1
|
Shen Q, He C, Li S, Qiao J, Li S, Zhang Y, Shi M, Zuo L, Hao X, Chen H. Loosely Bounded Exciton with Enhanced Delocalization Capability Boosting Efficiency of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403570. [PMID: 38966891 DOI: 10.1002/smll.202403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
In organic solar cells (OSCs), electron acceptors have undergone multiple updates, from the initial fullerene derivatives, to the later acceptor-donor-acceptor type non-fullerene acceptors (NFAs), and now to Y-series NFAs, based on which efficiencies have reached over 19%. However, the key property responsible for further improved efficiency from molecular structure design is remained unclear. Herein, the material properties are comprehensively scanned by selecting PC71BM, IT-4F, and L8-BO as the representatives for different development stages of acceptors. For comparison, asymmetric acceptor of BTP-H5 with desired loosely bounded excitons is designed and synthesized. It's identified that the reduction of intrinsically exciton binding energy (Eb) and the enhancement of exciton delocalization capability act as the key roles in boosting the performance. Notably, 100 meV reduction in Eb has been observed from PC71BM to BTP-H5, correspondingly, electron-hole pair distance of BTP-H5 is almost two times over PC71BM. As a result, efficiency is improved from 40% of S-Q limit for PC71BM-based OSC to 60% for BTP-H5-based one, which achieves an efficiency of 19.07%, among the highest values for binary OSCs. This work reveals the confirmed function of exciton delocalization capability quantitatively in pushing the efficiency of OSCs, thus providing an enlightenment for future molecular design.
Collapse
Affiliation(s)
- Qing Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shilin Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
2
|
Qiu D, Memon WA, Lai H, Wang Y, Li H, Zheng N, He F. Synergistic Design of Imidazole-Based Polymer Donors for Enhanced Organic Solar Cell Efficiency. J Phys Chem Lett 2024; 15:10858-10865. [PMID: 39436830 DOI: 10.1021/acs.jpclett.4c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Within the realm of organic solar cells (OSCs), designing new high-efficiency polymer donors remains a significant challenge. Achieving the right balance in polymer backbone planarity is crucial: excessive planarity can lead to undesirable aggregation, while insufficient planarity can hinder the charge transport efficiency. In this study, we designed and synthesized an imidazole-based acceptor (A) unit for the first time and then investigated the impact of backbone planarity on charge transport capacity and power conversion efficiency (PCE). Backbone planarity was precisely tuned by incorporating isomeric alkyl chains on the thiophene π-bridge, resulting in four distinct polymer donors: MZC8-F, MZC8-Cl, MZEH-F, and MZEH-Cl. The results showed that the steric hindrance from the EH-branched alkyl chain induced backbone distortion and caused a blue-shift in the absorption spectrum. MZEH-Cl, with its poor planarity and excessively low HOMO energy level, achieved a PCE of just 7.6%. Through careful modulation, MZC8-Cl emerged as the most efficient, with a remarkable PCE of 17.3%, setting a new benchmark for imidazole-based polymer donors. This study not only deepens the understanding of the role of polymer backbone planarity in photovoltaic performance but also lays the groundwork for developing high-efficiency polymer donors.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Qiu D, Pu M, He F. Chlorine-mediated strategy for organic photovoltaics. Chem Commun (Camb) 2024; 60:12502-12512. [PMID: 39352139 DOI: 10.1039/d4cc04053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic solar cells (OSCs), a nascent technology in the photovoltaic field, have attracted considerable research interest. Recently, the power conversion efficiency (PCE) of OSCs has significantly improved, thereby demonstrating substantial potential for commercialization. To achieve this, it is crucial to enhance the performance and stability of OSCs, necessitating the development of novel materials and devices. This feature article presents a review of chlorine-mediated photovoltaic materials in our group. By carefully controlling energy levels, molecular stacking and aggregation behavior, significantly improved performance was achieved. Furthermore, single-crystal analysis facilitated a profound comprehension of the influence of chlorine-mediated interactions on molecular stacking. This has enabled the design and synthesis of a series of high-performance non-fullerene acceptors (NFAs) with three-dimensional network stacking structures. Building upon these materials, we developed quasi-planar heterojunction (Q-PHJ) devices with a significant stability advantage. To sum up, the chlorine-mediated materials and the Q-PHJ devices provide valuable guidance and reference for the development of efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Li C, Yao G, Gu X, Lv J, Hou Y, Lin Q, Yu N, Abbasi MS, Zhang X, Zhang J, Tang Z, Peng Q, Zhang C, Cai Y, Huang H. Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination. Nat Commun 2024; 15:8872. [PMID: 39402068 PMCID: PMC11473827 DOI: 10.1038/s41467-024-53286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/17/2024] Open
Abstract
The high non-radiative energy loss is a bottleneck issue that impedes the improvement of organic solar cells. The formation of triplet exciton is thought to be the main source of the large non-radiative energy loss. Decreasing the rate of back charge transfer is considered as an effective approach to alleviate the relaxation of the charge-transfer state and the triplet exciton generation. Herein, we develops an efficient ternary system based on D18:N3-BO:F-BTA3 by regulating the charge-transfer state disorder and the rate of back charge transfer of the blend. With the addition of F-BTA3, a well-defined morphology with a more condensed molecular packing is obtained. Moreover, a reduced charge-transfer state disorder is demonstrated in the ternary blend, which decreases the rate of back charge transfer as well as the triplet exciton formation, and therefore hinders the non-radiative recombination pathways. Consequently, D18:N3-BO:F-BTA3-based device produces a low non-radiative energy loss of 0.183 eV and a record-high efficiency of 20.25%. This work not only points towards the significant role of the charge-transfer state disorder on the suppression of triplet exciton formation and the non-radiative energy loss, but also provides a valuable insight for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Congqi Li
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guo Yao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Misbah Sehar Abbasi
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Li K, Yuan Y, Yang H, Feng J, Hu K, Jiang X, Hu J, Wu Y, Cui C. Impact of Alkoxy Side Chains on the Quinoxaline-Based Electron Acceptors for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53333-53342. [PMID: 39344970 DOI: 10.1021/acsami.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this work, three alkoxy-substituted quinoxaline core-based small-molecule acceptors (BQO-F, BQDO-F, and BQDO-Cl) are developed to elucidate the impact of ethoxy substituents on the physicochemical and photoelectric properties. Comparative analysis reveals that dialkoxy-substituted BQDO-F has a more planar molecular skeleton, a red-shifted absorption spectrum, upshifted energy levels, stronger crystallinity, and reduced energetic disorder compared to the monoalkoxy-substituted BQO-F. Although the replacement of fluorine atoms with chlorine atoms on the end-capped units of BQDO-F leads to a bathochromically shifted absorption spectrum, the resulting molecule BQDO-Cl shows worse π-π packing order compared to BQDO-F. Benefiting from the more favorable active layer morphology and improved carrier dynamics, the PBDB-T:BQDO-F-based organic solar cell achieves a much higher power conversion efficiency (PCE) of 16.41% compared to that of 14.48% obtained in the BQO-F-based device. In comparison with the BQDO-F-based device, the higher voltage loss of the BQDO-Cl-based device results in a lower PCE of 15.89%. The results clarify the effects of ethoxy substituents and end-capped substitutions of quinoxaline core-based small-molecule acceptors on efficient organic solar cells.
