1
|
Richard A, Bocquet A, Belin de Chantemèle E, Retailleau K, Toutain B, Mongue-Din H, Guihot AL, Fassot C, Fromes Y, Henrion D, Loufrani L. Reduced microvascular flow-mediated dilation in Syrian hamsters lacking δ-sarcoglycan is caused by increased oxidative stress. Am J Physiol Heart Circ Physiol 2025; 328:H75-H83. [PMID: 39485294 DOI: 10.1152/ajpheart.00569.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
δ-Sarcoglycan mutation reduces mechanotransduction and induces dilated cardiomyopathy with aging. We hypothesized that in young hamsters with δ-sarcoglycan mutation, which do not show cardiomyopathy, flow mechanotransduction might be affected in resistance arteries as the control of local blood flow. Flow-mediated dilation (FMD) was measured in isolated mesenteric resistance arteries, using 3-mo-old hamsters carrying a mutation in the δ-sarcoglycan gene (CH-147) and their control littermates. The FMD was significantly reduced in the CHF-147 group. Nevertheless, passive arterial diameter, vascular structure, and endothelium-independent dilation to sodium nitroprusside were not modified. Contraction induced by KCl was not modified, whereas contraction due to phenylephrine was increased. The basal nitric oxide production and total endothelial nitric oxide synthase (eNOS) expression levels were not altered. Nevertheless, eNOS phosphorylation, focal adhesion kinases, and RhoA expression were reduced in CH-147. In contrast, p47phox, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, and reactive oxygen species (ROS) levels were higher in the endothelium of CHF-147 hamsters. Reducing ROS levels using the superoxide dismutase analog Tempol significantly restored the flow-mediated dilation (FMD) levels in CHF-147 hamsters. However, treatment with the COX-2 inhibitor NS-398 showed a nonsignificant improvement in FMD.NEW & NOTEWORTHY This study suggests that the sarcoglycan complex is selectively involved in flow-mediated dilation, thus highlighting its role in endothelial responsiveness to shear stress and amplifying tissue damage in myopathy.
Collapse
Affiliation(s)
- Alexis Richard
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Arnaud Bocquet
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Eric Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Kevin Retailleau
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Bertrand Toutain
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Héloïse Mongue-Din
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Anne-Laure Guihot
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Céline Fassot
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Yves Fromes
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Daniel Henrion
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| | - Laurent Loufrani
- MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France
| |
Collapse
|
2
|
Favre J, Roy C, Guihot AL, Drouin A, Laprise M, Gillis MA, Robson SC, Thorin E, Sévigny J, Henrion D, Kauffenstein G. NTPDase1/CD39 Ectonucleotidase Is Necessary for Normal Arterial Diameter Adaptation to Flow. Int J Mol Sci 2023; 24:15038. [PMID: 37894719 PMCID: PMC10606763 DOI: 10.3390/ijms242015038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.
Collapse
Affiliation(s)
- Julie Favre
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Charlotte Roy
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Anne-Laure Guihot
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Annick Drouin
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Manon Laprise
- Animal Physiology Service, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada;
| | - Marc-Antoine Gillis
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Simon C. Robson
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Thorin
- Montreal Heart Institute, Department of Surgery, Université de Montréal, Montreal, QC H1T 1C8, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et D’immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Daniel Henrion
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
| | - Gilles Kauffenstein
- MITOVASC Institute, CARFI Facility, CNRS UMR 6015, INSERM U1083, Angers University, 49045 Angers, France; (J.F.); (D.H.)
- INSERM UMR 1260—Regenerative Nanomedicine, CRBS, Strasbourg University, 67000 Strasbourg, France
| |
Collapse
|
3
|
Lowis C, Ramara Winaya A, Kumari P, Rivera CF, Vlahos J, Hermantara R, Pratama MY, Ramkhelawon B. Mechanosignals in abdominal aortic aneurysms. Front Cardiovasc Med 2023; 9:1021934. [PMID: 36698932 PMCID: PMC9868277 DOI: 10.3389/fcvm.2022.1021934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Cumulative evidence has shown that mechanical and frictional forces exert distinct effects in the multi-cellular aortic layers and play a significant role in the development of abdominal aortic aneurysms (AAA). These mechanical cues collectively trigger signaling cascades relying on mechanosensory cellular hubs that regulate vascular remodeling programs leading to the exaggerated degradation of the extracellular matrix (ECM), culminating in lethal aortic rupture. In this review, we provide an update and summarize the current understanding of the mechanotransduction networks in different cell types during AAA development. We focus on different mechanosensors and stressors that accumulate in the AAA sac and the mechanotransduction cascades that contribute to inflammation, oxidative stress, remodeling, and ECM degradation. We provide perspectives on manipulating this mechano-machinery as a new direction for future research in AAA.
Collapse
Affiliation(s)
- Christiana Lowis
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Aurellia Ramara Winaya
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Puja Kumari
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Cristobal F. Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Rio Hermantara
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
5
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Gursoy P, Acar A, Acikalin T. Ado-trastuzumab emtansine associated spider telangiectasia. J Oncol Pharm Pract 2022; 28:986-988. [PMID: 35040682 DOI: 10.1177/10781552211073878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women. Human epidermal growth factor receptor 2 (HER2) positivity rate is 20% and generally has a poor prognosis. Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate consisting of HER2 target monoclonal antibody trastuzumab and microtubule inhibitor emtansine. The most common side effects are fatigue, diarrhea, anemia, and it is generally a safe and tolerable agent. CASE REPORT In our case, we reported our patient who developed mucosal and cutaneous telangiectasia after T-DM1 treatment and who had a complete response in metastases after skin lesions. MANAGEMENT AND OUTCOME While no side effects were observed during the use of T-DM1 for HER2 positive disease, nose bleeding and spider telangiectasia on the skin developed in the 9th month of the treatment. In these lesions, which did not require any treatment, no regression was observed during T-DM1 treatment. DISCUSSION We think that T-DM1, which was detected with a low incidence of skin toxicity in studies, may form telangiectatic lesions due to vascular dilatation through emtansine, and therefore care should be taken in the treatment of T-DM1.
