1
|
Yergeshov A, Zoughaib M, Dayob K, Kamalov M, Luong D, Zakirova A, Mullin R, Salakhieva D, Abdullin TI. Newly Designed PCL-Wrapped Cryogel-Based Conduit Activated with IKVAV Peptide Derivative for Peripheral Nerve Repair. Pharmaceutics 2024; 16:1569. [PMID: 39771548 PMCID: PMC11677967 DOI: 10.3390/pharmaceutics16121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. Methods: In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart. The optimized cryogel scaffold was combined with polycaprolactone (PCL)-based shell tube to form a suturable nerve conduit (NC) to be implanted into sciatic nerve diastasis in rats. Results: The NC constituents did not impair the viability of primary skin fibroblasts. Concentration-dependent effects of the peptide component on interrelated viscoelastic and swelling properties of the cryogels as well as on proliferation and morphological differentiation of neurogenic PC-12 cells were established, also indicating the existence of an optimal-density range of the introduced peptide. The in vivo implanted NC sustained the connection of the nerve stumps with partial degradation of the PCL tube over eight weeks, whereas the core-filling cryogel profoundly improved local electromyographic recovery and morphological repair of the nerve tissues, confirming the regenerative activity of the developed scaffold. Conclusions: These results provide proof-of-concept for the development of a newly designed PN conduit prototype based on IKVAV-activated cryogel, and they can be exploited to create other ECM-mimicking scaffolds.
Collapse
Affiliation(s)
- Abdulla Yergeshov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Mohamed Zoughaib
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kenana Dayob
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Duong Luong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Albina Zakirova
- Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, Department of Oncology and Plastic Surgery, 91 Volokolamsk Highway, 125371 Moscow, Russia
| | - Ruslan Mullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- State Autonomous Healthcare Institution Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, 138 Orenburg Highway, 420064 Kazan, Russia
| | - Diana Salakhieva
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
| | - Timur I. Abdullin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
2
|
Wong GC, Chung KC. Bioengineered Nerve Conduits and Wraps. Hand Clin 2024; 40:379-387. [PMID: 38972682 DOI: 10.1016/j.hcl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.
Collapse
Affiliation(s)
- Gordon C Wong
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA
| | - Kevin C Chung
- University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Marsh EB, Snyder-Warwick AK, Mackinnon SE, Wood MD. Interpretation of Data from Translational Rodent Nerve Injury and Repair Models. Hand Clin 2024; 40:429-440. [PMID: 38972687 PMCID: PMC11228394 DOI: 10.1016/j.hcl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This article highlights the use of rodents as preclinical models to evaluate the management of nerve injuries, describing the pitfalls and value from rodent nerve injury and regeneration outcomes, as well as treatments derived from these rodent models. The anatomic structure, size, and cellular and molecular differences and similarities between rodent and human nerves are summarized. Specific examples of success and failure when assessing outcome metrics are presented for context. Evidence for translation to clinical practice includes the topics of electrical stimulation, Tacrolimus (FK506), and acellular nerve allografts.
Collapse
Affiliation(s)
- Evan B Marsh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
4
|
Ramesh PA, Sethuraman S, Subramanian A. Multichannel Conduits with Fascicular Complementation: Significance in Long Segmental Peripheral Nerve Injury. ACS Biomater Sci Eng 2024; 10:2001-2021. [PMID: 38487853 DOI: 10.1021/acsbiomaterials.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| |
Collapse
|
5
|
Kunisaki A, Kodama A, Ishikawa M, Ueda T, Lima MD, Kondo T, Adachi N. Oxidation-treated carbon nanotube yarns accelerate neurite outgrowth and induce axonal regeneration in peripheral nerve defect. Sci Rep 2023; 13:21799. [PMID: 38066058 PMCID: PMC10709329 DOI: 10.1038/s41598-023-48534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Carbon nanotubes (CNTs) have the potential to promote peripheral nerve regeneration, although with limited capacity and foreign body reaction. This study investigated whether CNTs hydrophilized by oxidation can improve peripheral nerve regeneration and reduce foreign body reactions and inflammation. Three different artificial nerve conduit models were created using CNTs treated with ozone (O group), strong acid (SA group), and untreated (P group). They were implanted into a rat sciatic nerve defect model and evaluated after 8 and 16 weeks. At 16 weeks, the SA group showed significant recovery in functional and electrophysiological evaluations compared with the others. At 8 weeks, histological examination revealed a significant increase in the density of regenerated neurofilament and decreased foreign body giant cells in the SA group compared with the others. Oxidation-treated CNTs improved biocompatibility, induced nerve regeneration, and inhibited foreign-body reactions.
Collapse
Affiliation(s)
- Atsushi Kunisaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Kodama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahiro Ueda
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Marcio D Lima
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Takeshi Kondo
- Nano-Science and Technology Center, LINTEC OF AMERICA, INC., Richardson, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Huang H, Lin Q, Rui X, Huang Y, Wu X, Yang W, Yu Z, He W. Research status of facial nerve repair. Regen Ther 2023; 24:507-514. [PMID: 37841661 PMCID: PMC10570629 DOI: 10.1016/j.reth.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
The facial nerve, also known as the seventh cranial nerve, is critical in controlling the movement of the facial muscles. It is responsible for all facial expressions, such as smiling, frowning, and moving the eyebrows. However, damage to this nerve can occur for a variety of reasons, including maxillofacial surgery, trauma, tumors, and infections. Facial nerve injuries can cause severe functional impairment and can lead to different degrees of facial paralysis, significantly affecting the quality of life of patients. Over the past ten years, significant progress has been made in the field of facial nerve repair. Different approaches, including direct suture, autologous nerve grafts, and tissue engineering, have been utilized for the repair of facial nerve injury. This article mainly summarizes the clinical methods and basic research progress of facial nerve repair in the past ten years.