Collapse
Affiliation(s)
- Kui Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ya Yuan
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jun Feng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kewei Hu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinyu Jiang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianlong Hu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
6
|
Chen P, Xiao Y, Li S, Jia X, Luo D, Zhang W, Snaith HJ, Gong Q, Zhu R. The Promise and Challenges of Inverted Perovskite Solar Cells. Chem Rev 2024; 124:10623-10700. [PMID: 39207782 DOI: 10.1021/acs.chemrev.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Yun Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Shunde Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Xiaohan Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - Deying Luo
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Wei Zhang
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Shi X, Zhao Y, Zhou Y, Li Z, Tang Y, Fu H, Liu Y, Zhang ZG, Pu M, Lei M. The GaCl 3-Catalyzed Knoevenagel Condensation To Achieve Acceptor-Donor-Acceptor Small-Molecule Acceptors: A DFT Mechanistic Study. J Org Chem 2024; 89:14408-14417. [PMID: 39311017 DOI: 10.1021/acs.joc.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, the reaction mechanism for the GaCl3-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-b]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl3 catalytic mechanism. The free energy span for the monomolecular GaCl3 catalytic mechanism is the highest (31.8 kcal/mol), followed by the trimolecular GaCl3 catalytic mechanism (26.4 kcal/mol) and the bimolecular GaCl3 catalytic mechanism (26.3 kcal/mol). The trimolecular GaCl3 path and bimolecular GaCl3 path are competitive, but the former path is limited by the concentration of GaCl3. The inclusion of GaCl3 could stabilize the transition states of C-H activation. Compared to the GaCl3-catalyzed Knoevenagel condensation, that catalyzed by pyridine is not advantageous, owning a high energy span of 31.7 kcal/mol. These agree well with experimental results. This work could provide a novel theoretical understanding of the Knoevenagel condensation, which could inspire the development of a synthesis strategy for electron acceptor materials.
Collapse
Affiliation(s)
- Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ying Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026,China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wang X, Wei N, Cheng Y, Zhang A, Bian Z, Lu H, Zhu X, Liu Y, Wei Y, Bo Z. Boosting organic solar cell efficiency via tailored end-group modifications of novel non-fused ring electron acceptors. MATERIALS HORIZONS 2024. [PMID: 39355922 DOI: 10.1039/d4mh01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this study, we designed and synthesized two NFREAs, 2BTh-3F and 2BTh-CN, incorporating distinct substituents to modulate their electron-withdrawing properties. We meticulously explore the distinct impacts of these substituents on NFREA performance. Our investigation revealed that the introduction of 3,5-difluoro-4-cyanophenyl in 2BTh-CN significantly enhanced electron withdrawal and intramolecular charge transfer, leading to a red-shifted absorption spectrum and optimized energy levels. Consequently, organic solar cells (OSCs) utilizing 2BTh-CN demonstrate a notable power conversion efficiency (PCE) of 15.07%, outperforming those employing 2BTh-3F (PCE of 9.34%). Moreover, by incorporating 2BTh-CN into the D18:2BTh-C2 system as a third component, we achieve a PCE exceeding 17% in a high-performing ternary OSC, ranking among the most efficient NFREA-based OSCs reported to date. Overall, our study underscores the potential of deliberate design and optimization of non-fused ring acceptor molecular structures to attain outstanding photovoltaic performance.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Yetai Cheng
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Hao Lu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiangwei Zhu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China.
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Wei N, Chen J, Cheng Y, Bian Z, Liu W, Song H, Guo Y, Zhang W, Liu Y, Lu H, Zhou J, Bo Z. Constructing Multiscale Fibrous Morphology to Achieve 20% Efficiency Organic Solar Cells by Mixing High and Low Molecular Weight D18. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408934. [PMID: 39219211 DOI: 10.1002/adma.202408934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study underscores the significance of precisely manipulating the morphology of the active layer in organic solar cells (OSCs). By blending polymer donors of D18 with varying molecular weights, a multiscale interpenetrating fiber network structure within the active layer is successfully created. The introduction of 10% low molecular weight D18 (LW-D18) into high molecular weight D18 (HW-D18) produces MIX-D18, which exhibits an extended exciton diffusion distance and orderly molecular stacking. Devices utilizing MIX-D18 demonstrate superior electron and hole transport, improves exciton dissociation, enhances charge collection efficiency, and reduces trap-assisted recombination compared to the other two materials. Through the use of the nonfullerene acceptor L8-BO, a remarkable power conversion efficiency (PCE) of 20.0% is achieved. This methodology, which integrates the favorable attributes of high and low molecular weight polymers, opens a new avenue for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jieni Chen
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yetai Cheng
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoming Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yawen Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hao Lu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Luo Z, Wei W, Ma R, Ran G, Jee MH, Chen Z, Li Y, Zhang W, Woo HY, Yang C. Approaching 20% Efficiency in Ortho-Xylene Processed Organic Solar Cells by a Benzo[a]phenazine-Core-Based 3D Network Acceptor with Large Electronic Coupling and Long Exciton Diffusion Length. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407517. [PMID: 39139022 DOI: 10.1002/adma.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
High-performance organic solar cells often rely on halogen-containing solvents, which restrict the photovoltaic industry. Therefore, it is imperative to develop efficient organic photovoltaic materials compatible with halogen-free solvents. Herein, a series of benzo[a]phenazine (BP)-core-based small-molecule acceptors (SMAs) achieved through an isomerization chlorination strategy is presented, comprising unchlorinated NA1, 10-chlorine substituted NA2, 8-chlorine substituted NA3, and 7-chlorine substituted NA4. Theoretical simulations highlight NA3's superior orbit overlap length and tight molecular packing, attributed to interactions between the end group and BP unit. Furthermore, NA3 demonstrates dense 3D network structures and a record electronic coupling of 104.5 meV. These characteristics empower the ortho-xylene (o-XY) processed PM6:NA3 device with superior power conversion efficiency (PCE) of 18.94%, surpassing PM6:NA1 (15.34%), PM6:NA2 (7.18%), and PM6:NA4 (16.02%). Notably, the significantly lower PCE in the PM6:NA2 device is attributed to excessive self-aggregation characteristics of NA2 in o-XY. Importantly, the incorporation of D18-Cl into the PM6:NA3 binary blend enhances crystallographic ordering and increases the exciton diffusion length of the donor phase, resulting in a ternary device efficiency of 19.75% (certified as 19.39%). These findings underscore the significance of incorporating new electron-deficient units in the design of efficient SMAs tailored for environmentally benign solvent processing of OSCs.
Collapse
Affiliation(s)
- Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weifei Wei
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Min Hun Jee
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Zhanxiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
11
|
Liu Y, Zhan L, Li Z, Jiang H, Qiu H, Sun X, Hu H, Sun R, Min J, Yu J, Fu W, Yin S, Chen H. The Multi-Functional Third Acceptor Realizes the Synergistic Improvement in Photovoltaic Parameters and the High-Ratio Tolerance of Ternary Organic Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405303. [PMID: 39135539 PMCID: PMC11497047 DOI: 10.1002/advs.202405303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Indexed: 10/25/2024]
Abstract
The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.
Collapse
Affiliation(s)
- Yuhao Liu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Zhongjie Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Hang Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhen518055P. R. China
| | - Hanlin Hu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhen518055P. R. China
| | - Rui Sun
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jie Min
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
12
|
Wang Z, Zhu S, Peng X, Luo S, Liang W, Zhang Z, Dou Y, Zhang G, Chen S, Hu H, Chen Y. Regulating Intermolecular Interactions and Film Formation Kinetics for Record Efficiency in Difluorobenzothiadizole-Based Organic Solar Cells. Angew Chem Int Ed Engl 2024:e202412903. [PMID: 39264260 DOI: 10.1002/anie.202412903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
The difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs). Herein, we synthesized two ffBT-based copolymers, PffBT-2T and PffBT-4T, incorporating different π-bridges to modulate intermolecular interactions and aggregation tendencies. Experimental and theoretical studies revealed that PffBT-4T exhibits reduced electrostatic potential differences and miscibility with L8-BO compared to PffBT-2T. This facilitates improved phase separation in the active layer, leading to enhanced molecular packing and optimized morphology. Moreover, PffBT-4T demonstrated a prolonged nucleation and crystal growth process, leading to enhanced molecular packing and optimized morphology. Consequently, PffBT-4T-based devices achieved a remarkable PCE of 17.5 %, setting a new record for ffBT-based photovoltaic polymers. Our findings underscore the importance of conjugate backbone modulation in controlling aggregation behavior and film formation kinetics, providing valuable insights for the design of high-performance polymer donors in organic photovoltaics.