Collapse
Affiliation(s)
- Pınar Gursoy
- Department Medical Oncology, 60521Ege University School of Medicine, Izmir, Turkey
| | - Ayda Acar
- Department Dermatology, 60521Ege University School of Medicine, Izmir, Turkey
| | - Taner Acikalin
- Department Pathology, 60521Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
8
|
Winkelman MA, Kim DY, Kakarla S, Grath A, Silvia N, Dai G. Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. LAB ON A CHIP 2021; 22:170-192. [PMID: 34881385 PMCID: PMC9257897 DOI: 10.1039/d1lc00605c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The bulk flow of interstitial fluid through tissue is an important factor in human biology, including the development of brain microvascular networks (MVNs) with the blood-brain barrier (BBB). Bioengineering perfused, functional brain MVNs has great potential for modeling neurovascular diseases and drug delivery. However, most in vitro models of brain MVNs do not implement interstitial flow during the generation of microvessels. Using a microfluidic device (MFD), we cultured primary human brain endothelial cells (BECs), pericytes, and astrocytes within a 3D fibrin matrix with (flow) and without (static) interstitial flow. We found that the bulk flow of interstitial fluid was beneficial for both BEC angiogenesis and vasculogenesis. Brain MVNs cultured under flow conditions achieved anastomosis and were perfusable, whereas those under static conditions lacked connectivity and the ability to be perfused. Compared to static culture, microvessels developed in flow culture exhibited an enhanced vessel area, branch length and diameter, connectivity, and longevity. Although there was no change in pericyte coverage of microvessels, a slight increase in astrocyte coverage was observed under flow conditions. In addition, the immunofluorescence intensity of basal lamina proteins, collagen IV and laminin, was nearly doubled in flow culture. Lastly, the barrier function of brain microvessels was enhanced under flow conditions, as demonstrated by decreased dextran permeability. Taken together, these results highlighted the importance of interstitial flow in the in vitro generation of perfused brain MVNs with characteristics similar to those of the human BBB.
Collapse
Affiliation(s)
- Max A Winkelman
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Diana Y Kim
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Shravani Kakarla
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Alexander Grath
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Nathaniel Silvia
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Causer AJ, Khalaf M, Klein Rot E, Brand K, Smith J, Bailey SJ, Cummings MH, Shepherd AI, Saynor ZL, Shute JK. CFTR limits F-actin formation and promotes morphological alignment with flow in human lung microvascular endothelial cells. Physiol Rep 2021; 9:e15128. [PMID: 34851051 PMCID: PMC8634629 DOI: 10.14814/phy2.15128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Micro- and macrovascular endothelial dysfunction in response to shear stress has been observed in cystic fibrosis (CF), and has been associated with inflammation and oxidative stress. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) regulates endothelial actin cytoskeleton dynamics and cellular alignment in response to flow. Human lung microvascular endothelial cells (HLMVEC) were cultured with either the CFTR inhibitor GlyH-101 (20 µM) or CFTRinh-172 (20 µM), tumor necrosis factor (TNF)-α (10 ng/ml) or a vehicle control (0.1% dimethyl sulfoxide) during 24 and 48 h of exposure to shear stress (11.1 dynes/cm2 ) or under static control conditions. Cellular morphology and filamentous actin (F-actin) were assessed using immunocytochemistry. [Nitrite] and endothelin-1 ([ET-1]) were determined in cell culture supernatant by ozone-based chemiluminescence and ELISA, respectively. Treatment of HLMVECs with both CFTR inhibitors prevented alignment of HLMVEC in the direction of flow after 24 and 48 h of shear stress, compared to vehicle control (both p < 0.05). Treatment with TNF-α significantly increased total F-actin after 24 h versus control (p < 0.05), an effect that was independent of shear stress. GlyH-101 significantly increased F-actin after 24 h of shear stress versus control (p < 0.05), with a significant (p < 0.05) reduction in cortical F-actin under both static and flow conditions. Shear stress decreased [ET-1] after 24 h (p < 0.05) and increased [nitrite] after 48 h (p < 0.05), but neither [nitrite] nor [ET-1] was affected by GlyH-101 (p > 0.05). CFTR appears to limit cytosolic actin polymerization, while maintaining a cortical rim actin distribution that is important for maintaining barrier integrity and promoting alignment with flow, without effects on endothelial nitrite or ET-1 production.
Collapse
Affiliation(s)
- Adam J. Causer
- Department for HealthUniversity of BathBathUK
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Maha Khalaf
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Emily Klein Rot
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - Kimberly Brand
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - James Smith
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Michael H. Cummings
- Department of Diabetes and EndocrinologyQueen Alexandra HospitalPortsmouthUK
| | - Anthony I. Shepherd
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Zoe L. Saynor
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Janis K. Shute
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
10
|
The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 2021; 17:e1009690. [PMID: 34319989 PMCID: PMC8318303 DOI: 10.1371/journal.pgen.1009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement. Vascular remodeling is critical for vascular physiology and pathology. The primitive vascular plexus formed by angiogenesis, subsequently undergoes extensive vascular remodeling to establish a functionally and hierarchically branched network of blood vessels. Vascular remodeling mainly consists of vessel pruning and fusion. Endothelial cell rearrangement plays an essential role in vessel pruning, which involves endothelial cell migration and polarity. Dysfunction of flow-induced vascular remodeling will cause arteriovenous malformation and impair reperfusion of ischemia stroke. In this study, we show that the large-diameter vessel of the caudal vein is pruned from ventral capillaries of the caudal vein plexus in zebrafish embryos. With this model, we observe a growing difference in blood flow velocity between two branches in vessel pruning. We identify that the klf6a-tagln2 axis regulates CV pruning by promoting endothelial cell rearrangement and junction remodeling. Our results suggest that the caudal vein formation is an ideal model for screening the potential genes involved in vascular remodeling-related disease.