Collapse
Affiliation(s)
- Haoyuan Huang
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Qiang Lin
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xi Rui
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Yiman Huang
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanhao Wu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenhao Yang
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhu Yu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenpeng He
- Hospital of stomatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Chong AK, Le LAT, Lahiri A, Yusoff K, Yip GW, Pan F, Teo W, Liao JC, Lim JX. Surgical Anatomy and Exercises Using the Chicken Thigh Sciatic Nerve for Microsurgery Training. J Hand Microsurg 2023; 15:365-370. [PMID: 38152676 PMCID: PMC10751198 DOI: 10.1055/s-0042-1749444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Introduction Vessel repair in a chicken thigh is commonly used in microsurgery training model. The sciatic nerve is closely associated with the vessels and has been used for training nerve coaptation, which has different technical considerations from vessel anastomosis. We describe in detail the relevant surgical anatomy and training exercises that can be used with this model. Methods With 32 fresh store-bought chicken thighs, 16 were used to analyze the gross and histological features of the sciatic nerve, and 16 were intended to create and perform training models. Results The average visible length of the nerve in the thigh was 51 mm (standard deviation [SD] 2.57 mm). The average diameter of the nerve was 2 mm (SD 0.33 mm) and was largest at its proximal end (3.21 mm, SD 0.27 mm). The nerve consistently branched into two along the chicken thigh, with more branching subsequently. This simulation model is appropriate not only for the classical end-to-end epineural suture, but also for advanced exercises, in terms of longitudinal fasciculus dissection, mismatched size nerve transfer, injured nerve preparation, and vein conduit technique. Dyeing of nerve fascicles enhanced the visibility of nerve surface quality. Conclusion The sciatic nerve in the chicken thigh is a suitable and accessible model for microsurgery training. The branching and fascicular patterns of the nerve lends itself well to both novice training and advanced simulation. We have incorporated this model into our training curricula.
Collapse
Affiliation(s)
- Alphonsus K.S. Chong
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
| | - Lan Anh T. Le
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
| | | | - Khadijah Yusoff
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Feng Pan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wendy Teo
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
| | - Janice C.Y. Liao
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, National University Health System, Singapore, Singapore
| | - Jin Xi Lim
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
8
|
Lan D, Wu B, Zhang H, Chen X, Li Z, Dai F. Novel Bioinspired Nerve Scaffold with High Synchrony between Biodegradation and Nerve Regeneration for Repair of Peripheral Nerve Injury. Biomacromolecules 2023; 24:5451-5466. [PMID: 37917398 DOI: 10.1021/acs.biomac.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The morphological structure reconstruction and functional recovery of long-distance peripheral nerve injury (PNI) are global medical challenges. Biodegradable nerve scaffolds that provide mechanical support for the growth and extension of neurites are a desired way to repair long-distance PNI. However, the synchrony of scaffold degradation and nerve regeneration is still challenging. Here, a novel bioinspired multichannel nerve guide conduit (MNGC) with topographical cues based on silk fibroin and ε-polylysine modification was constructed. This conduit (SF(A) + PLL MNGC) exhibited sufficient mechanical strength, excellent degradability, and favorable promotion of cell growth. Peripheral nerve repairing was evaluated by an in vivo 10 mm rat sciatic model. In vivo evidence demonstrated that SF(A) + PLL MNGC was completely biodegraded in the body within 4 weeks after providing sufficient physical support and guide for neurite extension, and a 10 mm sciatic nerve defect was effectively repaired without scar formation, indicating a high synchronous effect of scaffold biodegradation and nerve regeneration. More importantly, the regenerated nerve of the SF(A) + PLL MNGC group showed comparable morphological reconstruction and functional recovery to that of autologous nerve transplantation. This work proved that the designed SF(A) + PLL MNGC has potential for application in long-distance PNI repair in the clinic.
Collapse
Affiliation(s)
- Dongwei Lan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Haiqiang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Escobar A, Carvalho MR, Silva TH, Reis RL, Oliveira JM. Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration. IN VITRO MODELS 2023; 2:195-205. [PMID: 39872172 PMCID: PMC11756464 DOI: 10.1007/s44164-023-00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 01/29/2025]
Abstract
Peripheral nerve injuries represent a major clinical challenge, if nerve ends retract, there is no spontaneous regeneration, and grafts are required to proximate the nerve ends and give continuity to the nerve. The nerve guidance conduits (NGCs) presented in this work are silk fibroin (SF)-based, which is biocompatible and very versatile. The formation of conduits is obtained by forming a covalently cross-linked hydrogel in two concentric moulds, and the inner longitudinally aligned pattern of the SF NGCs is obtained through the use of a patterned inner mould. SF NGCs with two wall thicknesses of ~ 200 to ~ 400 μm are synthesized. Their physicochemical and mechanical characteristics have shown improved properties when the wall thickness is thicker such as resistance to kinking, which is of special importance as conduits might also be used to substitute nerves in flexible body parts. The Young modulus is higher for conduits with inner pattern, and none of the conduits has shown any salt deposition in presence of simulated body fluid, meaning they do not calcify; thus, the regeneration does not get impaired when conduits have contact with body fluids. In vitro studies demonstrated the biocompatibility of the SF NGCs; proliferation is enhanced when iSCs are cultured on top of conduits with longitudinally aligned pattern. BJ fibroblasts cannot infiltrate through the SF wall, avoiding scar tissue formation on the lumen of the graft when used in vivo. These conduits have been demonstrated to be very versatile and fulfil with the requirements for their use in PNR. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00050-3.
