1
|
Hage SF, Bi DE, Kinkade S, Vera Cruz D, Srinath A, Jhaveri A, Romanos S, Bindal A, Lightle R, Little JC, Shenkar R, Alcazar-Felix RJ, Lee J, Stadnik A, Sidebottom A, Carroll TJ, Ji Y, Koskimaki J, Polster SP, Girard R, Awad IA. Circulating molecules reflect imaging biomarkers of hemorrhage in cerebral cavernous malformations. J Cereb Blood Flow Metab 2025:271678X251314366. [PMID: 39829356 DOI: 10.1177/0271678x251314366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Increases in mean lesional iron content by quantitative susceptibility mapping (QSM) by ≥6% and/or vascular permeability by dynamic contrast enhanced quantitative perfusion (DCEQP) by ≥40% on MRI have been associated with new symptomatic hemorrhage (SH) in cerebral cavernous malformations (CCMs). It is not known if plasma biomarkers can reflect these changes within the lesion proper. This cohort study enrolled 46 CCM patients with SH in the prior year. Plasma samples, QSM and DCEQP were simultaneously acquired at the beginning and end of 60 one-year epochs of prospective follow-up. Plasma levels of 16 proteins and 12 metabolites linked to CCM hemorrhage were assessed by enzyme-linked immunosorbent assay and liquid-chromatography mass spectrometry, respectively. A weighted model combining the percent changes in plasma levels in roundabout guidance receptor-4, cluster of differentiation 14, thrombomodulin and acetyl-L-carnitine reflected a mean increase in QSM ≥ 6% (97.2% and 100% specificity/sensitivity, p = 3.1 × 10-13). A weighted combination of percent changes in plasma levels of endoglin, pipecolic acid, arachidonic acid and hypoxanthine correlated with an increase in mean DCEQP ≥40% (99.6% specificity and 100% sensitivity, p = 4.1 × 10-17). This is a first report linking with great accuracy changes of circulating molecules to imaging changes reflecting new SH during prospective follow-up of CCMs.
Collapse
Affiliation(s)
- Stephanie F Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Dehua E Bi
- Department of Public Health Sciences, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Serena Kinkade
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Jessica C Little
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Roberto J Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Ashley Sidebottom
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Timothy J Carroll
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Janne Koskimaki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|
2
|
Gavrila EI, Dowell JS, Gorrai A, Wrobel C, Hendren N, Hardin EA, Moayedi Y, Tapaskar N, Peltz M, Farr M, Truby LK. Primary Graft Dysfunction after Heart Transplantation: Current Evidence and Implications for Clinical Practice. Curr Cardiol Rep 2025; 27:24. [PMID: 39812899 DOI: 10.1007/s11886-024-02153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the current literature on primary graft dysfunction highlighting the current definition, reviewing epidemiology, and describing donor, recipient, and perioperative risk factors in the contemporary era. RECENT FINDINGS PGD, in its most severe form, complicates 8% of heart transplants and portends a 1-year mortality of close to 40%. PGD is multifactorial and heterogeneous with contributions from donor and recipient risk as well as organ recovery and preservation modalities. Biomarkers may enhance risk stratification and lend insight into the underlying mechanism of PGD. Temperature-controlled storage and hypothermic oxygenation perfusion systems, in particular, may have significant potential to mitigate PGD risk. PGD is a devastating early complication of heart transplantation that is both complex and multifactorial. Despite its incidence and impact the underlying biology of PGD remains poorly understood. Future studies mechanistic studies are needed to address the underlying pathophysiology of PGD to develop targeted prophylactic and/or therapeutic interventions.
Collapse
Affiliation(s)
- Elena I Gavrila
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ananya Gorrai
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicholas Hendren
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Ashley Hardin
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Natalie Tapaskar
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Peltz
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maryjane Farr
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren K Truby
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Rexius-Hall ML, Madrigal MD, Kilic CY, Shen K, McCain ML. Profiling paracrine interactions between hypoxic and normoxic skeletal muscle tissue in a microphysiological system fabricated from 3D printed components. LAB ON A CHIP 2025; 25:212-224. [PMID: 39665980 DOI: 10.1039/d4lc00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Disrupted blood flow in conditions such as peripheral artery disease and critical limb ischemia leads to variations in oxygen supply within skeletal muscle tissue, creating regions of poorly perfused, hypoxic skeletal muscle surrounded by regions of adequately perfused, normoxic muscle tissue. These oxygen gradients may have significant implications for muscle injury or disease, as mediated by the exchange of paracrine factors between differentially oxygenated tissue. However, creating and maintaining heterogeneous oxygen landscapes within a controlled experimental setup to ensure continuous paracrine signaling is a technological challenge. Here, we engineer oxygen-controlled microphysiological systems to investigate paracrine interactions between differentially oxygenated engineered muscle tissue. We fabricated microphysiological systems with dual oxygen landscapes that also had engineered control over paracrine interactions between hypoxic and normoxic skeletal muscle tissues, which were differentiated from C2C12 myoblasts cultured on micromolded gelatin hydrogels. The microphysiological systems interfaced with a new 3D-printed oxygen control well plate insert, which we designed to distribute flow to multiple microphysiological systems and minimize evaporation for longer timepoints. With our system, we demonstrated that amphiregulin, a myokine associated with skeletal muscle injury, exhibits unique upregulation in both gene expression and secretion after 24 hours due to paracrine interactions between hypoxic and normoxic skeletal muscle tissue. Our platform can be extended to investigate other impacts of paracrine interactions between hypoxic and normoxic skeletal muscle and can more broadly be used to elucidate many forms of oxygen-dependent crosstalk in other organ systems.
Collapse
Affiliation(s)
- Megan L Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Malinda D Madrigal
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Cem Y Kilic
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Keyue Shen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Megan L McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Valverde-Pérez E, Olea E, Rocher A, Aaronson PI, Prieto-Lloret J. Effects of gestational intermittent hypoxia on the respiratory system: A tale of the placenta, fetus, and developing offspring. J Sleep Res 2024:e14435. [PMID: 39675784 DOI: 10.1111/jsr.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder that is associated with a wide variety of health conditions, including cardiovascular, cerebrovascular, metabolic, neoplastic, and neurocognitive manifestations. OSA, as a chronic condition, is mainly characterised by repeated upper airway obstructions during sleep that cause episodes of intermittent hypoxia (IH), resulting in tissue hypoxia-reoxygenation cycles. Decreased arterial oxygen pressure (PaO2) and haemoglobin saturation (SatO2) stimulate reflex responses to overcome the obstruction. The prevalence of OSA is significant worldwide, and an underrated problem when focussing on women during pregnancy. The physiological changes associated with pregnancy, especially during its latest stages, are related to a higher prevalence of OSA events in pregnant mothers, and associated with an increased risk of hypertension, pre-eclampsia and diabetes, among other deleterious consequences. Furthermore, OSA during pregnancy can interfere with normal fetal development and is associated with growth retardation, preterm birth, or low birth weight. Carotid body overstimulation and hypoxia-reoxygenation episodes contribute to cardiovascular disease and oxidative stress, which can harm both mother and fetus and have long-lasting effects that can reach into adulthood. Because IH is the hallmark of OSA, this review examines the literature available about the impact of gestational intermittent hypoxia (GIH) on the respiratory system at maternal, fetal, and offspring levels. Offering the latest scientific data about OSA during pregnancy, we may help to tackle this condition with lifestyle changes and therapeutic approaches, that could influence the mothers, but also impact adult health problems, mostly unknown, inherited from these hypoxic episodes in the uterus.
Collapse
Affiliation(s)
- Esther Valverde-Pérez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Elena Olea
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
- Departamento de Enfermería, Facultad de Enfermería, Universidad de Valladolid, Valladolid, Spain
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jesús Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
5
|
Patel S, Yang E, Milne TJ, Hussaini H, Cooper PR, Friedlander LT. Angiogenic effects of Type 2 diabetes on the dental pulp. Int Endod J 2024. [DOI: 10.1111/iej.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAimTo investigate the influence of type 2 diabetes (T2D) and hyperglycaemia on blood vessels and angiogenic markers in the dental pulp.MethodologyExtracted non‐carious permanent molar teeth were collected from patients with well‐controlled T2D (n = 10) and non‐T2D (controls) (n = 10). The pulp was examined qualitatively using haematoxylin and eosin and Van Gieson stains. Immunohistochemistry (IHC) identified the primary receptor for VEGF, VEGFR2, and the endothelial cell marker CD34. Primary human dental pulp cell (hDPC) lines (n = 3) were established from tissue explants and cells were grown in media containing 5.5 mM D‐glucose (control), 12.5 mM (prediabetes) and 25 mM (T2D) D‐glucose under normoxic conditions for 24, 48 and 72 h. Assays for metabolic activity (PrestoBlue) and cell viability (Crystal Violet staining) assessed the hDPC response to hyperglycaemia. The expression of angiogenic genes VEGFA, KDR, FLT‐1, ANGPT1, ANGPT2, TIE1 and TEK were analysed using quantitative real‐time polymerase chain reaction. ELISAs were used to quantify the level of expressed protein for VEGFA, ANG1, ANG2, TIE1, and TIE2 in the media. Data analyses were performed using GraphPad Prism and anova tests at p < .05.ResultsBlood vessels in T2D samples had thicker walls and stained strongly for elastin and collagen compared with non‐T2D samples. VEGFR2 protein was not seen in any T2D samples but consistently detected in healthy specimens. Culturing healthy cells in high glucose (25 mM) significantly reduced cell viability at 24 h compared to the control (p = .005) and 12.5 mM glucose (p = .001) but the metabolic activity was not greatly affected by glucose and time. VEGFA mRNA and VEGFA protein expression were detected in the hDPCs in the presence of hyperglycaemia over time; however, the primary receptor, VEGFR2/KDR, was not detected. Genes for the ANG1 and ANG2 and their receptors were expressed at all glucose concentrations but hyperglycaemia upregulated ANG2 mRNA. Proteins for all growth factors were detected in the media however proteins for TIE1 and TIE2 receptors were not.ConclusionT2D and hyperglycaemia may impair the angiogenic response in the pulp similar to other body site. The scarcity of VEGFR2 and increased expression of ANG2 in response to hyperglycaemia suggests that VEGF and ANG‐Tie1/Tie2 signalling may be compromised.
