1
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Xu F, Jin H, Liu L, Yang Y, Cen J, Wu Y, Chen S, Sun D. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:96. [PMID: 39006908 PMCID: PMC11239895 DOI: 10.1038/s41378-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.
Collapse
Affiliation(s)
- Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Lingling Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Yuanyuan Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Jianzheng Cen
- Guangdong Provincial People’s Hospital, Guangzhou, 510080 China
| | - Yaobin Wu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
3
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Krishnan J, Joseph R, Vayalappil MC, Krishnan S, Kishore A. A Review on Implantable Neuroelectrodes. Crit Rev Biomed Eng 2024; 52:21-39. [PMID: 37938182 DOI: 10.1615/critrevbiomedeng.2023049282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The efficacy of every neuromodulation modality depends upon the characteristics of the electrodes used to stimulate the chosen target. The geometrical, chemical, mechanical and physical configuration of electrodes used in neurostimulation affects several performance attributes like stimulation efficiency, selectivity, tissue response, etc. The efficiency of stimulation in relation to electrode impedance is influenced by the electrode material and/or its geometry. The nature of the electrode material determines the charge transfer across the electrode-tissue interface, which also relates to neuronal tissue damage. Electrode morphology or configuration pattern can facilitate the modulation of extracellular electric field (field shaping). This enables selective activation of neurons and minimizes side effects. Biocompatibility and biostability of the electrode materials or electrode coating have a role in glial formation and tissue damage. Mechanical and electrochemical stability (corrosion resistance) determines the long-term efficacy of any neuromodulation technique. Here, a review of electrodes typically used for implantable neuromodulation is discussed. Factors affecting the performance of electrodes like stimulation efficiency, selectivity and tissue responses to the electrode-tissue interface are discussed. Technological advancements to improve electrode characteristics are also included.
Collapse
Affiliation(s)
- Jithin Krishnan
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | - Roy Joseph
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | | | | | - Asha Kishore
- Aster Parkinson & Movement Disorder Centre, Senior Consultant Neurologist and Movement Disorder Specialist
| |
Collapse
|
5
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Li X, Lin Y, Cui L, Li C, Yang Z, Zhao S, Hao T, Wang G, Heo JY, Yu JC, Chang YW, Zhu J. Stretchable and Lithography-Compatible Interconnects Enabled by Self-Assembled Nanofilms with Interlocking Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56233-56241. [PMID: 37988740 DOI: 10.1021/acsami.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Stretchable interconnects with miniature widths are vital for the high-density integration of deformable electronic components on a single substrate for targeted data logic or storage functions. However, it is still challenging to attain high-resolution patternability of stretchable conductors with robust circuit fabrication capability. Here, we report a self-assembled silver nanofilm firmly interlocked by an elastomeric nanodielectric that can be photolithographically patterned into microscale features while preserving high stretchability and conductivity. Both silver and dielectric nanofilms are fabricated by layer-by-layer assembly, ensuring wafer-scale uniformity and meticulous control of thicknesses. Without any thermal annealing, the as-fabricated nanofilms from silver nanoparticles (AgNPs) exhibit conductivity of 1.54 × 106 S m-1 and stretchability of ∼200%, which is due to the impeded crack propagation by the underlying PU nanodielectrics. Furthermore, it is revealed that AgNP microstrips defined by photolithography show higher stretchability when their widths are downscaled to 100 μm owing to confined cracks. However, further scaling restricts the stretchability, following the early development of cracks cutting across the strip. In addition, the resistance change of these silver interconnects can be decreased using serpentine architectures. As a demonstration, these self-assembled interconnects are used as stretchable circuit boards to power LEDs.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Sanchuan Zhao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Guoqi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jae-Young Heo
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jae-Chul Yu
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
- R&D Center, Hepce Chem Co., Ltd., Siheung, Gyeonggi 15588, Korea
| | - Young-Wook Chang
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
- Laboratory for Rare Earth Materials and Applications, and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Muguet I, Maziz A, Mathieu F, Mazenq L, Larrieu G. Combining PEDOT:PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302472. [PMID: 37385261 DOI: 10.1002/adma.202302472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
This study presents a novel approach to improve the performance of microelectrode arrays (MEAs) used for electrophysiological studies of neuronal networks. The integration of 3D nanowires (NWs) with MEAs increases the surface-to-volume ratio, which enables subcellular interactions and high-resolution neuronal signal recording. However, these devices suffer from high initial interface impedance and limited charge transfer capacity due to their small effective area. To overcome these limitations, the integration of conductive polymer coatings, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is investigated as a mean of improving the charge transfer capacity and biocompatibility of MEAs. The study combines platinum silicide-based metallic 3D nanowires electrodes with electrodeposited PEDOT:PSS coatings to deposit ultra-thin (<50 nm) layers of conductive polymer onto metallic electrodes with very high selectivity. The polymer-coated electrodes were fully characterized electrochemically and morphologically to establish a direct relationship between synthesis conditions, morphology, and conductive features. Results show that PEDOT-coated electrodes exhibit thickness-dependent improved stimulation and recording performances, offering new perspectives for neuronal interfacing with optimal cell engulfment to enable the study of neuronal activity with acute spatial and signal resolution at the sub-cellular level.
Collapse
Affiliation(s)
- Ines Muguet
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Ali Maziz
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Fabrice Mathieu
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Laurent Mazenq
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Guilhem Larrieu
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| |
Collapse
|
8
|
Lee J, Jeong H, Lee T, Seo JM. Fabrication of Implantable Microelectrode Array using Cyclic Olefin Copolymer and SU-8 via Photocrosslinking Lamination. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083392 DOI: 10.1109/embc40787.2023.10340058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this work, a fabrication process for implantable electrodes using a Cyclic Olefin Copolymer (COC) substrate and a SU-8 passivation layer was presented. COC and SU-8 were shown to be suitable for implantable neural electrodes due to their biocompatibility, chemical resistance, and thermal stability. The electrodes were successfully patterned on the COC film, and the SU-8 passivation layer was coated while maintaining site-opened via photolithography. The photocrosslinking lamination of the substrate and passivation layer was used to produce electrodes with fine line widths of 20um without applying heat.
Collapse
|
9
|
Tringides CM, Boulingre M, Khalil A, Lungjangwa T, Jaenisch R, Mooney DJ. Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation. Adv Healthc Mater 2023; 12:e2202221. [PMID: 36495560 PMCID: PMC10359022 DOI: 10.1002/adhm.202202221] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Multielectrode arrays would benefit from intimate engagement with neural cells, but typical arrays do not present a physical environment that mimics that of neural tissues. It is hypothesized that a porous, conductive hydrogel scaffold with appropriate mechanical and conductive properties could support neural cells in 3D, while tunable electrical and mechanical properties could modulate the growth and differentiation of the cellular networks. By incorporating carbon nanomaterials into an alginate hydrogel matrix, and then freeze-drying the formulations, scaffolds which mimic neural tissue properties are formed. Neural progenitor cells (NPCs) incorporated in the scaffolds form neurite networks which span the material in 3D and differentiate into astrocytes and myelinating oligodendrocytes. Viscoelastic and more conductive scaffolds produce more dense neurite networks, with an increased percentage of astrocytes and higher myelination. Application of exogenous electrical stimulation to the scaffolds increases the percentage of astrocytes and the supporting cells localize differently with the surrounding neurons. The tunable biomaterial scaffolds can support neural cocultures for over 12 weeks, and enable a physiologically mimicking in vitro platform to study the formation of neuronal networks. As these materials have sufficient electrical properties to be used as electrodes in implantable arrays, they may allow for the creation of biohybrid neural interfaces and living electrodes.
