim
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
| | - Eileen M. Crimmins
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Faul JD, Kim JK, Levine ME, Thyagarajan B, Weir DR, Crimmins EM. Epigenetic-based age acceleration in a representative sample of older Americans: Associations with aging-related morbidity and mortality. Proc Natl Acad Sci U S A 2023; 120:e2215840120. [PMID: 36802439 PMCID: PMC9992763 DOI: 10.1073/pnas.2215840120] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023] Open
Abstract
Biomarkers developed from DNA methylation (DNAm) data are of growing interest as predictors of health outcomes and mortality in older populations. However, it is unknown how epigenetic aging fits within the context of known socioeconomic and behavioral associations with aging-related health outcomes in a large, population-based, and diverse sample. This study uses data from a representative, panel study of US older adults to examine the relationship between DNAm-based age acceleration measures in the prediction of cross-sectional and longitudinal health outcomes and mortality. We examine whether recent improvements to these scores, using principal component (PC)-based measures designed to remove some of the technical noise and unreliability in measurement, improve the predictive capability of these measures. We also examine how well DNAm-based measures perform against well-known predictors of health outcomes such as demographics, SES, and health behaviors. In our sample, age acceleration calculated using "second and third generation clocks," PhenoAge, GrimAge, and DunedinPACE, is consistently a significant predictor of health outcomes including cross-sectional cognitive dysfunction, functional limitations and chronic conditions assessed 2 y after DNAm measurement, and 4-y mortality. PC-based epigenetic age acceleration measures do not significantly change the relationship of DNAm-based age acceleration measures to health outcomes or mortality compared to earlier versions of these measures. While the usefulness of DNAm-based age acceleration as a predictor of later life health outcomes is quite clear, other factors such as demographics, SES, mental health, and health behaviors remain equally, if not more robust, predictors of later life outcomes.
Collapse
Affiliation(s)
- Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI48104
| | - Jung Ki Kim
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Morgan E. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT06510
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI48104
| | - Eileen M. Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
27
|
Al-Naggar IM, Newman JC, Kuchel GA. Letter to the Editor: Healthy Eating Patterns: A Stealthy Geroscience-Guided Approach to Enhancing the Human Healthspan. J Nutr Health Aging 2023; 27:238-239. [PMID: 36973933 PMCID: PMC10164447 DOI: 10.1007/s12603-023-1897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Affiliation(s)
- I M Al-Naggar
- George A Kuchel, MD CM, Professor and Travelers Chair in Geriatrics and Gerontology, Director, UConn Center on Aging, University of Connecticut, Director, UConn Older Americans Independence (Pepper) Center, Deputy Editor, Journal of the American Geriatrics Society, 263 Farmington Avenue, Farmington, CT 06030-5215, Office: 860.679.6796 | Fax: 860.679.1307,
| | | | | |
Collapse
|
28
|
Familial aggregation of the aging process: biological age measured in young adult offspring as a predictor of parental mortality. GeroScience 2022; 45:901-913. [PMID: 36401109 PMCID: PMC9886744 DOI: 10.1007/s11357-022-00687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022] Open
Abstract
Measures of biological age (BA) integrate information across organ systems to quantify "biological aging," i.e., inter-individual differences in aging-related health decline. While longevity and lifespan aggregate in families, reflecting transmission of genes and environments across generations, little is known about intergenerational continuity of biological aging or the extent to which this continuity may be modified by environmental factors. Using data from the Jerusalem Perinatal Study (JPS), we tested if differences in offspring BA were related to mortality in their parents. We measured BA using biomarker data collected from 1473 offspring during clinical exams in 2007-2009, at age 32 ± 1.1. Parental mortality was obtained from population registry data for the years 2004-2016. We fitted parametric survival models to investigate the associations between offspring BA and parental all-cause and cause-specific mortality. We explored potential differences in these relationships by socioeconomic position (SEP) and offspring sex. Participants' BAs widely varied (SD = 6.95). Among those measured to be biologically older, parents had increased all-cause mortality (HR = 1.10, 95% CI: 1.08, 1.13), diabetes mortality (HR = 1.19, 95% CI: 1.08, 1.30), and cancer mortality (HR = 1.07, 95% CI: 1.02, 1.13). The association with all-cause mortality was stronger for families with low compared with high SEP (Pinteraction = 0.04) and for daughters as compared to sons (Pinteraction < 0.001). Using a clinical-biomarker-based BA estimate, observable by young adulthood prior to the onset of aging-related diseases, we demonstrate intergenerational continuity of the aging process. Furthermore, variation in this familial aggregation according to household socioeconomic position (SEP) at offspring birth and between families of sons and daughters proposes that the environment alters individuals' aging trajectory set by their parents.