Collapse
Affiliation(s)
- S. Patel
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - E. Yang
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - T. J. Milne
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - H. Hussaini
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - P. R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - L. T. Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| |
Collapse
|
6
|
Mouzaka AE, Chandrinos A, Chatziralli I, Chatzichristou E, Gialelis TK. Eye Axial Length: Is There a Protective Link to Diabetic Retinopathy? Cureus 2024; 16:e75712. [PMID: 39811241 PMCID: PMC11731203 DOI: 10.7759/cureus.75712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness globally, particularly among working-age adults. As the prevalence of diabetes continues to rise, understanding factors that influence DR development and progression is increasingly important. Recent studies suggest a protective association between a longer axial length (AL) of the eye and the risk of DR, particularly in myopic individuals. This review explores the potential mechanisms underlying this relationship, including reduced retinal vascular density, altered retinal blood flow, and ocular biomechanics, which may collectively reduce the susceptibility of retinal tissues to hyperglycemic damage. However, limitations such as confounding factors, ethnic and genetic differences, and methodological challenges highlight the need for further research. This review aims to explore the relationship between AL and DR, examining the biological mechanisms that may underpin this association, summarizing the epidemiological evidence, discussing the clinical implications, and identifying directions for future research. Understanding the protective role of AL could have significant clinical suggestions, including more tailored screening intervals and personalized treatment approaches for DR. Future studies should focus on longitudinal analyses, mechanistic insights, and diverse populations to establish a clearer understanding of this relationship and its potential for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aikaterini E Mouzaka
- Department of Ophthalmology, 251 Air Force General Hospital, Athens, GRC
- Optics and Optometry Division, Investigative Techniques in Optometry Research Group, Department of Biomedical Sciences, University of West Attica, Athens, GRC
| | - Aristeidis Chandrinos
- Optics and Optometry Sector, Department of Biomedical Sciences, Faculty of Health Sciences, University of West Attica, Athens, GRC
| | - Irini Chatziralli
- 2nd Department of Ophthalmology, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Eleni Chatzichristou
- Optics and Optometry Division, Investigative Techniques in Optometry Research Group, Department of Biomedical Sciences, University of West Attica, Athens, GRC
| | - Themistoklis K Gialelis
- Optics and Optometry Division, Investigative Techniques in Optometry Research Group, Department of Biomedical Sciences, University of West Attica, Athens, GRC
| |
Collapse
|
7
|
Abudukeyimu Z, Luo J, Liu F, Ma Y, Li J, Wang J, Li X. Early growth response factor 3 may regulate coronary atherosclerosis through the NF-κB signaling pathway and VEGF expression. Am J Med Sci 2024; 368:476-484. [PMID: 38992750 DOI: 10.1016/j.amjms.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
AIM The present study was conducted to measure the expression of early growth response factor 3 (Egr3), inflammatory cytokines (IL-1β, IL-6), vascular endothelial growth factor (VEGF) and NF-κB in patients with coronary artery disease (CAD) to investigate the relationships of these molecules and Egr3 gene expression. METHODS We recruited 132 CAD patients and 63 healthy individuals. The expression levels of Egr3, VEGF, p50 and p65 were measured by reverse transcription quantitative polymerase chain reaction and the levels of Egr3, IL-1β and IL-6 in patients serum and in human coronary artery endothelial cells (HCAECs) were measured by enzyme-linked immunosorbent assay (ELISAs) in CAD patients. HCAECs were treated with ox-LDL to establish an in vitro atherosclerosis model. An oil red O staining assay was used to assess the lipid droplet formation. A colloidal external lumen formed by Matrigel was used to test the migration of HCAECs. The expression of Egr3, VEGF and NF-κB was determined by Western blotting. RESULTS The levels of serum Egr3 and IL-6 in the severe stenosis group were greater than those in the mild stenosis group and controls (p < 0.05). The level of serum IL-1β in the severe stenosis group was greater than that in the control group (p < 0.05). Moreover, Egr3 expression was positively associated with IL-6 levels (r = 0.55, p < 0.001), IL-1β levels (r = 0.21, p = 0.004) and the Gensini score (r = 0.20, p = 0.02). We also found that Egr3 expression was significantly greater in CAD patients than that in controls. And its expression was highest in the mild patients. The expression of VEGF, P50 and P65 was also greater in CAD patients. In the in vitro experiment, we found that the inhibition of Egr3 expression significantly reduced the expression levels of p50, p65, IL-6 and CRP. Moreover, the inhibition of Egr3 expression significantly reduced the lipid droplet formation and decreased capability of lumen formation. CONCLUSIONS In the pathogenesis of atherosclerosis, Egr3 gene expression may induce the expression of inflammatory factors and lipid droplet formation and lumen formation, which could promote the atherosclerosis development.
Collapse
Affiliation(s)
- Zumureti Abudukeyimu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Junyi Luo
- Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Fang Liu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Yanling Ma
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Jiao Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Juan Wang
- Department of Cardiology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| | - Xia Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| |
Collapse
|
8
|
Al-Ajalein AA, Ibrahim N‘I, Fauzi MB, Mokhtar SA, Naina Mohamed I, Shuid AN, Mohamed N. Evaluating the Anti-Osteoporotic Potential of Mediterranean Medicinal Plants: A Review of Current Evidence. Pharmaceuticals (Basel) 2024; 17:1341. [PMID: 39458982 PMCID: PMC11510337 DOI: 10.3390/ph17101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people's quality of life. Treatments utilizing natural products and medicinal plants have gained important attention in the management of osteoporosis and its associated implications, such as osteoporotic fractures. Even though thousands of plants grow in the Mediterranean region, the use of medicinal plants as an alternative therapy for osteoporosis is still limited. Methods: This article provides a comprehensive overview of seven Mediterranean medicinal plants that are used in osteoporosis and osteoporotic fractures in in vitro, in vivo, and clinical trials. The mechanism of action of the medicinal plants and their bioactive compounds against diseases are also briefly discussed. Results: The findings clearly indicate the ability of the seven medicinal plants (Ammi majus, Brassica oleracea, Ceratonia siliqua L., Foeniculum vulgare, Glycyrrhiza glabra, Salvia officinalis, and Silybum marianum) as anti-osteoporosis agents. Xanthotoxin, polyphenols, liquiritin, formononetin, silymarin, and silibinin/silybin were the main bioactive compounds that contributed to the action against osteoporosis and osteoporotic fractures. Conclusions: In this review, the Mediterranean medicinal plants prove their ability as an alternative agent for osteoporosis and osteoporotic fractures instead of conventional synthetic therapies. Thus, this can encourage researchers to delve deeper into this field and develop medicinal-plant-based drugs.
Collapse
Affiliation(s)
- Alhareth Abdulraheem Al-Ajalein
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| |
Collapse
|
9
|
Agafonova A, Cosentino A, Musso N, Prinzi C, Russo C, Pellitteri R, Anfuso CD, Lupo G. Hypoxia-Induced Inflammation in In Vitro Model of Human Blood-Brain Barrier: Modulatory Effects of the Olfactory Ensheathing Cell-Conditioned Medium. Mol Neurobiol 2024:10.1007/s12035-024-04517-6. [PMID: 39370481 DOI: 10.1007/s12035-024-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- CNR-IRIB: Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy.