Collapse
Affiliation(s)
- Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard–MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Marjolaine Boulingre
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Andrew Khalil
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
- Whitehead Institute of Biomedical Research, Cambridge, MA 02142
| | | | - Rudolf Jaenisch
- Whitehead Institute of Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| |
Collapse
|
10
|
Yu M, Wang C, Cui H, Huang J, Yu Q, Wang P, Huang C, Li G, Zhao Y, Du X, Liu Z. Self-Closing Stretchable Cuff Electrodes for Peripheral Nerve Stimulation and Electromyographic Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7663-7672. [PMID: 36734973 DOI: 10.1021/acsami.2c15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The cuff electrode can be wrapped in the columnar or tubular biological tissue for physiological signal detection or stimulation regulation. The reliable and non-excessive interfaces between the electrode and complex tissue are critical. Here, we propose a self-closing stretchable cuff electrode, which is able to self-close onto the bundles of tissues after dropping water. The curliness is realized by the mechanical stress mismatch between different layers of the elastic substrate. The material of the substrate can be selected to match the modulus of the target tissue to achieve minimal constraint on the tissue. Moreover, the self-closing structure keeps the cuff electrode free from any extra mechanical locking structure. For in vivo testing, both sciatic nerve stimulation to drive muscles and electromyographic signal monitoring around a rat's extensor digitorum longus for 1 month prove that our proposed electrode conforms well to the curved surface of biological tissue.
Collapse
Affiliation(s)
- Mei Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changxian Wang
- School of Mechanics and Construction Engineering, Jinan University, 601 Huangpu Road West, Guangzhou 510632, China
| | - Huanqing Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jianping Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qianhengyuan Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Chao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xuemin Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
11
|
A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Biomed Microdevices 2022; 24:31. [PMID: 36138255 DOI: 10.1007/s10544-022-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.
Collapse
|
12
|
Wang M, Zhang Y, Bin J, Niu L, Zhang J, Liu L, Wang A, Tao J, Liang J, Zhang L, Kang X. Cold Laser Micro-Machining of PDMS as an Encapsulation Layer for Soft Implantable Neural Interface. MICROMACHINES 2022; 13:1484. [PMID: 36144107 PMCID: PMC9504264 DOI: 10.3390/mi13091484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
PDMS (polydimethylsiloxane) is an important soft biocompatible material, which has various applications such as an implantable neural interface, a microfluidic chip, a wearable brain-computer interface, etc. However, the selective removal of the PDMS encapsulation layer is still a big challenge due to its chemical inertness and soft mechanical properties. Here, we use an excimer laser as a cold micro-machining tool for the precise removal of the PDMS encapsulation layer which can expose the electrode sites in an implantable neural interface. This study investigated and optimized the effect of excimer laser cutting parameters on the electrochemical impedance of a neural electrode by using orthogonal experiment design. Electrochemical impedance at the representative frequencies is discussed, which helps to construct the equivalent circuit model. Furthermore, the parameters of the equivalent circuit model are fitted, which reveals details about the electrochemical property of neural electrode using PDMS as an encapsulation layer. Our experimental findings suggest the promising application of excimer lasers in the micro-machining of implantable neural interface.
Collapse
Affiliation(s)
- Minjie Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | | | - Lan Niu
- Ji Hua Laboratory, Foshan 528200, China
| | - Jing Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Lusheng Liu
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Aiping Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jin Tao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jingqiu Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Ji Hua Laboratory, Foshan 528200, China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Ji Hua Laboratory, Foshan 528200, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu 322000, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
13
|
Ullah H, Wahab MA, Will G, Karim MR, Pan T, Gao M, Lai D, Lin Y, Miraz MH. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. BIOSENSORS 2022; 12:bios12080630. [PMID: 36005025 PMCID: PMC9406032 DOI: 10.3390/bios12080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 05/27/2023]
Abstract
Over the past several years, wearable electrophysiological sensors with stretchability have received significant research attention because of their capability to continuously monitor electrophysiological signals from the human body with minimal body motion artifacts, long-term tracking, and comfort for real-time health monitoring. Among the four different sensors, i.e., piezoresistive, piezoelectric, iontronic, and capacitive, capacitive sensors are the most advantageous owing to their reusability, high durability, device sterilization ability, and minimum leakage currents between the electrode and the body to reduce the health risk arising from any short circuit. This review focuses on the development of wearable, flexible capacitive sensors for monitoring electrophysiological conditions, including the electrode materials and configuration, the sensing mechanisms, and the fabrication strategies. In addition, several design strategies of flexible/stretchable electrodes, body-to-electrode signal transduction, and measurements have been critically evaluated. We have also highlighted the gaps and opportunities needed for enhancing the suitability and practical applicability of wearable capacitive sensors. Finally, the potential applications, research challenges, and future research directions on stretchable and wearable capacitive sensors are outlined in this review.
Collapse
Affiliation(s)
- Hadaate Ullah
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Geoffrey Will
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Mohammad R. Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dakun Lai
- Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mahdi H. Miraz
- School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
- School of Computing, Faculty of Arts, Science and Technology, Wrexham Glyndŵr University, Wrexham LL112AW, UK
| |
Collapse
|
14
|
Bhaskara S, Sakorikar T, Chatterjee S, Shabari Girishan K, Pandya HJ. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo SM, Chen W, Zhang Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201059. [PMID: 35362243 PMCID: PMC9165511 DOI: 10.1002/advs.202201059] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/01/2023]
Abstract
Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. However, foreign body response and performance loss over time are major challenges stemming from the chemomechanical mismatch between sensors and tissues. Herein, microgels are utilized as large crosslinking centers in hydrogel networks to modulate the tradeoff between modulus and fatigue resistance/stretchability for producing hydrogels that closely match chemomechanical properties of neural tissues. The hydrogels exhibit notably different characteristics compared to nanoparticles reinforced hydrogels. The hydrogels exhibit relatively low modulus, good stretchability, and outstanding fatigue resistance. It is demonstrated that the hydrogels are well suited for fashioning into wearable and implantable sensors that can obtain physiological pressure signals, record the local field potentials in rat brains, and transmit signals through the injured peripheral nerves of rats. The hydrogels exhibit good chemomechanical match to tissues, negligible foreign body response, and minimal signal attenuation over an extended time, and as such is successfully demonstrated for use as long-term implantable sensory devices. This work facilitates a deeper understanding of biohybrid interfaces, while also advancing the technical design concepts for implantable neural probes that efficiently obtain physiological information.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiguang Sun
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Dehai Yu
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Xinrui Huang
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Guanghong Han
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Samuel M. Mugo
- Department of Physical SciencesMacEwan UniversityEdmontonABT5J4S2Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| |
Collapse
|
16
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
17
|
Kim H, Park J, Khim T, Park J, Han C, Yoo J, Kim D, Song J, Choi B. Highly Reliable Flexible Device with a Charge Compensation Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12863-12872. [PMID: 35234454 PMCID: PMC8932315 DOI: 10.1021/acsami.1c24820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 06/11/2023]
Abstract
Flexible devices fabricated with a polyimide (PI) substrate are essential for foldable, rollable, and stretchable products and various applications. However, inherent technical challenges remain in mobile charge-induced device instabilities and image retention, significantly hindering future technologies. Here, we introduce a new barrier material, SiCOH, into the backplane of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) and applied it to production-level flexible panels. We found that the SiCOH layer effectively compensates for the surface charging induced by fluorine ions at the interface between the PI substrate and the barrier layer under bias stress, thereby preventing abnormal positive shifts in threshold voltage (Vth) and image disturbance. The a-IGZO TFTs and metal-insulator-metal and metal-insulator-semiconductor capacitors with a SiCOH layer demonstrate reliable device performance, Vth shifts, and capacitance changes with an increase in gate bias stress. A flexible device with SiCOH enables the suppression of abnormal Vth shifts associated with PIs and plays a vital role in image sticking. This work provides new insights into process integrity and paves the way for expediting versatile form factors.
