1
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
3
|
Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR -/- Mice. Int J Mol Sci 2023; 24:ijms24021737. [PMID: 36675252 PMCID: PMC9863817 DOI: 10.3390/ijms24021737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.
Collapse
|
4
|
Liu YH, Lu YL, Chang YC, Chyuan JH, Lee TH, Hou WC. Anti-adipogenic activities of pheophorbide a and pyropheophorbide a isolated from wild bitter gourd (Momordica charantia L. var. abbreviata Seringe) in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6771-6779. [PMID: 35638177 DOI: 10.1002/jsfa.12044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The wild bitter gourd (WBG) is a commonly consumed vegetable in Asia that has antioxidant and hypoglycemic properties. The present study aimed to investigate the anti-adipogenic activities of isolated compounds from WBG on 8-day differentiated cultures of 3 T3-L1 adipocytes that were then stained with Oil Red O (ORO) or diamidino-2-phenylindole (DAPI). RESULTS ORO stains of the methanol extracts of de-seeded HM86 cultivar of WBG (WBG-M) and the ethyl acetate fractions (WBG-M-EA) showed anti-adipogenic activities against differentiated adipocytes. Two chlorophyll-degraded compounds, pheophorbide a (1) and pyropheophorbide a (2), were isolated from WBG-M-EA. Treatments with 1 (5, 10, and 20 μmol L-1 ) and 2 (2.5, 5, and 10 μmol L-1 ) showed dose-dependent reductions in lipid accumulations and reduced nuclear DAPI stains in differentiated 3 T3-L1 adipocytes. The concentrations for 50% inhibition against lipid accumulations of 1 and 2, respectively, were 16.05 and 7.04 μmol L-1 . Treatments with 1 and 2 showed enhanced lactate dehydrogenase release in the first 4-day cell mitotic clonal expansions during the differentiating cultural processes, although the effect was less on the non-differentiating cultural processes. Thus, 1 and 2 were more toxic to differentiating adipocytes than to non-differentiated pre-adipocytes, which partly resulted in anti-adipogenic activities with lowered lipid accumulations. CONCLUSION Both 1 and 2 showed anti-adipogenic activities in cell models. These chlorophyll-degraded compounds commonly exist in several vegetables during storage or edible seaweeds, which will provide resources for further investigations aiming to test anti-obesity in animal studies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yeh-Lin Lu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ya-Chih Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jong-Ho Chyuan
- Hualien District Agricultural Research and Extension Station, Hualien, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Oyelere SF, Ajayi OH, Ayoade TE, Santana Pereira GB, Dayo Owoyemi BC, Ilesanmi AO, Akinyemi OA. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon 2022; 8:e09253. [PMID: 35434401 PMCID: PMC9010624 DOI: 10.1016/j.heliyon.2022.e09253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally, with an annual mortality of more than one million people. This high mortality rate highlights the need for in-depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mechanisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also, the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance, activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of Science.
Collapse
|
6
|
Xu B, Li Z, Zeng T, Zhan J, Wang S, Ho CT, Li S. Bioactives of Momordica charantia as Potential Anti-Diabetic/Hypoglycemic Agents. Molecules 2022; 27:2175. [PMID: 35408574 PMCID: PMC9000558 DOI: 10.3390/molecules27072175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Momordica charantia L., a member of the Curcubitaceae family, has traditionally been used as herbal medicine and as a vegetable. Functional ingredients of M. charantia play important roles in body health and human nutrition, which can be used directly or indirectly in treating or preventing hyperglycemia-related chronic diseases in humans. The hypoglycemic effects of M. charantia have been known for years. In this paper, the research progress of M. charantia phytobioactives and their hypoglycemic effects and related mechanisms, especially relating to diabetes mellitus, has been reviewed. Moreover, the clinical application of M. charantia in treating diabetes mellitus is also discussed, hoping to broaden the application of M. charantia as functional food.
Collapse
Affiliation(s)
- Bilin Xu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Zhiliang Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|
7
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Evidence from a Systematic Review and Meta-Analysis Pointing to the Antidiabetic Effect of Polyphenol-Rich Plant Extracts from Gymnema montanum, Momordica charantia and Moringa oleifera. Curr Issues Mol Biol 2022; 44:699-717. [PMID: 35723334 PMCID: PMC8928996 DOI: 10.3390/cimb44020049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
In vitro and animal model studies are of great interest for selecting new phytochemicals, including polyphenols with antioxidative properties, as candidates for antidiabetic drugs. This review provides evidence from a critical literature data analysis on the effects of plant extract supplementation in diabetes mellitus management. We considered and meta-analyzed the efficacy of oral supplementation of plant extracts in animal model studies and examined physiological and oxidative stress parameters. Finally, 23 articles were included in the meta-analysis, revealing three plants with experimentally confirmed in vivo and in vitro antidiabetic properties: Gymnema montanum, Momordica charantia and Moringa oleifera. The following parameter changes resulted from an investigation of the supplementation: reduced oxidative stress, decreased insulin resistance, increased insulin release, reduced adiposity, and a modulatory effect on glycolysis and gluconeogenesis, as well as attenuation of diabetes-associated weight loss, reduced fasting blood glucose and lowered oxidative status. A comparison of Gymnema montanum versus Glybenclamide revealed the superiority of extracts over drug administration in some aspects. Although the analyzed extracts are promising candidates for antidiabetic treatment, there is much inconsistent data in the literature. Therefore, ultimate references for using these compounds in the prevention of diabetes are currently not applicable.