Collapse
|
11
|
Payen C, Guillot A, Paillat L, Fothi A, Dib A, Bourreau J, Schmitt F, Loufrani L, Aranyi T, Henrion D, Munier M, Fassot C. Pathophysiological adaptations of resistance arteries in rat offspring exposed in utero to maternal obesity is associated with sex-specific epigenetic alterations. Int J Obes (Lond) 2021; 45:1074-1085. [PMID: 33637953 DOI: 10.1038/s41366-021-00777-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity impacts vascular functions linked to metabolic disorders in offspring, leading to cardiovascular diseases during adulthood. Even if the relation between prenatal conditioning of cardiovascular diseases by maternal obesity and vascular function begins to be documented, little is known about resistance arteries. They are of particular interest because of their specific role in the regulation of local blood flow. Then our study aims to determine if maternal obesity can directly program fetal vascular dysfunction of resistance arteries, independently of metabolic disorders. METHODS With a model of rats exposed in utero to mild maternal diet-induced obesity (OMO), we investigated third-order mesenteric arteries of 4-month old rats in absence of metabolic disorders. The methylation profile of these vessels was determined by reduced representation bisulfite sequencing (RRBS). Vascular structure and reactivity were investigated using histomorphometry analysis and wire-myography. The metabolic function was evaluated by insulin and glucose tolerance tests, plasma lipid profile, and adipose tissue analysis. RESULTS At 4 months of age, small mesenteric arteries of OMO presented specific epigenetic modulations of matrix metalloproteinases (MMPs), collagens, and potassium channels genes in association with an outward remodeling and perturbations in the endothelium-dependent vasodilation pathways (greater contribution of EDHFs pathway in OMO males compared to control rats, and greater implication of PGI2 in OMO females compared to control rats). These vascular modifications were detected in absence of metabolic disorders. CONCLUSIONS Our study reports a specific methylation profile of resistance arteries associated with vascular remodeling and vasodilation balance perturbations in offspring exposed in utero to maternal obesity, in absence of metabolic dysfunctions.
Collapse
Affiliation(s)
- Cyrielle Payen
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Abigaëlle Guillot
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Lily Paillat
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Abel Fothi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Abdallah Dib
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Jennifer Bourreau
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Françoise Schmitt
- UPRES EA 3859, HIFIH laboratory, Angers, France.,University Hospital of Angers, Angers, France
| | - Laurent Loufrani
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Daniel Henrion
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.,University Hospital of Angers, Angers, France.,CARFI (Cardiovascular Function In Vitro) Facility, Angers, France
| | - Mathilde Munier
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.,University Hospital of Angers, Angers, France.,Reference Center for Rare Disease of Thyroid and Hormone Receptors, University Hospital Angers, Angers, France
| | - Céline Fassot
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.
| |
Collapse
|
12
|
Swain SM, Liddle RA. Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. J Biol Chem 2020; 296:100171. [PMID: 33298523 PMCID: PMC7948745 DOI: 10.1074/jbc.ra120.015059] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
The ion channels Piezo1 and TRPV4 have both, independently, been implicated in high venous pressure- and fluid shear stress-induced vascular hyperpermeability in endothelial cells. However, the mechanism by which Piezo1 and TRPV4 channels execute the same function is poorly understood. Here we demonstrate that Piezo1 regulates TRPV4 channel activation in endothelial cells and that Piezo1-mediated TRPV4 channel opening is a function of the strength and duration of fluid shear stress. We first confirmed that either fluid shear stress or the Piezo1 agonist, Yoda1, led to an elevation in intracellular calcium ([Ca2+]i) and that application of the Piezo1 antagonist, GsMTx4, completely blocked this change. We discovered that high and prolonged shear stress caused sustained [Ca2+]i elevation that was blocked by inhibition of TRPV4 channel opening. Moreover, Piezo1 stimulated TRPV4 opening through activation of phospholipase A2. TRPV4-dependent sustained [Ca2+]i elevation was responsible for fluid shear stress-mediated and Piezo1-mediated disruption of adherens junctions and actin remodeling. Blockade of TRPV4 channels with the selective TRPV4 blocker, HC067047, prevented the loss of endothelial cell integrity and actin disruption induced by Yoda1 or shear stress and prevented Piezo1-induced monocyte adhesion to endothelial cell monolayers. These findings demonstrate that Piezo1 activation by fluid shear stress initiates a calcium signal that causes TRPV4 opening, which in turn is responsible for the sustained phase calcium elevation that triggers pathological events in endothelial cells. Thus, deleterious effects of shear stress are initiated by Piezo1 but require TRPV4.
Collapse
Affiliation(s)
- Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Veterans Affairs Health Care System, Durham, North Carolina, USA.
| |
Collapse
|
13
|
Whole-Genome Uterine Artery Transcriptome Profiling and Alternative Splicing Analysis in Rat Pregnancy. Int J Mol Sci 2020; 21:ijms21062079. [PMID: 32197362 PMCID: PMC7139363 DOI: 10.3390/ijms21062079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
During pregnancy, the uterine artery (UA) undergoes extensive remodeling to permit a 20–40 fold increase in blood flow with associated changes in the expression of a multitude of genes. This study used next-gen RNA sequencing technology to identify pathways and genes potentially involved in arterial adaptations in pregnant rat UA (gestation day 20) compared with non-pregnant rat UA (diestrus). A total of 2245 genes were differentially expressed, with 1257 up-regulated and 970 down-regulated in pregnant UA. Gene clustering analysis revealed a unique cluster of suppressed genes implicated in calcium signaling pathway and vascular smooth muscle contraction in pregnant UA. Transcription factor binding site motif scanning identified C2H2 ZF, AP-2 and CxxC as likely factors functional on the promoters of down-regulated genes involved in calcium signaling and vascular smooth muscle contraction. In addition, 1686 genes exhibited alternative splicing that were mainly implicated in microtubule organization and smooth muscle contraction. Cross-comparison analysis identified novel genes that were both differentially expressed and alternatively spliced; these were involved in leukocyte and B cell biology and lipid metabolism. In conclusion, this first comprehensive study provides a valuable resource for understanding the molecular mechanism underlying gestational uterine arterial adaptations during pregnancy.
Collapse
|
14
|
Robinson T, Dittrich PS. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells. Chembiochem 2019; 20:2666-2673. [PMID: 31087814 PMCID: PMC7612542 DOI: 10.1002/cbic.201900167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Giant unilamellar vesicles (GUVs) are considered to be the gold standard for assembling artificial cells from the bottom up. In this study, we investigated the behavior of such biomimetic vesicles as they were subjected to mechanical compression. A microfluidic device is presented that comprises a trap to capture GUVs and a microstamp that is deflected downwards to mechanically compress the trapped vesicle. After characterization of the device, we show that single-phase GUVs can be controllably compressed to a high degree of deformation (D=0.40) depending on the pressure applied to the microstamp. A permeation assay was implemented to show that vesicle bursting is prevented by water efflux. Next, we mechanically compressed GUVs with co-existing liquid-ordered and liquid-disordered membrane phases. Upon compression, we observed that the normally stable lipid domains reorganized themselves across the surface and fused into larger domains. This phenomenon, observed here in a model membrane system, not only gives us insights into how the multicomponent membranes of artificial cells behave, but might also have interesting consequences for the role of lipid rafts in biological cells that are subjected to compressive forces in a natural environment.