Collapse
Affiliation(s)
- Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shenbo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiao Peng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Siwei Luo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ziyue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yunjie Dou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
13
|
Zheng J, Xiang X, Xu D, Tang Y. Functional surfactant-directing ultrathin metallic nanoarchitectures as high-performance electrocatalysts. Chem Commun (Camb) 2024; 60:10080-10097. [PMID: 39162004 DOI: 10.1039/d4cc02988g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Ultrathin nanosheets possess a distinctive structure characterized by an abundance of active sites fully accessible on their surface. Concurrently, their nanoscale thickness confers an extraordinarily high specific surface area and promising electronic properties. To date, numerous strategies have been devised for synthesizing precious metal nanosheets that exhibit excellent electrocatalytic performance. In this paper, recent progress in the controlled synthesis of two-dimensional, ultrathin nanosheets by a self-assembly mechanism using functional surfactants is reviewed. The aim is to highlight the key role of functional surfactants in the assembly and synthesis of two-dimensional ultrathin nanosheets, as well as to discuss in depth how to enhance their electrochemical properties, thereby expanding their potential applications in catalysis. We provide a detailed exploration of the mechanisms employed by several long-carbon chain surfactants commonly used in the synthesis of nanosheets. These surfactants exhibit robust electrostatic and hydrophobic effects, effectively confining the crystalline growth of metals along lamellar micelles. Moreover, we present an overview of the electrocatalytic performance demonstrated by the ultrathin nanosheets synthesized through this innovative pathway. Furthermore, it offers valuable insights that may pave the way for further exploration of more functional long-chain surfactants, leading to the synthesis of ultrathin nanosheets with significantly enhanced electrocatalytic performance.
Collapse
Affiliation(s)
- Jinyu Zheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Xin Xiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
14
|
Wu W, Zou B, Ma R, Yao J, Li C, Luo Z, Xie B, Qammar M, Dela Peña TA, Li M, Wu J, Yang C, Fan Q, Ma W, Li G, Yan H. A Difluoro-Methoxylated Ending-Group Asymmetric Small Molecule Acceptor Lead Efficient Binary Organic Photovoltaic Blend. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402793. [PMID: 38757420 DOI: 10.1002/smll.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jia Yao
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Chunliang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bomin Xie
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd, Kowloon, Hong Kong, 999077, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| |
Collapse
|
15
|
Han JH, Zhou HP, Wang LL, Zhao ZW, Liu XM, Pan QQ, Su ZM. The superiority of isomeric, fluorination and curtailed π-conjunction on A-D-A type acceptors for organic photovoltaics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125043. [PMID: 39236567 DOI: 10.1016/j.saa.2024.125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
The performance of organic solar cell (OSC) devices has been significantly enhanced by the dramatic evolution of A-D-A type non-fullerene acceptors (NFAs). Nevertheless, the structure-property-performance relationship of NFAs in the OSC device is unclear. Here, the intrinsic design factors of isomeric, fluorination and π-conjunction curtailing on the photophysical properties of benzodi (thienopyran) (BDTP) (named NBDTP-M, NBDTTP-M, NBDTP-Fin, and NBDTP-Fout)-based NFAs are discussed. The results show that fluorination on the terminal group of NBDTP-Fout could effectively decrease the highest occupied orbital (HOMO) energy level and the lowest unoccupied orbital (LUMO) energy level. And the long π-conjugated donor unit for NBDTTP-M could increase the HOMO energy level and bring a small HOMO-LUMO energy bandgap. Meanwhile, the substitution of external oxygen atoms and the fluorine atoms in the terminal group could introduce positive changes to the electrostatic potential of the NBDTP-Fout, favouring the charge separation at the donor/acceptor interface. Moreover, the structural design of external oxygen atom substitution, fluorination on the terminal group and curtailed π-conjugated donor unit could decrease the electron vibration-coupling of exciton diffusion, exciton dissociation and electronic transfer processes. The suppression of the exciton decay and charge recombination in those high-performance NFAs indicate that the investigated molecular designs could be effective for further improvement of OSCs.
Collapse
Affiliation(s)
- Jin-Hong Han
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Li-Li Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Zhi-Wen Zhao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Xing-Man Liu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China.
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
16
|
Xu T, Ran G, Luo Z, Chen Z, Lv J, Zhang G, Hu H, Zhang W, Yang C. Achieving 19.5% Efficiency via Modulating Electronic Properties of Peripheral Aryl-Substituted Small-Molecule Acceptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405476. [PMID: 39148187 DOI: 10.1002/smll.202405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The advancement of acceptors plays a pivotal role in determining photovoltaic performance. While previous efforts have focused on optimizing acceptor-donor-acceptor1-donor-acceptor (A-DA1-D-A)-typed acceptors by adjusting side chains, end groups, and conjugated extension of the electron-deficient central A1 unit, the systematic exploration of the impact of peripheral aryl substitutions, particularly with different electron groups, on the A1 unit and its influence on device performance is still lacking. In this study, three novel acceptors - QxTh, QxPh, and QxPy - with distinct substitutions on the quinoxaline (Qx) are designed and synthesized. Density functional theory (DFT) analyses reveal that QxPh, featuring a phenyl-substituted Qx, exhibits the smallest molecular binding energies and a tightest π···π stacking distance. Consequently, the PM6:QxPh device demonstrates a better power conversion efficiency (PCE) of 17.1% compared to the blends incorporating QxTh (16.4%) and QxPy (15.7%). This enhancement is primarily attributed to suppressed charge recombination, improved charge extraction, and more favorable molecular stacking and morphology. Importantly, introducing QxPh as a guest acceptor into the PM6:BTP-eC9 binary system yields an outstanding PCE of 19.5%, indicating the substantial potential of QxPh in advancing ternary device performance. The work provides deep insights into the expansion of high-performance organic photovoltaic materials through peripheral aryl substitution strategy.
Collapse
Affiliation(s)
- Tongle Xu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Lv
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
17
|
Lu H, Li D, Liu W, Ran G, Wu H, Wei N, Tang Z, Liu Y, Zhang W, Bo Z. Designing A-D-A Type Fused-Ring Electron Acceptors with a Bulky 3D Substituent at the Central Donor Core to Minimize Non-Radiative Losses and Enhance Organic Solar Cell Efficiency. Angew Chem Int Ed Engl 2024; 63:e202407007. [PMID: 38806441 DOI: 10.1002/anie.202407007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Designing and synthesizing narrow band gap acceptors that exhibit high photoluminescence quantum yield (PLQY) and strong crystallinity is a highly effective, yet challenging, approach to reducing non-radiative energy losses (▵Enr) and boosting the performance of organic solar cells (OSCs). We have successfully designed and synthesized an A-D-A type fused-ring electron acceptor, named DM-F, which features a planar molecular backbone adorned with bulky three-dimensional camphane side groups at its central core. These bulky substituents effectively hinder the formation of H-aggregates of the acceptors, promoting the formation of more J-aggregates and notably elevating the PLQY of the acceptor in the film. As anticipated, DM-F showcases pronounced near-infrared absorption coupled with impressive crystallinity. Organic solar cells (OSCs) leveraging DM-F exhibit a high EQEEL value and remarkably low ▵Enr of 0.14 eV-currently the most minimal reported value for OSCs. Moreover, the power conversion efficiency (PCE) of binary and ternary OSCs utilizing DM-F has reached 16.16 % and 20.09 %, respectively, marking a new apex in reported efficiency within the OSCs field. In conclusion, our study reveals that designing narrow band gap acceptors with high PLQY is an effective way to reduce ▵Enr and improve the PCE of OSCs.