Collapse
Affiliation(s)
- Michal Krawczyk
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Izabela Burzynska-Pedziwiatr
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Lucyna Alicja Wozniak
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
8
|
Efficacy of Bottle Gourd Seeds' Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites. Toxins (Basel) 2021; 13:toxins13110789. [PMID: 34822573 PMCID: PMC8620683 DOI: 10.3390/toxins13110789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Bottle gourd seeds are surrounded by innumerable bioactive components of phytochemicals. This work aimed to evaluate the effectiveness of bottle gourd extracts as antimicrobial and an-ti-mycotoxigenic against toxigenic fungi and mycotoxins. Polar and nonpolar extracts were made from the seeds. The polar eco-friendly extract was prepared by an ultrasonication-assisted technique utilizing aqueous isopropanol (80%), whereas the non-polar extract was obtained using petroleum ether (40–60). The antioxidant efficacy, total phenolic content, and flavonoid content of the extracts were all measured. The fatty acid profile was measured using GC equipment, and the influence on toxigenic fungus and mycotoxin release was also investigated. The antioxidant efficacy of the polar extract is reflected. The total phenolic values of the oil and polar extract were 15.5 and 267 mg of GAE/g, respectively. The total flavonoid content of the oil was 2.95 mg catechol/g, whereas the isopropyl extract of seeds contained 14.86 mg catechol/g. The polar extract inhibited the DPPH more effectively than oil. When compared to other seed oils, the fatty acid composition differed. The pathogens were distinguished by the MIC and MFC for the polar extract. Three sterols were found in the oil, with a high concentration of B-sitosterols. The oil’s valuable -carotene content and tocopherol content were recorded. When compared to traditional antibiotics, the polar extract has shown promising antimicrobial activity against infections and toxigenic fungi. Bottle gourd extracts, as a non-traditional bioactive source, are viewed as a potentially promising alternative that might contribute to increased food safety, shelf-life, and security.
Collapse
|
9
|
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter Melon and Diabetes Mellitus. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Xian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
10
|
Kung WM, Lin MS. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int J Mol Sci 2021; 22:ijms22073289. [PMID: 33804820 PMCID: PMC8037269 DOI: 10.3390/ijms22073289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Consequently, CISD2-elevating plans of action provide pathways in the management of various disease categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti-inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to serve as a potential therapeutic target for CNS injuries and diseases.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
11
|
Cortez-Navarrete M, Méndez-Del Villar M, Ramos-González EJ, Pérez-Rubio KG. Momordica Charantia: A Review of Its Effects on Metabolic Diseases and Mechanisms of Action. J Med Food 2021; 24:1017-1027. [PMID: 33733863 DOI: 10.1089/jmf.2020.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The global rise in the prevalence of metabolic diseases such as diabetes, obesity, and dyslipidemia is a serious public health issue. The search for safe and effective complementary and alternative therapies to treat metabolic disorders is a key field of research. Momordica charantia (MC) is a tropical and subtropical vine of the Cucurbitaceae family used as a medicinal plant since ancient times. Although MC has been widely studied for its hypoglycemic potential, hypolipidemic and antiobesity effects have also been reported in preclinical studies and clinical trials. This study aims to review the metabolic effects of MC reported in clinical trials as well as its mechanisms of action.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Miriam Méndez-Del Villar
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara, Tonalá, Jalisco, México
| | - Elsy Janeth Ramos-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Karina G Pérez-Rubio
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
12
|
Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. BIOLOGY 2020; 9:E252. [PMID: 32872226 PMCID: PMC7563488 DOI: 10.3390/biology9090252] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Natural products, including organisms (plants, animals, or microorganisms) have been shown to possess health benefits for animals and humans. According to the estimation of the World Health Organization, in developing countries, 80% of the population has still depended on traditional medicines or folk medicines which are mostly prepared from the plant for prevention or treatment diseases. Traditional medicine from plant extracts has proved to be more affordable, clinically effective and relatively less adverse effects than modern drugs. Literature shows that the attention on the application of phytochemical constituents of medicinal plants in the pharmaceutical industry has increased significantly. Plant-derived secondary metabolites are small molecules or macromolecules biosynthesized in plants including steroids, alkaloids, phenolic, lignans, carbohydrates and glycosides, etc. that possess a diversity of biological properties beneficial to humans, such as their antiallergic, anticancer, antimicrobial, anti-inflammatory, antidiabetic and antioxidant activities Diabetes mellitus is a chronic disease result of metabolic disorders in pancreas β-cells that have hyperglycemia. Hyperglycemia can be caused by a deficiency of insulin production by pancreatic (Type 1 diabetes mellitus) or insufficiency of insulin production in the face of insulin resistance (Type 2 diabetes mellitus). The current medications of diabetes mellitus focus on controlling and lowering blood glucose levels in the vessel to a normal level. However, most modern drugs have many side effects causing some serious medical problems during a period of treating. Therefore, traditional medicines have been used for a long time and play an important role as alternative medicines. Moreover, during the past few years, some of the new bioactive drugs isolated from plants showed antidiabetic activity with more efficacy than oral hypoglycemic agents used in clinical therapy. Traditional medicine performed a good clinical practice and is showing a bright future in the therapy of diabetes mellitus. World Health Organization has pointed out this prevention of diabetes and its complications is not only a major challenge for the future, but essential if health for all is to be attained. Therefore, this paper briefly reviews active compounds, and pharmacological effects of some popular plants which have been widely used in diabetic treatment. Morphological data from V-herb database of each species was also included for plant identification.
Collapse
Affiliation(s)
- Ngan Tran
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| | - Bao Pham
- Information Science Faculty, Saigon University, Ho Chi Minh City 711000, Vietnam;
| | - Ly Le
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| |
Collapse
|
13
|
The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00219-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Forouzanfar F, Mousavi SH. Targeting Autophagic Pathways by Plant Natural Compounds in Cancer Treatment. Curr Drug Targets 2020; 21:1237-1249. [PMID: 32364070 DOI: 10.2174/1389450121666200504072635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
Nowadays, natural compounds of plant origin with anticancer effects have gained more attention because of their clinical safety and broad efficacy profiles. Autophagy is a multistep lysosomal degradation pathway that may have a unique potential for clinical benefit in the setting of cancer treatment. To retrieve articles related to the study, the databases of Google Scholar, Web of sciences, Medline and Scopus, using the following keywords: Autophagic pathways; herbal medicine, oncogenic autophagic pathways, tumor-suppressive autophagic pathways, and cancer were searched. Although natural plant compounds such as resveratrol, curcumin, oridonin, gossypol, and paclitaxel have proven anticancer potential via autophagic signaling pathways, there is still a great need to find new natural compounds and investigate the underlying mechanisms, to facilitate their clinical use as potential anticancer agents through autophagic induction.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Antioxidant, Antibacterial, and Anticancer Activities of Bitter Gourd Fruit Extracts at Three Different Cultivation Stages. J CHEM-NY 2020. [DOI: 10.1155/2020/7394751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we are presenting the effect of three ripening stages of air-dried bitter gourd fruit extracts on phenolic acid composition, antioxidant, antibacterial, and anticancer activities. The results showed mature bitter gourd fruit extract in 100% methanol showing 78% DPPHº scavenging activity. Immature dried fruit extract in 80% and 100% methanol showed promising antibacterial activities, i.e., >18.5 ± 0.21 mm zone-of-inhibition against Staphylococcus aureus, while mature dried fruit extract in 80% methanol showed 18.4 ± 0.17 mm zone-of-inhibition against Escherichia coli. Anticancer activity results of 100% methanol extracts of ripened fruit possess showed 6.72 ± 1.81 and 3.55 ± 0.51 mg/mL IC50 values with HeLa and MDBK cancer cell lines, respectively. The overall results indicate that the immature and ripen fruits of BG could be extracted in pure methanol as an antibacterial and anticancer phytomedicine.