Collapse
Affiliation(s)
- Tom Robinson
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- Present address: Department of Theory, Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Petra S Dittrich
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
15
|
van Engeland NCA, Suarez Rodriguez F, Rivero-Müller A, Ristori T, Duran CL, Stassen OMJA, Antfolk D, Driessen RCH, Ruohonen S, Ruohonen ST, Nuutinen S, Savontaus E, Loerakker S, Bayless KJ, Sjöqvist M, Bouten CVC, Eriksson JE, Sahlgren CM. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Sci Rep 2019; 9:12415. [PMID: 31455807 PMCID: PMC6712036 DOI: 10.1038/s41598-019-48218-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.
Collapse
Affiliation(s)
- Nicole C A van Engeland
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands
| | - Freddy Suarez Rodriguez
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Adolfo Rivero-Müller
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Tommaso Ristori
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Camille L Duran
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, Texas, USA
| | - Oscar M J A Stassen
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Rob C H Driessen
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands
| | - Saku Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Salla Nuutinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, Texas, USA
| | - Marika Sjöqvist
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Carlijn V C Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - John E Eriksson
- Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M Sahlgren
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. .,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands. .,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland. .,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
16
|
Staarmann B, Smith M, Prestigiacomo CJ. Shear stress and aneurysms: a review. Neurosurg Focus 2019; 47:E2. [DOI: 10.3171/2019.4.focus19225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Wall shear stress, the frictional force of blood flow tangential to an artery lumen, has been demonstrated in multiple studies to influence aneurysm formation and risk of rupture. In this article, the authors review the ways in which shear stress may influence aneurysm growth and rupture through changes in the vessel wall endothelial cells, smooth-muscle cells, and surrounding adventitia, and they discuss shear stress–induced pathways through which these changes occur.
Collapse
Affiliation(s)
| | - Matthew Smith
- 2Neurology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
17
|
Chayer B, van den Hoven M, Cardinal MHR, Li H, Swillens A, Lopata R, Cloutier G. Atherosclerotic carotid bifurcation phantoms with stenotic soft inclusions for ultrasound flow and vessel wall elastography imaging. ACTA ACUST UNITED AC 2019; 64:095025. [DOI: 10.1088/1361-6560/ab1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Tovar-Lopez F, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Khoshmanesh K, Baratchi S. A Microfluidic System for Studying the Effects of Disturbed Flow on Endothelial Cells. Front Bioeng Biotechnol 2019; 7:81. [PMID: 31111027 PMCID: PMC6499196 DOI: 10.3389/fbioe.2019.00081] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial endothelium experience physical stress associated with blood flow and play a central role in maintaining vascular integrity and homeostasis in response to hemodynamic forces. Blood flow within vessels is generally laminar and streamlined. However, abrupt changes in the vessel geometry due to branching, sharp turns or stenosis can disturb the laminar blood flow, causing secondary flows in the form of vortices. Such disturbed flow patterns activate pro-inflammatory phenotypes in endothelial cells, damaging the endothelial layer and can lead to atherosclerosis and thrombosis. Here, we report a microfluidic system with integrated ridge-shaped obstacles for generating controllable disturbed flow patterns. This system is used to study the effect of disturbed flow on the cytoskeleton remodeling and nuclear shape and size of cultured human aortic endothelial cells. Our results demonstrate that the generated disturbed flow changes the orientation angle of actin stress fibers and reduces the nuclear size while increases the nuclear circularity.
Collapse
Affiliation(s)
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | - Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
20
|
Ghahremani Moghadam M, Hejazi K. Effects of Eight Weeks of Aerobic Exercise on Markers of Oxidative Stress in Elderly Women. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.3.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
21
|
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol 2017; 314:R387-R398. [PMID: 29167167 DOI: 10.1152/ajpregu.00235.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an emerging pandemic driven by consumption of a diet rich in fat and highly refined carbohydrates (a Western diet) and a sedentary lifestyle in both children and adults. There is mounting evidence that arterial stiffness in obesity is an independent and strong predictor of cardiovascular disease (CVD), cognitive functional decline, and chronic kidney disease. Cardiovascular stiffness is a precursor to atherosclerosis, systolic hypertension, cardiac diastolic dysfunction, and impairment of coronary and cerebral flow. Moreover, premenopausal women lose the CVD protection normally afforded to them in the setting of obesity, insulin resistance, and diabetes, and this loss of CVD protection is inextricably linked to an increased propensity for arterial stiffness. Stiffness of endothelial and vascular smooth muscle cells, extracellular matrix remodeling, perivascular adipose tissue inflammation, and immune cell dysfunction contribute to the development of arterial stiffness in obesity. Enhanced endothelial cortical stiffness decreases endothelial generation of nitric oxide, and increased oxidative stress promotes destruction of nitric oxide. Our research over the past 5 years has underscored an important role of increased aldosterone and vascular mineralocorticoid receptor activation in driving development of cardiovascular stiffness, especially in females consuming a Western diet. In this review the cellular mechanisms of obesity-associated arterial stiffness are highlighted.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Departments of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri.,Dalton Cardiovascular Center Columbia , Columbia, Missouri
| |
Collapse
|
22
|
Kim SH, Ahn K, Park JY. Responses of human adipose-derived stem cells to interstitial level of extremely low shear flows regarding differentiation, morphology, and proliferation. LAB ON A CHIP 2017; 17:2115-2124. [PMID: 28541365 DOI: 10.1039/c7lc00371d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human cells encounter a range of shear stress levels in situ and this natural variability in shear stress implies that realistic investigations of cell type characteristics may depend on nontrivial shear stress models. Human adipose-derived stem cells (hASCs) differentiate near the blood capillary vessels where interstitial flows predominate. However, the effects of interstitial levels of shear on hASCs are not fully understood. In this study, we propose a microfluidic shear generation system, in which a gradient distribution of the interstitial level of shear flow is created to investigate the effects of interstitial-level shear flow on hASCs. To generate such a gradient profile of interstitial-level shear stress, we fabricated a semicircle-shaped microfluidic channel, and generated an extremely low flow using an osmosis-driven pump. Changes to hASC morphology, proliferation, and differentiation were observed under shear stresses of 1.8 × 10-3-2.4 × 10-3 Pa. At higher shear stresses, we found higher proliferation rates, stronger actin structures, and lower differentiation. We also conducted computational simulations of a monolayer culture, which showed that the shear stress level even on a single cell varies owing to the change of the cell thickness between the pseudopodia and the nucleus. We found that hASCs detectably respond to extremely low levels of shear flow, above a threshold of ∼2.0 × 10-3 Pa. Our microplatform may be useful for quantitating biological responses and function changes of other stem cells and cancer cells to interstitial-level shear flows.