Collapse
Affiliation(s)
- Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Xu J, Xiao C, Zhang Z, Zhang J, Wang B, McNeill CR, Li W. Utilization of Polycyclic Aromatic Solid Additives for Morphology and Thermal Stability Enhancement in Photoactive Layers of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405573. [PMID: 39104295 DOI: 10.1002/smll.202405573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.
Collapse
Affiliation(s)
- Jianing Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
19
|
Chen Z, Ge J, Song W, Tong X, Liu H, Yu X, Li J, Shi J, Xie L, Han C, Liu Q, Ge Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406690. [PMID: 38899582 DOI: 10.1002/adma.202406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Organic solar cells, as a cutting-edge sustainable renewable energy technology, possess a myriad of potential applications, while the bottleneck problem of less than 20% efficiency limits the further development. Simultaneously achieving an ordered molecular arrangement, appropriate crystalline domain size, and reduced nonradiative recombination poses a significant challenge and is pivotal for overcoming efficiency limitations. This study employs a dual strategy involving the development of a novel acceptor and ternary blending to address this challenge. A novel non-fullerene acceptor, SMA, characterized by a highly ordered arrangement and high lowest unoccupied molecular orbital energy level, is synthesized. By incorporating SMA as a guest acceptor in the PM6:BTP-eC9 system, it is observed that SMA staggered the liquid-solid transition of donor and acceptor, facilitating acceptor crystallization and ordering while maintaining a suitable domain size. Furthermore, SMA optimized the vertical morphology and reduced bimolecular recombination. As a result, the ternary device achieved a champion efficiency of 20.22%, accompanied by increased voltage, short-circuit current density, and fill factor. Notably, a stabilized efficiency of 18.42% is attained for flexible devices. This study underscores the significant potential of a synergistic approach integrating acceptor material innovation and ternary blending techniques for optimizing bulk heterojunction morphology and photovoltaic performance.
Collapse
Affiliation(s)
- Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfeng Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinyu Tong
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xueliang Yu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chengcheng Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Quan Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Ma R, Jiang X, Dela Peña TA, Gao W, Wu J, Li M, Roth SV, Müller-Buschbaum P, Li G. Insulator Polymer Matrix Construction on All-Small-Molecule Photoactive Blend Towards Extrapolated 15000 Hour T 80 Stable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405005. [PMID: 38992998 DOI: 10.1002/adma.202405005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Indexed: 07/13/2024]
Abstract
To boost the stability of all-small-molecule (ASM) organic photovoltaic (OPV) blends, an insulator polymer called styrene-ethylene-butylene-styrene (SEBS) as morphology stabilizer is applied into the host system of small molecules BM-ClEH:BO-4Cl. Minor addition of SEBS (1 mg/ml in host solution) provides a significantly enhanced T80 value of 15000 hours (extrapolated), surpassing doping-free (0 mg/ml) and heavy doping (10 mg/ml) counterparts (900 hours, 30 hours). The material reproducibility and cost-effectiveness of the active layer will not be affected by this industrially available polymer, where the power conversion efficiency (PCE) can be well maintained at 15.02%, which is still a decent value for non-halogen solvent-treated ASM OPV. Morphological and photophysical characterizations clearly demonstrate SEBS's pivotal effect on suppressing the degradation of donor molecules and blend film's crystallization/aggregation reorganization, which protects the exciton dynamics effectively. This work pays meaningful attention to the ASM system stability, performs a smart strategy to suppress the film morphology degradation, and releases a comprehensive understanding of the mechanism of device performance reduction.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinyu Jiang
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
21
|
Wang LL, Han JH, Zhou HP, Pan QQ, Zhao ZW, Su Z. Superior End-Group Stacking Promotes Simultaneous Multiple Charge-Transfer Mechanisms in Organic Solar Cells with an All-Fused-Ring Nonfullerene Acceptor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35390-35399. [PMID: 38922684 DOI: 10.1021/acsami.4c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The all-fused-ring acceptor (AFRA) is a success for nonfullerene materials and has attracted considerable attention as its high optical and chemical stability expected to reduce energy loss, and power conversion efficiency (PCE) approaching 15% in constructed all-small-molecule organic solar cells (OSCs). Herein, the intrinsic role of the structure of AFRA F13 and the reason for its high PCE were revealed by comparison with those of typical fused acceptors IDT-IC and Y6. An increased degree of conjugation in F13 leads to broader and red-shifted absorption peaks, facilitating enhancement of the short-circuit current. Multiple charge-transfer mechanisms are mainly attributed to the higher Frenkel exciton (FE) state due to the multiple transition ways for acceptors in the C1-CN:F13 system. The increased number of atoms contributing to the charge-transfer (CT) state facilitated the existence of more superior stacking patterns with easy formation of CT and FE/CT states and a high charge separation rate. It was found using the AFRA is an effective strategy to enhance end-group stacking, enhancing the borrowing of oscillator strength to promote multiple CT mechanisms in the complexes, explaining the high performance of this OSC device. This work is promising to guide designing an efficient AFRA in the future.
Collapse
Affiliation(s)
- Li-Li Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Jin-Hong Han
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
| | - Zhi-Wen Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Qi F, Li Y, Lin FR, Jen AKY. Recent Progress of Oligomeric Non-Fullerene Acceptors for Efficient and Stable Organic Solar Cells. CHEMSUSCHEM 2024; 17:e202301559. [PMID: 38372481 DOI: 10.1002/cssc.202301559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Organic solar cells (OSCs) have achieved remarkable power conversion efficiencies (PCEs) of over 19 % in the past few years due to the rapid development of non-fullerene acceptors (NFAs). However, the operational stability remains a great challenge that inhibits their commercialization. Recently, oligomeric NFAs (ONFAs) have attracted great attention, which not only can deliver excellent device performance, but also improve the thermal-/photo- stability of OSCs. This is attributed to the suppressed molecular diffusion of ONFAs associated with their high glass-transition temperature (Tg) and improved thermodynamic properties of ONFAs. Herein, we focus on investigating the correction between the ONFA chemical structure, material properties, device performance, and stability. In addition, we also try to point out the challenges in synthesizing ONFAs and provide potential directions for future ONFA designs.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Chen H, Sun W, Zhang R, Huang Y, Zhang B, Zeng G, Ding J, Chen W, Gao F, Li Y, Li Y. Heterogeneous Nucleating Agent for High-Boiling-Point Nonhalogenated Solvent-Processed Organic Solar Cells and Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402350. [PMID: 38554138 DOI: 10.1002/adma.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Indexed: 04/01/2024]
Abstract
High-boiling-point nonhalogenated solvents are superior solvents to produce large-area organic solar cells (OSCs) in industry because of their wide processing window and low toxicity; while, these solvents with slow evaporation kinetics will lead excessive aggregation of state-of-the-art small molecule acceptors (e.g. L8-BO), delivering serious efficiency losses. Here, a heterogeneous nucleating agent strategy is developed by grafting oligo (ethylene glycol) side-chains on L8-BO (BTO-BO). The formation energy of the obtained BTO-BO; while, changing from liquid in a solvent to a crystalline phase, is lower than that of L8-BO irrespective of the solvent type. When BTO-BO is added as the third component into the active layer (e.g. PM6:L8-BO), it easily assembles to form numerous seed crystals, which serve as nucleation sites to trigger heterogeneous nucleation and increase nucleation density of L8-BO through strong hydrogen bonding interactions even in high-boiling-point nonhalogenated solvents. Therefore, it can effectively suppress excessive aggregation during growth, achieving ideal phase-separation active layer with small domain sizes and high crystallinity. The resultant toluene-processed OSCs exhibit a record power conversion efficiency (PCE) of 19.42% (certificated 19.12%) with excellent operational stability. The strategy also has superior advantages in large-scale devices, showing a 15.03-cm2 module with a record PCE of 16.35% (certificated 15.97%).