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| |
Collapse
|
10
|
Hsieh LC, Le TK, Hu FC, Chen YT, Hsieh S, Wu CC, Hsieh SL. Targeted colorectal cancer treatment: In vitro anti-cancer effects of carnosine nanoparticles supported by agar and magnetic iron oxide. Eur J Pharm Biopharm 2024; 203:114477. [PMID: 39209128 DOI: 10.1016/j.ejpb.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The usage of peptides in the colorectal cancer (CRC) treatment promises to be a new anti-cancer therapy with improved treatment efficacy. Carnosine, a natural dipeptide molecule, has been demonstrated to be a potential anti-cancer drug. Nonetheless, it shows an exhibition of high-water solubility and is quickly degraded by carnosinase. Meanwhile, agar and magnetic iron oxide are the most used materials for drug delivery due to some of their advantages such as the low cost and the larger biocompatibility feature. The purpose of this study was to investigate the anti-cancer ability of agar-encapsulated carnosine nanoparticles (AgCa-NPs) and agar-encapsulated carnosine nanoparticles-coated magnetic iron oxide nanoparticles (AgCaN-MNPs) in human CRC cells, HCT-116. We evaluated the effects of AgCa-NPs and AgCaN-MNPs with a variety of concentrations (0, 5, 10, 15, 30, 40, or 50 mM) on HCT-116 cells after 72 h and 96 h by using MTT assay and observation cell morphology. We then analyzed the cell cycle progression and assessed the expression changes of genes related to apoptosis, autophagy, necroptosis, and angiogenesis after treatment for 96 h. The results showed that AgCa-NPs and AgCaN-MNPs in vitro study decreased HCT-116 cells viability. This effect was attributed to arrest of cell cycle, induction of programmed cell death, and suppression of angiogenesis by AgCa-NPs and AgCaN-MNPs. These findings revealed the antitumor efficacy of AgCa-NPs or AgCaN-MNPs for CRC treatment.
Collapse
Affiliation(s)
- Lan-Chi Hsieh
- Department of Dietetics, Kaohsiung Municipal United Hospital, Kaohsiung 80457, Taiwan
| | - Thai-Khuong Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Fang-Ci Hu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
11
|
Racca AC, Nardi S, Flores-Martin J, Genti-Raimondi S, Panzetta-Dutari GM. KLF6 negatively regulates HIF-1α in extravillous trophoblasts under hypoxia. Placenta 2024; 156:38-45. [PMID: 39244791 DOI: 10.1016/j.placenta.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION HIF-1α, the master regulator of hypoxia cellular response, is stabilized under low oxygen levels and degraded in the presence of oxygen but its transcription, translation, and degradation are tightly regulated by numerous pathways. KLF6 is a transcription factor involved in proliferation, differentiation, and apoptosis in several cell systems. Under hypoxia it is upregulated in a HIF-1α-dependent manner in extravillous trophoblasts. Considering the importance of hypoxia modulation of EVT behavior through HIF1-α we aimed to study whether KLF6 modulates HIF-1α expression in HTR8/SVneo cells. METHODS HTR8/SVneo cells were cultured in a 1 % oxygen chamber or in 3D format where a spontaneous oxygen gradient is generated. qRT-PCR and Western blot were performed to analyze mRNA and protein expression, respectively. SiRNA, shRNA, or plasmids were used to down- or up-regulate gene expression. Wound healing assay was performed under hypoxia to evaluate migration. The NFκB pathway was modulated with dominant negative mutants and a chemical inhibitor. Cobalt chloride was used to block HIF-1α degradation. RESULTS KLF6 up- and down-regulation in HTR8/SVneo cells exposed to acute hypoxia revealed a negative regulation on HIF-1α. KLF6 silencing led to a partially HIF-1α-dependent increase in MMP9 and VEGF. The NF-κB pathway and HIF-1α degradation were involved in KLF6-dependent HIF-1α regulation. HTR8/SVneo-3D culture showed that KLF6 negatively regulates HIF-1α in a microenvironment with naturally generated hypoxia. DISCUSSION Present results reveal that KLF6 contributes to a fine tune modulation of HIF-1α level under hypoxia. Thus, sustaining a HIF-1α homeostatic level, KLF6 might contribute to control EVT adaptation to hypoxia.
Collapse
Affiliation(s)
- Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Sofía Nardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Jésica Flores-Martin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
12
|
Holmström EJ, Syrjälä SO, Dhaygude K, Tuuminen R, Krebs R, Lommi J, Nykänen A, Lemström KB. Donor plasma VEGF-A as a biomarker for myocardial injury and primary graft dysfunction after heart transplantation. J Heart Lung Transplant 2024; 43:1677-1690. [PMID: 38897424 DOI: 10.1016/j.healun.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-A is an angiogenic and proinflammatory cytokine with profound effects on microvascular permeability and vasodilation. Several processes may induce VEGF-A expression in brain-dead organ donors. However, it remains unclear whether donor VEGF-A is linked to adverse outcomes after heart transplantation. METHODS We examined plasma VEGF-A levels from 83 heart transplant donors as well as the clinical data of these donors and their respective recipients operated between 2010 and 2016. The donor plasma was analyzed using Luminex-based Multiplex and confirmed with a single-target ELISA. Based on donor VEGF-A plasma levels, the recipients were divided into 3 equal-sized groups (low VEGF <500 ng/liter, n = 28; moderate VEGF 500-3000 ng/liter, n = 28; and high VEGF >3000 ng/liter, n = 27). Biochemical and clinical parameters of myocardial injury as well as heart transplant and kidney function were followed-up for one year, while rejection episodes, development of cardiac allograft vasculopathy, and mortality were monitored for 5 years. RESULTS Baseline parameters were comparable between the donor groups, except for age, where median ages of 40, 45, and 50 were observed for low, moderate, and high donor plasma VEGF levels groups, respectively, and therefore donor age was included as a confounding factor. High donor plasma VEGF-A levels were associated with pronounced myocardial injury (TnT and TnI), a higher inotrope score, and a higher incidence of primary graft dysfunction in the recipient after heart transplantation. Furthermore, recipients with allografts from donors with high plasma VEGF-A levels had a longer length of stay in the intensive care unit and the hospital, and an increased likelihood for prolonged renal replacement therapy. CONCLUSIONS Our findings suggest that elevated donor plasma VEGF-A levels were associated with adverse outcomes in heart transplant recipients, particularly in terms of myocardial injury, primary graft dysfunction, and long-term renal complications. Donor VEGF-A may serve as a potential biomarker for predicting these adverse outcomes and identifying extended donor criteria.
Collapse
Affiliation(s)
- Emil J Holmström
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Cardiothoracic Surgery, Helsinki University Hospital, Helsinki, Finland.
| | - Simo O Syrjälä
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Cardiothoracic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Kishor Dhaygude
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Raimo Tuuminen
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Rainer Krebs
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Jyri Lommi
- Department of Cardiology, Helsinki University Hospital, Helsinki, Finland
| | - Antti Nykänen
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Cardiothoracic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Karl B Lemström
- Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Cardiothoracic Surgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Park W, Park HY, Kim SW. Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women. Healthcare (Basel) 2024; 12:1887. [PMID: 39337228 PMCID: PMC11431341 DOI: 10.3390/healthcare12181887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present study examined the effect of 12-week combined exercise training in normobaric hypoxia on arterial stiffness, inflammatory biomarkers, and red blood cell (RBC) hemorheological function in 24 obese older women (mean age: 67.96 ± 0.96 years). METHODS Subjects were randomly divided into two groups (normoxia (NMX; n = 12) and hypoxia (HPX; n = 12)). Both groups performed aerobic and resistance exercise training programs three times per week for 12 weeks, and the HPX group performed exercise programs in hypoxic environment chambers during the intervention period. Body composition was estimated using bioelectrical impedance analysis equipment. Arterial stiffness was measured using an automatic waveform analyzer. Biomarkers of inflammation and oxygen transport (tumor necrosis factor alpha, interleukin 6 (IL-6), erythropoietin (EPO), and vascular endothelial growth factor (VEGF)), and RBC hemorheological parameters (RBC deformability and aggregation) were analyzed. RESULTS All variables showed significantly more beneficial changes in the HPX group than in the NMX group during the intervention. The combined exercise training in normobaric hypoxia significantly reduced blood pressure (systolic blood pressure: p < 0.001, diastolic blood pressure: p < 0.001, mean arterial pressure: p < 0.001, pulse pressure: p < 0.05) and brachial-ankle pulse wave velocity (p < 0.001). IL-6 was significantly lower in the HPX group than in the NMX group post-test (p < 0.001). Also, EPO (p < 0.01) and VEGF (p < 0.01) were significantly higher in the HPX group than in the NMX group post-test. Both groups showed significantly improved RBC deformability (RBC EI_3Pa) (p < 0.001) and aggregation (RBC AI_3Pa) (p < 0.001). CONCLUSIONS The present study suggests that combined exercise training in normobaric hypoxia can improve inflammatory biomarkers and RBC hemorheological parameters in obese older women and may help prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Wonil Park
- Department of Sports Science, Korea Institute of Sports Science, 424 Olympic-ro, Songpa-gu, Seoul 05540, Republic of Korea;
| | - Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Ma X, Li M, Wang X, Xu H, Jiang L, Wu F, Wei L, Qi G, Zhang D. Dihydromyricetin ameliorates experimental ulcerative colitis by inhibiting neutrophil extracellular traps formation via the HIF-1α/VEGFA signaling pathway. Int Immunopharmacol 2024; 138:112572. [PMID: 38955027 DOI: 10.1016/j.intimp.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Dihydromyricetin (DHM), which has various biological functions, possesses therapeutic potential for ulcerative colitis (UC). Neutrophil extracellular traps (NETs) and their components play a crucial role in several pathological processes in UC. However, whether DHM alleviates UC by regulating NETs remains unclear. Mice with dextran sulfate sodium (DSS)-induced acute colitis were treated with DHM at different concentrations, and the severity of colitis was evaluated by assessing body weight, colon length, histological scores, cytokine production, and epithelial barrier integrity. To quantify and visualize NETs, the expression of cell free-DNA (cf-DNA) in serum and Cit-H3 in colonic tissue was analyzed via western blotting and immunofluorescence analysis. HL-60 cells and mouse bone marrow-derived neutrophils (BMDNs) were used to evaluate the effects of DHM on NETs in vitro. NETs were treated with DHM at varying concentrations or DNase I and used to repair the intestinal epithelial barrier in a Caco-2/HIEC-6 cell monolayer model. Furthermore, the genes targeted by DHM through neutrophils for alleviating UC were identified by screening online databases, and the results of network pharmacological analysis were verified via western blotting and quantitative real-time polymerase chain reaction. DHM alleviated DSS-induced colitis in mice by reversing weight loss, increased DAI score, colon length shortening, enhanced spleen index, colonic pathological damage, cytokine production, and epithelial barrier loss in a dose-dependent manner. In addition, it inhibited the formation of NETs both in vivo and in vitro. Based on the results of network pharmacological analysis, DHM may target HIF-1α and VEGFA through neutrophils to alleviate UC. Treatment with PMA increased the expression of HIF-1α and VEGFA in D-HL-60 cells and BMDNs, whereas treatment with DHM or DNase I reversed this effect. Treatment with DMOG, an inhibitor of HIF prolyl hydroxylase (HIF-PH), counteracted the suppressive effects of DHM on NETs formation in D-HL-60 cells and BMDNs. Accordingly, it partially counteracted the protective effects of DHM on the intestinal epithelial barrier in Caco-2 and HIEC-6 cells. These results indicated that DHM alleviated DSS-induced UC by regulating NETs formation via the HIF-1α/VEGFA signaling pathway, suggesting that DHM is a promising therapeutic candidate for UC.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Huimei Xu
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Luxia Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Fanqi Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
15
|
Hoang SH, Dao H, Lam EM. A network pharmacology approach to elucidate the anti-inflammatory effects of ellagic acid. J Biomol Struct Dyn 2024; 42:7409-7420. [PMID: 37522847 DOI: 10.1080/07391102.2023.2240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Ellagic acid (EA) is a naturally occurring polyphenolic compound found in various fruits and vegetables like strawberries, raspberries, pomegranates, and nuts such as pecans and walnuts. With its antioxidant properties, EA has shown potential health benefits, although further research is necessary to fully comprehend its effects, mechanisms, and safe and effective application as a complementary medicine. Notably, there is accumulating evidence of EA's anti-inflammatory effects; however, the precise underlying mechanism remains unclear. To investigate the anti-inflammatory properties of EA, a network pharmacology approach was employed. The study identified 52 inflammation-related targets of EA and revealed significant signaling pathways and relevant diseases associated with inflammation through GO and KEGG analysis. Furthermore, topological analysis identified 10 important targets, including AKT1, VEGFA, TNF, MAPK3, ALB, SELP, MMP9, MMP2, PTGS2, and ICAM1. Molecular docking and molecular dynamics simulations were conducted, indicating that AKT1, PTGS2, VEGFA, and MAPK3 are the most likely targets of EA, as evidenced by their molecular mechanics Poisson-Boltzmann surface area binding energy calculations. In summary, this study not only confirmed the anti-inflammatory effects of EA observed in previous research but also identified the most probable targets of EA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H Hoang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Hue Dao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Emerson My Lam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Ausec TR, Carr LL, Alina TB, Day NB, Goodwin AP, Shields CW. Combination Chemical and Mechanical Tumor Immunomodulation Using Cavitating Mesoporous Silica Nanoparticles. ACS APPLIED NANO MATERIALS 2024; 7:19109-19117. [PMID: 39421501 PMCID: PMC11486172 DOI: 10.1021/acsanm.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combinatorial methods to repolarize tumor-associated macrophages from anti-inflammatory to pro-inflammatory phenotypes offers a promising route for cancer immunotherapy. However, most studies examine biochemical combinations alone. Therefore, we studied simultaneous chemical and mechanical stimuli as orthogonal cues for enhanced immunomodulation. We engineered the surfaces of hydrophobically functionalized mesoporous silica nanoparticles (F108-hMSNs) to encapsulate the immunomodulator resiquimod and kill cancer cells through high-intensity focused ultrasound (HIFU)-mediated inertial cavitation, releasing damage-associated molecular patterns (DAMPs) for prolonged macrophage stimulation. The HIFU doses alone did not affect cells, but in combination with F108-hMSNs, achieved significantly higher cancer cell death and DAMP generation. Inflammatory markers (CD86, MHC II, iNOS) were upregulated in tumor-associated-like macrophages treated with F108-hMSNs in the presence of HIFU and experienced the greatest inflammatory phenotypic shift of all conditions tested. This work suggests that chemical and mechanical activation facilitated by engineered nanoparticles offer a promising treatment against immunologically cold tumors.
Collapse
Affiliation(s)
- Taylor R. Ausec
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Lisa L. Carr
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Talaial B. Alina
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Nicole B. Day
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| |
Collapse
|
17
|
Veldeman M, Ridwan H, Alzaiyani M, Pjontek R, Kremer B, Hoellig A, Clusmann H, Hamou H. Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas. J Clin Med 2024; 13:4591. [PMID: 39200732 PMCID: PMC11354237 DOI: 10.3390/jcm13164591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Chronic subdural hematoma (cSDH) is a common disease of growing significance due to the increasing use of antithrombotic drugs and population aging. There exists conflicting observational evidence that previous treatment with angiotensin-converting enzyme (ACE) inhibitors reduces the rate of cSDH recurrence. This study assesses the hypothesis that ACE inhibitors may affect recurrence rates by altering hematoma membrane formation. Methods: All patients with chronic subdural hematoma who were operated upon in a single university hospital between 2015 and 2020 were considered for inclusion. Hematomas were classified according to their structural appearance in computed tomography (CT) imaging into one of eight subtypes. Patients' own medication, prior to hospitalization for cSDH treatment, was noted, and the use of ACI-inhibitors was identified. Results: Of the included 398 patients, 142 (35.9%) were treated with ACE inhibitors before admission for cSDH treatment. Of these, 115 patients (81.0%) received ramipril, 13 received patients lisinopril (11.3%), and 11 patients (9.6%) received enalapril. Reflecting cardiovascular comorbidity, patients on ACE inhibitors were more often simultaneously treated with antithrombotics (63.4% vs. 42.6%; p ≤ 0.001). Hematomas with homogenous hypodense (OR 11.739, 95%CI 2.570 to 53.612; p = 0.001), homogenous isodense (OR 12.204, 95%CI 2.669 to 55.798; p < 0.001), and homogenous hyperdense (OR 9.472, 95%CI 1.718 to 52.217; p < 0.001) architectures, as well as the prior use of ACE inhibitors (OR 2.026, 95%CI 1.214 to 3.384; p = 0.007), were independently associated with cSDH recurrence. Conclusions: Once corrected for hematoma architecture, type of surgery, and use of antithrombotic medication, preoperative use of ACE inhibitors was associated with a twofold increase in the likelihood of hematoma recurrence.
Collapse
Affiliation(s)
- Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hani Ridwan
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52062 Aachen, Germany
| | - Mohamed Alzaiyani
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Rastislav Pjontek
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Anke Hoellig
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hussam Hamou
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
18
|
Lian C, Liu J, Wei W, Wu X, Goto T, Li H, Tu R, Dai H. Mg-gallate metal-organic framework-based sprayable hydrogel for continuously regulating oxidative stress microenvironment and promoting neurovascular network reconstruction in diabetic wounds. Bioact Mater 2024; 38:181-194. [PMID: 38711758 PMCID: PMC11070761 DOI: 10.1016/j.bioactmat.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic diabetic wounds are the most common complication for diabetic patients. Due to high oxidative stress levels affecting the entire healing process, treating diabetic wounds remains a challenge. Here, we present a strategy for continuously regulating oxidative stress microenvironment by the catalyst-like magnesium-gallate metal-organic framework (Mg-GA MOF) and developing sprayable hydrogel dressing with sodium alginate/chitosan quaternary ammonium salts to treat diabetic wounds. Chitosan quaternary ammonium salts with antibacterial properties can prevent bacterial infection. The continuous release of gallic acid (GA) effectively eliminates reactive oxygen species (ROS), reduces oxidative stress, and accelerates the polarization of M1-type macrophages to M2-type, shortening the transition between inflammation and proliferative phase and maintaining redox balance. Besides, magnesium ions adjuvant therapy promotes vascular regeneration and neuronal formation by activating the expression of vascular-associated genes. Sprayable hydrogel dressings with antibacterial, antioxidant, and inflammatory regulation rapidly repair diabetic wounds by promoting neurovascular network reconstruction and accelerating re-epithelialization and collagen deposition. This study confirms the feasibility of catalyst-like MOF-contained sprayable hydrogel to regulate the microenvironment continuously and provides guidance for developing the next generation of non-drug diabetes dressings.