Collapse
Affiliation(s)
- Sung-Hwan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | | | | |
Collapse
|
23
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Machado MV, Martins RL, Borges J, Antunes BR, Estato V, Vieira AB, Tibiriçá E. Exercise Training Reverses Structural Microvascular Rarefaction and Improves Endothelium-Dependent Microvascular Reactivity in Rats with Diabetes. Metab Syndr Relat Disord 2016; 14:298-304. [PMID: 27003580 DOI: 10.1089/met.2015.0146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We evaluated structural microvascular alterations in the skeletal muscle and left ventricle, as well as endothelium-dependent microvascular reactivity in the skeletal muscle, of diabetic rats subjected to long-term aerobic exercise training. METHODS Diabetes was experimentally induced by a combination of a high-fat diet with a single low dose of streptozotocin (35 mg/kg, i.p.). Animals with diabetes were divided into sedentary (DM+SED) and training groups (DM+TR) and compared with rats without diabetes (CON). We then measured maximal exercise capacity, fasting glucose and insulin, endothelium-dependent microvascular reactivity in skeletal muscle, and structural alterations of microvasculature in the skeletal and cardiac muscles. RESULTS Diabetes induced microvascular rarefaction and reduced endothelium-dependent microvascular reactivity. Physical exercise completely reversed microvascular rarefaction in the skeletal muscle (1.85 ± 0.05 vs. 1.17 ± 0.03 capillary/fiber ratio, P < 0.05) and in the left ventricle (0.48 ± 0.66 vs. 0.25 ± 0.01 Vv[cap]/Vv[fib] ratio, P < 0.05) compared with the DM+SED group and normalized the microcirculatory responses to acetylcholine in skeletal muscle (CON 38.76 ± 5.60 vs. DM+TR 30.47% ± 5.77%). As expected, exercise training increased the maximal velocity and exercise tolerance compared with the DM+SED (P < 0.05) and CON (P < 0.05) groups. Exercise training also reduced fasting glucose (P < 0.05) compared with DM+SED and normalized insulin levels compared with CON. CONCLUSIONS Our results suggest that long-term physical exercise reverses skeletal and cardiac muscle microvascular rarefaction, as well as impaired endothelium-dependent microvascular reactivity, induced by diabetes in rats.
Collapse
Affiliation(s)
- Marcus V Machado
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| | - Rômulo L Martins
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| | - Juliana Borges
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| | - Bárbara R Antunes
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| | - Vanessa Estato
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| | - Aline B Vieira
- 2 Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- 1 Laboratory of Cardiovascular Investigation, FIOCRUZ , Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem Biophys 2015; 69:411-9. [PMID: 24402674 DOI: 10.1007/s12013-013-9812-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.
Collapse
Affiliation(s)
- Petra Juffer
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
27
|
Castorena-Gonzalez JA, Staiculescu MC, Foote C, Martinez-Lemus LA. Mechanisms of the inward remodeling process in resistance vessels: is the actin cytoskeleton involved? Microcirculation 2015; 21:219-29. [PMID: 24635509 DOI: 10.1111/micc.12105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
The resistance arteries and arterioles are the vascular components of the circulatory system where the greatest drop in blood pressure takes place. Consequently, these vessels play a preponderant role in the regulation of blood flow and the modulation of blood pressure. For this reason, the inward remodeling process of the resistance vasculature, as it occurs in hypertension, has profound consequences on the incidence of life-threatening cardiovascular events. In this manuscript, we review some of the most prominent characteristics of inwardly remodeled resistance arteries including their changes in vascular passive diameter, wall thickness, and elastic properties. Then, we explore the known contribution of the different components of the vascular wall to the characteristics of inwardly remodeled vessels, and pay particular attention to the role the vascular smooth muscle actin cytoskeleton may play on the initial stages of the remodeling process. We end by proposing potential ways by which many of the factors and mechanisms known to participate in the inward remodeling process may be associated with cytoskeletal modifications and participate in reducing the passive diameter of resistance vessels.
Collapse
Affiliation(s)
- Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA; Department of Biological Engineering, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
28
|
Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22:1230-42. [PMID: 25330054 PMCID: PMC4410282 DOI: 10.1089/ars.2014.6158] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. RECENT ADVANCES Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. CRITICAL ISSUES Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. FUTURE DIRECTIONS Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf , Duesseldorf, Germany
| | | | | |
Collapse
|
29
|
Rizzo V. The Role of Caveolae and Caveolins in Atherogenesis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Osol G, Moore LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation 2014; 21:38-47. [PMID: 23941526 DOI: 10.1111/micc.12080] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/09/2013] [Indexed: 12/01/2022]
Abstract
Remodeling of the maternal uterine vasculature during pregnancy is a unique cardiovascular process that occurs in the adult and results in significant structural and functional changes in large and small arteries and veins, and in the creation of the placenta--a new fetomaternal vascular organ. This expansive, hypertrophic process results in increases in both lumen circumference and length, and is effected through a combination of tissue and cellular hypertrophy, endothelial and vascular smooth muscle hyperplasia, and matrix remodeling. This review summarizes what is currently known about the time course and extent of the remodeling process, and how local vs. systemic factors influence its genesis. The main focus is on upstream maternal vessels rather than spiral artery changes, although the latter are considered from the overall hemodynamic perspective. We also consider some of the underlying mechanisms and provide a hypothetical scenario that integrates our current knowledge. Abrogation of this adaptive vascular process is associated with several human gestational pathologies such as preeclampsia and intrauterine growth restriction (IUGR), which not only raise the risk of infant mortality and morbidity but are also a significant source of maternal mortality and susceptibility to cardiovascular and other diseases for both mother and neonate later in life.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | |
Collapse
|
31
|
Deng Q, Huo Y, Luo J. Endothelial mechanosensors: the gatekeepers of vascular homeostasis and adaptation under mechanical stress. SCIENCE CHINA-LIFE SCIENCES 2014; 57:755-62. [PMID: 25104447 DOI: 10.1007/s11427-014-4705-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/05/2014] [Indexed: 01/27/2023]
Abstract
Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.