Collapse
Affiliation(s)
- Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Weiwei Sun
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Yuting Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Guang Zeng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Xie Q, Deng X, Zhao C, Fang J, Xia D, Zhang Y, Ding F, Wang J, Li M, Zhang Z, Xiao C, Liao X, Jiang L, Huang B, Dai R, Li W. Ethylenedioxythiophene-Based Small Molecular Donor with Multiple Conformation Locks for Organic Solar Cells with Efficiency of 19.3 . Angew Chem Int Ed Engl 2024; 63:e202403015. [PMID: 38623043 DOI: 10.1002/anie.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Feng Ding
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiali Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Runying Dai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
25
|
Xu R, Jiang Y, Liu F, Ran G, Liu K, Zhang W, Zhu X. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312101. [PMID: 38544433 DOI: 10.1002/adma.202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.
Collapse
Affiliation(s)
- Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Liu H, Xin Y, Suo Z, Yang L, Zou Y, Cao X, Hu Z, Kan B, Wan X, Liu Y, Chen Y. Dipole Moments Regulation of Biphosphonic Acid Molecules for Self-assembled Monolayers Boosts the Efficiency of Organic Solar Cells Exceeding 19.7. J Am Chem Soc 2024; 146:14287-14296. [PMID: 38718348 DOI: 10.1021/jacs.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
PEDOT PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.
Collapse
Affiliation(s)
- Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liu Yang
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Cao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Fu H, Wang Q, Chen Q, Zhang Y, Meng S, Xue L, Zhang C, Yi Y, Zhang ZG. Dimeric Giant Molecule Acceptors Featuring N-type Linker: Enhancing Intramolecular Coupling for High-Performance Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403005. [PMID: 38382043 DOI: 10.1002/anie.202403005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Giant molecular acceptors (GMAs) are typically designed through the conjugated linking of individual small molecule acceptors (SMAs). This design imparts an extended molecular size, elevating the glass transition temperature (Tg) relative to their SMA counterparts. Consequently, it effectively suppresses the thermodynamic relaxation of the acceptor component when blended with polymer donors to construct stable polymer solar cells (PSCs). Despite their merits, the optimization of their chemical structure for further enhancing of device performance remains challenge. Different from previous reports utilizing p-type linkers, here, we explore an n-type linker, specifically the benzothiadiazole unit, to dimerize the SMA units via a click-like Knoevenagel condensation, affording BT-DL. In comparison with B-DL with a benzene linkage, BT-DL exhibits significantly stronger intramolecular super-exchange coupling, a desirable property for the acceptor component. Furthermore, BT-DL demonstrates a higher film absorption coefficient, redshifted absorption, larger crystalline coherence, and higher electron mobility. These inherent advantages of BT-DL translate into a higher power conversion efficiency of 18.49 % in PSCs, a substantial improvement over the 9.17 % efficiency observed in corresponding devices with B-DL as the acceptor. Notably, the BT-DL based device exhibits exceptional stability, retaining over 90 % of its initial efficiency even after enduring 1000 hours of thermal stress at 90 °C. This work provides a cost-effective approach to the synthesis of n-type linker-dimerized GMAs, and highlight their potential advantage in enhancing intramolecular coupling for more efficient and durable photovoltaic technologies.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Pang S, Liu X, Pan L, Oh J, Yang C, Duan C. Chalcogen Atoms Regulate the Organic Solar Cell Performance of B-N-Based Polymer Donors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22265-22273. [PMID: 38637913 DOI: 10.1021/acsami.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Donor polymers play a key role in the development of organic solar cells (OSCs). B-N-based polymer donors, as new types of materials, have attracted a lot of attention due to their special characteristics, such as high E(T1), small ΔEST, and easy synthesis, and they can be processed with real green solvents. However, the relationship between the chemical structure and device performance has not been systematically studied. Herein, chalcogen atoms that regulate the OSCs performance of B-N-based polymer donors were systematically studied. Fortunately, the substitution of a halogen atom did not affect the high E(T1) and small ΔEST character of the B-N-based polymer. The absorption and energy levels of the polymer were systematically regulated by O, S, and Se atom substitution. The PBNT-TAZ:Y6-BO-based OSCs device demonstrated a high power conversion efficiency of 15.36%. Moreover, the layer-by-layer method was applied to further optimize the device performance, and the PBNT-TAZ/Y6-BO-based OSCs device yielded a PCE of 16.34%. Consequently, we have systematically demonstrated how chalcogen atoms modulated the electronic properties of B-N-based polymers. Detailed and systematic structure-performance relationships are important for the development of next-generation B-N-based materials.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Lin T, Hai Y, Luo Y, Feng L, Jia T, Wu J, Ma R, Dela Peña TA, Li Y, Xing Z, Li M, Wang M, Xiao B, Wong KS, Liu S, Li G. Isomerization of Benzothiadiazole Yields a Promising Polymer Donor and Organic Solar Cells with Efficiency of 19.0. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312311. [PMID: 38305577 DOI: 10.1002/adma.202312311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.
Collapse
Affiliation(s)
- Tao Lin
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Yulong Hai
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Yongmin Luo
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Lingwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Jia
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Yao Li
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Zengshan Xing
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Min Wang
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University (JHUN), Wuhan, 430056, China
| | - Kam Sing Wong
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU), Guangzhou, 510006, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
30
|
Yu X, Ding P, Yang D, Yan P, Wang H, Yang S, Wu J, Wang Z, Sun H, Chen Z, Xie L, Ge Z. Self-Assembled Molecules with Asymmetric Backbone for Highly Stable Binary Organic Solar Cells with 19.7 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202401518. [PMID: 38459749 DOI: 10.1002/anie.202401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The hole-transporting material (HTM), poly (3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), is the most widely used material in the realization of high-efficiency organic solar cells (OSCs). However, the stability of PEDOT : PSS-based OSCs is quite poor, arising from its strong acidity and hygroscopicity. In addition, PEDOT : PSS has an absorption in the infrared region and high highest occupied molecular orbital (HOMO) energy level, thus limiting the enhancement of short-circuit current density (Jsc) and open-circuit voltage (Voc), respectively. Herein, two asymmetric self-assembled molecules (SAMs), namely BrCz and BrBACz, were designed and synthesized as HTM in binary OSCs based on the well-known system of PM6 : Y6, PM6 : eC9, PM6 : L8-BO, and D18 : eC9. Compared with BrCz, BrBACz shows larger dipole moment, deeper work function and lower surface energy. Moreover, BrBACz not only enhances photon harvesting in the active layer, but also minimizes voltage losses as well as improves interface charge extraction/ transport. Consequently, the PM6 : eC9-based binary OSC using BrBACz as HTM exhibits a champion efficiency of 19.70 % with a remarkable Jsc of 29.20 mA cm-2 and a Voc of 0.856 V, which is a record efficiency for binary OSCs so far. In addition, the unencapsulated device maintains 95.0 % of its original efficiency after 1,000 hours of storage at air ambient, indicating excellent long-term stability.