Collapse
Affiliation(s)
- Ane Escobar
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Mariana R. Carvalho
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - J. Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| |
Collapse
|
10
|
Bendale G, Smith M, Daniel L, deBruler I, Fernandes Gragnani M, Clement R, McNeice J, Griffitts F, Sonntag M, Griffis J, Clements I, Isaacs J. In Vivo Efficacy of a Novel, Sutureless Coaptation Device for Repairing Peripheral Nerve Defects. Tissue Eng Part A 2023; 29:461-470. [PMID: 37114683 PMCID: PMC10517328 DOI: 10.1089/ten.tea.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Although microsuture neurorrhaphy is the accepted clinical standard treatment for severed peripheral nerves, this technique requires microsurgical proficiency and still often fails to provide adequate nerve approximation for effective regeneration. Entubulation utilizing commercially available conduits may enhance the technical quality of the nerve coaptation and potentially provide a proregenerative microenvironment, but still requires precise suture placement. We developed a sutureless nerve coaptation device, Nerve Tape®, that utilizes Nitinol microhooks embedded within a porcine small intestinal submucosa backing. These tiny microhooks engage the outer epineurium of the nerve, while the backing wraps the coaptation to provide a stable, entubulated repair. In this study, we examine the impact of Nerve Tape on nerve tissue and axonal regeneration, compared with repairs performed with commercially available conduit-assisted or microsuture-only repairs. Eighteen male New Zealand white rabbits underwent a tibial nerve transection, immediately repaired with (1) Nerve Tape, (2) conduit plus anchoring sutures, or (3) four 9-0 nylon epineurial microsutures. At 16 weeks postinjury, the nerves were re-exposed to test sensory and motor nerve conduction, measure target muscle weight and girth, and perform nerve tissue histology. Nerve conduction velocities in the Nerve Tape group were significantly better than both the microsuture and conduit groups, while nerve compound action potential amplitudes in the Nerve Tape group were significantly better than the conduit group only. Gross morphology, muscle characteristics, and axon histomorphometry were not statistically different between the three repair groups. In the rabbit tibial nerve repair model, Nerve Tape offers similar regeneration efficacy compared with conduit-assisted and microsuture-only repairs, suggesting minimal impact of microhooks on nerve tissue.
Collapse
Affiliation(s)
- Geetanjali Bendale
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Matt Smith
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lida Daniel
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Isabelle deBruler
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | - Jonathan Isaacs
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Naghilou A, Peter K, Millesi F, Stadlmayr S, Wolf S, Rad A, Semmler L, Supper P, Ploszczanski L, Liu J, Burghammer M, Riekel C, Bismarck A, Backus EHG, Lichtenegger H, Radtke C. Insights into the material properties of dragline spider silk affecting Schwann cell migration. Int J Biol Macromol 2023:125398. [PMID: 37330085 DOI: 10.1016/j.ijbiomac.2023.125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Dragline silk of Trichonephila spiders has attracted attention in various applications. One of the most fascinating uses of dragline silk is in nerve regeneration as a luminal filling for nerve guidance conduits. In fact, conduits filled with spider silk can measure up to autologous nerve transplantation, but the reasons behind the success of silk fibers are not yet understood. In this study dragline fibers of Trichonephila edulis were sterilized with ethanol, UV radiation, and autoclaving and the resulting material properties were characterized with regard to the silk's suitability for nerve regeneration. Rat Schwann cells (rSCs) were seeded on these silks in vitro and their migration and proliferation were investigated as an indication for the fiber's ability to support the growth of nerves. It was found that rSCs migrate faster on ethanol treated fibers. To elucidate the reasons behind this behavior, the fiber's morphology, surface chemistry, secondary protein structure, crystallinity, and mechanical properties were studied. The results demonstrate that the synergy of dragline silk's stiffness and its composition has a crucial effect on the migration of rSCs. These findings pave the way towards understanding the response of SCs to silk fibers as well as the targeted production of synthetic alternatives for regenerative medicine applications.