Collapse
|
29
|
Sugden K, Caspi A, Elliott ML, Bourassa KJ, Chamarti K, Corcoran DL, Hariri AR, Houts RM, Kothari M, Kritchevsky S, Kuchel GA, Mill JS, Williams BS, Belsky DW, Moffitt TE. Association of Pace of Aging Measured by Blood-Based DNA Methylation With Age-Related Cognitive Impairment and Dementia. Neurology 2022; 99:e1402-e1413. [PMID: 35794023 PMCID: PMC9576288 DOI: 10.1212/wnl.0000000000200898] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES DNA methylation algorithms are increasingly used to estimate biological aging; however, how these proposed measures of whole-organism biological aging relate to aging in the brain is not known. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Framingham Heart Study (FHS) Offspring Cohort to test the association between blood-based DNA methylation measures of biological aging and cognitive impairment and dementia in older adults. METHODS We tested 3 "generations" of DNA methylation age algorithms (first generation: Horvath and Hannum clocks; second generation: PhenoAge and GrimAge; and third generation: DunedinPACE, Dunedin Pace of Aging Calculated from the Epigenome) against the following measures of cognitive impairment in ADNI: clinical diagnosis of dementia and mild cognitive impairment, scores on Alzheimer disease (AD) / Alzheimer disease and related dementias (ADRD) screening tests (Alzheimer's Disease Assessment Scale, Mini-Mental State Examination, and Montreal Cognitive Assessment), and scores on cognitive tests (Rey Auditory Verbal Learning Test, Logical Memory test, and Trail Making Test). In an independent replication in the FHS Offspring Cohort, we further tested the longitudinal association between the DNA methylation algorithms and the risk of developing dementia. RESULTS In ADNI (N = 649 individuals), the first-generation (Horvath and Hannum DNA methylation age clocks) and the second-generation (PhenoAge and GrimAge) DNA methylation measures of aging were not consistently associated with measures of cognitive impairment in older adults. By contrast, a third-generation measure of biological aging, DunedinPACE, was associated with clinical diagnosis of Alzheimer disease (beta [95% CI] = 0.28 [0.08-0.47]), poorer scores on Alzheimer disease/ADRD screening tests (beta [Robust SE] = -0.10 [0.04] to 0.08[0.04]), and cognitive tests (beta [Robust SE] = -0.12 [0.04] to 0.10 [0.03]). The association between faster pace of aging, as measured by DunedinPACE, and risk of developing dementia was confirmed in a longitudinal analysis of the FHS Offspring Cohort (N = 2,264 individuals, hazard ratio [95% CI] = 1.27 [1.07-1.49]). DISCUSSION Third-generation blood-based DNA methylation measures of aging could prove valuable for measuring differences between individuals in the rate at which they age and in their risk for cognitive decline, and for evaluating interventions to slow aging.
Collapse
Affiliation(s)
- Karen Sugden
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York.
| | - Avshalom Caspi
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Maxwell L Elliott
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Kyle J Bourassa
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Kartik Chamarti
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - David L Corcoran
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Ahmad R Hariri
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Renate M Houts
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Meeraj Kothari
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Stephen Kritchevsky
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - George A Kuchel
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Jonathan S Mill
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Benjamin S Williams
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Daniel W Belsky
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| | - Terrie E Moffitt
- From the Department of Psychology and Neuroscience (K.S., A.C., M.L.E., K.C., A.R.H., R.M.H., B.S.W., T.E.M.), and Center for Genomic and Computational Biology (K.S., A.C., B.S.W., T.E.M.), Duke University, Durham, NC; Department of Psychiatry and Behavioral Sciences (A.C., T.E.M.), Duke University School of Medicine, Durham, NC; Social, Genetic, and Developmental Psychiatry Centre (A.C, T.E.M.), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK. Center for the Study of Aging and Human Development (K.J.B.), Duke University, Durham, NC; Department of Genetics (D.L.C.), University of North Carolina School of Medicine, Chapel Hill; Butler Columbia Aging Center (M.K., D.W.B.), Columbia University, New York, New York; Sticht Center for Healthy Aging and Alzheimer's Prevention (S.K.), Wake Forest School of Medicine, Winston-Salem, NC; UConn Center on Aging (G.A.K.), University of Connecticut, Farmington, Connecticut, USA; College of Medicine and Health (J.S.M.), University of Exeter Medical School, Devon, UK; and Department of Epidemiology (D.W.B.), Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
30
|