Collapse
|
16
|
Kung WM, Lin CC, Kuo CY, Juin YC, Wu PC, Lin MS. Wild Bitter Melon Exerts Anti-Inflammatory Effects by Upregulating Injury-Attenuated CISD2 Expression following Spinal Cord Injury. Behav Neurol 2020; 2020:1080521. [PMID: 33062068 PMCID: PMC7545449 DOI: 10.1155/2020/1080521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spinal cord injuries (SCIs) induce secondary neuroinflammation through astrocyte reactivation, which adversely affects neuronal survival and eventually causes long-term disability. CDGSH iron sulfur domain 2 (CISD2), which has been reported to be involved in mediating the anti-inflammatory responses, can serve as a target in SCI therapy. Wild bitter melon (WBM; Momordica charantia Linn. var. abbreviata Ser.) contains an anti-inflammatory agent called alpha-eleostearic acid (α-ESA), a peroxisome proliferator-activated receptor-β (PPAR-β) ligand. Activated PPAR-β inhibits the nuclear factor κB (NF-κB) signaling pathway via the inhibition of IκB (inhibitor of NF-κB) degradation. The role of astrocyte deactivation and CISD2 in anti-inflammatory mechanisms of WBM in acute SCIs is unknown. MATERIALS AND METHODS A mouse model of SCI was generated via spinal cord hemisection. The SCI mice were administered WBM intraperitoneally (500 mg/kg bodyweight). Lipopolysaccharide- (LPS-) stimulated ALT cells (astrocytes) were used as an in vitro model for studying astrocyte-mediated inflammation post-SCI. The roles of CISD2 and PPAR-β in inflammatory signaling were examined using LPS-stimulated SH-SY5Y cells transfected with si-CISD2 or scramble RNA. RESULTS WBM mitigated the SCI-induced downregulation of CISD2, PPAR-β, and IκB and upregulation of glial fibrillary acidic protein (GFAP; marker of astrocyte reactivation) in the spinal cord of SCI mice. Additionally, WBM (1 μg/mL) mitigated LPS-induced CISD2 downregulation. Furthermore, SH-SY5Y neural cells with CISD2 knockdown exhibited decreased PPAR-β expression and augmented NF-κB signaling. CONCLUSION To the best of our knowledge, this is the first study to report that CISD2 is an upstream modulator of the PPAR-β/NF-κB proinflammatory signaling pathway in neural cells, and that WBM can mitigate the injury-induced downregulation of CISD2 in SCI mice and LPS-stimulated ALT astrocytes.
Collapse
Affiliation(s)
- Woon-Man Kung
- 1Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | - Chai-Ching Lin
- 2Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Chan-Yen Kuo
- 3Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli 32001, Taiwan
| | - Yu-Ching Juin
- 2Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Po-Ching Wu
- 4Department of Biomechatronic Engineering, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Muh-Shi Lin
- 2Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- 5Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- 6Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- 7Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
17
|
Liu Y, Zhang B, Chen X, Guo Z, Wang Y, Zhao J. Spectroscopic studies on the interaction of alpha‐eleostearic acid with calf thymus DNA. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yufeng Liu
- College of Chemistry and Materials ScienceNorthwest University Xi'an China
| | - Baixin Zhang
- College of Chemistry and Materials ScienceNorthwest University Xi'an China
| | - Xiaomei Chen
- College of Chemistry and Materials ScienceNorthwest University Xi'an China
| | - Zhian Guo
- College of Chemistry and Materials ScienceNorthwest University Xi'an China
| | - Yi Wang
- School of Environmental and Municipal EngineeringXi'an University of Architecture and Technology Xi'an China
| | - Jingchan Zhao
- College of Chemistry and Materials ScienceNorthwest University Xi'an China
| |
Collapse
|
18
|
Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 1: citrus, grape, pomegranate and apple wastes. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Wang DH, Wang Z, Le KP, Cortright JR, Park HG, Tobias HJ, Brenna JT. Potentially High Value Conjugated Linolenic Acids (CLnA) in Melon Seed Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10306-10312. [PMID: 31464431 DOI: 10.1021/acs.jafc.9b04744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conjugated linolenic acids (CLnAs) are natural phytochemicals with known and potential bioactivities in mammals. Established CLnA sources are limited to a few common fruit seeds, notably pomegranate seeds and cherry pits, and the search for alternatives is impeded in part by cumbersome methods for reliable measurement. We investigated CLnA contents in lower value fruit seeds with a recently available facile mass spectrometry method, solvent-mediated chemical ionization, enabling and quantitative analysis. We report for the first time the detection of CLnAs in cantaloupe and honeydew seeds at levels of 2 mg CLnA/g seed kernel. Based on the combined waste stream for these muskmelons of about 1.4 billion pounds in the USA annually, we estimate that the available CLnAs amount to 37.5 tons, similar to cherry pits. Our results suggest the potentially enhanced economic value of a specific class of bioactives that may be extracted from discarded food processing waste.