Collapse
Affiliation(s)
- Aida Naghilou
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Karolina Peter
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anda Rad
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Leon Ploszczanski
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Jiliang Liu
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Christian Riekel
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Alexander Bismarck
- University of Vienna, Faculty of Chemistry, Institute of Materials Chemistry & Research, Währingerstraße 42, 1090 Vienna, Austria
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Helga Lichtenegger
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
12
|
Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol 2023; 28:102-126. [PMID: 37028493 DOI: 10.1016/j.slast.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are a viable clinical alternative to autografts and allografts and have been widely used to treat peripheral nerve injuries (PNIs). Although these NGCs are successful to some extent, they cannot aid in native regeneration by improving native-equivalent neural innervation or regrowth. Further, NGCs exhibit longer recovery period and high cost limiting their clinical applications. Additive manufacturing (AM) could be an alternative to the existing drawbacks of the conventional NGCs fabrication methods. The emergence of the AM technique has offered ease for developing personalized three-dimensional (3D) neural constructs with intricate features and higher accuracy on a larger scale, replicating the native feature of nerve tissue. This review introduces the structural organization of peripheral nerves, the classification of PNI, and limitations in clinical and conventional nerve scaffold fabrication strategies. The principles and advantages of AM-based techniques, including the combinatorial approaches utilized for manufacturing 3D nerve conduits, are briefly summarized. This review also outlines the crucial parameters, such as the choice of printable biomaterials, 3D microstructural design/model, conductivity, permeability, degradation, mechanical property, and sterilization required to fabricate large-scale additive-manufactured NGCs successfully. Finally, the challenges and future directions toward fabricating the 3D-printed/bioprinted NGCs for clinical translation are also discussed.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
13
|
Liebendorfer A, Finnan MJ, Schofield JB, Pinni SL, Acevedo-Cintrón JA, Schellhardt L, Snyder-Warwick AK, Mackinnon SE, Wood MD. Loss of Gata1 decreased eosinophils, macrophages, and type 2 cytokines in regenerating nerve and delayed axon regeneration after a segmental nerve injury. Exp Neurol 2023; 362:114327. [PMID: 36682399 PMCID: PMC10189758 DOI: 10.1016/j.expneurol.2023.114327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The immune system has garnered attention for its role in peripheral nerve regeneration, particularly as it pertains to regeneration across segmental injuries. Previous work demonstrated that eosinophils are recruited to regenerating nerve and express interleukin-4, amongst potential cytokines. These results suggest a direct role for eosinophils in promoting nerve regeneration. Therefore, we further considered eosinophils roles in nerve regeneration using a segmental nerve injury and Gata1 knockout (KO) mice, which are severely eosinophil deficient, compared to wild-type BALB/c mice (WT). Mice receiving a sciatic nerve gap injury demonstrated distinct cytokine expression and leukocytes within regenerating nerve. Compared to controls, Gata1 KO regenerated nerves contained decreased expression of type 2 cytokines, including Il-5 and Il-13, and decreased recruitment of eosinophils and macrophages. At this early time point during ongoing regeneration, the macrophages within Gata1 KO nerves also demonstrated significantly less M2 polarization compared to controls. Subsequently, motor and sensory axon regeneration across the gap injury was decreased in Gata1 KO compared to WT during ongoing nerve regeneration. Over longer observation to allow for more complete nerve regeneration, behavioral recovery measured by grid-walk assessment was not different comparing groups but modestly delayed in Gata1 KO compared to WT. The extent of final axon regeneration was not different amongst groups. Our data provide additional evidence suggesting eosinophils contribute to nerve regeneration across a nerve gap injury, but are not essential to regeneration in this context. Our evidence also suggests eosinophils may regulate cytokines that promote distinct macrophage phenotypes and axon regeneration.
Collapse
Affiliation(s)
- Adam Liebendorfer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Finnan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathon Blake Schofield
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sai L Pinni
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesús A Acevedo-Cintrón
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Semmler L, Naghilou A, Millesi F, Wolf S, Mann A, Stadlmayr S, Mero S, Ploszczanski L, Greutter L, Woehrer A, Placheta‐Györi E, Vollrath F, Weiss T, Radtke C. Silk-in-Silk Nerve Guidance Conduits Enhance Regeneration in a Rat Sciatic Nerve Injury Model. Adv Healthc Mater 2023; 12:e2203237. [PMID: 36683305 PMCID: PMC11468823 DOI: 10.1002/adhm.202203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.
Collapse
Affiliation(s)
- Lorenz Semmler
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Aida Naghilou
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Anda Mann
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sascha Mero
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Leon Ploszczanski
- Institute of Physics and Materials ScienceUniversity of Natural Resources and Life SciencesGregor‐Medel‐Straße 33Vienna1180Austria
| | - Lisa Greutter
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Adelheid Woehrer
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Eva Placheta‐Györi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Fritz Vollrath
- Department of ZoologyUniversity of OxfordMansfield Rd.OxfordOX1 3SZUK
| | - Tamara Weiss
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| |
Collapse
|
15
|
Millesi F, Mero S, Semmler L, Rad A, Stadlmayr S, Borger A, Supper P, Haertinger M, Ploszczanski L, Windberger U, Weiss T, Naghilou A, Radtke C. Systematic Comparison of Commercial Hydrogels Revealed That a Synergy of Laminin and Strain-Stiffening Promotes Directed Migration of Neural Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12678-12695. [PMID: 36876876 PMCID: PMC10020957 DOI: 10.1021/acsami.2c20040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.