Heffernan KS, Wilmoth JM, London AS. Estimated Pulse Wave Velocity and All-Cause Mortality: Findings From the Health and Retirement Study. Innov Aging 2022; 6:igac056. [PMID: 36284701 PMCID: PMC9585457 DOI: 10.1093/geroni/igac056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background and Objectives The gold standard method for the assessment of vascular aging is carotid-femoral pulse wave velocity (cfPWV). cfPWV can be estimated from 2 commonly assessed clinical variables-age and blood pressure. This analysis uses data from the Health and Retirement Study to examine the relationship between estimated pulse wave velocity (ePWV) and mortality among 9,293 middle age and older adults. Research Design and Methods Cox proportional hazard models were used to predict mortality occurring over a 10- to 12-year period. Controls were included for sociodemographic characteristics (age, gender, race, ethnicity, wealth, income, and education), health status (history of cardiovascular disease [CVD], diabetes, and stroke and related medication use), health behaviors (smoking, physical activity, and body mass index), and CVD-related biomarkers (systolic and diastolic blood pressure, C-reactive protein, cystatin c, hemoglobin A1c, total cholesterol, and high-density lipoprotein cholesterol). Results By 2018, 26.19% of the weighted analytic sample were reported as deceased. In the fully specified models that control for age, age-squared, systolic and diastolic blood pressure, sociodemographic variables, health status and behaviors, and biomarkers, ePWV was associated with a greater likelihood of mortality. Discussion and Implications An estimate of PWV derived from age and blood pressure is independently associated with an increased likelihood of death in a representative sample of middle age and older adults in the United States.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, New York, USA
- The Aging Studies Institute, Syracuse University, Syracuse, New York, USA
| | - Janet M Wilmoth
- The Aging Studies Institute, Syracuse University, Syracuse, New York, USA
- Department of Sociology, Maxwell School of Citizen and Public Affairs, Syracuse University, Syracuse, New York, USA
| | - Andrew S London
- The Aging Studies Institute, Syracuse University, Syracuse, New York, USA
- Department of Sociology, Maxwell School of Citizen and Public Affairs, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
31
|
Choi YJ, Ailshire JA, Kim JK, Crimmins EM. Diet Quality and Biological Risk in a National Sample of Older Americans. J Aging Health 2022; 34:539-549. [PMID: 34779298 PMCID: PMC9098695 DOI: 10.1177/08982643211046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Using comprehensive measures of biological risk, this study aims to investigate the relationship between intake of individual dietary components, overall diet quality, and biological dysregulation. Methods: We analyzed nationally representative data from 3734 older adults who participated in the Health and Retirement Study Venous Blood Study in 2016 and Health Care and Nutrition Survey in 2013. Results: Eleven out of 13 individual dietary components were associated with lower biological risk. Respondents with poor/suboptimal quality diet had higher biological risk than those with good quality diet. Discussion: Findings from this study emphasize the importance of healthy eating in improving health of older adults. Encouraging intake of fruits, greens and beans, whole grains, and fatty acids, while limiting consumption of sodium, added sugar, and saturated fat would improve overall diet quality and contribute to the prevention of chronic diseases and morbidity.
Collapse
Affiliation(s)
- Yeon Jin Choi
- University of Southern California, Los Angeles, CA, USA
| | | | - Jung Ki Kim
- University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
32
|
Graf GHJ, Zhang Y, Domingue BW, Harris KM, Kothari M, Kwon D, Muennig P, Belsky DW. Social mobility and biological aging among older adults in the United States. PNAS NEXUS 2022; 1:pgac029. [PMID: 35615471 PMCID: PMC9123172 DOI: 10.1093/pnasnexus/pgac029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 01/29/2023]
Abstract
Lower socioeconomic status is associated with faster biological aging, the gradual and progressive decline in system integrity that accumulates with advancing age. Efforts to promote upward social mobility may, therefore, extend healthy lifespan. However, recent studies suggest that upward mobility may also have biological costs related to the stresses of crossing social boundaries. We tested associations of life-course social mobility with biological aging using data from participants in the 2016 Health and Retirement Study (HRS) Venous Blood Study who provided blood-chemistry (n = 9,255) and/or DNA methylation (DNAm) data (n = 3,976). We quantified social mobility from childhood to later-life using data on childhood family characteristics, educational attainment, and wealth accumulation. We quantified biological aging using 3 DNAm "clocks" and 3 blood-chemistry algorithms. We observed substantial social mobility among study participants. Those who achieved upward mobility exhibited less-advanced and slower biological aging. Associations of upward mobility with less-advanced and slower aging were consistent for blood-chemistry and DNAm measures of biological aging, and were similar for men and women and for Black and White Americans (Pearson-r effect-sizes ∼0.2 for blood-chemistry measures and the DNAm GrimAge clock and DunedinPoAm pace-of-aging measures; effect-sizes were smaller for the DNAm PhenoAge clock). Analysis restricted to educational mobility suggested differential effects by racial identity; mediating links between educational mobility and healthy aging may be disrupted by structural racism. In contrast, mobility producing accumulation of wealth appeared to benefit White and Black Americans equally, suggesting economic intervention to reduce wealth inequality may have potential to heal disparities in healthy aging.