Collapse
Affiliation(s)
- Dong Hao Wang
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - Zhen Wang
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - Kim Phuong Le
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - J Raven Cortright
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - Herbert J Tobias
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition , University of Texas at Austin , 1400 Barbara Jordan Blvd , Austin , Texas 78723 , United States
| |
Collapse
|
20
|
Peter EL, Kasali FM, Deyno S, Mtewa A, Nagendrappa PB, Tolo CU, Ogwang PE, Sesaazi D. Momordica charantia L. lowers elevated glycaemia in type 2 diabetes mellitus patients: Systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:311-324. [PMID: 30385422 DOI: 10.1016/j.jep.2018.10.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Momordica charantia Linnaeus (Cucurbitaceae) has been extensively used traditionally as food and herbal medicine for type 2 diabetes mellitus in Asia, Brazil, and east Africa. In vitro and in vivo studies suggest its glycemic control potential; however, clinical studies produced conflicting results. AIM OF THE STUDY To evaluate the efficacy of M. charantia preparations in lowering elevated plasma glucose level in prediabetes and type 2 diabetes mellitus patients. METHODS Electronic search of the Cochrane library, PubMed®, CINAHL, and SCOPUS databases was done from 1st January 1960-30th April 2018 without language restriction. Two independent reviewers extracted data and assessed risk of bias of articles. Revman var. 5.3 software was used for data synthesis in meta-analysis. Heterogeneity was assessed using Chi-square and I2 tests. Treatment effect was estimated using mean difference at follow up in outcome measures between M. charantia preparations and placebo or oral hypoglycemic agents control group. The protocol of this study has a registration number PROSPERO CRD42018083653. RESULTS Ten studies of type 2 diabetes mellitus (n = 1045) were included in the meta-analysis. They had 4-16 weeks follow up and overall moderate to high risk of bias. Compared to placebo, M. charantia monoherbal formulation significantly reduces FPG, PPG and HBA1c with mean difference of - 0.72 mmol/L, (95% CI: -1.33, -0.12), I2 = 14%, - 1.43 mmol/L, (95% CI: -2.18, -0.67), I2 = 0, - 0.26%, (95% CI: -0.49, -0.03), I2 = 0 respectively. M. charantia also lowered FPG in prediabetes (mean difference -0.31 mmol/L, n = 52); the evidence was downgraded to low quality because the study had unclear risk of bias and inadequate sample size. No serious adverse effects were reported. CONCLUSION M. charantia adjunct preparations improved glycemic control in T2DM patients. However, this conclusion is based on low to very low quality evidences for the primary outcomes and sparse data for several safety outcomes, thus, warrant further research. Particularly needed are the researches that focus on standardizing M. charantia formulation and determine its efficacy and safety in clinical trials with adequate sample size, designed with random sequence generation, allocation concealment of intervention and blinding of both research personnel and participants.
Collapse
Affiliation(s)
- Emanuel L Peter
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Félicien Mushagalusa Kasali
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Serawit Deyno
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Andrew Mtewa
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Prakash B Nagendrappa
- School of Integrative Health Sciences, Trans-disciplinary University, 74/2, Jarakabande Kaval, Post Attur Via Yelahanka, Bengaluru 560064, India.
| | - Casim Umba Tolo
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Patrick Engeu Ogwang
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda.
| | - Duncan Sesaazi
- Pharm-BioTechnology and Traditional Medicine Center (PHARMBIOTRAC), World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, Uganda; Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Uganda.
| |
Collapse
|
21
|
Wang CL, Kung HN, Wu CH, Huang CJ. Dietary wild bitter gourd displays selective androgen receptor modulator like activity and improves the muscle decline of orchidectomized mice. Food Funct 2019; 10:125-139. [PMID: 30600821 DOI: 10.1039/c8fo01777h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of skeletal muscle mass and strength is often associated with disability and poor quality of life. Selective Androgen Receptor Modulators (SARMs) are under development as potential treatment. This study aims at examining the potential of wild bitter gourd (BG) as a SARM and its effects on the muscle decline induced by orchiectomy. In the cell-based androgen receptor (AR) transactivation assay, the BGP extract showed weak agonistic and antagonistic activities, resembling those of some SARMs. Male C57BL/6J mice were sham-operated (Sham group) or castrated (Cast groups) and fed a modified AIN-93G high sucrose diet supplemented without (Cast group) or with 5% lyophilized BG powder (Cast + BGP) or with testosterone propionate (7 mg TP per kg diet, Cast + TP) for 23 weeks. In contrast to the Cast + TP group, the BGP supplementation did not affect the serum testosterone concentration, and prostate and seminal vesicle mass. Both TP and BGP supplementation increased the weight of androgen responsive muscles, bulbocavernosus (BC) and levator ani (LA) (p < 0.05). The grip strength and the performance on a rotarod of the Cast + BGP group were comparable to those of the Cast + TP group (p > 0.05). The number of succinate dehydrogenase (SDH)-positive fibers of the Cast + BGP group was not significantly different from that of the Sham and Cast + TP groups (p > 0.05). The BGP supplementation up-regulated the Pgc1α, Ucp2 or Ucp3 gene expressions in skeletal muscles of castrated mice (p < 0.05). BGP showed some characteristics of the SARM and might improve skeletal muscle function through the up-regulation of mitochondrial biogenic genes and oxidative capacity, and ameliorated the castration-induced decline of skeletal muscle function in mice.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
22
|
Peter EL, Deyno S, Mtewa A, Kasali FM, Nagendrappa PB, Sesaazi D, Tolo CU, Ogwang PE. Safety and efficacy of Momordica charantia Linnaeus in pre-diabetes and type 2 diabetes mellitus patients: a systematic review and meta-analysis protocol. Syst Rev 2018; 7:192. [PMID: 30442186 PMCID: PMC6238397 DOI: 10.1186/s13643-018-0847-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Momordica charantia Linnaeus (Cucurbitaceae) has been used traditionally as a nutritious food and as a herbal medicine for type 2 diabetes mellitus. However, human studies that investigated its glycemic control have generated inconsistent findings. Therefore, this systematic review and meta-analysis is aimed at evaluating the safety and efficacy of M. charantia L. preparations in human studies that have investigated its role in glycemic control. METHODS This protocol has been prepared according to Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). The review will include randomized clinical trials and non-randomized clinical trials. The included studies will have assessed glycemic control of M. charantia preparations with placebo or standard oral anti-hyperglycemic agents in adult pre-diabetes and/or type 2 diabetes mellitus patients and have at least 4 weeks of follow-up. The primary outcomes of review are fasting blood glucose levels, glycosylated hemoglobin A1c, and post-prandial blood glucose level. Electronic database search for published literatures will be conducted without language restriction in EMBASE, MEDLINE/PubMed, the Cochrane Library, SCOPUS, Web of Sciences, and CINAHL databases. Search for gray literatures and references of the retrieved full-text articles will be conducted in Google, Google Scholar, OpenGrey, ProQuest dissertations & Theses, British Library EThos, and university digital library systems. Two independent reviewers will later evaluate full texts, extract data, and assess risk of bias of eligible articles. Publication biases will be assessed by testing asymmetry of funnel plot using Egger's or Begg's tests while heterogeneity will be assessed using Cochran Q test, P value, and I2. Revman software version 5.3 will be used for meta-analysis including subgroup and sensitivity analysis. DISCUSSION This systematic review and meta-analysis will investigate both safety and efficacy of M. charantia preparations in type 2 diabetes mellitus. The review results will be published in a peer-reviewed journal. The results will bring better understanding of clinical outcomes in treatment of type 2 diabetes mellitus patients and highlight gaps for future research. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42018083653 .