Collapse
Affiliation(s)
- QiuPing Deng
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
32
|
Sibaud V, Niec RE, Schindler K, Busam KJ, Roché H, Modi S, Delord JP, Lacouture ME. Ado-trastuzumab emtansine-associated telangiectasias in metastatic breast cancer: a case series. Breast Cancer Res Treat 2014; 146:451-6. [PMID: 24929675 DOI: 10.1007/s10549-014-3001-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Treatment of HER2-positive metastatic breast cancer with ado-trastuzumab emtansine (T-DM1), a novel antibody-drug conjugate, has resulted in both improved progression-free and overall survival. Recognition and treatment of diverse adverse events related to T-DM1 is critical for safety and tolerability. The most frequent adverse events with T-DM1 include fatigue, diarrhea, anemia, elevated transaminases, and mild-to-moderate hemorrhagic events, which are thought to be related to induced thrombocytopenia. Here, we present five case series of cutaneous and mucosal telangiectasias, definitely related to T-DM1. The development of telangiectasias represents a newly recognized adverse effect of T-DM1. We provide description and timing of the telangiectasias and review the mechanisms that may explain the formation of these vascular lesions in association with T-DM1. Further, we describe associated bleeding events and propose that induced telangiectasias could represent an additional cause of T-DM1-associated hemorrhage.
Collapse
Affiliation(s)
- Vincent Sibaud
- Department of dermatology, Institut Claudius Regaud, Institut Universitaire Cancer Toulouse-oncopole, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mechanosensitive properties in the endothelium and their roles in the regulation of endothelial function. J Cardiovasc Pharmacol 2013; 61:461-70. [PMID: 23429585 DOI: 10.1097/fjc.0b013e31828c0933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Vascular endothelial cells (ECs) line the luminal surface of blood vessels, which are exposed constantly to mechanical stimuli, such as fluid shear stress, cyclic strain, and blood pressure. In recent years, more and more evidence indicates that ECs sense these mechanical stimuli and subsequently convert mechanical stimuli into intracellular signals. The properties of ECs that sense the mechanical stimuli are defined as mechanosensors. There are a variety of mechanosensors that have been identified in ECs. These mechanosensors play an important role in regulating the function of the endothelium and vascular function, including blood pressure. This review focuses on the mechanosensors that have been identified in ECs and on the roles that mechanosensors play in the regulation of endothelium function, and in the regulation of vascular function.
Collapse
|
34
|
Drüppel V, Kusche-Vihrog K, Grossmann C, Gekle M, Kasprzak B, Brand E, Pavenstädt H, Oberleithner H, Kliche K. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J 2013; 27:3652-9. [PMID: 23729588 DOI: 10.1096/fj.13-228312] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aldosterone triggers the stiff endothelial cell syndrome (SECS), characterized by an up-regulation of epithelial sodium channels (ENaCs) and mechanical stiffening of the endothelial cell cortex accompanied by endothelial dysfunction. In vivo, aldosterone antagonism exerts sustained protection on the cardiovascular system. To illuminate the molecular mechanisms of this time-dependent effect, a study on endothelial cells in vitro and ex vivo was designed to investigate SECS over time. Endothelia (from human umbilical veins, bovine aortae, and explants of human arteries) were cultured in aldosterone-supplemented medium with or without the mineralocorticoid receptor (MR) antagonist spironolactone. MR expression, ENaC expression, cortical stiffness, and shear-mediated nitric oxide (NO) release were determined after 3 d (short term) and up to 24 d (long term). Over time, MR expression increased by 129%. ENaC expression and surface abundance increased by 32% and 42% (13.8 to 19.6 molecules per cell surface), paralleled by a 49% rise in stiffness. Spironolactone prevented this development and, after 3 wk of treatment, increased NO release by 50%. Thus, spironolactone improves endothelial function long-lastingly by preventing a time-dependent manifestation of SECS. This emphasizes the key role of vascular endothelium as a therapeutical target in cardiovascular disorders and might explain blood pressure independent actions of MR antagonism.
Collapse
Affiliation(s)
- Verena Drüppel
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae. Cell Mol Bioeng 2013; 6:346-354. [PMID: 23956799 DOI: 10.1007/s12195-013-0276-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is now a large body of evidence demonstrating that fluid mechanical forces generated by blood flowing through the vasculature play a direct role in regulating endothelial cell structure and function. Integrin receptors that localize to the basal surface of the endothelium participate in both outside-in and inside-out signaling events that influence endothelial gene expression and morphology in response to flow. Our analyses of apical plasma membranes derived from cultured bovine aortic endothelial cells revealed that integrins are also expressed on this cell surface. Here, we tested whether these integrins participate in mechanotransduction events that are known to occur on the endothelial cell luminal/apical membrane. We found that apically expressed β1 integrins are rapidly activated in response to acute shear stress. Blockade of β1 integrin activation attenuated a shear-induced signaling cascade involving Src-family kinase, PI3-kinase, Akt and eNOS on this cell surface. In addition, β1 integrin activation and associated signaling events were dependent on the structural integrity of caveolae but not the actin cytoskeleton. Taken together, these data indicate that endothelial responses to shear stress are mediated by spatially distinct pools of integrins.