Collapse
Affiliation(s)
- Hyojung Kim
- Technology
Reliability Team, OLED Business, Samsung
Display Company, Limited, 181 Samsung-ro, Tangjeong-myeon, Asan-si 31454, Republic
of Korea
- Department
of Semiconductor and Display Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Jongwoo Park
- Technology
Reliability Team, OLED Business, Samsung
Display Company, Limited, 181 Samsung-ro, Tangjeong-myeon, Asan-si 31454, Republic
of Korea
| | - Taeyoung Khim
- Technology
Reliability Team, OLED Business, Samsung
Display Company, Limited, 181 Samsung-ro, Tangjeong-myeon, Asan-si 31454, Republic
of Korea
| | - Jungmin Park
- Department
of Semiconductor and Display Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Chanhee Han
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Jongmin Yoo
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Dongbhin Kim
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Jangkun Song
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| | - Byoungdeog Choi
- Department
of Electrical and Computer Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon-si 16419, Republic
of Korea
| |
Collapse
|
18
|
Abstract
Personal, portable, and wearable electronics have become items of extensive use in daily life. Their fabrication requires flexible electronic components with high storage capability or with continuous power supplies (such as solar cells). In addition, formerly rigid tools such as electrochromic windows find new utilizations if they are fabricated with flexible characteristics. Flexibility and performances are determined by the material composition and fabrication procedures. In this regard, low-cost, easy-to-handle materials and processes are an asset in the overall production processes and items fruition. In the present mini-review, the most recent approaches are described in the production of flexible electronic devices based on NiO as low-cost material enhancing the overall performances. In particular, flexible NiO-based all-solid-state supercapacitors, electrodes electrochromic devices, temperature devices, and ReRAM are discussed, thus showing the potential of NiO as material for future developments in opto-electronic devices.
Collapse
|
19
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
20
|
Oldroyd P, Malliaras GG. Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomater 2022; 139:65-81. [PMID: 34020055 DOI: 10.1016/j.actbio.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Implantable electrodes that can reliably measure brain activity and deliver an electrical stimulus to a target tissue are increasingly employed to treat various neurological diseases and neuropsychiatric disorders. Flexible thin-film electrodes have gained attention over the past few years to minimise invasiveness and damage upon implantation. Research has previously focused on optimising the electrode's electrical and mechanical properties; however, their chronic stability must be validated to translate electrodes from a research to a clinical application. Neurostimulation electrodes, which actively inject charge, have yet to reliably demonstrate continuous functionality for ten years or more in vivo, the accepted metric for clinical viability. Long-term stability can only be achieved if the focus switches to investigating how and why such devices fail. Unfortunately, there is a field-wide reluctance to investigate device stability and failures, which hinders device optimisation. This review surveys thin-film electrode designs with a focus on adhesion between electrode layers and the interactions with the surrounding environment. A comprehensive summary of the abiotic failure modes faced by such electrodes is presented, and to encourage investigation, systematic methods for analysing their origin are recommended. Finally, approaches to reducing the likelihood of device failure are offered. STATEMENT OF SIGNIFICANCE: Neural electrodes that can deliver an electrical stimulus to a target tissue are widely used to treat various neurological diseases. Essential to the function of these electrodes is the ability to safely stimulate the target tissue for extended periods (> 10 years); however, this has not yet been clinically achieved. The key to achieving long-term stability is an increased understanding of electrode interactions with the surrounding tissue and subsequent systematic analysis of their failure modes. This review highlights the need for a change in the approach to investigating electrode failure, and in doing so summarizes the common ways in which neural electrodes fail, methods for identifying them and approaches to preventing them.
Collapse
|
21
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Different research fields in energy sciences, such as photovoltaics for solar energy conversion, supercapacitors for energy storage, electrocatalysis for clean energy conversion technologies, and materials-bacterial hybrid for CO2 fixation have been under intense investigations over the past decade. In recent years, new platforms for biointerface designs have emerged from the energy conversion and storage principles. This paper reviews recent advances in nano- and microscale materials/devices for optical and electrical biointerfaces. First, a connection is drawn between biointerfaces and energy science, and how these two distinct research fields can be connected is summarized. Then, a brief overview of current available tools for biointerface studies is presented. Third, three representative biointerfaces are reviewed, including neural, cardiac, and bacterial biointerfaces, to show how to apply these tools and principles to biointerface design and research. Finally, two possible future research directions for nano- and microscale biointerfaces are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuanwang Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Kuang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Qin J, Yin LJ, Hao YN, Zhong SL, Zhang DL, Bi K, Zhang YX, Zhao Y, Dang ZM. Flexible and Stretchable Capacitive Sensors with Different Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008267. [PMID: 34240474 DOI: 10.1002/adma.202008267] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Indexed: 05/27/2023]
Abstract
Recently, sensors that can imitate human skin have received extensive attention. Capacitive sensors have a simple structure, low loss, no temperature drift, and other excellent properties, and can be applied in the fields of robotics, human-machine interactions, medical care, and health monitoring. Polymer matrices are commonly employed in flexible capacitive sensors because of their high flexibility. However, their volume is almost unchanged when pressure is applied, and they are inherently viscoelastic. These shortcomings severely lead to high hysteresis and limit the improvement in sensitivity. Therefore, considerable efforts have been applied to improve the sensing performance by designing different microstructures of materials. Herein, two types of sensors based on the applied forces are discussed, including pressure sensors and strain sensors. Currently, five types of microstructures are commonly used in pressure sensors, while four are used in strain sensors. The advantages, disadvantages, and practical values of the different structures are systematically elaborated. Finally, future perspectives of microstructures for capacitive sensors are discussed, with the aim of providing a guide for designing advanced flexible and stretchable capacitive sensors via ingenious human-made microstructures.