Collapse
Affiliation(s)
- Emanuel L. Peter
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
- Department of Innovation, Technology Transfer & Commercialization, National Institute for Medical Research, 2448 Baracka Obama drive, P.O. Box 9653, Dar Es Salaam, Tanzania
| | - Serawit Deyno
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
- Department of Pharmacology, School of Medicine, College of Medicine and Health Sciences, Hawassa University, Awasa, Ethiopia
| | - Andrew Mtewa
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
- Chemistry Section, Department of Applied Sciences, Malawi Institute of Technology, Malawi University of Science & Technology, Limbe, Malawi
| | - Félicien Mushagalusa Kasali
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine and Pharmacy, Official University of Bukavu, Bukavu, Democratic Republic of Congo
| | | | - Duncan Sesaazi
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-BioTechnology and Traditional Medicine Center, World Bank-Africa Center of Excellence (ACE II), Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
23
|
Rohajatien U, Harijono H, Estiasih T, Sriwahyuni E. Bitter Melon (Momordica charantia L) Fruit Decreased Blood Glucose Level and Improved Lipid Profile of Streptozotocin Induced Hyperglycemia Rats. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2018. [DOI: 10.12944/crnfsj.6.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bitter melon (Momordica charantia, L) is a fruit that traditionally believe has benefits on health. The objective of this study is to identify bitter melon bioactive and nutritional compounds, and their effect on blood glucose level and lipid profile of streptozotocin induced hyperglycemia rats. Rats were divided into three group, those were normal group; hyperglycemia group without bitter melon fruit feeding; and hyperglycemia group with bitter melon fruit administration. Hyperglycemia condition was achieved by STZ induction. The experiment was conducted for 4 weeks. The results showed that fresh bitter melon fruit contains β-sitosterol 348.16+1.66 ppm, stigmasterol 183.08+0.8 ppm, campesterol 130.79+0.4 ppm, diosgenin 16.42+0.06 ppm, soluble dietary fiber 2.99+0.07%, insoluble dietary fiber 0.55+0.01%, and pectin 1.41+0.05%. At week 4 of experiment, bitter melon fruit fed hyperglycemia group showed a decrease of 56% blood glucose level compared to blood glucose level at week 0. Body weight of this group also increased. The improvement of lipid profile of bitter melon fed group was indicated by decreasing blood total cholesterol of 49%, triglyceride of 35%, LDL cholesterol of 42%, and increasing HDL of 133% compared to initial level at week 0. Bitter melon also increased fecal cholesterol secretion and effectively inhibited cholesterol absorption in hyperglycemia rats. Bitter melon fruit is suggested for hyperglycemia management due to its ability to reduce glucose and improve lipid profile simultaneously.
Collapse
Affiliation(s)
- Ummi Rohajatien
- Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Harijono Harijono
- Department of Food Science and Technology, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Teti Estiasih
- Department of Food Science and Technology, Brawijaya University, Jl. Veteran, Malang, Indonesia
| | - Endang Sriwahyuni
- Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia
| |
Collapse
|
24
|
Nazarian-Samani Z, Sewell RDE, Lorigooini Z, Rafieian-Kopaei M. Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: a Systematic Review. Curr Diab Rep 2018; 18:72. [PMID: 30105479 DOI: 10.1007/s11892-018-1042-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This systematic review describes evidence concerning medicinal plants that, in addition to exerting hypoglycemic effects, decrease accompanying complications such as nephropathy, neuropathy, retinopathy, hypertension, and/or hyperlipidemia among individuals with diabetes mellitus (DM). RECENT FINDINGS Studies on the antidiabetic mechanisms of medicinal plants have shown that most of them produce hypoglycemic activity by stimulating insulin secretion, augmenting peroxisome proliferator-activated receptors (PPARs), inhibiting α-amylase or α-glucosidase, glucagon-like peptide-1 (GLP-1) secretion, advanced glycation end product (AGE) formation, free radical scavenging plus antioxidant activity (against reactive oxygen or nitrogen species (ROS/RNS)), up-regulating or elevating translocation of glucose transporter type 4 (GLUT-4), and preventing development of insulin resistance. Not only are medicinal plants effective in DM, but many of them also possess a variety of effects on other disease states, including the complications of DM. Such plants may be appropriate alternatives or adjuncts to available antidiabetic medications.
Collapse
Affiliation(s)
- Zeinab Nazarian-Samani
- Basic Science Department, Veterinary Medicine Faculty, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
25
|
Jones LD, Pangloli P, Krishnan HB, Dia VP. BG-4, a novel bioactive peptide from momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:226-232. [PMID: 29655690 DOI: 10.1016/j.phymed.2018.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/08/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bitter melon (Momordica charantia) is a commonly used food crop for management of a variety of diseases most notably for control of diabetes, a disease associated with aberrant inflammation. PURPOSE To evaluate the anti-inflammatory property of BG-4, a novel bioactive peptide isolated from the seed of bitter melon. METHODS Differentiated THP-1 human macrophages were pre-treated with BG-4 and stimulated with lipopolysaccharide. Pro-inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. The mechanism of action involving activation of NF-κB and phosphorylation of ERK and STAT3 was measured by western blot and immunofluorescence. The production of intracellular reactive oxygen species was evaluated by fluorescence microscopy and fluorescence spectrophotometry. RESULTS BG-4 dose dependently reduce the production of pro-inflammatory cytokines IL-6 and TNF-α. The ability of BG-4 to reduce production of cytokines are associated with reduced phosphorylation of ERK and STAT3 accompanied by reduced nuclear translocation of p65 NF-κB subunit. The mechanism of action is reduction of LPS-induced production of intracellular reactive oxygen species. CONCLUSION Our results demonstrated the ability of BG-4, a novel peptide from the seed of bitter melon, to exert anti-inflammatory action. This could explain the traditional use of bitter melon against diseases associated with aberrant and uncontrolled inflammation.