Collapse
|
36
|
High Pulsatility Flow Induces Acute Endothelial Inflammation through Overpolarizing Cells to Activate NF-κB. Cardiovasc Eng Technol 2012; 4:26-38. [PMID: 23667401 DOI: 10.1007/s13239-012-0115-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large artery stiffening and small artery inflammation are both well-known pathological features of pulmonary and systemic hypertension, but the relationship between them has been seldom explored. We previously demonstrated that stiffening-induced high pulsatility flow stimulated a pro-inflammatory response in distal pulmonary artery endothelial cells (PAEC). Herein, we hypothesized that high pulsatility flow activated PAEC pro-inflammatory responses are mediated through cell structural remodeling and cytoskeletal regulation of NF-κB translocation. To test this hypothesis, cells were exposed to low and high pulsatility flows with the same mean physiological flow shear stress. Results showed that unidirectional, high pulsatility flow led to continuous, high-level NF-κB activation, whereas low pulsatility flow induced only transient, minor NF-κB activation. Compared to cell shape under the static condition, low pulsatility flow induced cell elongation with a polarity index of 1.7, while high pulsatility flow further increased the cell polarity index to a value greater than 3. To explore the roles of cytoskeletal proteins in transducing high flow pulsatility into NF-κB activation, PAECs were treated with drugs that reduce the synthesis-breakdown dynamics of F-actin or microtubules (cytochalasin D, phalloidin, nocodazole, and taxol) prior to flow. Results showed that these pre-treatments suppressed NF-κB activation induced by high pulsatility flow, but drugs changing dynamics of F-actin enhanced NF-κB activation even under low pulsatility flow. Taxol was further circulated in the flow to examine its effect on cells. Results showed that circulating taxol (10nM) reduced PAEC polarity, NF-κB activation, gene expression of pro-inflammatory molecules (ICAM-1 and VCAM-1), and monocyte adhesion on the PAECs under high pulsatility flow. Therefore, taxol effectively reduced high pulsatility flow-induced PAEC overpolarization and pro-inflammatory responses via inhibiting cytoskeletal remodeling. This study suggests that stabilizing microtubule dynamics might bea potential therapeutic means of reducing endothelial inflammation caused by high pulsatility flow.
Collapse
|
37
|
Kim HK, Park WS, Warda M, Park SY, Ko EA, Kim MH, Jeong SH, Heo HJ, Choi TH, Hwang YW, Lee SI, Ko KS, Rhee BD, Kim N, Han J. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery. PLoS One 2012; 7:e43884. [PMID: 22916309 PMCID: PMC3423383 DOI: 10.1371/journal.pone.0043884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO) in rabbit cerebral arteries (CAs). Methods ISO was induced in six weeks aged male New Zealand white rabbit (0.8–1.0 kg) by 7-days isoproterenol injection (300 μg/kg/day). We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II), were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. Results Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin) and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1) in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca2+ efflux and constriction response to angiotensin II and high K+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network through down-regulation of RhoA/ROCK1 proteins and increased oxidative damage, which consequently led to contractile dysfunction in CA.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Mohamad Warda
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - So Youn Park
- Department of Pharmacology, College of Medicine and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Busan, Korea
| | - Eun A. Ko
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Min Hee Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Seung Hun Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Hye-Jin Heo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Tae-Hoon Choi
- Department of Physical Education, Andong Science College, Andong, Korea
| | - Young-Won Hwang
- Department of Neurosurgery, College of Medicine, Inje University, Busan Paik Hospital, Busan, Korea
| | - Sun-Il Lee
- Department of Neurosurgery, College of Medicine, Inje University, Busan Paik Hospital, Busan, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
- * E-mail:
| |
Collapse
|
38
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
39
|
Abstract
Arterioles are the blood vessels in the arterial side of the vascular tree that are located proximal to the capillaries and, in conjunction with the terminal arteries, provide the majority of resistance to blood flow. Consequently, arterioles are important contributors to the regulation of mean arterial pressure and tissue perfusion. Their wall consists of cellular and extracellular components that have been traditionally classified as conforming three layers: an intima containing endothelial cells sited on a basement membrane; a media made of an internal elastic lamina apposed by one or two layers of smooth muscle; and an adventitia composed mostly of collagen bundles, nerve endings and some fibroblasts. These components of the arteriolar wall are dynamically interconnected, providing a level of plasticity to the arteriolar wall that blurs the traditional boundaries of a rigid layered classification. This MiniReview focuses on the structural conformation of the arteriolar wall and shows how wall components interact spatially, functionally and temporally to control vascular diameter, regulate blood flow and maintain vascular permeability.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Pinaud F, Loufrani L, Toutain B, Lambert D, Vandekerckhove L, Henrion D, Baufreton C. In vitro protection of vascular function from oxidative stress and inflammation by pulsatility in resistance arteries. J Thorac Cardiovasc Surg 2011; 142:1254-62. [DOI: 10.1016/j.jtcvs.2011.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/23/2011] [Accepted: 07/11/2011] [Indexed: 11/30/2022]
|
41
|
Steelman SM, Humphrey JD. Differential remodeling responses of cerebral and skeletal muscle arterioles in a novel organ culture system. Med Biol Eng Comput 2011; 49:1015-23. [PMID: 21786016 DOI: 10.1007/s11517-011-0807-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/07/2011] [Indexed: 12/15/2022]
Abstract
Evidence suggests that maladaptive changes in the cerebral microcirculation may contribute to ischemia in numerous diseases. We sought, therefore, to develop an ex vivo organ culture system to study early changes in cerebral arteriolar structure and function, and to compare associated findings to those for non-cerebral arterioles. Pilot studies revealed that rabbit cerebral arterioles maintained contractility longer when cultured in media containing rabbit-specific plasma rather than fetal bovine serum. Cerebral and skeletal muscle arterioles were cultured in a pressure myograph for 5 days; maximum dilatory and contractile responses were measured at 0, 1, 3, and 5 days. Passive properties were preserved in cerebral arterioles over the entire culture period, although skeletal muscle arterioles underwent constrictive remodeling. Cerebral arterioles also maintained a myogenic capability over the entire culture period, albeit at progressively larger diameters, whereas the skeletal muscle arterioles did so only over 3 days. Culture in rabbit serum, which contains numerous growth factors and clotting factors, did not induce or increase inward remodeling in cerebral or skeletal arterioles. These results suggest inherent, organ-specific differences in arteriolar remodeling, and that extensive results in the literature on non-cerebral arterioles should not be extrapolated to predict responses in the cerebral microcirculation.