Collapse
Affiliation(s)
- Jing Qin
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Li-Juan Yin
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ya-Nan Hao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shao-Long Zhong
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dong-Li Zhang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ke Bi
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yong-Xin Zhang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Zhao
- School of Electrical Engineering, Zheng Zhou University, Zhengzhou, Henan, 450001, China
| | - Zhi-Min Dang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Karatum O, Aria MM, Eren GO, Yildiz E, Melikov R, Srivastava SB, Surme S, Dogru IB, Bahmani Jalali H, Ulgut B, Sahin A, Kavakli IH, Nizamoglu S. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Front Neurosci 2021; 15:652608. [PMID: 34248476 PMCID: PMC8260855 DOI: 10.3389/fnins.2021.652608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | - Erdost Yildiz
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Itir Bakis Dogru
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | | | - Burak Ulgut
- Department of Chemistry, Bilkent University, Ankara, Turkey
| | - Afsun Sahin
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
- Department of Ophthalmology, Medical School, Koc University, Istanbul, Turkey
| | | | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
25
|
Kalmykov A, Reddy JW, Bedoyan E, Wang Y, Garg R, Rastogi SK, Cohen-Karni D, Chamanzar M, Cohen-Karni T. Bioelectrical interfaces with cortical spheroids in three-dimensions. J Neural Eng 2021; 18. [PMID: 33770775 DOI: 10.1088/1741-2552/abf290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/26/2021] [Indexed: 11/12/2022]
Abstract
Objective.Three-dimensional (3D) neuronal spheroid culture serves as a powerful model system for the investigation of neurological disorders and drug discovery. The success of such a model system requires techniques that enable high-resolution functional readout across the entire spheroid. Conventional microelectrode arrays and implantable neural probes cannot monitor the electrophysiology (ephys) activity across the entire native 3D geometry of the cellular construct.Approach.Here, we demonstrate a 3D self-rolled biosensor array (3D-SR-BA) integrated with a 3D cortical spheroid culture for simultaneousin vitroephys recording, functional Ca2+imaging, while monitoring the effect of drugs. We have also developed a signal processing pipeline to detect neural firings with high spatiotemporal resolution from the ephys recordings based on established spike sorting methods.Main results.The 3D-SR-BAs cortical spheroid interface provides a stable, high sensitivity recording of neural action potentials (<50µV peak-to-peak amplitude). The 3D-SR-BA is demonstrated as a potential drug screening platform through the investigation of the neural response to the excitatory neurotransmitter glutamate. Upon addition of glutamate, the neural firing rates increased notably corresponding well with the functional Ca2+imaging.Significance.Our entire system, including the 3D-SR-BA integrated with neuronal spheroid culture, enables simultaneous ephys recording and functional Ca2+imaging with high spatiotemporal resolution in conjunction with chemical stimulation. We demonstrate a powerful toolset for future studies of tissue development, disease progression, and drug testing and screening, especially when combined with native spheroid cultures directly extracted from humans.
Collapse
Affiliation(s)
- Anna Kalmykov
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Esther Bedoyan
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Devora Cohen-Karni
- Preclinical education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, United States of America
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America.,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
26
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|
27
|
Abstract
When nerves are damaged by trauma or disease, they are still capable of firing off electrical command signals that originate from the brain. Furthermore, those damaged nerves have an innate ability to partially regenerate, so they can heal from trauma and even reinnervate new muscle targets. For an amputee who has his/her damaged nerves surgically reconstructed, the electrical signals that are generated by the reinnervated muscle tissue can be sensed and interpreted with bioelectronics to control assistive devices or robotic prostheses. No two amputees will have identical physiologies because there are many surgical options for reconstructing residual limbs, which may in turn impact how well someone can interface with a robotic prosthesis later on. In this review, we aim to investigate what the literature has to say about different pathways for peripheral nerve regeneration and how each pathway can impact the neuromuscular tissue’s final electrophysiology. This information is important because it can guide us in planning the development of future bioelectronic devices, such as prosthetic limbs or neurostimulators. Future devices will primarily have to interface with tissue that has undergone some natural regeneration process, and so we have explored and reported here what is known about the bioelectrical features of neuromuscular tissue regeneration.
Collapse
|
28
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
29
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
30
|
Yang W, Gong Y, Li W. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Front Bioeng Biotechnol 2021; 8:622923. [PMID: 33585422 PMCID: PMC7873964 DOI: 10.3389/fbioe.2020.622923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023] Open
Abstract
To date, a wide variety of neural tissue implants have been developed for neurophysiology recording from living tissues. An ideal neural implant should minimize the damage to the tissue and perform reliably and accurately for long periods of time. Therefore, the materials utilized to fabricate the neural recording implants become a critical factor. The materials of these devices could be classified into two broad categories: electrode materials as well as packaging and substrate materials. In this review, inorganic (metals and semiconductors), organic (conducting polymers), and carbon-based (graphene and carbon nanostructures) electrode materials are reviewed individually in terms of various neural recording devices that are reported in recent years. Properties of these materials, including electrical properties, mechanical properties, stability, biodegradability/bioresorbability, biocompatibility, and optical properties, and their critical importance to neural recording quality and device capabilities, are discussed. For the packaging and substrate materials, different material properties are desired for the chronic implantation of devices in the complex environment of the body, such as biocompatibility and moisture and gas hermeticity. This review summarizes common solid and soft packaging materials used in a variety of neural interface electrode designs, as well as their packaging performances. Besides, several biopolymers typically applied over the electrode package to reinforce the mechanical rigidity of devices during insertion, or to reduce the immune response and inflammation at the device-tissue interfaces are highlighted. Finally, a benchmark analysis of the discussed materials and an outlook of the future research trends are concluded.
Collapse
Affiliation(s)
| | | | - Wen Li
- Microtechnology Lab, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Kim YH, Jung SD. Simultaneous photoadhesion and photopatterning technique for passivation of flexible neural electrodes based on fluoropolymers. Sci Rep 2020; 10:21386. [PMID: 33288811 PMCID: PMC7721713 DOI: 10.1038/s41598-020-78494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Herein, we introduce a method to simultaneously photoadhere a photocrosslinkable polymer to a plasma-treated fluoropolymer while photopatterning the photocrosslinkable polymer via a single-photo-exposure as a new electrode passivation technique. Photoadhesion was determined to result from plasma-generated radicals of the plasma-treated fluoropolymer. Crystallinity of the fluoropolymer was analysed to determine the photoadhesion strength through its effects on both the formation of radicals and the etching of fluoropolymers. Passivation feasibility of simultaneous photoadhesion and photopatterning (P&P) technique were demonstrated by fabricating an Au electrocorticography electrode array and modifying the electrode with electro-deposited metallic nanoparticles. Adhesion of sputter-deposited Au to the fluoropolymer was dependent on mechanical interlocking, indicated by the formation of Au clusters which are typically influenced by the surface temperature during the sputter-deposition and the glass transition temperature of the fluoropolymer. The adhesion of Au to the fluoropolymer without an additional adhesion promotor and the proposed P&P passivation technique would help prevent detachment of the electrode and the delamination of the passivation layer in fluoropolymer-based neural electrode.