Collapse
Affiliation(s)
- Lynsey D Jones
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Philipus Pangloli
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Hari B Krishnan
- USDA-ARS Plant Genetics Resources Unit, University of Missouri, Columbia, MO 65211, USA
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
26
|
Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M. Phytotherapy in the Management of Diabetes: A Review. Molecules 2018; 23:E105. [PMID: 29300317 PMCID: PMC6017385 DOI: 10.3390/molecules23010105] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023] Open
Abstract
Phytotherapy has long been a source of medicinal products and over the years there have been many attempts to use herbal medicines for the treatment of diabetes. Several medicinal plants and their preparations have been demonstrated to act at key points of glucidic metabolism. The most common mechanisms of action found include the inhibition of α-glucosidase and of AGE formation, the increase of GLUT-4 and PPARs expression and antioxidant activity. Despite the large amount of literature available, the actual clinical effectiveness of medicinal plants in controlling diabetes-related symptoms remains controversial and there is a crucial need for stronger evidence-based data. In this review, an overview of the medicinal plants, which use in the management of diabetes is supported by authoritative monographs, is provided. References to some species which are currently under increasing clinical investigation are also reported.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Vittoria Borgonetti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Giulia Cettolin
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Daniela Giachetti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Anna Rosa Magnano
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| |
Collapse
|
27
|
Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int J Mol Sci 2017; 18:E2555. [PMID: 29182587 PMCID: PMC5751158 DOI: 10.3390/ijms18122555] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.
Collapse
Affiliation(s)
- Shuo Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Fan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
28
|
Chen GC, Chen WH, Tseng KT, Chao PM. The anti-adiposity effect of bitter melon seed oil is solely attributed to its fatty acid components. Lipids Health Dis 2017; 16:186. [PMID: 28962621 PMCID: PMC5622538 DOI: 10.1186/s12944-017-0578-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Obesity is the leading chronic disease affecting people of all ages. The objective of this study was to optimize composition of a bitter melon seed oil (BMSO) product to maximize its anti-adiposity effect. Methods Bleaching oil, saponifiables and non-saponifiables were prepared from BMSO, with α-eleostearic acid (α-ESA) content in BMSO maintained in bleaching oil and saponifiables. C57BL/6 J mice were allocated into five groups (n = 10/group) to receive diet C [30% soybean oil (SBO)], BM [25% SBO + 5% BMSO], BMS, BMNS or BMD. For the three latter diets, saponifiables (hydrolyzed fatty acids from BMSO), non-saponifiables (excluding fatty acids from BMSO) or bleaching oil (excluding pigments from BMSO), respectively, were added in amount equivalent to their content in 5% BMSO and SBO was added to bring total fat to 30%. After 14 wk., indices associated with adiposity and safety, as well as lipid metabolic signaling in white adipose tissue (WAT), were measured. Results The body fat percentage of mice in group BM, BMS, BMNS, and BMD were 90 ± 26, 76 ± 21, 115 ± 30 and 95 ± 17% of that in group C. Based on body fat percentage and plasma leptin concentrations, an anti-adiposity effect was evident in groups BM, BMS and BMD (greatest effect in BMS). Histologically, inguinal fat had smaller adipocytes in groups BM, BMS and BMD (P < 0.05), but not in group BMNS, relative to group C. There were no differences among groups in blood pressure or heart rate. Moreover, Sirt1 mRNA levels in inguinal fat were significantly greater in groups BM, BMS and BMD than group C. Conclusion We concluded that the anti-adiposity function of BMSO was solely attributed to the fatty acid fraction, with the free fatty acid form having the greatest effect. Electronic supplementary material The online version of this article (10.1186/s12944-017-0578-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gou-Chun Chen
- Department of Nutrition, China Medical University, Taichung, 404, Taiwan
| | | | | | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
29
|
Wang S, Li Z, Yang G, Ho CT, Li S. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct 2017; 8:1749-1762. [PMID: 28474032 DOI: 10.1039/c6fo01812b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Products derived from edible medicinal plants have been used for centuries to prevent, treat, and even cure multiple diseases. Momordica charantia L., widely cultivated around the world, is a typical one bred for vegetables and medicinal usage. All parts of M. charantia possess important medicinal properties, including antidiabetic, anticancer, hypotensive, anti-obesity, antimicrobial, antihyperlipidemic, antioxidant, anti-inflammatory, immuno-modulatory, anthelmintic, neuro-protective, as well as hepato-protective properties both in vitro and in vivo. This review summarizes the active components and medicinal properties of M. charantia, especially the activities and mechanisms of its anti-diabetic and anti-cancer properties. The anti-diabetic properties involve inhibiting intestinal α-glucosidase and glucose transport, protecting islet β-cells, enhancing insulin secretion, increasing hepatic glucose disposal, decreasing gluconeogenesis, and even ameliorating insulin resistance. Moreover, the expressions of PPARs could also be activated and up-regulated. Meanwhile, its anticancer properties are mostly due to apoptosis, cell cycle arrest, and expression of serum factors associated with immunity. In this review, we aim to provide an overview of M. charantia and its benefits for development as a functional food.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Hubei Province, China.