Collapse
Affiliation(s)
- Flavia Millesi
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sascha Mero
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Lorenz Semmler
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anda Rad
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sarah Stadlmayr
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anton Borger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Paul Supper
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Maximilian Haertinger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Leon Ploszczanski
- Institute
for Physics and Materials Science, University
of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Ursula Windberger
- Decentralized
Biomedical Facilities, Core Unit Laboratory Animal Breeding and Husbandry, Medical University Vienna, Vienna 1090, Austria
| | - Tamara Weiss
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Aida Naghilou
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Physical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christine Radtke
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Plastic, Reconstructive
and Aesthetic Surgery, Medical University
of Vienna, Vienna 1090, Austria
| |
Collapse
|
16
|
Peters BR, Wood MD, Hunter DA, Mackinnon SE. Acellular Nerve Allografts in Major Peripheral Nerve Repairs: An Analysis of Cases Presenting With Limited Recovery. Hand (N Y) 2023; 18:236-243. [PMID: 33880944 PMCID: PMC10035101 DOI: 10.1177/15589447211003175] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acellular nerve allografts have been used successfully and with increasing frequency to reconstruct nerve injuries. As their use has been expanded to treat longer gap, larger diameter nerve injuries, some failed cases have been reported. We present the histomorphometry of 5 such cases illustrating these limitations and review the current literature of acellular nerve allografts. METHODS Between 2014 and 2019, 5 patients with iatrogenic nerve injuries to the median or ulnar nerve reconstructed with an AxoGen AVANCE nerve allograft at an outside hospital were treated in our center with allograft excision and alternative reconstruction. These patients had no clinical or electrophysiological evidence of recovery, and allograft specimens at the time of surgery were sent for histomorphological examination. RESULTS Three patients with a median and 2 with ulnar nerve injury were included. Histology demonstrated myelinated axons present in all proximal native nerve specimens. In 2 cases, axons failed to regenerate into the allograft and in 3 cases, axonal regeneration diminished or terminated within the allograft. CONCLUSIONS The reported cases demonstrate the importance of evaluating the length and the function of nerves undergoing acellular nerve allograft repair. In long length, large-diameter nerves, the use of acellular nerve allografts should be carefully considered.
Collapse
Affiliation(s)
- Blair R. Peters
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Oregon Health & Science Univeristy, Portland, OR, USA
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Wang L, Yan Z, Xiang P, Yan L, Zhang Z. MR microneurography of human peripheral fascicles using a clinical 3T MR scanner. J Neuroradiol 2023; 50:253-257. [PMID: 36609069 DOI: 10.1016/j.neurad.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Knowledge of nerve fascicular structures is essential for managing peripheral nerve disorders. This study aimed to investigate the feasibility of z-axis high-resolution magnetic resonance (MR) microneurography (zH-MRMN) in displaying the three-dimensional structures of tibial nerve fascicles in vivo using a 3T MR scanner. MATERIALS AND METHODS Twelve volunteers underwent z-axis conventional-resolution MR microneurography (zC-MRMN) and zH-MRMN of tibial nerves. The visibility scores of the nerve fascicles (VSNFs) on axial zC-MRMN images and axial zH-MRMN multiplanar reformation (MPR) images were compared. The nerve fascicle appearances on the longitudinal zH-MRMN MPR images were described. RESULTS In the nerve segments whose long axes were perpendicular to the imaging planes of both zC-MRMN and zH-MRMN, the VSNFs were not significantly different between the axial images of the two modalities (P = 0.083). In the nerve segments whose long axes were not perpendicular to the imaging planes of zC-MRMN, the VSNFs on the axial zC-MRMN images were significantly lower than those on the axial zH-MRMN MPR images that were angled perpendicular to the long axis of the tibial nerve (P < 0.001). CONCLUSIONS The longitudinal zH-MRMN MPR images clearly displayed the changing features of the intraneural fascicles as well as the gross morphology of the tibial nerves. zH-MRMN can clearly delineate the topography of the tibial nerve fascicles in vivo through use of a 3T MR scanner.
Collapse
Affiliation(s)
- Liqin Wang
- Department of Medical Imaging, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zi Yan
- Department of Medical Imaging, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Pei Xiang
- Department of Medical Imaging, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Liwei Yan
- Department of Microsurgery, Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhaohui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
18
|
Crowe CS, Shin AY, Pulos N. Iatrogenic Nerve Injuries of the Upper Extremity: A Critical Analysis Review. JBJS Rev 2023; 11:01874474-202301000-00003. [PMID: 36722824 DOI: 10.2106/jbjs.rvw.22.00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
» Iatrogenic nerve injuries may occur after any intervention of the upper extremity. » Causes of iatrogenic nerve lesions include direct sharp or thermal injury, retraction, compression from implants or compartment syndrome, injection, patient positioning, radiation, and cast/splint application, among others. » Optimal treatment of iatrogenic peripheral nerve lesions relies on early and accurate diagnosis. » Advanced imaging modalities (e.g., ultrasound and magnetic resonance imaging) and electrodiagnostic studies aid and assist in preoperative planning. » Optimal treatment of iatrogenic injuries is situation-dependent and depends on the feasibility of direct repair, grafting, and functional transfers.
Collapse
Affiliation(s)
- Christopher S Crowe
- Division of Plastic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Alexander Y Shin
- Division of Hand and Upper Extremity Surgery, Department of Orthopaedics, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Pulos
- Division of Hand and Upper Extremity Surgery, Department of Orthopaedics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Strojny MM, Kozlowska K, Brodowska S, Różczka K, Siemionow M. Assessment of Human Epineural Conduit of Different Size Diameters on Efficacy of Nerve Regeneration and Functional Outcomes. J Reconstr Microsurg 2022; 39:392-404. [PMID: 36379456 DOI: 10.1055/s-0042-1758182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
Background Different types of nerve conduits are used to bridge peripheral nerve gaps when a tension-free repair is unattainable. To best support nerve regeneration, naturally occurring conduits have been tested. Since allografts offer an unlimited source of epineurium, we have developed human epineural conduit (hEC) as a novel technology to bridge nerve gaps. Considering acellular properties, and lack of immunogenic response, epineurium-derived conduits represent an attractive material, when compared with nerve allografts that require systemic immunosuppression. In this study, we introduce the hEC as a novel naturally occurring material applied for repair of nerve gaps after trauma.