Collapse
Affiliation(s)
- Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, FoshanXianhu Laboratory, Foshan, 528200, China
| | - Takashi Goto
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Haiwen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, FoshanXianhu Laboratory, Foshan, 528200, China
| |
Collapse
|
19
|
Li Y, Liu Y, Chang M, Mu R, Zhu J. Effect of RNAi-Mediated Survivin and Hypoxia-Inducible Factor 1α Gene Silencing on Proliferation, Invasion, Migration and Apoptosis of Gastric Cancer BGC-823 Cells. Mol Biotechnol 2024; 66:1872-1882. [PMID: 37440157 DOI: 10.1007/s12033-023-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
In order to investigate the effects of RNAi-mediated survivin and hypoxia-inducible factor 1α (HIF-1α) gene silencing on the proliferation and apoptosis of gastric cancer BGC-823 cells, small interfering RNAs (siRNAs) targeting survivin and HIF-1α mRNAs, respectively, as well as scrambled siRNAs (SCRs) were designed and synthesized, namely siRNA-survivin group, siRNA-HIF-1α group, and SCR group. The hypoxia-sensitive gastric cancer BGC-823 cells were identified and transfected in vitro with Hifectin II under hypoxic conditions, and the expression of survivin and HIF-1α was assessed by RT-PCR and Western blotting assays, respectively. The ability of apoptosis, proliferation, invasion, and migration was measured, and the results showed that HIF-1α expression was significantly increased in BGC-823 cells under hypoxic conditions, and survival-targeted siRNA transfection decreased the expression of survivin under hypoxic conditions, while co-transfection of survivin-targeted siRNA and HIF-1α-targeted siRNA down-regulated both survivin and HIF-1α expression. Compared with the blank control group, the co-transfected siRNA group exhibited distinct characteristics, with decreased invasion and migration ability, increased apoptosis, and significantly decreased cell proliferation under hypoxic conditions. It was confirmed that the downregulation of survivin and HIF-1α in BGC-823 cells may induce anticancer effects by enhancing apoptosis and decreasing proliferation, migration, and invasion ability. The novelty lies in the application of RNAi technology to silence the expression of both survivin and HIF-1α genes in gastric cancer BGC-823 cells by single and combined interference in an established gastric cancer cell model and observed the mechanism of its effect on the proliferation and apoptosis of gastric cancer cells. Concerning the success of this highly active antiretroviral therapy of gene disruption therapies, which is the first of its kind in the world, we wonder whether we can find other better gene targets for more kinds of tumor therapy.
Collapse
Affiliation(s)
- Yupeng Li
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Yongchao Liu
- Basic Medical College, Beihua University, Jilin, Jilin, China
- Medical Laboratory Technology College, Beihua University, Jilin, Jilin, China
| | - Mingzhu Chang
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Runhong Mu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| | - Jianyu Zhu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| |
Collapse
|
20
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Li E, Cheung HCZ, Ma S. CTHRC1 + fibroblasts and SPP1 + macrophages synergistically contribute to pro-tumorigenic tumor microenvironment in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:17412. [PMID: 39075108 PMCID: PMC11286765 DOI: 10.1038/s41598-024-68109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer that accounts for over 90% of all pancreatic cancer cases. With a 5-year survival rate of only 13%, PDAC has proven to be extremely desmoplastic and immunosuppressive to most current therapies, including chemotherapy and surgical resection. In recent years, focus has shifted to understanding the tumor microenvironment (TME) around PDAC, enabling a greater understanding of biological pathways and intercellular interactions that can ultimately lead to potential for future drug targets. In this study, we leverage a combination of single-cell and spatial transcriptomics to further identify cellular populations and interactions within the highly heterogeneous TME. We demonstrate that SPP1+APOE+ tumor-associated macrophages (TAM) and CTHRC1+GREM1+ cancer-associated myofibroblasts (myCAF) not only act synergistically to promote an immune-suppressive TME through active extracellular matrix (ECM) deposition and epithelial mesenchymal transition (EMT), but are spatially colocalized and correlated, leading to worse prognosis. Our results highlight the crosstalk between stromal and myeloid cells as a significant area of study for future therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Evan Li
- Worcester Academy, Worcester, MA, USA.
| | | | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Meruvu S, Ding Z, Choudhury M. Mono-(2-ethylhexyl) phthalate induces trophoblast hypoxia and mitochondrial dysfunction through HIF-1α-miR-210-3p axis in HTR-8/SVneo cell line. Curr Res Toxicol 2024; 7:100188. [PMID: 39175913 PMCID: PMC11338994 DOI: 10.1016/j.crtox.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| |
Collapse
|
23
|
Suryawan IGR, Pikir BS, Rantam FA, Ratri AK, Nugraha RA. Hypoxic Preconditioning Promotes Survival of Human Adipose Derived Mesenchymal Stem Cell. F1000Res 2024; 10:843. [PMID: 38938689 PMCID: PMC11208860 DOI: 10.12688/f1000research.55351.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Contributing factors for improved survival of human adipocytes mesenchymal stem cells (h-AMSCs) cultured through hypoxia preconditioning, in example apoptosis inhibition involving BCL2 and HSP27 expression, trigger signal expression (VEGF), SCF expression, OCT-4 expression, and CD44+ expression. The objective if this study was to explain the mechanism and role of hypoxic preconditioning and the optimal duration of hypoxic preconditioning exposure to improve survival of h-AMSCs. Methods: An experimental laboratory explorative study ( in vitro) with hypoxic preconditioning in h-AMSCs cultures. This research was conducted through four stages. First, isolation of h-AMSCs culture from adipose tissue of patients. Second, the characterization of h-AMSCs from adipose tissue by phenotype (flowcytometry) through CD44+, CD90+ and CD45-expression before being pre-conditioned for hypoxic treatment. Third, the hypoxic preconditioning in h-AMSCs culture ( in vitro) was performed with an oxygen concentration of 1% for 24, 48 and 72 hours. Fourth, observation of survival from h-AMSCs culture was tested on the role of CD44+, VEGF, SCF, OCT-4, BCL2, HSP27 with Flowcytometry and apoptotic inhibition by Tunnel Assay method. Results: The result of regression test showed that time difference had an effect on VEGF expression ( p<0.001; β=-0.482) and hypoxia condition also influenced VEGF expression ( p<0.001; β=0.774). The result of path analysis showed that SCF had effect on OCT-4 expression ( p<0.001; β=0.985). The regression test results showed that time effects on HSP27 expression ( p<0.001; β=0.398) and hypoxia precondition also affects HSP27 expression ( p<0.001; β=0.847). Pathway analysis showed that BCL2 expression inhibited apoptosis ( p=0.030; β=-0.442) and HSP27 expression also inhibited apoptosis ( p<0,001; β=-0.487). Conclusion: Hypoxic preconditioning of h-AMSC culture has proven to increase the expression of VEGF, SCF, OCT-4, and BCL2 and HSP27. This study demonstrated and explained the existence of a new mechanism of increased h-AMSC survival in cultures with hypoxic preconditioning (O2 1%) via VEGF, SCF, OCT-4, BCL2, and HSP 27.
Collapse
Affiliation(s)
- I Gde Rurus Suryawan
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Budi Susetyo Pikir
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Anudya Kartika Ratri
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Ricardo Adrian Nugraha
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| |
Collapse
|
24
|
Shoda C, Lee D, Miwa Y, Yamagami S, Nakashizuka H, Nimura K, Okamoto K, Kawagishi H, Negishi K, Kurihara T. Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis. FASEB J 2024; 38:e23792. [PMID: 38953555 DOI: 10.1096/fj.202400540rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.