Collapse
Affiliation(s)
- Gloria Huei-Jong Graf
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Yalu Zhang
- Columbia School of Social Work, New York, NY 10027, USA
- Peking University Institute of Population Research, Beijing, China
| | | | - Kathleen Mullan Harris
- Department of Sociology, Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meeraj Kothari
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Dayoon Kwon
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
- UCLA Fielding School of Public Health, Department of Epidemiology, Los Angeles, CA 90095, USA
| | - Peter Muennig
- Department of Health Policy and Management, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| |
Collapse
|
33
|
Wei K, Peng S, Liu N, Li G, Wang J, Chen X, He L, Chen Q, Lv Y, Guo H, Lin Y. All-Subset Analysis Improves the Predictive Accuracy of Biological Age for All-Cause Mortality in Chinese and U.S. Populations. J Gerontol A Biol Sci Med Sci 2022; 77:2288-2297. [PMID: 35417546 PMCID: PMC9923798 DOI: 10.1093/gerona/glac081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Klemera-Doubal's method (KDM) is an advanced and widely applied algorithm for estimating biological age (BA), but it has no uniform paradigm for biomarker processing. This article proposed all subsets of biomarkers for estimating BAs and assessed their association with mortality to determine the most predictive subset and BA. METHODS Clinical biomarkers, including those from physical examinations and blood assays, were assessed in the China Health and Nutrition Survey (CHNS) 2009 wave. Those correlated with chronological age (CA) were combined to produce complete subsets, and BA was estimated by KDM from each subset of biomarkers. A Cox proportional hazards regression model was used to examine and compare each BA's effect size and predictive capacity for all-cause mortality. Validation analysis was performed in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) and National Health and Nutrition Examination Survey (NHANES). KD-BA and Levine's BA were compared in all cohorts. RESULTS A total of 130 918 panels of BAs were estimated from complete subsets comprising 3-17 biomarkers, whose Pearson coefficients with CA varied from 0.39 to 1. The most predictive subset consisted of 5 biomarkers, whose estimated KD-BA had the most predictive accuracy for all-cause mortality. Compared with Levine's BA, the accuracy of the best-fitting KD-BA in predicting death varied among specific populations. CONCLUSION All-subset analysis could effectively reduce the number of redundant biomarkers and significantly improve the accuracy of KD-BA in predicting all-cause mortality.
Collapse
Affiliation(s)
- Kai Wei
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanshan Peng
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Guyanan Li
- Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Jiangjing Wang
- Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Chen
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuan Lv
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Lin
- Address correspondence to: Yong Lin, PhD, Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Jing’an District, Shanghai 200040, People’s Republic of China. E-mail:
| |
Collapse
|
34
|
Justice JN, Pajewski NM, Espeland MA, Brubaker P, Houston DK, Marcovina S, Nicklas BJ, Kritchevsky SB, Kitzman DW. Evaluation of a blood-based geroscience biomarker index in a randomized trial of caloric restriction and exercise in older adults with heart failure with preserved ejection fraction. GeroScience 2022; 44:983-995. [PMID: 35013909 PMCID: PMC9135899 DOI: 10.1007/s11357-021-00509-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Intermediate endpoints are needed to evaluate the effect of interventions targeting the biology of aging in clinical trials. A working group identified five blood-based biomarkers that may serve such a purpose as an integrated index. We evaluated the responsiveness of the panel to caloric restriction or aerobic exercise in the context of a randomized clinical trial conducted in patients with heart failure with preserved ejection fraction (HFpEF) with obese phenotype who were predominantly female. Obese HFpEF is highly prevalent in women, and is a geriatric syndrome whose disease pathology is driven by non-cardiac factors and shared drivers of aging. We measured serum Interleukin-6, TNF-α-receptor-I, growth differentiating factor-15, cystatin C, and N-terminal pro-b-type natriuretic peptide at baseline and after 20 weeks in older participants with stable obese HFpEF participating in a randomized, controlled, 2 × 2 factorial trial of caloric restriction and/or aerobic exercise. We calculated a composite biomarker index, summing baseline quintile scores for each biomarker, and analyzed the effect of the interventions on the index and individual biomarkers and their associations with changes in physical performance. This post hoc analysis included 88 randomized participants (71 women [81%]). The mean ± SD age was 66.6 ± 5.3 years, and body mass index (BMI) was 39.3 ± 6.3 kg/m2. Using mixed models, mean values of the biomarker index improved over 20 weeks with caloric restriction (- 0.82 [Formula: see text] 0.58 points, p = 0.05), but not with exercise (- 0.28 [Formula: see text] 0.59 points, p = [Formula: see text]), with no evidence of an interaction effect of CR [Formula: see text] EX [Formula: see text] time (p = 0.80) with adjustment for age, gender, and BMI. At baseline, the biomarker index was inversely correlated with 6-min walk distance, scores on the short physical performance battery, treadmill test peak workload and exercise time to exhaustion (all [Formula: see text] s = between - 0.21 and - 0.24). A reduction in the biomarker index was also associated with increased 4-m usual walk speed ([Formula: see text] s = - 0.31). Among older patients with chronic obese HFpEF, caloric restriction improved a biomarker index designed to reflect biological aging. Moreover, the index was associated with physical performance and exercise tolerance.