Collapse
Affiliation(s)
- Xueliang Yu
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Electronic Information and Optical Engineering, Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengyu Yan
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongqian Wang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jie Wu
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhongqiang Wang
- College of Electronic Information and Optical Engineering, Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - He Sun
- Innovation Center for Organic Electronics (INOEL), Yamagata University, Yonezawa, 992-0119, Japan
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Hu H, Liu S, Xu J, Ma R, Peng Z, Peña TAD, Cui Y, Liang W, Zhou X, Luo S, Yu H, Li M, Wu J, Chen S, Li G, Chen Y. Over 19 % Efficiency Organic Solar Cells Enabled by Manipulating the Intermolecular Interactions through Side Chain Fluorine Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400086. [PMID: 38329002 DOI: 10.1002/anie.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.
Collapse
Affiliation(s)
- Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Shuai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaoyu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Top Archie Dela Peña
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoli Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Siwei Luo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
32
|
Chang B, Zhang Y, Zhang C, Zhang M, Wang Q, Xu Z, Chen Q, Bai Y, Fu H, Meng S, Xue L, Kim S, Yang C, Yi Y, Zhang ZG. Tethered Trimeric Small-molecular Acceptors through Aromatic-core Engineering for Highly Efficient and Thermally Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202400590. [PMID: 38318728 DOI: 10.1002/anie.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Polymer solar cells (PSCs) rely on a blend of small molecular acceptors (SMAs) with polymer donors, where thermodynamic relaxation of SMAs poses critical concerns on operational stability. To tackle this issue, tethered SMAs, wherein multiple SMA-subunits are connected to the aromatic-core via flexible chains, are proposed. This design aims to an elevated glass transition temperature (Tg) for a dynamical control. However, attaining an elevated Tg value with additional SMA subunits introduces complexity to the molecular packing, posing a significant challenge in realizing both high stability and power conversion efficiency (PCE). In this study, we initiate isomer engineering on the benzene-carboxylate core and find that meta-positioned dimeric BDY-β exhibits more favorable molecular packing compared to its para-positioned counterpart, BDY-α. With this encouraging result, we expand our approach by introducing an additional SMA unit onto the aromatic core of BDY-β, maintaining a meta-position relative to each SMA unit location in the tethered acceptor. This systematic aromatic-core engineering results in a star-shaped C3h-positioned molecular geometry. The supramolecular interactions of SMA units in the trimer contribute to enhancements in Tg value, crystallinity, and a red-shifted absorption compared to dimers. These characteristics result in a noteworthy increase in PCE to 18.24 %, coupled with a remarkable short-circuit current density of 27.06 mA cm-2. More significantly, the trimer-based devices delivered an excellent thermal stability with over 95 % of their initial efficiency after 1200 h thermal degradation. Our findings underscore the promise and feasibility of tethered trimeric structures in achieving highly ordered aggregation behavior and increased Tg value in PSCs, simultaneously improving in device efficiency and thermal stability.
Collapse
Affiliation(s)
- Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
Samir M, Moustafa E, Almora O, Ramírez-Como M, Montero-Rama MP, Sánchez JG, Palomares E, Pallarès J, Marsal LF. CPE-Na-Based Hole Transport Layers for Improving the Stability in Nonfullerene Organic Solar Cells: A Comprehensive Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16317-16327. [PMID: 38526453 PMCID: PMC10995908 DOI: 10.1021/acsami.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
Organic photovoltaic (OPV) cells have experienced significant development in the last decades after the introduction of nonfullerene acceptor molecules with top power conversion efficiencies reported over 19% and considerable versatility, for example, with application in transparent/semitransparent and flexible photovoltaics. Yet, the optimization of the operational stability continues to be a challenge. This study presents a comprehensive investigation of the use of a conjugated polyelectrolyte polymer (CPE-Na) as a hole layer (HTL) to improve the performance and longevity of OPV cells. Two different fabrication approaches were adopted: integrating CPE-Na with PEDOT:PSS to create a composite HTL and using CPE-Na as a stand-alone bilayer deposited beneath PEDOT:PSS on the ITO substrate. These configurations were compared against a reference device employing PEDOT:PSS alone, as the HTL increased efficiency and fill factor. The instruments with CPE-Na also demonstrated increased stability in the dark and under simulated operational conditions. Device-based PEDOT:PSS as an HTL reached T80 after 2500 h while involving CPE-Na in the device kept at T90 in the same period, evidenced by a reduced degradation rate. Furthermore, the impedance spectroscopy and photoinduced transient methods suggest optimized charge transfer and reduced charge carrier recombination. These findings collectively highlight the potential of CPE-Na as a HTL optimizer material for nonfluorine OPV cells.
Collapse
Affiliation(s)
- Mohamed Samir
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Enas Moustafa
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
- Science
and Engineering of Renewable Energy Department, Faculty of Postgraduate
Studies for Advanced Science, Beni Suef
University, Beni Suef 62521, Egypt
| | - Osbel Almora
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Magaly Ramírez-Como
- Sección
de Estudios de Posgrado e Investigación, UPIITA Instituto Politécnico Nacional, Mexico City 07340, Mexico
| | - Maria Pilar Montero-Rama
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - José G. Sánchez
- Institute
of Chemical Research of Catalonia-CERCA (ICIQ-CERCA), Tarragona 43007, Spain
| | - Emilio Palomares
- Institute
of Chemical Research of Catalonia-CERCA (ICIQ-CERCA), Tarragona 43007, Spain
- Institución
Catalana de Investigación y Estudios Avanzados (ICREA), Barcelona 08010, Spain
| | - Josep Pallarès
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Lluis F. Marsal
- Department
of Electronic, Electric and Automatic Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| |
Collapse
|
34
|
Ma R, Li H, Dela Peña TA, Xie X, Fong PWK, Wei Q, Yan C, Wu J, Cheng P, Li M, Li G. Tunable Donor Aggregation Dominance in a Ternary Matrix of All-Polymer Blends with Improved Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304632. [PMID: 37418757 DOI: 10.1002/adma.202304632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Using two structurally similar polymer acceptors in constructing high-efficiency ternary all-polymer solar cells is a widely acknowledged strategy; however, the focus thus far has not been on how polymer acceptor(s) would tune the aggregation of polymer donors, and furthermore film morphology and device performance (efficiency and stability). Herein, it is reported that matching of the celebrity acceptor PY-IT and the donor PBQx-TCl results in enhanced H-aggregation in PBQx-TCl, which can be finely tuned by controlling the amount of the second acceptor PY-IV. Consequently, the efficiency-optimized PY-IV weight ratio (0.2/1.2) leads to a state-of-the-art power conversion efficiency of 18.81%, wherein light-illuminated operational stability is also enhanced along with well-protected thermal stability. Such enhancements in the efficiency and operational and thermal stabilities of solar cells can be attributed to morphology optimization and the desired glass transition temperature of the target active layer based on comprehensive characterization. In addition to being a high-power conversion efficiency case for all-polymer solar cells, these enhancements are also a successful attempt for using combined acceptors to tune donor aggregation toward optimal morphology, which provides a theoretical basis for the construction of other types of organic photovoltaics beyond all-polymer solar cells.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Top Archie Dela Peña
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Xiyun Xie
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Patrick Wai-Keung Fong
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
35
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
36
|
Zhu X, Yang L, Pan Y, Yang Y, Ding X, Wan C, Zhang Z, Luo Y, Zhou Q, Wang L, Xiao S. A Three-Dimensional Non-Fullerene Acceptor with Contorted Hexabenzocoronene and Perylenediimide for Organic Solar Cells. Chemistry 2024; 30:e202304167. [PMID: 38243781 DOI: 10.1002/chem.202304167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Although fullerene derivatives such as [6,6]-phenyl-C61/C71-butyric acid methyl ester (PC61BM/PC71BM) have dominated the the photoactive acceptor materials in bulk heterojunction organic solar cells (OSCs) for decades, they have several drawbacks such as weak absorption, limited structural tunability, prone to aggregation, and high costs of production. Constructing non-fullerene small molecules with three-dimensional (3D) molecular geometry is one of the strategies to replace fullerenes in OSCs. In this study, a 3D molecule, contorted hexa-cata-hexabenzocoronene tetra perylenediimide (HBC-4-PDI), was designed and synthesized. HBC-4-PDI shows a wide and strong light absorption in the whole UV-vis region as well as suitable energy levels as an acceptor for OSCs. More importantly, the 3D construction effectively reduced the self-aggregation of c-HBC, leading to an appropriate scale phase separation of the blend film morphology in OSCs. A preliminary power conversion efficiency of 2.70 % with a champion open-circuit voltage of 1.06 V was obtained in OSCs with HBC-4-PDI as the acceptor, which was the highest among the previously reported OSCs based on c-HBC derivatives. The results indicated that HBC-4-PDI may serve as a good non-fullerene acceptor for OSCs.