Collapse
Affiliation(s)
- Yong Hee Kim
- ICT Creative Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Sang-Don Jung
- ICT Creative Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
32
|
Bourrier A, Szarpak-Jankowska A, Veliev F, Olarte-Hernandez R, Shkorbatova P, Bonizzato M, Rey E, Barraud Q, Briançon-Marjollet A, Auzely R, Courtine G, Bouchiat V, Delacour C. Introducing a biomimetic coating for graphene neuroelectronics: toward in-vivoapplications. Biomed Phys Eng Express 2020; 7. [PMID: 35125348 DOI: 10.1088/2057-1976/ab42d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/09/2019] [Indexed: 11/12/2022]
Abstract
Electronic micro and nano-devices are suitable tools to monitor the activity of many individual neurons over mesoscale networks. However the inorganic materials currently used in microelectronics are barely accepted by neural cells and tissues, thus limiting both the sensor lifetime and efficiency. In particular, penetrating intracortical probes face high failure rate because of a wide immune response of cells and tissues. This adverse reaction called gliosis leads to the rejection of the implanted probe after few weeks and prevent long-lasting recordings of cortical neurons. Such acceptance issue impedes the realization of many neuro-rehabilitation projects. To overcome this, graphene and related carbon-based materials have attracted a lot of interest regarding their positive impact on the adhesion and regeneration of neurons, and their ability to provide high-sensitive electronic devices, such as graphene field effect transistor (G-FET). Such devices can also be implemented on numerous suitable substrates including soft substrates to match the mechanical compliance of cells and tissues, improving further the biocompatibility of the implants. Thus, using graphene as a coating and sensing device material could significantly enhance the acceptance of intracortical probes. However, such a thin monolayer of carbon atoms could be teared off during manipulation and insertion within the brain, and could also display degradation over time. In this work, we have investigated the ability to protect graphene with a natural, biocompatible and degradable polymeric film derivated from hyaluronic acid (HA). We demonstrate that HA-based coatings can be deposited over a wide range of substrates, including intracortical probes and graphene FET arrays without altering the underlying device material, its biocompatibility and sensitivity. Moreover, we show that this coating can be monitoredin situby quantifying the number of deposited charges with the G-FET arrays. The reported graphene functionalization offers promising alternatives for improving the acceptance of various neural interfaces.
Collapse
Affiliation(s)
- Antoine Bourrier
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | | | - Farida Veliev
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | | | - Polina Shkorbatova
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Marco Bonizzato
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Elodie Rey
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Anne Briançon-Marjollet
- Grenoble Alpes, HP2 Laboratory, Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Rachel Auzely
- University Grenoble Alpes, CERMAV-CNRS, 38000 Grenoble, France
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain-Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech CH-1202 Geneva, Switzerland
| | - Vincent Bouchiat
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| | - Cécile Delacour
- Institut Néel, CNRS & Université Grenoble Alpes, 38042 Grenoble, France
| |
Collapse
|
33
|
Hart C, Didier CM, Sommerhage F, Rajaraman S. Biocompatibility of Blank, Post-Processed and Coated 3D Printed Resin Structures with Electrogenic Cells. BIOSENSORS 2020; 10:E152. [PMID: 33105886 PMCID: PMC7690614 DOI: 10.3390/bios10110152] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
The widespread adaptation of 3D printing in the microfluidic, bioelectronic, and Bio-MEMS communities has been stifled by the lack of investigation into the biocompatibility of commercially available printer resins. By introducing an in-depth post-printing treatment of these resins, their biocompatibility can be dramatically improved up to that of a standard cell culture vessel (99.99%). Additionally, encapsulating resins that are less biocompatible with materials that are common constituents in biosensors further enhances the biocompatibility of the material. This investigation provides a clear pathway toward developing fully functional and biocompatible 3D printed biosensor devices, especially for interfacing with electrogenic cells, utilizing benchtop-based microfabrication, and post-processing techniques.
Collapse
Affiliation(s)
- Cacie Hart
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Department of Materials Science & Engineering, University of Central Florida, 12760 Pegasus Dr., Orlando, FL 32816, USA
| | - Charles M. Didier
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Burnett School of Biomedical Science, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (C.H.); (C.M.D.); (F.S.)
- Department of Materials Science & Engineering, University of Central Florida, 12760 Pegasus Dr., Orlando, FL 32816, USA
- Burnett School of Biomedical Science, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
- Department of Electrical & Computer Engineering, University of Central Florida, 4328 Scorpius St., Orlando, FL 32816, USA
| |
Collapse
|
34
|
Apollo NV, Murphy B, Prezelski K, Driscoll N, Richardson AG, Lucas TH, Vitale F. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J Neural Eng 2020; 17:041002. [PMID: 32759476 PMCID: PMC8152109 DOI: 10.1088/1741-2552/abacd7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Implantable neuroelectronic interfaces have enabled breakthrough advances in the clinical diagnosis and treatment of neurological disorders, as well as in fundamental studies of brain function, behavior, and disease. Intracranial electroencephalography (EEG) mapping with stereo-EEG (sEEG) depth electrodes is routinely adopted for precise epilepsy diagnostics and surgical treatment, while deep brain stimulation has become the standard of care for managing movement disorders. Intracortical microelectrode arrays for high-fidelity recordings of neural spiking activity have led to impressive demonstrations of the power of brain-machine interfaces for motor and sensory functional recovery. Yet, despite the rapid pace of technology development, the issue of establishing a safe, long-term, stable, and functional interface between neuroelectronic devices and the host brain tissue still remains largely unresolved. A body of work spanning at least the last 15 years suggests that safe, chronic integration between invasive electrodes and the brain requires a close match between the mechanical properties of man-made components and the neural tissue. In other words, the next generation of invasive electrodes should be soft and compliant, without sacrificing biological and chemical stability. Soft neuroelectronic interfaces, however, pose a new and significant surgical challenge: bending and buckling during implantation that can preclude accurate and safe device placement. In this topical review, we describe the next generation of soft electrodes and the surgical implantation methods for safe and precise insertion into brain structures. We provide an overview of the most recent innovations in the field of insertion strategies for flexible neural electrodes such as dissolvable or biodegradable carriers, microactuators, biologically-inspired support structures, and electromagnetic drives. In our analysis, we also highlight approaches developed in different fields, such as robotic surgery, which could be potentially adapted and translated to the insertion of flexible neural probes.
Collapse
Affiliation(s)
- Nicholas V Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Brendan Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Andrew G Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
35
|
Shen J, Kashimoto M, Matsumoto T, Mori A, Nishino T. Structural deformation of elastic polythiophene with disiloxane moieties under stretching. Polym J 2020. [DOI: 10.1038/s41428-020-0385-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Deployable, liquid crystal elastomer-based intracortical probes. Acta Biomater 2020; 111:54-64. [PMID: 32428679 DOI: 10.1016/j.actbio.2020.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
Intracortical microelectrode arrays (MEAs) are currently limited in their chronic functionality due partially to the foreign body response (FBR) that develops in regions immediately surrounding the implant (typically within 50-100 µm). Mechanically flexible, polymer-based substrates have recently been explored for MEAs as a way of minimizing the FBR caused by the chronic implantation. Nonetheless, the FBR degrades the ability of the device to record neural activity. We are motivated to develop approaches to deploy multiple recording sites away from the initial site of implantation into regions of tissue outside the FBR zone. Liquid Crystal Elastomers (LCEs) are responsive materials capable of programmable and reversible shape change. These hydrophobic materials are also non-cytotoxic and compatible with photolithography. As such, these responsive materials may be well suited to serve as substrates for smart, implantable electronics. This study explores the feasibility of LCE-based deployable intracortical MEAs. LCE intracortical probes are fabricated on a planar substrate and adopt a 3D shape after being released from the substrate. The LCE probes are then fixed in a planar configuration using polyethylene glycol (PEG). The PEG layer dissolves in physiological conditions, allowing the LCE probe to deploy post-implantation. Critically, we show that LCE intracortical probes will deploy within a brain-like agarose tissue phantom. We also show that deployment distance increases with MEA width. A finite element model was then developed to predict the deformed shape of the deployed probe when embedded in an elastic medium. Finally, LCE-based deployable intracortical MEAs were capable of maintaining electrochemical stability, recording extracellular signals from cortical neurons in vivo, and deploying recording sites greater than 100 µm from the insertion site in vivo. Taken together, these results suggest the feasibility of using LCEs to develop deployable intracortical MEAs. STATEMENT OF SIGNIFICANCE: Deployable MEAs are a recently developed class of neural interfaces that aim to shift the recording sites away from the region of insertion to minimize the negative effects of FBR on the recording performance of MEAs. In this study, we explore LCEs as a potential substrate for deployable MEAs. The novelty of this study lies in the systematic and programmable deployment offered by LCE-based intracortical MEAs. These results illustrate the feasibility and potential application of LCEs as a substrate for deployable intracortical MEAs.