Collapse
Affiliation(s)
- Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Nicholas M Pajewski
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark A Espeland
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake, Forest University in Winston-Salem, NC, USA
| | - Denise K Houston
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Barbara J Nicklas
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Department of Internal Medicine, Section On Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
35
|
Raffington L, Belsky DW. Integrating DNA Methylation Measures of Biological Aging into Social Determinants of Health Research. Curr Environ Health Rep 2022; 9:196-210. [PMID: 35181865 DOI: 10.1007/s40572-022-00338-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis. RECENT FINDINGS Next-generation DNA methylation measures of biological aging developed to predict mortality risk and physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities in biological aging. More research is needed on these measures in samples of non-Western and non-White populations. New DNA methylation measures of biological aging open opportunities for refining inference about the causes of social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including more diversity in samples used for measurement development is a critical priority for the field.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St. Rm 413, New York, NY, 10032, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
36
|
Muscari A, Bianchi G, Forti P, Magalotti D, Pandolfi P, Zoli M. The association of proBNPage with manifestations of age-related cardiovascular, physical, and psychological impairment in community-dwelling older adults. GeroScience 2021; 43:2087-2100. [PMID: 33987773 PMCID: PMC8492850 DOI: 10.1007/s11357-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/28/2021] [Indexed: 11/29/2022] Open
Abstract
NT-proB-type natriuretic peptide (NT-proBNP) serum concentration can be transformed by simple formulas into proBNPage, a surrogate of biological age strongly associated with chronological age, all-cause mortality, and disease count. This cross-sectional study aimed to assess whether proBNPage is also associated with other manifestations of the aging process in comparison with other variables. The study included 1117 noninstitutionalized older adults (73.1 ± 5.6 years, 537 men). Baseline measurements of serum NT-proBNP, erythrocyte sedimentation rate, hemoglobin, lymphocytes, and creatinine, which have previously been shown to be highly associated with both age and all-cause mortality, were performed. These variables were compared between subjects with and without manifestations of cardiovascular impairment (myocardial infarction (MI), stroke, peripheral artery disease (PAD), arterial revascularizations (AR)), physical impairment (long step test duration (LSTD), walking problems, falls, deficit in one or more activities of daily living), and psychological impairment (poor self-rating of health (PSRH), anxiety/depression, Mini Mental State Examination (MMSE) score < 24). ProBNPage (years) was independently associated (OR, 95% CI) with MI (1.08, 1.07-1.10), stroke (1.02, 1.00-1.05), PAD (1.04, 1.01-1.06), AR (1.06, 1.04-1.08), LSTD (1.03, 1.02-1.04), walking problems (1.02, 1.01-1.03), and PSRH (1.02, 1.01-1.02). For 5 of these 7 associations, the relationship was stronger than that of chronological age. In addition, proBNPage was univariately associated with MMSE score < 24, anxiety/depression, and falls. None of the other variables provided comparable performances. Thus, in addition to the known associations with mortality and disease count, proBNPage is also associated with cardiovascular manifestations as well as noncardiovascular manifestations of the aging process.
Collapse
Affiliation(s)
- Antonio Muscari
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giampaolo Bianchi
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paola Forti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Donatella Magalotti
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Pandolfi
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| | - Marco Zoli
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - the Pianoro Study Group
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15 40138 Bologna, Italy
- Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Epidemiological and Health Promotion Unit, Department of Public Health, AUSL Bologna, Bologna, Italy
| |
Collapse
|