Collapse
Affiliation(s)
- Samantha M Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, College Station, TX 77843-4458, USA.
| | | |
Collapse
|
42
|
Gelosa P, Sevin G, Pignieri A, Budelli S, Castiglioni L, Blanc-Guillemaud V, Lerond L, Tremoli E, Sironi L. Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 2011; 300:H762-8. [DOI: 10.1152/ajpheart.00880.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thromboxane A2 and other eicosanoids such as isoprostanes contribute to vascular proliferation and atherosclerosis by binding to the thromboxane/prostaglandin endoperoxide receptors. The effects of terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, on aorta remodeling were evaluated in spontaneously hypertensive stroke-prone rats (SHRSPs), a model of severe hypertension, endothelial dysfunction, vascular inflammation, and cerebrovascular diseases. Male SHRSPs were allocated to three groups receiving a standard diet ( n = 5) or a high-sodium permissive diet plus vehicle ( n = 6) or plus terutroban (30 mg·kg−1·day−1; n = 6). After 6 wk of dietary treatment, all of the animals were injected with bromodeoxyuridine and simultaneously euthanized for aorta collection. The aortic media thickness-to-lumen ratio significantly ( P < 0.0001) increased in the salt-loaded rats compared with the rats fed a standard diet, whereas terutroban treatment completely prevented media thickening ( P < 0.001). When compared with vehicle, terutroban was also effective in preventing cell proliferation in the media, as indicated by the reduced number of bromodeoxyuridine-positive ( P < 0.0001) and proliferating cell nuclear antigen-positive cells ( P < 0.0001). Severe fibrosis characterized by a significant accumulation of collagen and fibronectin in the vascular wall was observed in the vehicle-treated rats ( P < 0.01) but was completely prevented by terutroban ( P < 0.001). The latter also inhibited heat shock protein-47 ( P < 0.01) and TGF-1β expression ( P < 0.001), which were significantly increased by the high-salt diet. In conclusion, terutroban prevents the development of aorta hyperplasia and has beneficial effects on fibrotic processes by affecting TGF-β and heat shock protein-47 expression in SHRSPs. These findings provide mechanistic data supporting the beneficial effects of terutroban in preventing or retarding atherogenesis.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmacological Sciences, University of Milan, Milan, and
| | - Gulnur Sevin
- Department of Pharmacological Sciences, University of Milan, Milan, and
| | - Alice Pignieri
- Department of Pharmacological Sciences, University of Milan, Milan, and
| | - Silvia Budelli
- Department of Pharmacological Sciences, University of Milan, Milan, and
| | - Laura Castiglioni
- Department of Pharmacological Sciences, University of Milan, Milan, and
| | | | - Laurence Lerond
- Institut de Recherches Internationales Servier, Courbevoie Cedex, France
| | - Elena Tremoli
- Department of Pharmacological Sciences, University of Milan, Milan, and
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and
| | - Luigi Sironi
- Department of Pharmacological Sciences, University of Milan, Milan, and
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; and
| |
Collapse
|
43
|
Silva JFR, Cyrino FZGA, Breitenbach MMD, Bouskela E, Carvalho JJ. Vimentin and laminin are altered on cheek pouch microvessels of streptozotocin-induced diabetic hamsters. Clinics (Sao Paulo) 2011; 66:1961-8. [PMID: 22086529 PMCID: PMC3203971 DOI: 10.1590/s1807-59322011001100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Normal endothelial cells respond to shear stress by elongating and aligning in the direction of fluid flow. Hyperglycemia impairs this response and contributes to microvascular complications, which result in deleterious effects to the endothelium. This work aimed to evaluate cheek pouch microvessel morphological characteristics, reactivity, permeability, and expression of cytoskeleton and extracellular matrix components in hamsters after the induction of diabetes with streptozotocin. METHODS Syrian golden hamsters (90-130 g) were injected with streptozotocin (50 mg/kg, i.p.) or vehicle either 6 (the diabetes mellitus 6 group) or 15 (the diabetes mellitus 15 group) days before the experiment. Vascular dimensions and density per area of vessels were determined by morphometric and stereological measurements. Changes in blood flow were measured in response to acetylcholine, and plasma extravasation was measured by the number of leakage sites. Actin, talin, α-smooth muscle actin, vimentin, type IV collagen, and laminin were detected by immunohistochemistry and assessed through a semiquantitative scoring system. RESULTS There were no major alterations in the lumen, wall diameters, or densities of the examined vessels. Likewise, vascular reactivity and permeability were not altered by diabetes. The arterioles demonstrated increased immunoreactivity to vimentin and laminin in the diabetes mellitus 6 and diabetes mellitus 15 groups. DISCUSSION Antibodies against laminin and vimentin inhibit branching morphogenesis in vitro. Therefore, laminin and vimentin participating in the structure of the focal adhesion may play a role in angiogenesis. CONCLUSIONS Our results indicated the existence of changes related to cell-matrix interactions, which may contribute to the pathological remodeling that was already underway one week after induction of experimental diabetes.
Collapse
Affiliation(s)
- Jemima Fuentes R Silva
- Laboratory of Cellular Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
44
|
Vimentin expression influences flow dependent VASP phosphorylation and regulates cell migration and proliferation. Biochem Biophys Res Commun 2010; 395:401-6. [DOI: 10.1016/j.bbrc.2010.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 04/05/2010] [Indexed: 12/21/2022]
|
45
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
46
|
Resnick A. Use of optical tweezers to probe epithelial mechanosensation. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:015005. [PMID: 20210445 PMCID: PMC2839798 DOI: 10.1117/1.3316378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 11/11/2009] [Accepted: 12/23/2009] [Indexed: 05/28/2023]
Abstract
Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the "ciliary hypothesis" has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.
Collapse
Affiliation(s)
- Andrew Resnick
- Cleveland State University, Department of Physics, Cleveland, Ohio 44115, USA.
| |
Collapse
|
47
|
Abstract
Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | |
Collapse
|
48
|
Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 2009; 24:45-57. [PMID: 19196651 DOI: 10.1152/physiol.00029.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diameter of resistance arteries has a profound effect on the distribution of microvascular blood flow and the control of systemic blood pressure. Here, we review mechanisms that contribute to the regulation of resistance artery diameter, both acutely and chronically, their temporal characteristics, and their interdependence. Furthermore, we hypothesize the existence of a remodeling continuum that allows for the vascular wall to rapidly modify its structural characteristics, specifically through the re-positioning of vascular smooth muscle cells. Importantly, the concepts presented more closely link acute vasoregulatory responses with adaptive changes in vessel wall structure. These rapid structural adaptations provide resistance vessels the ability to maintain a desired diameter under presumed optimal energetic and mechanical conditions.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | |
Collapse
|
49
|
Pries AR, Mulvany MJ, Bakker ENTP. MBEC special issue on microcirculation "engineering principles of vascular networks". Med Biol Eng Comput 2008; 46:407-9. [PMID: 18414914 DOI: 10.1007/s11517-008-0340-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
|
50
|
Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and α-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem Cell Biol 2008; 130:1027-40. [DOI: 10.1007/s00418-008-0478-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 01/14/2023]
|