Collapse
Affiliation(s)
- Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Aichi Animal Eye Clinic, Nagoya, Aichi, Japan
| | - Satoru Yamagami
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Kazumi Nimura
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Wang J, Wang S, Zhang J, Ji D, Huang ZS, Li D. Regulation of VEGF gene expression by bisacridine derivative through promoter i-motif for cancer treatment. Biochim Biophys Acta Gen Subj 2024; 1868:130631. [PMID: 38685534 DOI: 10.1016/j.bbagen.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is overexpressed in most malignant tumors, which has important impact on tumor angiogenesis and development. Its gene promoter i-motif structure formed by C-rich sequence can regulate gene expression, which is a promising new target for anti-tumor therapy. METHODS We screened various compounds and studied their effects on VEGF through extensive experiments, including SPR, MST, TO displacement, FRET, CD, ESI-MS, NMR, MTT, clone formation, qPCR, Western blot, dual-luciferase reporter assay, immunofluorescence, cell scrape, apoptosis, transwell assay, and animal model. RESULTS After extensive screening, bisacridine derivative B09 was found to have selective binding and stabilization to VEGF promoter i-motif, which could down-regulate VEGF gene expression. B09 showed potent inhibition on MCF-7 and HGC-27 cell proliferation and metastasis. B09 significantly inhibited tumor growth in xenograft mice model with HGC-27 cells, showing decreased VEGF expression analyzed through immunohistochemistry. CONCLUSION B09 could specifically regulate VEGF gene expression, possibly through interacting with promoter i-motif structure. As a lead compound, B09 could be further developed for innovative anti-cancer agent targeting VEGF.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
26
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
27
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Laschke MW. Preconditioning Strategies for Improving the Outcome of Fat Grafting. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38818802 DOI: 10.1089/ten.teb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Autologous fat grafting is a common procedure in plastic, reconstructive, and aesthetic surgery. However, it is frequently associated with an unpredictable resorption rate of the graft depending on the engraftment kinetics. This, in turn, is determined by the interaction of the grafted adipose tissue with the tissue at the recipient site. Accordingly, preconditioning strategies have been developed following the principle of exposing these tissues in the pretransplantation phase to stimuli inducing endogenous protective and regenerative cellular adaptations, such as the upregulation of stress-response genes or the release of cytokines and growth factors. As summarized in the present review, these stimuli include hypoxia, dietary restriction, local mechanical stress, heat, and exposure to fractional carbon dioxide laser. Preclinical studies show that they promote cell viability, adipogenesis, and angiogenesis, while reducing inflammation, fibrosis, and cyst formation, resulting in a higher survival rate and quality of fat grafts in different experimental settings. Hence, preconditioning represents a promising approach to improve the outcome of fat grafting in future clinical practice. For this purpose, it is necessary to establish standardized preconditioning protocols for specific clinical applications that are efficient, safe, and easy to implement into routine procedures.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Payervand N, Pakravan K, Razmara E, Vinu KK, Ghodsi S, Heshmati M, Babashah S. Exosomal circ_0084043 derived from colorectal cancer-associated fibroblasts promotes in vitro endothelial cell angiogenesis by regulating the miR-140-3p/HIF-1α/VEGF signaling axis. Heliyon 2024; 10:e31584. [PMID: 38828320 PMCID: PMC11140710 DOI: 10.1016/j.heliyon.2024.e31584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background Circular RNAs (circRNAs) hold potential as diagnostic markers for colorectal cancer (CRC); however, their functional mechanisms remain incompletely elucidated. This work investigates the clinical implications of a unique set comprising six circRNAs derived from serum in CRC. Furthermore, we delve into the role of exosomal circ_0084043, originating from colorectal cancer-associated fibroblasts (CAFs), with a specific focus on its contribution to endothelial cell angiogenesis. Methods The study analyzed circRNA levels in serum samples obtained from both CRC and control groups using qRT-PCR. Additionally, exosomes originating from colorectal CAFs and normal fibroblasts (NFs) were purified and confirmed by electron microscopy and Western blotting techniques. The proangiogenic effects of CAF-derived exosomal circ_0084043 were assessed in endothelial cells through proliferation, migration, and in vitro capillary tube formation assays. Gain- and loss-of-function experiments were employed to clarify the role of the circ_0084043/miR-140-3p/HIF-1α axis in endothelial cell angiogenesis, utilizing luciferase reporter assay, Western blotting, and ELISA for mechanism elucidation. Results The candidate circRNAs (circ_0060745, circ_001569, circ_007142, circ_0084043, Circ_BANP, and CiRS-7) exhibited notably elevated expression in CRC patient sera compared to the levels observed in healthy individuals. Except for CiRS-7, all circRNAs showed elevated expression in CRC patients with positive lymph node metastasis and advanced tumor stages. Exosomes released by colorectal CAFs augmented endothelial cell proliferation, migration, and angiogenesis by upregulating VEGF expression and secretion. Circ_0084043 was highly detected in endothelial cells treated with CAF-derived exosomes. Silencing circ_0084043 reduced VEGFA expression and diminished CAF exosome-induced endothelial cell processes, indicating its pivotal role in angiogenesis. Circ_0084043 sponges miR-140-3p, regulating HIF-1α, and a reverse relationship was also identified between miR-140-3p and VEGFA in endothelial cells. Inhibiting miR-140-3p mitigated circ_0084043 knockdown effects in CAF exosome-treated endothelial cells. Co-transfection of si-circ_0084043 and a miR-140-3p inhibitor reversed the inhibited migration and angiogenesis caused by circ_0084043 knockdown in CAF exosome-treated endothelial cells. Inhibiting miR-140-3p rescued reduced VEGFA expression due to circ_0084043 knockdown in endothelial cells exposed to CAF-derived exosomes, indicating modulation of the circ_0084043/miR-140-3p/VEGF signaling in CAF-derived exosome-induced angiogenesis. Conclusions This study unveiled a distinctive signature of six serum-derived circular RNAs, indicating their potential as promising diagnostic biomarkers for CRC. Importantly, exosomal circ_0084043 originating from colorectal CAFs was identified as playing a crucial role in endothelial cell angiogenesis, exerting its influence through the modulation of the miR-140-3p/HIF-1α/VEGF signaling axis.
Collapse
Affiliation(s)
- Nafiseh Payervand
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kailash Kumar Vinu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Ghodsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Bhagavan H, Wei AD, Oliveira LM, Aldinger KA, Ramirez JM. Chronic intermittent hypoxia elicits distinct transcriptomic responses among neurons and oligodendrocytes within the brainstem of mice. Am J Physiol Lung Cell Mol Physiol 2024; 326:L698-L712. [PMID: 38591125 PMCID: PMC11380971 DOI: 10.1152/ajplung.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.
Collapse
Affiliation(s)
- Hemalatha Bhagavan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurology, University of Washington, Seattle, Washington, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| |
Collapse
|
30
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
31
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
32
|
Liang Y, Zhang H, Li J, Wang X, Xie J, Li Y, Li J, Qian Y, Zhang H, Wang T, Tang H, Chen X. GLUT1 regulates the release of VEGF-A in the alveolar epithelium of lipopolysaccharide-induced acute lung injury. Cell Biol Int 2024; 48:510-520. [PMID: 38225684 DOI: 10.1002/cbin.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
Acute lung injury (ALI) is a severe disease with high mortality and poor prognosis, characterized by excessive and uncontrolled inflammatory response. Vascular endothelial growth factor A (VEGF-A) contributes to the development and progression of ALI. The aim of this study was to evaluate the role of glucose transporter 1 (GLUT1) in alveolar epithelial VEGF-A production in lipopolysaccharide (LPS)-induced ALI. An ALI mouse model was induced by LPS oropharyngeal instillation. Mice were challenged with LPS and then treated with WZB117, a specific antagonist of GLUT1. For the vitro experiments, cultured A549 cells (airway epithelial cell line) were exposed to LPS, with or without the GLUT1 inhibitors WZB117 or BAY876. LPS significantly upregulated of GLUT1 and VEGF-A both in the lung from ALI mice and in cultured A549. In vivo, treatment with WZB117 not only markedly decreased LPS-induced pulmonary edema, injury, neutrophilia, as well as levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF), but also reduced VEGF-A production. Yet, the maximum tolerated concentration of WZB117 failed to suppress LPS-induced VEGF-A overexpression in vitro. While administration of BAY876 inhibited gene and protein expression as well as secretion of VEGF-A in response to LPS in A549. These results illustrated that GLUT1 upregulates VEGF-A production in alveolar epithelia from LPS-induced ALI, and inhibition of GLUT1 alleviates ALI.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xilong Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianpeng Xie
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijian Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiehong Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunyao Qian
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Wang
- State key Laboratory of Respiratory Diseases, Guangzhou Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, The Frist Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Zhang R, Yao Y, Gao H, Hu X. Mechanisms of angiogenesis in tumour. Front Oncol 2024; 14:1359069. [PMID: 38590656 PMCID: PMC10999665 DOI: 10.3389/fonc.2024.1359069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic factor-targeting drugs have been approved as first line agents in a variety of oncology treatments. Clinical drugs frequently target the VEGF signalling pathway during sprouting angiogenesis. Accumulating evidence suggests that tumours can evade antiangiogenic therapy through other angiogenesis mechanisms in addition to the vascular sprouting mechanism involving endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2) vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5) cancer stem cell-derived angiogenesis, and (6) bone marrow-derived angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely dependent on the VEGF signalling pathway. In clinical practice, the conversion of vascular mechanisms is closely related to the enhancement of tumour drug resistance, which often leads to clinical treatment failure. This article summarizes recent studies on six processes of tumour angiogenesis and provides suggestions for developing more effective techniques to improve the efficacy of antiangiogenic treatment.
Collapse
Affiliation(s)
| | | | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
34
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Zhuang J, Shang Q, Rastinejad F, Wu D. Decoding Allosteric Control in Hypoxia-Inducible Factors. J Mol Biol 2024; 436:168352. [PMID: 37935255 DOI: 10.1016/j.jmb.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1β). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.