Collapse
|
37
|
Keogh C. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Neurosurg Focus 2020; 49:E7. [PMID: 32610294 DOI: 10.3171/2020.4.focus20178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/08/2020] [Indexed: 11/06/2022]
Abstract
Engineering approaches have vast potential to improve the treatment of disease. Brain-machine interfaces have become a well-established means of treating some otherwise medically refractory neurological diseases, and they have shown promise in many more areas. More widespread use of implanted stimulating and recording electrodes for long-term intervention is, however, limited by the difficulty in maintaining a stable interface between implanted electrodes and the local tissue for reliable recording and stimulation.This loss of performance at the neuron-electrode interface is due to a combination of inflammation and glial scar formation in response to the implanted material, as well as electrical factors contributing to a reduction in function over time. An increasing understanding of the factors at play at the neural interface has led to greater focus on the optimization of this neuron-electrode interface in order to maintain long-term implant viability.A wide variety of approaches to improving device interfacing have emerged, targeting the mechanical, electrical, and biological interactions between implanted electrodes and the neural tissue. These approaches are aimed at reducing the initial trauma and long-term tissue reaction through device coatings, optimization of mechanical characteristics for maximal biocompatibility, and implantation techniques. Improved electrode features, optimized stimulation parameters, and novel electrode materials further aim to stabilize the electrical interface, while the integration of biological interventions to reduce inflammation and improve tissue integration has also shown promise.Optimization of the neuron-electrode interface allows the use of long-term, high-resolution stimulation and recording, opening the door to responsive closed-loop systems with highly selective modulation. These new approaches and technologies offer a broad range of options for neural interfacing, representing the possibility of developing specific implant technologies tailor-made to a given task, allowing truly personalized, optimized implant technology for chronic neural interfacing.
Collapse
|
38
|
Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens Bioelectron 2020; 155:112096. [PMID: 32090868 DOI: 10.1016/j.bios.2020.112096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Intracortical microelectrodes are being developed to both record and stimulate neurons to understand brain circuitry or restore lost functions. However, the success of these probes is hampered partly due to the inflammatory host tissue responses to implants. To minimize the foreign body reactions, L1, a brain derived neuronal specific cell adhesion molecule, has been covalently bound to the neural electrode array surface. Here we evaluated the chronic recording performance of L1-coated silicon based laminar neural electrode arrays implanted into V1m cortex of mice. The L1 coating enhanced the overall visually evoked single-unit (SU) yield and SU amplitude, as well as signal-to-noise-ratio (SNR) in the mouse brain compared to the uncoated arrays across the 0-1500 μm depth. The improvement in recording is most dramatic in the hippocampus region, where the control group showed severe recording yield decrease after one week, while the L1 implants maintained a high SU yield throughout the 16 weeks. Immunohistological analysis revealed significant increases of axonal and neuronal density along with significantly lowered microglia activation around the L1 probe after 16 weeks. These results collectively confirm the effectiveness of L1 based biomimetic coating on minimizing inflammatory tissue response and improving neural recording quality and longevity. Improving chronic recording will benefit the brain-computer interface technologies and neuroscience studies involving chronic tracking of neural activities.
Collapse
|
39
|
Bourrier A, Shkorbatova P, Bonizzato M, Rey E, Barraud Q, Courtine G, Othmen R, Reita V, Bouchiat V, Delacour C. Monolayer Graphene Coating of Intracortical Probes for Long-Lasting Neural Activity Monitoring. Adv Healthc Mater 2019; 8:e1801331. [PMID: 31402600 DOI: 10.1002/adhm.201801331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/16/2019] [Indexed: 12/12/2022]
Abstract
The invasiveness of intracortical interfaces currently used today is responsible for the formation of an intense immunoresponse and inflammatory reaction from neural cells and tissues. This leads to a high concentration of reactive glial cells around the implant site, creating a physical barrier between the neurons and the recording channels. Such a rejection of foreign analog interfaces causes neural signals to fade from recordings which become flooded by background noise after a few weeks. Despite their invasiveness, those devices are required to track single neuron activity and decode fine sensory or motor commands. In particular, such quantitative and long-lasting recordings of individual neurons are crucial during a long time period (several months) to restore essential functions of the cortex, disrupted after injuries, stroke, or neurodegenerative diseases. To overcome this limitation, graphene and related materials have attracted numerous interests, as they gather in the same material many suitable properties for interfacing living matter, such as an exceptionally high neural affinity, diffusion barrier, and high physical robustness. In this work, the neural affinity of a graphene monolayer with numerous materials commonly used in neuroprostheses is compared, and its impact on the performance and durability of intracortical probes is investigated. For that purpose, an innovative coating method to wrap 3D intracortical probes with a continuous monolayer graphene is developed. Experimental evidence demonstrate the positive impact of graphene on the bioacceptance of conventional intracortical probes, in terms of detection efficiency and tissues responses, allowing real-time samplings of motor neuron activity during 5 weeks. Since continuous graphene coatings can easily be implemented on a wide range of 3D surfaces, this study further motivates the use of graphene and related materials as it could significantly contribute to reduce the current rejection of neural probes currently used in many research areas, from fundamental neurosciences to medicine and neuroprostheses.
Collapse
Affiliation(s)
- Antoine Bourrier
- Institut NéelCNRS and Université Grenoble‐Alpes 38042 Grenoble France
| | - Polina Shkorbatova
- Center for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesSwiss Federal Institute of Technology (EPFL) Campus Biotech CH‐1202 Geneva Switzerland
| | - Marco Bonizzato
- Center for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesSwiss Federal Institute of Technology (EPFL) Campus Biotech CH‐1202 Geneva Switzerland
| | - Elodie Rey
- Center for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesSwiss Federal Institute of Technology (EPFL) Campus Biotech CH‐1202 Geneva Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesSwiss Federal Institute of Technology (EPFL) Campus Biotech CH‐1202 Geneva Switzerland
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesSwiss Federal Institute of Technology (EPFL) Campus Biotech CH‐1202 Geneva Switzerland
| | - Riadh Othmen
- Institut NéelCNRS and Université Grenoble‐Alpes 38042 Grenoble France
| | - Valerie Reita
- Institut NéelCNRS and Université Grenoble‐Alpes 38042 Grenoble France
| | - Vincent Bouchiat
- Institut NéelCNRS and Université Grenoble‐Alpes 38042 Grenoble France
| | - Cécile Delacour
- Institut NéelCNRS and Université Grenoble‐Alpes 38042 Grenoble France
| |
Collapse
|
40
|
Kim MW, Lifson ML, Rebecca GA, Greer JR, Kim BJ. Recoverable Electrical Breakdown Strength and Dielectric Constant in Ultralow- k Nanolattice Capacitors. NANO LETTERS 2019; 19:5689-5696. [PMID: 31299156 DOI: 10.1021/acs.nanolett.9b02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dielectric reliability of low-k materials during mechanical deformation attracts tremendous attention, owing to the increasing demand for thin electronics to meet the ever-shrinking form factor of consumer products. However, the strong coupling between dielectric/electric and mechanical properties limits the use of low-k dielectrics in industrial applications. We report the leakage current and dielectric properties of a nanolattice capacitor during compressive stress cycling. Electrical breakdown measurements during the stress cycling, combined with a theoretical model and in situ mechanical experiments, provide insights to key breakdown mechanisms. Electrical breakdown occurs at nearly 50% strain, featuring a switch-like binary character, correlated with a transition from beam bending and buckling to collapse. Breakdown strength appears to recover after each cycle, concomitant with nanolattice's shape recovery. The compressive displacement at breakdown decreases with cycling due to permanently buckled beams, transforming the conduction mechanism from Schottky to Poole-Frankel emission. Remarkably, our capacitor with 99% porosity, k ∼ 1.09, is operative up to 200 V, whereas devices with 17% porous alumina films breakdown upon biasing based on a percolation model. Similarly with electrical breakdown, the dielectric constant of the capacitor is recoverable with five strain cycles and is stable under 25% compression. These outstanding capabilities of the nanolattice are essential for revolutionizing future flexible electronics.