Methods We tested the application of hEC created from human sciatic nerve in the restoration of 20 mm sciatic nerve defects in the nude rat model. Four experimental groups were studied: group 1: no repair control (n = 6), group 2: autograft control (n = 6), group 3: matched diameter hEC (n = 6), and group 4: large diameter hEC (n = 6). Functional tests of toe-spread and pin prick were performed at 1, 3, 6, 9, 12 weeks after repair. At 12 weeks, nerve samples were collected for immunostaining of Laminin B, S-100, glial fibrillary acidic protein (GFAP), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), von Willebrand factor, and histomorphometric analysis of myelin thickness, axonal density, fiber diameter, and percentage of the myelinated nerve fibers. Muscle samples were gathered for gastrocnemius muscle index (GMI) and muscle fiber area ratio measurements.
Results Best functional recovery, as well as GMI, was revealed for the autograft group, and was comparable to the matched hEC group. Significant differences were revealed between matched and large hEC groups in expression of S100 (p = 0.0423), NGF (p = 0.269), VEGF (p = 0.0003) as well as in percentage of myelinated fibers (p < 0.001) and axonal density (p = 0.0003).
Conclusion We established the feasibility of hEC creation. The innovative method introduces an alternative technique to autograft repair of nerve defects.
Collapse
Affiliation(s)
- Marcin Michal Strojny
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Kozlowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Klaudia Różczka
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
O'Brien AL, West JM, Saffari TM, Nguyen M, Moore AM. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond. Physiology (Bethesda) 2022; 37:0. [PMID: 35820181 DOI: 10.1152/physiol.00008.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerve injuries often result in life-altering functional deficits even with optimal management. Unlike the central nervous system, peripheral nerves have the ability to regenerate lost axons after injury; however, axonal regeneration does not equate to full restoration of function. To overcome this physiological shortcoming, advances in nerve regeneration and repair are paramount, including electrical stimulation, gene therapy, and surgical technique advancements.
Collapse
Affiliation(s)
- Andrew L O'Brien
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Julie M West
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tiam M Saffari
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Minh Nguyen
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
21
|
Sun S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial soft tissue injuries. Front Bioeng Biotechnol 2022; 10:978980. [PMID: 36159691 PMCID: PMC9490317 DOI: 10.3389/fbioe.2022.978980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neural tissue is an important soft tissue; for instance, craniofacial nerves govern several aspects of human behavior, including the expression of speech, emotion transmission, sensation, and motor function. Therefore, nerve repair to promote functional recovery after craniofacial soft tissue injuries is indispensable. However, the repair and regeneration of craniofacial nerves are challenging due to their intricate anatomical and physiological characteristics. Currently, nerve transplantation is an irreplaceable treatment for segmental nerve defects. With the development of emerging technologies, transplantation donors have become more diverse. The present article reviews the traditional and emerging alternative materials aimed at advancing cutting-edge research on craniofacial nerve repair and facilitating the transition from the laboratory to the clinic. It also provides a reference for donor selection for nerve repair after clinical craniofacial soft tissue injuries. We found that autografts are still widely accepted as the first options for segmental nerve defects. However, allogeneic composite functional units have a strong advantage for nerve transplantation for nerve defects accompanied by several tissue damages or loss. As an alternative to autografts, decellularized tissue has attracted increasing attention because of its low immunogenicity. Nerve conduits have been developed from traditional autologous tissue to composite conduits based on various synthetic materials, with developments in tissue engineering technology. Nerve conduits have great potential to replace traditional donors because their structures are more consistent with the physiological microenvironment and show self-regulation performance with improvements in 3D technology. New materials, such as hydrogels and nanomaterials, have attracted increasing attention in the biomedical field. Their biocompatibility and stimuli-responsiveness have been gradually explored by researchers in the regeneration and regulation of neural networks.
Collapse
Affiliation(s)
- Sishuai Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Shilei Ni, ; Xingang Li,
| |
Collapse
|
22
|
Fornaro M, Dipollina C, Giambalvo D, Garcia R, Sigerson C, Sharthiya H, Liu C, Nealey PF, Kristjansdottir K, Gasiorowski JZ. Submicron Topographically Patterned 3D Substrates Enhance Directional Axon Outgrowth of Dorsal Root Ganglia Cultured Ex Vivo. Biomolecules 2022; 12:biom12081059. [PMID: 36008953 PMCID: PMC9405616 DOI: 10.3390/biom12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
A peripheral nerve injury results in disruption of the fiber that usually protects axons from the surrounding environment. Severed axons from the proximal nerve stump are capable of regenerating, but axons are exposed to a completely new environment. Regeneration recruits cells that produce and deposit key molecules, including growth factor proteins and fibrils in the extracellular matrix (ECM), thus changing the chemical and geometrical environment. The regenerating axons thus surf on a newly remodeled micro-landscape. Strategies to enhance and control axonal regeneration and growth after injury often involve mimicking the extrinsic cues that are found in the natural nerve environment. Indeed, nano- and micropatterned substrates have been generated as tools to guide axons along a defined path. The mechanical cues of the substrate are used as guides to orient growth or change the direction of growth in response to impediments or cell surface topography. However, exactly how axons respond to biophysical information and the dynamics of axonal movement are still poorly understood. Here we use anisotropic, groove-patterned substrate topography to direct and enhance sensory axonal growth of whole mouse dorsal root ganglia (DRG) transplanted ex vivo. Our results show significantly enhanced and directed growth of the DRG sensory fibers on the hemi-3D topographic substrates compared to a 0 nm pitch, flat control surface. By assessing the dynamics of axonal movement in time-lapse microscopy, we found that the enhancement was not due to increases in the speed of axonal growth, but to the efficiency of growth direction, ensuring axons minimize movement in undesired directions. Finally, the directionality of growth was reproduced on topographic patterns fabricated as fully 3D substrates, potentially opening new translational avenues of development incorporating these specific topographic feature sizes in implantable conduits in vivo.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Correspondence: (M.F.); (J.Z.G.)
| | - Christopher Dipollina
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Darryl Giambalvo
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Robert Garcia
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Casey Sigerson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Claire Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (C.L.); (P.F.N.)