Collapse
Affiliation(s)
- Jingjing Zhuang
- Marine College, Shandong University, Weihai 264209, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
36
|
Koganemaru S, Fuchigami H, Yamashita H, Morizono C, Sunakawa H, Kawazoe A, Nakamura Y, Kuboki Y, Shitara K, Yano T, Doi T, Yasunaga M. Quantitative Analysis of the Concentration of Trifluridine in Tumor Hypoxic Regions Using a Novel Platform Combining Functional Endoscopy and Mass Spectrometry. Clin Pharmacol Ther 2024; 115:62-70. [PMID: 37803526 DOI: 10.1002/cpt.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Hypoxic regions in solid tumors are highly resistant to drugs and thus represents an obstacle in drug discovery. Currently, however, there are technical barriers in sampling human hypoxic tumors and examining drug delivery with high sensitivity and accuracy. Herein, we present a new platform combining functional endoscopy and highly sensitive liquid chromatography-mass spectrometry (LC-MS) to assess drug delivery to hypoxic regions. Because oxygen saturation endoscopic imaging (OXEI), a functional endoscopy, can evaluate lesions and hypoxia in real-time by simultaneously acquiring a pseudocolor map of oxygen saturation and conventional endoscopic images, this platform can be used to evaluate drug delivery with human samples from hypoxic regions. As the first clinical application of this platform, the relationship between hypoxic regions and the concentration of trifluridine (FTD) incorporated into DNA was evaluated in patients with advanced gastric cancer treated with FTD/tipiracil (FTD/TPI; n = 13) by obtaining and analysis of tissue samples by OXEI and LC-MS and vascular maturity index by CD31/α-SMA staining ex vivo. The results showed that the concentration of FTD was significantly higher in the normoxic region than in the hypoxic region (P < 0.05) and there were significantly more immature vessels in hypoxic regions than in normoxic regions (P < 0.05). These results indicate that the platform was sufficiently sensitive to evaluate differences in drug anabolism in different oxygenic regions of human tumor tissue. This new platform allows quantitative drug analysis in hypoxic regions and is expected to initiate a new era of drug discovery and development.
Collapse
Affiliation(s)
- Shigehiro Koganemaru
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hirobumi Fuchigami
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hiroki Yamashita
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Chihiro Morizono
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hironori Sunakawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
37
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
38
|
Li J, Yue Z, Tang M, Wang W, Sun Y, Sun T, Chen C. Strategies to Reverse Hypoxic Tumor Microenvironment for Enhanced Sonodynamic Therapy. Adv Healthc Mater 2024; 13:e2302028. [PMID: 37672732 DOI: 10.1002/adhm.202302028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as a highly effective modality for the treatment of malignant tumors owing to its powerful penetration ability, noninvasiveness, site-confined irradiation, and excellent therapeutic efficacy. However, the traditional SDT, which relies on oxygen availability, often fails to generate a satisfactory level of reactive oxygen species because of the widespread issue of hypoxia in the tumor microenvironment of solid tumors. To address this challenge, various approaches are developed to alleviate hypoxia and improve the efficiency of SDT. These strategies aim to either increase oxygen supply or prevent hypoxia exacerbation, thereby enhancing the effectiveness of SDT. In view of this, the current review provides an overview of these strategies and their underlying principles, focusing on the circulation of oxygen from consumption to external supply. The detailed research examples conducted using these strategies in combination with SDT are also discussed. Additionally, this review highlights the future prospects and challenges of the hypoxia-alleviated SDT, along with the key considerations for future clinical applications. These considerations include the development of efficient oxygen delivery systems, the accurate methods for hypoxia detection, and the exploration of combination therapies to optimize SDT outcomes.
Collapse
Affiliation(s)
- Jialun Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhengya Yue
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Minglu Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wenxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
39
|
Kuloğlu N, Karabulut D, Kaymak E, Akin AT, Ceylan T, Yıldırım AB, Yakan B. Effect of vitamin B12 on methotrexate-induced cardiotoxicity in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:733-739. [PMID: 38645491 PMCID: PMC11024404 DOI: 10.22038/ijbms.2024.74161.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Objectives Methotrexate (MTX) is a drug with anti-inflammatory and immunosuppressive effects and is also a folic acid antagonist. Our aim in this study is to determine the molecular mechanisms of cardiotoxicity caused by MTX, a chemotherapeutic drug, and to evaluate the protective effects of vitamin B12 on this toxicity. Materials and Methods A total of 32 rats were used in our study and 4 groups were formed. Control group, Vit B12 group (3 μg/kg B12 for 15 days, IP), MTX group (20 mg/kg MTX single dose on day 8 of the experiment, IP), MTX +Vit B12 group (3 μg/kg, IP ), Vit B12 throughout the 15 days, and a single dose of 20 mg/kg MTX (IP) on day 8 of the experiment. Immunohistochemically, expressions of hypoxia-inducible factor 1α (HIF1-α), vascular endothelial growth factor receptor-2 (VEGFR-2), erythropoietin (EPO), and interleukin-6 (IL-6) were evaluated in the heart tissue. Total catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were measured in the heart tissue. At the same time, ANP and NT-proBNP levels were measured in the blood serum. Results In the study, the expression of HIF1-α and VEGFR-2 increased significantly in the MTX group, while IL-6 and EPO significantly decreased. At the same time, CAT and SOD levels were significantly decreased and MDA levels increased significantly in the MTX group. While vitamin B12 significantly corrected all these values, it also greatly reduced the increases in ANP and NT-proBNP levels caused by MTX. Conclusion It is important to use Vit B12 before and after MTX administration to replace the folate that MTX has reduced.
Collapse
Affiliation(s)
- Nurhan Kuloğlu
- Healthcare Services Department, Niğde Ömer Halisdemir University, Nigde, Turkey
| | - Derya Karabulut
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Ali Tuğrul Akin
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Tayfun Ceylan
- Histology-Embryology Department, Faculty of Dentistry, Cappadocia University, Nevşehir, Turkey
| | - Ayşegül Burçin Yıldırım
- Gaziantep Islamic Science and Technology University, Department of Histology-Embryology, Gaziantep, Turkey
| | - Birkan Yakan
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
40
|
Ilika VV, Garvasiuk OV, Dogolich OІ, Malaiko SS, Batih IV. Comprehensive morphological study of free radical processes in chronic chorioamnionitis on the background of iron deficiency anemia in pregnancy. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1425-1433. [PMID: 39241143 DOI: 10.36740/wlek202407119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
OBJECTIVE Aim: To establish the features of free radical processes in the endotheliocytes of the chorionic plate of the placenta in chronic chorioamnionitis against the background of iron deficiency anemia of pregnant women using both chemiluminescent and histochemical methods of research. PATIENTS AND METHODS Materials and Methods: 82 placentas from parturients at 37 - 40 weeks of gestation were studied. Including, for comparison, the placenta during physiological pregnancy and the observation of iron deficiency anemia of pregnant women without inflammation of the placenta. The number of observations in specific study groups is given in the tables. To achieve the objective and solve the tasks set in this study, there were carried out the following histochemical, chemiluminescent, morphometric and statistical methods of material processing. RESULTS Results: In case of chorionamnionitis against the background of anemia in pregnancy, the R/B ratio (R/B - ratio between amino- (blue) and carboxyl (red) groups of proteins)) in the method with bromophenol blue according to Mikel Calvo was 1.56±0.021, indicators of chemiluminescence of nitroperoxides were 133±4.5, relative optical density units of histochemical staining using the method according to A. Yasuma and T. Ichikawa was - 0.224±0.0015. CONCLUSION Conclusions: With chronic chorioamnionitis, the intensity of the glow of nitroperoxides, the average indicators of the R/B ratio, and the optical density of histochemical staining for free amino groups of proteins are increased compared to placentas of physiological pregnancy and anemia of pregnant women. Comorbid i anemia of pregnant women causes increasing of the intensity of the glow of nitroperoxides, the average values of the R/B ratio, and the optical density of histochemical staining for free amino groups of proteins comparing to placentas with inflammation without anemia. The key factor in the formation of morphological features of chronic chorioamnionitis with comorbid anemia is the intensification of free radical processes, which is reflected by the increase in the concentration of nitroperoxides in the center of inflammation, with the subsequent intensification of the processes of oxidative modification of proteins, which is followed by the increasing activity of the processes of limited proteolysis.