Collapse
Affiliation(s)
- Min-Woo Kim
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005 , Korea
| | - Max L Lifson
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Gallivan A Rebecca
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Julia R Greer
- Division of Engineering and Applied Science , California Institute of Technology , Pasadena , California 91125 , United States
| | - Bong-Joong Kim
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005 , Korea
| |
Collapse
|
41
|
Jung YH, Park B, Kim JU, Kim TI. Bioinspired Electronics for Artificial Sensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803637. [PMID: 30345558 DOI: 10.1002/adma.201803637] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
42
|
Xu K, Li S, Dong S, Zhang S, Pan G, Wang G, Shi L, Guo W, Yu C, Luo J. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain. Adv Healthc Mater 2019; 8:e1801649. [PMID: 31168937 DOI: 10.1002/adhm.201801649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/29/2019] [Indexed: 01/29/2023]
Abstract
Medical implantation of an electrocorticography (ECoG) recording system for brain monitoring is an effective clinical tool for seizure focus location and brain disease diagnosis. Planar and flexible ECoG electrodes can minimize the risks of infection and serious inflammatory response, and their good shape adaptability allows the device to fit complex cortex shape and structure to record brain signals with high spatial and temporal resolution. However, these ECoG electrodes require an additional surgery to remove the implant, which imposes potential medical risks. Here, a novel flexible and bioresorbable ECoG device integrated with an intracortical pressure sensor for monitoring swelling of the cortex during operation is reported. The ECoG device is fabricated with poly(l-lactide) and polycaprolactone composite and transient metal molybdenum. In vivo tests on rats show that the ECoG system can record the dynamic changes in brain signals for the different epilepsy stages with high resolution, while the malleable pressure sensor shows a linear relationship between the pressure and resistance in in vitro tests. In vitro degradation experiments show that the ECoG system can work stably for about five days before loss of efficacy, and the whole ECoG system degrades completely in a phosphate buffer solution in about 100 days.
Collapse
Affiliation(s)
- Kedi Xu
- Key Laboratory of Biomedical Engineering of Education MinistryQiushi Academy for Advanced StudiesDepartment of Biomedical EngineeringZhejiang University Hangzhou 310027 China
| | - Shijian Li
- College of Computer ScienceZhejiang University Hangzhou 310027 China
| | - Shurong Dong
- College of Information Science and Electronic EngineeringZhejiang University Hangzhou 310027 China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education MinistryQiushi Academy for Advanced StudiesDepartment of Biomedical EngineeringZhejiang University Hangzhou 310027 China
| | - Gang Pan
- College of Computer ScienceZhejiang University Hangzhou 310027 China
| | - Guangming Wang
- College of Information Science and Electronic EngineeringZhejiang University Hangzhou 310027 China
| | - Lin Shi
- College of Information Science and Electronic EngineeringZhejiang University Hangzhou 310027 China
| | - Wei Guo
- College of Information Science and Electronic EngineeringZhejiang University Hangzhou 310027 China
| | - Chaonan Yu
- Key Laboratory of Biomedical Engineering of Education MinistryQiushi Academy for Advanced StudiesDepartment of Biomedical EngineeringZhejiang University Hangzhou 310027 China
| | - Jikui Luo
- Institute of Renewable Energy and Environmental TechnologyBolton University Deane Road Bolton BL3 5AB UK
| |
Collapse
|
43
|
Yamamoto H, Grob L, Sumi T, Oiwa K, Hirano-Iwata A, Wolfrum B. Ultrasoft Silicone Gel as a Biomimetic Passivation Layer in Inkjet-Printed 3D MEA Devices. ACTA ACUST UNITED AC 2019; 3:e1900130. [PMID: 32648655 DOI: 10.1002/adbi.201900130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Multielectrode arrays (MEAs) are versatile tools that are used for chronic recording and stimulation of neural cells and tissues. Driven by the recent progress in understanding of how neuronal growth and function respond to scaffold stiffness, development of MEAs with a soft cell-to-device interface has gained importance not only for in vivo but also for in vitro applications. However, the passivation layer, which constitutes the majority of the cell-device interface, is typically prepared with stiff materials. Herein, a fabrication of an MEA device with an ultrasoft passivation layer is described, which takes advantage of inkjet printing and a polydimethylsiloxane (PDMS) gel with a stiffness comparable to that of the brain. The major challenge in using the PDMS gel is that it cannot be patterned to expose the sensing area of the electrode. This issue is resolved by printing 3D micropillars at the electrode tip. Primary cortical neurons are grown on the fabricated device, and effective stimulation of the culture confirms functional cell-device coupling. The 3D MEA device with an ultrasoft interface provides a novel platform for investigating evoked activity and drug responses of living neuronal networks cultured in a biomimetic environment for both fundamental research and pharmaceutical applications.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.,Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, 85748, Garching, Germany
| | - Leroy Grob
- Munich School of BioengineeringDepartment of Electrical and Computer Engineering, Technische Universität München, Boltzmannstraße 11, 85748, Garching, Germany
| | - Takuma Sumi
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communication Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Ayumi Hirano-Iwata
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.,Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Bernhard Wolfrum
- Munich School of BioengineeringDepartment of Electrical and Computer Engineering, Technische Universität München, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
44
|
Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent Advances in Transparent Electronics with Stretchable Forms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804690. [PMID: 30556173 DOI: 10.1002/adma.201804690] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Advances in materials science and the desire for next-generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.