Collapse
Affiliation(s)
- Xin Zhu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lei Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yangyang Pan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yuqin Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Xuming Ding
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Chuanming Wan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhuo Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yun Luo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Liwei Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Non-carbon Energy Conversion and Utilization Institute, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| |
Collapse
|
37
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Han Z, Zhang C, He T, Gao J, Hou Y, Gu X, Lv J, Yu N, Qiao J, Wang S, Li C, Zhang J, Wei Z, Peng Q, Tang Z, Hao X, Long G, Cai Y, Zhang X, Huang H. Precisely Manipulating Molecular Packing via Tuning Alkyl Side-Chain Topology Enabling High-Performance Nonfused-Ring Electron Acceptors. Angew Chem Int Ed Engl 2024; 63:e202318143. [PMID: 38190621 DOI: 10.1002/anie.202318143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.
Collapse
Affiliation(s)
- Ziyang Han
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai'e Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Jinhua Gao
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiawei Qiao
- School of Physics, School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Sixuan Wang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaotao Hao
- School of Physics, School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Qi Q, Wang J, Gao M, Ke H, Zhao W, Zhang K, Li S, He C, Kuvondikov V, Ye L. A Dual-Polythiophene Blending Strategy to Reduce the Efficiency-Stability-Cost Gap of Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307993. [PMID: 37946405 DOI: 10.1002/smll.202307993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Indexed: 11/12/2023]
Abstract
Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.
Collapse
Affiliation(s)
- Qingchun Qi
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Jingjing Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Vakhobjon Kuvondikov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33, Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Hubei Longzhong Laboratory, Xiangyang, 441000, China
| |
Collapse
|
40
|
Li D, Wang H, Chen J, Wu Q. Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells. Chemistry 2024; 30:e202303155. [PMID: 38018363 DOI: 10.1002/chem.202303155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
The rapid development of narrow-bandgap nonfullerene acceptors (NFAs) has boosted the efficiency of organic solar cells (OSCs) over 19 %. The new features of high-performance NFAs, such as visible-NIR light absorption, moderate the highest occupied molecular orbitals (HOMO), and high crystallinity, require polymer donors with matching physical properties. This emphasizes the importance of methods that can effectively tune the physical properties of polymers. Owning to very small atom size and strongest electronegativity, the fluorination has been proved the most efficient strategy to regulate the physical properties of polymer donors, including frontier energy level, absorption coefficient, dielectric constant, crystallinity and charge transport. Owing to the success of fluorination strategy, the vast majority of high-performance polymer donors possess one or more fluorine atoms. In this review, the fluorination synthetic methods, the synthetic route of well-known fluorinated building blocks, the fluorinated polymers which are categorized by the type of donor or acceptor units, and the relationships between the polymer structures, properties, and photovoltaic performances are comprehensively surveyed. We hope this review could provide the readers a deeper insight into fluorination strategy and lay a strong foundation for future innovation of fluorinated polymers.
Collapse
Affiliation(s)
- Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Huijuan Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| |
Collapse
|
41
|
Zhang J, Jin F, Peng R, Ge J, Guo Y, Qiu Y, Zhou R, Ge Z. High Efficiency over 18.6% of Organic Solar Cells Enabled by PEDOT:PSS/Br-2PACz Dual-Anode Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9117-9125. [PMID: 38330209 DOI: 10.1021/acsami.3c17981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic solar cells (OSCs) with high performance were prepared using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and [2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid (Br-2PACz) double-layer films as the anode interface. By spin-coating a layer of Br-2PACz on PEDOT:PSS to form a PEDOT:PSS/Br-2PACz dual-anode interface, both the Jsc and FF of the device can be increased simultaneously, resulting in a high Jsc of 27.84 mA cm-2 and a high FF of 78.18%. The promising result indicates that the PEDOT:PSS/Br-2PACz dual-anode interface is an effective way to improve the performance of OSCs. The improvement of device performance is mainly attributed to (1) improved interface conductivity; (2) increased hole mobility and more balanced carrier transport efficiency; and (3) optimized morphology, which well explains the increase of Jsc and FF of the device. In addition, the OSC based on the PEDOT:PSS/Br-2PACz dual-anode interface exhibits exceptional stability, as it can maintain 94.7% of its initial efficiency even after 500 h of storage in a nitrogen environment. This work provides a promising strategy for improving the efficiency and stability of OSCs by dual-anode interface modulation.
Collapse
Affiliation(s)
- Jinna Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Fei Jin
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuntong Guo
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yi Qiu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Rong Zhou
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Gu X, Zeng R, He T, Zhou G, Li C, Yu N, Han F, Hou Y, Lv J, Zhang M, Zhang J, Wei Z, Tang Z, Zhu H, Cai Y, Long G, Liu F, Zhang X, Huang H. Simple-Structured Acceptor with Highly Interconnected Electron-Transport Pathway Enables High-Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401370. [PMID: 38373399 DOI: 10.1002/adma.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqi Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
43
|
Xin Y, Liu H, Dong X, Xiao Z, Wang R, Gao Y, Zou Y, Kan B, Wan X, Liu Y, Chen Y. Multiarmed Aromatic Ammonium Salts Boost the Efficiency and Stability of Inverted Organic Solar Cells. J Am Chem Soc 2024; 146:3363-3372. [PMID: 38265366 DOI: 10.1021/jacs.3c12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.
Collapse
Affiliation(s)
- Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Xiao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Wei W, Zhang C, Chen Z, Chen W, Ran G, Pan G, Zhang W, Müller-Buschbaum P, Bo Z, Yang C, Luo Z. Precise Methylation Yields Acceptor with Hydrogen-Bonding Network for High-Efficiency and Thermally Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202315625. [PMID: 38100221 DOI: 10.1002/anie.202315625] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/04/2024]
Abstract
Utilizing intermolecular hydrogen-bonding interactions stands for an effective approach in advancing the efficiency and stability of small-molecule acceptors (SMAs) for polymer solar cells. Herein, we synthesized three SMAs (Qo1, Qo2, and Qo3) using indeno[1,2-b]quinoxalin-11-one (Qox) as the electron-deficient group, with the incorporation of a methylation strategy. Through crystallographic analysis, it is observed that two Qox-based methylated acceptors (Qo2 and Qo3) exhibit multiple hydrogen bond-assisted 3D network transport structures, in contrast to the 2D transport structure observed in gem-dichlorinated counterpart (Qo4). Notably, Qo2 exhibits multiple and stronger hydrogen-bonding interactions compared with Qo3. Consequently, PM6 : Qo2 device realizes the highest power conversion efficiency (PCE) of 18.4 %, surpassing the efficiencies of devices based on Qo1 (15.8 %), Qo3 (16.7 %), and Qo4 (2.4 %). This remarkable PCE in PM6 : Qo2 device can be primarily ascribed to the enhanced donor-acceptor miscibility, more favorable medium structure, and more efficient charge transfer and collection behavior. Moreover, the PM6 : Qo2 device demonstrates exceptional thermal stability, retaining 82.8 % of its initial PCE after undergoing annealing at 65 °C for 250 hours. Our research showcases that precise methylation, particularly targeting the formation of intermolecular hydrogen-bonding interactions to tune crystal packing patterns, represents a promising strategy in the molecular design of efficient and stable SMAs.