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (C.L.); (P.F.N.)
| | - Kolbrun Kristjansdottir
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Joshua Z. Gasiorowski
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
- Correspondence: (M.F.); (J.Z.G.)
| |
Collapse
|
23
|
Bakhtiary S, Chegeni A, Babaeipour V, Omidi M, Keshel SH, Khodamoradi N. Culture and maintenance of neural progressive cells on cellulose acetate/graphene‑gold nanocomposites. Int J Biol Macromol 2022; 210:63-75. [PMID: 35537583 DOI: 10.1016/j.ijbiomac.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
In this study, the first CA nanofibers were fabricated by electrospinning under optimal conditions: flow rate of 0.5 ml/h, a voltage of 20 kV, electrospinning distance of 15 cm, and an internal temperature of 25 °C, and humidity of 38%. The used Graphene/gold nanoparticles for CA performance improvement were examined by TGA, XRD, and SEM analysis. Then the CA/graphene‑gold nanocomposite was synthesized under optimum electrospinning conditions: flow rate 3 ml/h, voltage 20 kV, electrospinning distance 15 cm, internal temperature 26 °C, and humidity 36%. The SEM images revealed that the nanofibers' thicknesses of Graphene‑gold NPs (CA1) and Chitosan (CA2) were 350 and 120 nm, respectively. The XRD diagrams of CA0, CA1 and CA2 revealed the peaks at 2θ, 8°, and 21° with Miller indices of (001) and (110) are related to CA (CA0), which proves its presence in other scaffolds. The FTIR analysis of samples indicated the presence of graphene‑gold NPs in scaffolding CA1 and CA2. The CA2 nanofibers exhibited a high-water absorption capacity of about 2500% with the water contact-angle and Swelling method. The antibacterial properties of this nanocomposite were also confirmed by an antibacterial test on Staphylococcus aureus bacteria. The growth of Schwann cells on three scaffolds showed the highest growth of cells on CA1 scaffolds.
Collapse
Affiliation(s)
- Samaneh Bakhtiary
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| | - Asma Chegeni
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran.
| | - Meisam Omidi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Khodamoradi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| |
Collapse
|
24
|
Roca FG, Santos LG, Roig MM, Medina LM, Martínez-Ramos C, Pradas MM. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines 2022; 10:biomedicines10050963. [PMID: 35625700 PMCID: PMC9138968 DOI: 10.3390/biomedicines10050963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The gold standard for the treatment of peripheral nerve injuries, the autograft, presents several drawbacks, and engineered constructs are currently suitable only for short gaps or small diameter nerves. Here, we study a novel tissue-engineered multimodular nerve guidance conduit for the treatment of large nerve damages based in a polylactic acid (PLA) microfibrillar structure inserted inside several co-linear hyaluronic acid (HA) conduits. The highly aligned PLA microfibers provide a topographical cue that guides axonal growth, and the HA conduits play the role of an epineurium and retain the pre-seeded auxiliary cells. The multimodular design increases the flexibility of the device. Its performance for the regeneration of a critical-size (15 mm) rabbit sciatic nerve defect was studied and, after six months, very good nerve regeneration was observed. The multimodular approach contributed to a better vascularization through the micrometrical gaps between HA conduits, and the pre-seeded Schwann cells increased axonal growth. Six months after surgery, a cross-sectional available area occupied by myelinated nerve fibers above 65% at the central and distal portions was obtained when the multimodular device with pre-seeded Schwann cells was employed. The results validate the multi-module approach for the regeneration of large nerve defects and open new possibilities for surgical solutions in this field.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Luis Gil Santos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Manuel Mata Roig
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Lara Milian Medina
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Unitat Predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-963-877000
| |
Collapse
|
25
|
Dwivedi N, Paulson AE, Johnson JE, Dy CJ. Surgical Treatment of Foot Drop: Patient Evaluation and Peripheral Nerve Treatment Options. Orthop Clin North Am 2022; 53:223-234. [PMID: 35365267 DOI: 10.1016/j.ocl.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Foot drop is a common clinical condition which may substantially impact physical function and health-related quality of life. The etiologies of foot drop are diverse and a detailed history and physical examination are essential in understanding the underlying pathophysiology and capacity for spontaneous recovery. Patients presenting with acute foot drop or those without significant spontaneous recovery of motor deficits may be candidates for surgical intervention. The timing, mechanism, and severity of neural injury resulting in foot drop influence the selection of the most appropriate peripheral nerve surgery, which may include direct nerve repair, neurolysis, nerve grafting, or nerve transfer.