| | | | | | | | | |
Collapse
|
30
|
Weng JR, Bai LY, Lin WY. Identification of a Triterpenoid as a Novel PPARγ Activator Derived from Formosan Plants. Phytother Res 2017; 31:1722-1730. [PMID: 28856793 DOI: 10.1002/ptr.5900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), one of the transcription factors that regulate lipid metabolism and energy use in tumor cells, is a viable target for cancer therapy. In our search for potential PPARγ activator, extracts from five Formosan plants were tested. Among them, Momordica charantia L. showed the highest ability to activate PPARγ, which led us to identify its potential constituents. Among the seven compounds isolated from M. charantia, a triterpenoid, 5β,19-epoxy-19-methoxycucurbita-6,23-dien-3β,25-diol (compound 1), was identified as a PPARγ activator with an IC50 of 10 μM in breast cancer MCF-7 cells. Flow cytometric analysis indicated that compound 1 induced G1 cell cycle arrest which might be attributable to the modulation of phosphorylation and expression of numerous key signaling effectors, including cyclin D1, CDK6, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 1, leading to increased histone H3 acetylation. Taken together, these findings suggest that compound 1 may have therapeutic applications in cancer treatment through PPARγ activation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40447, Taiwan.,College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen, 89142, Taiwan
| |
Collapse
|
31
|
Chang YY, Su HM, Chen SH, Hsieh WT, Chyuan JH, Chao PM. Roles of Peroxisome Proliferator-Activated Receptor α in Bitter Melon Seed Oil-Corrected Lipid Disorders and Conversion of α-Eleostearic Acid into Rumenic Acid in C57BL/6J Mice. Nutrients 2016; 8:nu8120805. [PMID: 27973445 PMCID: PMC5188460 DOI: 10.3390/nu8120805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
We previously reported that bitter melon seed oil (BMSO) was an effective anti-steatosis and antiobesity agent. Since the major fatty acid α-eleostearic acid (α-ESA) in BMSO is a peroxisome proliferator-activated receptor α (PPARα) activator, the objective was to investigate the role of PPARα in BMSO-modulated lipid disorders and α-ESA metabolism. C57BL/6J wild (WD) and PPARα knockout (KO) mice were fed a high-fat diet containing BMSO (15% soybean oil + 15% BMSO, HB) or not (30% soybean oil, HS) for 5 weeks. The HB diet significantly reduced hepatic triglyceride concentrations and increased acyl-CoA oxidase activity in WD, but not in KO mice. However, regardless of genotype, body fat percentage was lowered along with upregulated protein levels of uncoupling protein 1 (UCP1) and tyrosine hydroxylase, as well as signaling pathway of cAMP-dependent protein kinase and AMP-activated protein kinase in the white adipose tissue of HB-treated groups compared to HS cohorts. In WD-HB and KO-HB groups, white adipose tissue had autophagy, apoptosis, inflammation, and browning characteristics. Without PPARα, in vivo reduction of α-ESA into rumenic acid was slightly but significantly lowered, along with remarkable reduction of hepatic retinol saturase (RetSat) expression. We concluded that BMSO-mediated anti-steatosis depended on PPARα, whereas the anti-adiposity effect was PPARα-independent. In addition, PPARα-dependent enzymes may participate in α-ESA conversion, but only have a minor role.
Collapse
Affiliation(s)
- Ya-Yuan Chang
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | - Hui-Min Su
- Graduate Institute of Physiology, National Taiwan University, Taipei 100, Taiwan.
| | - Szu-Han Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | - Wen-Tsong Hsieh
- School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jong-Ho Chyuan
- Hualien District Agricultural Research and Extension Station, Hualien 973, Taiwan.
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
32
|
Raina K, Kumar D, Agarwal R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:116-129. [PMID: 27452666 DOI: 10.1016/j.semcancer.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Recently, there is a paradigm shift that the whole food-derived components are not 'idle bystanders' but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is 'bitter melon' (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon effects on metabolism enzymes and drug transporters. This has important implications, given that a large proportion of individuals, taking bitter melon based supplements/phytochemical extracts/food based home-remedies, are also likely to be taking conventional therapeutic drugs at the same time. Accordingly, the comprehensively reviewed information here could be prudently translated to the clinical implications associated with any potential concerns regarding bitter melon consumption by cancer patients.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
33
|
Lu HY, Lin BF. Wild bitter melon alleviates dextran sulphate sodium-induced murine colitis by suppressing inflammatory responses and enhancing intestinal regulatory T cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Chen GC, Su HM, Lin YS, Tsou PY, Chyuan JH, Chao PM. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. J Nutr Biochem 2016; 33:28-35. [PMID: 27260465 DOI: 10.1016/j.jnutbio.2016.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 01/13/2023]
Abstract
α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100μmol/L) or in combination with α-ESA (LN+α-ESA; 75+25μmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Gou-Chun Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hui-Min Su
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Po-Yen Tsou
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jong-Ho Chyuan
- Hualien District Agricultural Research and Extension Station, Hualien, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
35
|
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 2016; 51:377-97. [PMID: 26968402 DOI: 10.1007/s11745-016-4135-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Collapse
|
36
|
A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 2016; 6:22419. [PMID: 26926586 PMCID: PMC4772478 DOI: 10.1038/srep22419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023] Open
Abstract
The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ−independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.
Collapse
|
37
|
Li L, Bonneton F, Chen XY, Laudet V. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine. Mol Cell Endocrinol 2015; 401:221-37. [PMID: 25449417 DOI: 10.1016/j.mce.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.
Collapse
Affiliation(s)
- Ling Li
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France.; School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France
| | - Xiao Yong Chen
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France..
| |
Collapse
|
38
|
Ciou SY, Hsu CC, Kuo YH, Chao CY. Effect of wild bitter gourd treatment on inflammatory responses in BALB/c mice with sepsis. Biomedicine (Taipei) 2014; 4:17. [PMID: 25520930 PMCID: PMC4264976 DOI: 10.7603/s40681-014-0017-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/01/2014] [Indexed: 01/04/2023] Open
Abstract
Background/Introduction: Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe) common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis. Purpose: This study evaluated influence of eating wild bitter gourd on inflammation responses in mice with sepsis. Methods: We injected intraperitoneal LPS to induce sepsis. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. Results: This experiment revealed weights in groups with added wild bitter gourd starkly lower than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with wild bitter gourd added all lower than that of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were inhibited significantly. Conclusion: Wild bitter gourd in diets promoted lipid metabolism, improved low blood glucose in sepsis, and attenuated inflammatory stress. These findings suggested that this plant food might provide medical benefits for certain persons.
Collapse
Affiliation(s)
- Shin-You Ciou
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan ; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
39
|
Chao CY, Sung PJ, Wang WH, Kuo YH. Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules 2014; 19:12777-88. [PMID: 25153878 PMCID: PMC6270741 DOI: 10.3390/molecules190812777] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 11/16/2022] Open
Abstract
Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NOconcentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis.