Collapse
Affiliation(s)
- Weifei Wei
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Cai'e Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China
| | - Guangjiu Pan
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
- Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748, Garching, Germany
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Zhenghui Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
45
|
Xiao Y, Yao H, Chen Z, Yang N, Song CE, Wang J, Li Z, Yu Y, Ryu DH, Shin WS, Hao X, Hou J. Morphology Control for Efficient Nonfused Acceptor-Based Organic Photovoltaic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305631. [PMID: 37752745 DOI: 10.1002/smll.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Eun Song
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Du Hyeon Ryu
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Won Suk Shin
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Zhang M, Chang B, Zhang R, Li S, Liu X, Zeng L, Chen Q, Wang L, Yang L, Wang H, Liu J, Gao F, Zhang ZG. Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308606. [PMID: 37816121 DOI: 10.1002/adma.202308606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Liang Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangrong Yang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Feng Gao
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
47
|
Lu H, Liu W, Ran G, Li J, Li D, Liu Y, Xu X, Zhang W, Bo Z. High-Efficiency Binary and Ternary Organic Solar Cells Based on Novel Nonfused-Ring Electron Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307292. [PMID: 37811717 DOI: 10.1002/adma.202307292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Indexed: 10/10/2023]
Abstract
In this study, three nonfused-ring electron acceptors (2TT, 2TT-C6-F, and 2TT-C11-F) with the same steric hindrance groups (2,4,6-tripropylbenzene) are designed and synthesized and the impact of electron-withdrawing and lateral alkyl side chains on the performance of binary and ternary organic solar cells (OSCs) is explored. For the binary OSCs, 2TT-C11-F with IC-2F terminal groups and lateral undecyl side chains display a red shifted absorption spectrum and suitable energy levels, and the corresponding blend film exhibits appropriate phase separation and crystallinity. Thus, binary OSCs based on 2TT-C11-F achieve an impressive power conversion efficiency of 13.03%, much higher than the efficiencies of those based on 2TT (9.68%) and 2TT-C6-F (12.11%). In the ternary OSCs, 2TT with CC terminal groups and lateral hexyl side chains exhibit complementary absorption and cascade energy levels with a host binary system (D18:BTP-eC9-4F). Hence, the ternary OSCs based on 2TT achieve a remarkable efficiency of 19.39%, ranking among the highest reported values. The research yields comprehensive 2TT-series nonfused-ring electron acceptors, demonstrating their great potential for the fabrication of high-performance binary and ternary OSCs.
Collapse
Affiliation(s)
- Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
48
|
Li Q, Wu J, Guo Q, Qin L, Xue L, Geng Y, Li X, Zhang ZG, Yan Q, Zhou E. Effect of Number and Position of Chlorine Atoms on the Photovoltaic Performance of Asymmetric Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3755-3763. [PMID: 38190611 DOI: 10.1021/acsami.3c15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
It has been well proved that the introduction of halogen can effectively modify the optoelectronic properties of classic symmetric nonfullerene acceptors (NFAs). However, the relevant studies for asymmetric NFAs are limited, especially the effect of halogen substitution number and position on the photovoltaic performance is not clear. In this work, four asymmetric NFAs with A-D-A1-A2 structure are developed by tuning the number and position of chlorine atoms on the 1,1-dicyanomethylene-3-indanone end groups, namely, A303, A304, A305, and A306. The related NFAs show progressively deeper energy levels and red-shifted absorption spectra as the degree of chlorination increases. The PM6:A306-constructed organic solar cells (OSCs) give a champion power conversion efficiency (PCE) of 13.03%. This is mainly ascribed to the most efficient exciton dissociation and collection, suppressed charge recombination, and optimal morphology. Moreover, by alternating the substitution position, the PM6:A305-based device yielded a higher PCE of 12.53% than that of PM6:A304 (12.05%). This work offers fresh insights into establishing excellent asymmetric NFAs for OSCs.
Collapse
Affiliation(s)
- Qingbin Li
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiang Wu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Linjiao Qin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Lingwei Xue
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiangyu Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingzhi Yan
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
49
|
Du B, Ma M, Zhang P, Wu S, Bin H, Li Y. High-Performance All-Small-Molecule Organic Solar Cells Fabricated via Halogen-Free Preparation Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2564-2572. [PMID: 38165814 DOI: 10.1021/acsami.3c14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Small-molecule organic photovoltaic materials attract more attention attributing to their precisely defined structure, ease of synthesis, and reduced batch-to-batch variations. The majority of all-small-molecule organic solar cells (ASM-OSCs) have traditionally relied on halogenated solvents for dissolving photovoltaic materials as well as used for the additives or solvent vapor annealing. However, these halogen-based processes pose risks to the environment and human health, potentially impeding future commercial production. Herein, we conducted an investigation into the impact of various nonhalogen solvents on the performance of the devices. By selecting the high boiling point solvent toluene, we achieved a desirable phase separation and stable morphology characterized by fibrous crystals within the blend film. Consequently, the power conversion efficiencies of 14.4 and 11.7% were obtained from H31:Y6-based small-area (0.04 cm2) and large-area (1 cm2) devices with steady performance, respectively. This study successfully demonstrated the fabrication of ASM-OSCs without employing halogenated solvent processes, thus offering promising prospects for the commercial production of ASM-OSCs.
Collapse
Affiliation(s)
- Bo Du
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Mengyuan Ma
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Panpan Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Shangrong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Haijun Bin
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
50
|
Zhang C, Song J, Ye L, Li X, Jee MH, Woo HY, Sun Y. Simple and Efficient Synthesis of Novel Tetramers with Enhanced Glass Transition Temperature for High-Performance and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202316295. [PMID: 38057496 DOI: 10.1002/anie.202316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Oligomer acceptors in organic solar cells (OSCs) have garnered substantial attention owing to their impressive power conversion efficiency (PCE) and long-term stability. However, the simple and efficient synthesis of oligomer acceptors with higher glass transition temperatures (Tg ) remains a formidable challenge. In this study, we propose an innovative strategy for the synthesis of tetramers, denoted as Tet-n, with elevated Tg s, achieved through only two consecutive Stille coupling reactions. Importantly, our strategy significantly reduces the redundancy in reaction steps compared to conventional methods for linear tetramer synthesis, thereby improving both reaction efficiency and yield. Furthermore, the OSC based on PM6:Tet-1 attains a high PCE of 17.32 %, and the PM6:L8-BO:Tet-1 ternary device achieves an even more higher PCE of 19.31 %. Remarkably, the binary device based on the Tet-1 tetramer demonstrates outstanding operational stability, retaining 80 % of the initial efficiency (T80 ) even after 1706 h of continuous illumination, which is primarily attributed to the enhanced Tg (247 °C) and lower diffusion coefficient (1.56×10-27 cm2 s-1 ). This work demonstrates the effectiveness of our proposed approach in the straightforward and efficient synthesis of tetramers materials with higher Tg s, thus offering a viable pathway for developing high-efficiency and stable OSCs.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Linglong Ye
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoming Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Min Hun Jee
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|