Collapse
Affiliation(s)
| | | | | | | | - Iryna V Batih
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE
| |
Collapse
|
41
|
Dasgupta S, Reddy KP, Datta P, Barui A. Vitamin D3-incorporated chitosan/collagen/fibrinogen scaffolds promote angiogenesis and endothelial transition via HIF-1/IGF-1/VEGF pathways in dental pulp stem cells. Int J Biol Macromol 2023; 253:127325. [PMID: 37820916 DOI: 10.1016/j.ijbiomac.2023.127325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Effective vascularization during wound healing remains a critical challenge in the regeneration of skin tissue. On the other hand, mesenchymal stem cell (MSC) to endothelial phenotype transition (MEnDoT) is a potential phenomenon grossly underexplored in vascularized skin tissue engineering. Vitamin D3 has a proven role in promoting MEnDoT. Hence, a D3-incorporated scaffold made with biocompatible materials such as chitosan, collagen and fibrinogen should be able to promote endothelial lineage transition in vitro for tissue engineering purposes. In this study, we developed vitamin D3 incorporated chitosan-collagen-fibrinogen (CCF-D3) scaffolds physically crosslinked under UV and conducted thorough physicochemical and biological assays on it compared to a control scaffold without vitamin D3. Our study for the first time reports the potential vascularization property of the CCF-D3 scaffold by inducing the transitions of dental pulp MSC to endothelial lineage via the HIF-1/IGF-1/VEGF pathways. MSC seeded on UV-exposed CCF-D3 scaffolds had higher cell viability and transitioned towards endothelial lineage was observed by elevated proliferative and endothelial-specific gene expressions and flow cytometric analysis of SCA-1+ antibody. The difference in VEGF-A and α-SMA expressions was also observed in the D3-CCF scaffold compared to the scaffolds without D3.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | | | - Pallab Datta
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| |
Collapse
|
42
|
Buart S, Diop MK, Damei I, Chouaib S. Sunitinib Treatment of VHL C162F Cells Slows Down Proliferation and Healing Ability via Downregulation of ZHX2 and Confers a Mesenchymal Phenotype. Cancers (Basel) 2023; 16:34. [PMID: 38201462 PMCID: PMC10778532 DOI: 10.3390/cancers16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
von Hippel-Lindau (VHL) disease, due to mutations of the tumor suppressor VHL gene, is a rare hereditary syndrome with a high risk of developing clear cell renal cell carcinoma (ccRCC). We asked whether the VHL-C162F mutation interferes with proliferation, migration, healing and forming colony ability by using wild-type VHL (WT VHL) and VHL-C162F reconstituted cells. We then analyzed the in vitro impact of the sunitinib treatment on VHL-C162F cells. We showed that VHL-C162F mutations have no impact on cell morphology, colony formation and migration ability but confer a significant higher healing ability than in WT VHL cells. RNA sequencing analysis revealed that VHL-C162F mutation upregulates genes involved in hypoxia and epithelial mesenchymal transition (EMT) pathways by comparison with VHL WT cells. We next showed a decrease in healing ability in VHL-C162F cells depleting on ZHX2, an oncogenic driver of ccRCC, highlighting the potential involvement of ZHX2 in aggressiveness of the VHL-C162F cells. Moreover, we found that sunitinib treatment inhibits ZHX2 expression and induces a reduced proliferation correlating with downregulation of P-ERK. Sunitinib treatment also conferred a more mesenchymal profile to VHL-C162F cells with significant downregulation of E-cadherin and upregulation of N-cadherin, Slug and AXL. Sunitinib therapy may therefore promote disease progression in VHL-C162F patients.
Collapse
Affiliation(s)
- Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France;
| | - M’boyba Khadija Diop
- Bioinformatics Core Facility, University of Paris-Saclay, 94805 Villejuif, France;
| | - Isabelle Damei
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France;
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France;
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| |
Collapse
|
43
|
Ryaboshapkina M, Ye R, Ye Y, Birnbaum Y. Effects of Dapagliflozin on Myocardial Gene Expression in BTBR Mice with Type 2 Diabetes. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07517-1. [PMID: 37914900 DOI: 10.1007/s10557-023-07517-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Schoenmann N, Tannenbaum N, Hodgeman RM, Raju RP. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166769. [PMID: 37263447 PMCID: PMC10776176 DOI: 10.1016/j.bbadis.2023.166769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Dichloroacetate (DCA) is a naturally occurring xenobiotic that has been used as an investigational drug for over 50 years. Originally found to lower blood glucose levels and alter fat metabolism in diabetic rats, this small molecule was found to serve primarily as a pyruvate dehydrogenase kinase inhibitor. Pyruvate dehydrogenase kinase inhibits pyruvate dehydrogenase complex, the catalyst for oxidative decarboxylation of pyruvate to produce acetyl coenzyme A. Several congenital and acquired disease states share a similar pathobiology with respect to glucose homeostasis under distress that leads to a preferential shift from the more efficient oxidative phosphorylation to glycolysis. By reversing this process, DCA can increase available energy and reduce lactic acidosis. The purpose of this review is to examine the literature surrounding this metabolic messenger as it presents exciting opportunities for future investigation and clinical application in therapy including cancer, metabolic disorders, cerebral ischemia, trauma, and sepsis.
Collapse
Affiliation(s)
- Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Nicholas Tannenbaum
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ryan M Hodgeman
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
46
|
Zeng J, Cai J, Wang D, Liu H, Sun H, Liu J. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol 2023; 14:112. [PMID: 37658441 PMCID: PMC10474781 DOI: 10.1186/s40104-023-00915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Rises in global warming and extreme weather occurrence make the risk of heat stress (HS) induced by high ambient temperatures more likely in high-yielding dairy cows, resulting in low milk quality and yield. In animals, oxygen is involved in many physiological and metabolic processes, but the effects of HS on oxygen metabolism remain unclear. Thus, the current study aimed to investigate how oxygen metabolism plays a role in health status of dairy cows by measuring the milk yield, milk composition, and blood biochemical variables of cows under different levels of HS: none (No-HS), mild (Mild-HS), and moderate HS (Mod-HS). RESULTS The HS significantly increased rectal temperature (Ptreat < 0.01) and respiration rate (Ptreat < 0.01). Under Mod-HS, greater Na+ (P < 0.05) and lower total CO2, and pH (P < 0.05) were observed relative to those under No-HS and Mild-HS. Oxygen concentrations in both coccygeal artery and mammary vein (Ptreat < 0.01) were lower under Mod-HS than under No-HS. Coccygeal vein concentrations of heat shock protein 90 (HSP90) (P < 0.05) increased during Mod-HS compared with those in cows under No-HS. Malondialdehyde increased during Mod-HS, and glutathione peroxidase (P < 0.01) increased during Mild-HS. Coccygeal vein concentrations of vascular endothelial growth factor (P < 0.01), heme oxygenase-1 (P < 0.01), and hypoxia-inducible factor 1α (P < 0.01) were greater in cows under Mod-HS than those under No-HS. Red blood cell count (P < 0.01) and hemoglobin concentration (P < 0.01) were lower in the coccygeal vein of dairy cows under Mild- and Mod-HS than those of cows under No-HS. CONCLUSIONS Exposure to HS negatively impacts the health status and lactation performance of dairy cows by limiting oxygen metabolism and transportation. However, the specific mechanism by which HS affects mammary function in cows remains unclear and requires further exploration.
Collapse
Affiliation(s)
- Jia Zeng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
Roslanowski A, Partynska A, Ratajczak-Wielgomas K, Kmiecik A, Grzegrzolka J, Dziegiel P, Januszko A, Lenart D, Andrzejewski W. Effects of the Foam Massage Roller on VEGF-A and FGF-2 Blood Levels in Young Men. In Vivo 2023; 37:2057-2069. [PMID: 37652524 PMCID: PMC10500505 DOI: 10.21873/invivo.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Angiogenesis induced in muscles or massaged tissue is thought to support their regeneration and performance. Therefore, different methods that could promote angiogenesis are investigated. The aim of this study was to examine whether the use of the foam roller massager for lower limb muscles affects VEGF-A and FGF-2 levels in young men. MATERIALS AND METHODS The study group included 60 healthy young men attending Military University of Land Forces, Wroclaw, Poland. The participants were randomly divided into two groups. The experimental group included 40 individuals who performed self-massage of the lower limbs using a foam roller. The control group comprised 20 individuals who did not perform massage. Massage was applied to lower limb muscles four times a week for seven weeks. Blood was collected before the experiment and after weeks 1, 3, 5, and 7. ELISA was used to determine changes in VEGF-A and FGF-2 levels in blood serum. RESULTS The results of the study demonstrated a significant increase in VEGF-A serum levels in the group of individuals who underwent massage each week compared to VEGF-A concentrations before the experiment. The increase in VEGF-A levels in the experimental group was observed throughout the experiment compared to the control group. No significant changes in serum FGF-2 levels were found. CONCLUSION The use of a foam massage roller increased VEGF-A serum levels, which may indicate stimulation of angiogenesis.
Collapse
Affiliation(s)
- Adam Roslanowski
- Department of Massage and Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Aleksandra Partynska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Adam Januszko
- Institute of Security Engineering, Faculty of Security Studies, Military University of Land Forces in Wroclaw, Wroclaw, Poland
| | - Dariusz Lenart
- Department of Physical Education and Sport, Military University of Land Forces in Wroclaw, Wroclaw, Poland
| | - Waldemar Andrzejewski
- Department of Massage and Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
- Faculty of Health Sciences, University of Opole, Opole, Poland
| |
Collapse
|
49
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
50
|
Piorecka K, Kurjata J, Gostynski B, Kazmierski S, Stanczyk WA, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Is acriflavine an efficient co-drug in chemotherapy? RSC Adv 2023; 13:21421-21431. [PMID: 37465576 PMCID: PMC10350790 DOI: 10.1039/d3ra02608f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest ΔG ca. -12 kcal mol-1) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Bartłomiej Gostynski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Slawomir Kazmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| |
Collapse
|