Collapse
Affiliation(s)
- Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology and Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
40
|
Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention? ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.endoen.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Miranda J, Arias N, Fernández-Quintela A, del Puy Portillo M. ¿Son los isómeros del ácido linolénico conjugado una alternativa a isómeros del ácido linoleico conjugado en la prevención de la obesidad? ACTA ACUST UNITED AC 2014; 61:209-19. [DOI: 10.1016/j.endonu.2013.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/07/2013] [Accepted: 04/14/2013] [Indexed: 12/20/2022]
|
42
|
|
43
|
Comparative prophylactic effects of α-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. Journal of Food Science and Technology 2014; 51:1724-36. [PMID: 25190828 DOI: 10.1007/s13197-014-1257-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The present work entailed perspicacious fabrication of Bitter Gourd Seed Oil Nanoemulsion (BGO-NE) for increasing bioavailability of CLnA in oxidative stress induced in vivo system. The BGO-NE was characterized and evaluated for dimensional as well as rheological changes periodically during a 12 week storage period. BGO comprising ∼50 % α-eleostearic acid, was assessed in conventional and NE formulation at different doses, for its ability to stimulate antioxidative enzyme marker paradigm comprising SOD, GPx, CAT and GSH, inherent to the subjects under study. The formulated BGO-NE (d < 100 nm) was found to be stable for 12 weeks compared to BGO-CE as was determined by particle size characterization and associated parameters. Diet supplementation of 0.5 % (w/v) BGO-NE formulation exhibited maximum efficiency in countering oxidative stress as compared to 1 % BGO-NE formulation and equivalent doses of BGO-CE. Higher efficacy at very low dose of the nano-sized formulation was thus, also established. Histopathological data from liver, pancreas and kidney sections corroborated the above findings. The present study with formulated BGO-NE and BGO-CE evaluates and confirms the implications of a NE formulation of a bioactive lipid - conjugated linolenic acid (CLnA), targeting specific in vivo processes to counter the negative influence of excess ROS (Reactive Oxygen Species) in the system. It, thus presents itself as a potent nutraceutical against diabetes mellitus in an optimized delivery system.
Collapse
|
44
|
Fuentes E, Fuentes F, Palomo I. Mechanism of the anti-platelet effect of natural bioactive compounds: Role of peroxisome proliferator-activated receptors activation. Platelets 2013; 25:471-9. [DOI: 10.3109/09537104.2013.849334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Lin HR, Chen YC, Lin YJ, Ling MH, Chou CW, Hseu YC, Kuo YH, Senthil Kumar KJ. pH-Sensitive Hollow Alginate-Chitosan Hydrogel Beads for Bitter Gourd Delivery. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Miranda J, Aguirre L, Fernández-Quintela A, Macarulla MT, Martínez-Castaño MG, Ayo J, Bilbao E, Portillo MP. Effects of pomegranate seed oil on glucose and lipid metabolism-related organs in rats fed an obesogenic diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5089-5096. [PMID: 23682933 DOI: 10.1021/jf305076v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studies conducted in mice have revealed positive effects of punicic acid (PUA). The aim of this study was to analyze the effects of PUA on fat accumulation and glycemic control in rats fed an obesogenic diet. Rats were randomly divided into two groups: control group and PUA group (diet supplemented with 0.5% PUA). No changes were observed in adipose tissue weights. The glucose tolerance test showed that the glycemic value in the PUA group had decreased significantly at the final time (120 min) (-19.3%), as had fructosamine levels (-11.1%). However, homeostasis model assessment (HOMA-IR) showed that insulin resistance did not improve. No changes were observed in the liver, skeletal muscle composition, or peroxisome proliferator-activated receptors (PPARs) activation. Low levels (mg/g tissue) of PUA (0.04 ± 0.01 in both tissues) and higher levels of cis-9,trans-11 conjugated linoleic acid (0.31 ± 0.08 in liver, 0.52 ± 0.11 in muscle) were found. PUA supplementation induced hypoplasia (-16.1%) due to the antiproliferative effect on hepatocytes. In conclusion, dietary supplementation of 0.5% PUA did not lead to decreased fat accumulation in adipose tissue, liver, or skeletal muscle, or to improved glycemic control. The hypoplasia induced in liver is a negative effect that should be considered before proposing PUA as a functional ingredient.
Collapse
Affiliation(s)
- Jonatan Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad , 7. 01006 Vitoria, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wild bitter gourd increased metabolic rate and up-regulated genes related to mitochondria biogenesis and UCP-1 in mice. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:625892. [PMID: 23589719 PMCID: PMC3621175 DOI: 10.1155/2013/625892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/26/2013] [Accepted: 02/07/2013] [Indexed: 12/25/2022]
Abstract
This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3 kD and WES, <3 kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase Cβ2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLCβ2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3β-ol, and 5β,19-epoxycucurbita-6,24-diene-3β,23ξ-diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30 min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect.
Collapse
|
49
|
Hsu C, Tsai TH, Li YY, Wu WH, Huang CJ, Tsai PJ. Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chem 2012; 135:976-84. [DOI: 10.1016/j.foodchem.2012.05.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022]
|
50
|
Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH, Yang HL, Kuo YH, Chyuan JH, Chao PM. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr 2012; 142:1197-204. [PMID: 22623391 DOI: 10.3945/jn.112.159939] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the antiadiposity effect of bitter melon seed oil (BMSO), which is rich in the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid. In Expt. 1, C57BL/6J mice were fed a butter-based, high-fat diet [HB; 29% butter + 1% soybean oil (SBO)] for 10 wk to induce obesity. They then continued to receive that diet or were switched to an SBO-based, high-fat diet alone (HS; 30% SBO) or containing bitter melon seed oil (BMSO) (HBM; 15% SBO + 15% BMSO) for 5 wk. The body fat percentage was significantly lower in mice fed the HBM diet (21%), but not the HS diet, compared with mice fed the HB diet. In Expt. 2, mice were fed an SBO-based, high-fat diet containing 0 (HS), 5 (LBM), 10 (MBM), or 15% (HBM) BMSO for 10 wk. In the LBM, MBM, and HBM groups, the body fat percentage was significantly lower by 32, 35, and 65%, respectively, compared with the HS control. The reduction in the HBM group was significantly greater than that in the LBM or MBM group. BMSO administration increased phosphorylation of acetyl-CoA carboxylase, cAMP-activated protein kinase (PKA), and signal transducer and activator of transcription 3 in the white adipose tissue (WAT), suggesting that PKA and leptin signaling might be involved in the BMSO-mediated reduction in lipogenesis and increase in thermogenesis and lipolysis. However, compared with the HS control, the HBM group had a significantly higher TNFα concentration in the WAT accompanied by TUNEL-positive nuclei. We conclude that BMSO is effective in attenuating body fat accumulation through mechanisms associated with PKA activation and programmed cell death in the WAT, but safety concerns need to be carefully addressed.
Collapse
Affiliation(s)
- Pei-Hsuan Chen
- Institute of Nutrition, China Medical University, Taichung,Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|