Collapse
Affiliation(s)
- Kukjoo Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byung Gwan Hyun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minjae Choi
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
45
|
Zheng X, Woeppel KM, Griffith AY, Chang E, Looker MJ, Fisher LE, Clapsaddle BJ, Cui XT. Soft Conducting Elastomer for Peripheral Nerve Interface. Adv Healthc Mater 2019; 8:e1801311. [PMID: 30843365 DOI: 10.1002/adhm.201801311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Indexed: 12/17/2022]
Abstract
State-of-the-art intraneural electrodes made from silicon or polyimide substrates have shown promise in selectively modulating efferent and afferent activity in the peripheral nervous system. However, when chronically implanted, these devices trigger a multiphase foreign body response ending in device encapsulation. The presence of encapsulation increases the distance between the electrode and the excitable tissue, which not only reduces the recordable signal amplitude but also requires increased current to activate nearby axons. Herein, this study reports a novel conducting polymer based intraneural electrode which has Young's moduli similar to that of nerve tissue. The study first describes material optimization of the soft wire conductive matrix and evaluates their mechanical and electrochemical properties. Second, the study demonstrates 3T3 cell survival when cultured with media eluted from the soft wires. Third, the study presents acute in vivo functionality for stimulation of peripheral nerves to evoke force and compound muscle action potential in a rat model. Furthermore, comprehensive histological analyses show that soft wires elicit significantly less scar tissue encapsulation, less changes to axon size, density and morphology, and reduced macrophage activation compared to polyimide implants in the sciatic nerves at 1 month postimplantation.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Azante Y Griffith
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Emily Chang
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Michael J Looker
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, Department of Bioengineering, University of Pittsburgh, 3250 Fifth Ave., Pittsburgh, PA, 15213, USA
| | | | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
46
|
Wang K, Frewin CL, Esrafilzadeh D, Yu C, Wang C, Pancrazio JJ, Romero-Ortega M, Jalili R, Wallace G. High-Performance Graphene-Fiber-Based Neural Recording Microelectrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805867. [PMID: 30803072 DOI: 10.1002/adma.201805867] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/10/2019] [Indexed: 05/24/2023]
Abstract
Fabrication of flexible and free-standing graphene-fiber- (GF-) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm-2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal-to-noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron.
Collapse
Affiliation(s)
- Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Christopher L Frewin
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Changchun Yu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
47
|
Bianchi F, George JH, Malboubi M, Jerusalem A, Thompson MS, Ye H. Engineering a uniaxial substrate-stretching device for simultaneous electrophysiological measurements and imaging of strained peripheral neurons. Med Eng Phys 2019; 67:1-10. [PMID: 30878301 DOI: 10.1016/j.medengphy.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Peripheral nerves are continuously subjected to mechanical strain during everyday movements, but excessive stretch can lead to damage and neuronal cell functionality can also be impaired. To better understand cellular processes triggered by stretch, it is necessary to develop in vitro experimental methods that allow multiple concurrent measurements and replicate in vivo mechanical conditions. Current commercially available cell stretching devices do not allow flexible experimental design, restricting the range of possible multi-physics measurements. Here, we describe and characterise a custom-built uniaxial substrate-straining device, with which neurons cultured on aligned patterned surfaces (50 µm wide grooves) can be strained up to 70% and simultaneously imaged with widefield and confocal imaging (up to 100x magnification). Furthermore, direct and indirect electrophysiological measurements by patch clamping and calcium imaging can be made during strain application. We characterise the strain applied to cells cultured in deformable wells by using finite element method simulations and experimental data, showing local surface strains of up to 60% with applied strains of up to 25%. We also show how patterned substrates do not alter the mechanical properties of the system compared to unpatterned surfaces whilst still inducing a homogeneous cell response to strain. The characterisation of this device will be useful for research into investigating the effect of whole-cell mechanical stretch on neurons at both single cell and network scales, with applications found in peripheral neuropathy modelling and in platforms for preventive and regenerative studies.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Julian H George
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; Department of Mechanical Engineering, The University of Birmingham, Birmingham B15 2TT, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Mark S Thompson
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Dept. of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
48
|
Gold-Plated Electrode with High Scratch Strength for Electrophysiological Recordings. Sci Rep 2019; 9:2985. [PMID: 30814648 PMCID: PMC6393511 DOI: 10.1038/s41598-019-39138-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022] Open
Abstract
Multi electrode arrays (MEA) have been exploited in different electrophysiological applications. In neurological applications, MEAs are the vital interfaces between neurons and the electronic circuits with dual role; transmitting electric signal to the neurons and converting neural activity to the electric signal. Since the performance of the electrodes has a direct effect on the quality of the recorded neuronal signal, as well as the stimulation, the true choice of electrode material for MEA is crucial. Gold is one of the best candidates for fabrication of MEAs due to its high electrical conductivity, biocompatibility and good chemical stability. However, noble metals such as gold do not adhere well to the glass substrate. Consequently while exposing to the water, gold films are damaged, which impose limitations in the exploiting of gold thin films as the electrode. In this paper, a simple and cost effective method for the fabrication of gold electrode arrays is proposed. Using various mechanical (adhesion test and scratch strength), morphological (AFM and SEM) and electrochemical methods, the fabricated electrodes are characterized. The results show that the fabricated electrode arrays have significantly high scratch strength and stability within the aqueous medium. In addition, the electrical properties of the electrodes have been improved. The proposed electrodes have the potential to be exploited in other applications including electronics, electrochemistry, and biosensors.
Collapse
|
49
|
Lee S, Sasaki D, Kim D, Mori M, Yokota T, Lee H, Park S, Fukuda K, Sekino M, Matsuura K, Shimizu T, Someya T. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. NATURE NANOTECHNOLOGY 2019; 14:156-160. [PMID: 30598525 DOI: 10.1038/s41565-018-0331-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/20/2018] [Indexed: 05/15/2023]
Abstract
In biointegrated electronics, the facile control of mechanical properties such as softness and stretchability in electronic devices is necessary to minimize the perturbation of motions inherent in biological systems1-5. For in vitro studies, multielectrode-embedded dishes6-8 and other rigid devices9-12 have been widely used. Soft or flexible electronics on plastic or elastomeric substrates13-15 offer promising new advantages such as decreasing physical stress16-18 and/or applying mechanical stimuli19,20. Recently, owing to the introduction of macroporous plastic substrates with nanofibre scaffolds21,22, three-dimensional electrophysiological mapping of cardiomyocytes has been demonstrated. However, quantitatively monitoring cells that exhibit significant dynamical motions via electric probes over a long period without affecting their natural motion remains a challenge. Here, we present ultrasoft electronics with nanomeshes that monitor the field potential of human induced pluripotent stem cell-derived cardiomyocytes on a hydrogel, while enabling them to move dynamically without interference. Owing to the extraordinary softness of the nanomeshes, nanomesh-attached cardiomyocytes exhibit contraction and relaxation motions comparable to that of cardiomyocytes without attached nanomeshes. Our multilayered nanomesh devices maintain reliable operations in a liquid environment, enabling the recording of field potentials of the cardiomyocytes over a period of 96 h without significant degradation of the nanomesh devices or damage of the cardiomyocytes.
Collapse
Affiliation(s)
- Sunghoon Lee
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Dongmin Kim
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Mami Mori
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Hyunjae Lee
- Thin-Film Device Laboratory, RIKEN, Saitama, Japan
| | - Sungjun Park
- Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan
- Organic Materials Laboratory, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, Saitama, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan
| | - Masaki Sekino
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, Japan.
- Thin-Film Device Laboratory, RIKEN, Saitama, Japan.
- Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan.
| |
Collapse
|
50
|
Coker RA, Zellmer ER, Moran DW. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation. J Neural Eng 2019; 16:026002. [DOI: 10.1088/1741-2552/aaefab] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|