Collapse
Affiliation(s)
- Nishant Dwivedi
- Department of Orthopaedic Surgery, Washington University School of Medicine, Campus Box 8233, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
| | - Ambika E Paulson
- Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Jeffrey E Johnson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Campus Box 8233, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | - Christopher J Dy
- Department of Orthopaedic Surgery, Washington University School of Medicine, Campus Box 8233, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| |
Collapse
|
26
|
Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022; 141:219-232. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury causes severe loss of motor and sensory functions, consequently increasing morbidity in affected patients. An autogenous nerve graft is considered the current gold standard for reconstructing nerve defects and recovering lost neurological functions; however, there are certain limitations to this method, such as limited donor nerve supply. With advances in regenerative medicine, recent research has focused on the fabrication of tissue-engineered nerve grafts as promising alternatives to the autogenous nerve grafts. In this study, we designed a nerve guidance conduit using an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane with a visible light-crosslinked gelatin hydrogel. The PLCL nanoporous membrane with permeability served as a flexible and non-collapsible epineurium for the nerve conduit; the inner-aligned gelatin hydrogel paths were fabricated via 3D printing and a photocrosslinking system. The resultant gelatin hydrogel with microgrooved surface pattern was established as a conducting guidance path for the effective regeneration of axons and served as a reservoir that can incorporate and release bioactive molecules. From in vivo performance tests using a rat sciatic nerve defect model, our PLCL/gelatin conduit demonstrated successful axonal regeneration, remyelination capacities and facilitated functional recovery. Hence, the PLCL/gelatin conduit developed in this study is a promising substitute for autogenous nerve grafts. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits (NGCs) are developed as promising recovery techniques for bridging peripheral nerve defects. However, there are still technological limitations including differences in the structures and components between natural peripheral nerve and NGCs. In this study, we designed a NGC composed of an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane and 3D printed inner gelatin hydrogel to serve as a flexible and non-collapsible epineurium and a conducting guidance path, respectively, to mimic the fascicular structure of the peripheral nerve. In particular, in vitro cell tests clearly showed that gelatin hydrogel could guide the cells and function as a reservoir that incorporate and release nerve growth factor. From in vivo performance tests, our regenerative conduit successfully led to axonal regeneration with effective functional recovery.
Collapse
Affiliation(s)
- Hyun Su Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Young Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Jun Nam
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - In Cheul Choi
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
27
|
Nicolas CF, Corvi JJ, Zheng Y, Park KH, Akelina Y, Engemann A, Strauch RJ. Resorbable Nerve Wraps: Can They Be Overtightened? J Reconstr Microsurg 2022; 38:694-702. [PMID: 35292952 DOI: 10.1055/s-0042-1744274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nerve wrapping has been advocated to minimize scarring and adhesion following neurorrhaphy or neurolysis. A wrap should provide an enclosure that is snug enough to protect and support the affected nerve without strangulating the nerve. The degree to which resorbable wraps should be ": tightened" around the nerve is largely subjective with scant literature on the subject. The purpose of this study was to evaluate the effects of tightly fitting resorbable nerve wraps around intact rat sciatic nerves. METHODS Twenty-four Sprague-Dawley rats underwent exposure and circumferential measurement of the right sciatic nerve. Porcine-derived extracellular matrix (ECM) wraps were trimmed and sutured to enclose the nerve with a tight (same as that of the nerve, n = 8) or loose (2.5x that of the nerve, n = 8) circumference. Sham-surgery control animals (n = 8) had no wrap treatment. Functional outcome was recorded biweekly by sciatic functional index (SFI) with walking track analysis and electrical stimulation. Animals were sacrificed at 12 weeks for histologic analyses. RESULTS No withdrawal response could be evoked in the tight-wrap group until week 9, while significant improvement in SFI first occurred between weeks 5 and 7. By week 12, the tight-wrap group required 60% more current compared with baseline stimulation to produce a withdrawal response. They recovered 81% of SFI baseline values but also demonstrated significantly greater intraneural collagen content (p < 0.001) and lower axon density (p < 0.05) than in the loose-wrap and sham groups. The loose-wrap group had comparable functional and histologic outcomes to the sham control group. CONCLUSION Resorbable ECM nerve wraps applied tightly around intact rat sciatic nerves caused significant functional impairment and histological changes characteristic of acute nerve compression. Significant but incomplete functional recovery was achieved by the tight-wrap group after 12 weeks, but such recovery may not apply in humans.
Collapse
Affiliation(s)
- Celine F Nicolas
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | - John J Corvi
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | - YuanDian Zheng
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | - Katherine H Park
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yelena Akelina
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Robert J Strauch
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
28
|
Revision of Carpal Tunnel Surgery. J Clin Med 2022; 11:jcm11051386. [PMID: 35268477 PMCID: PMC8911490 DOI: 10.3390/jcm11051386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Carpal tunnel release is one of the most commonly performed upper extremity procedures. The majority of patients experience significant improvement or resolution of their symptoms. However, a small but important subset of patients will experience the failure of their initial surgery. These patients can be grouped into persistent, recurrent, and new symptom categories. The approach to these patients starts with a thorough clinical examination and is supplemented with electrodiagnostic studies. The step-wise surgical management of revision carpal tunnel surgery consists of the proximal exploration of the median nerve, Guyon’s release with neurolysis, the rerelease of the transverse retinaculum, evaluation of the nerve injury, treatment of secondary sites of compression, and potential ancillary procedures. The approach and management of failed carpal tunnel release are reviewed in this article.
Collapse
|
29
|
Nuelle JAV, Bozynski C, Stoker A. Innovations in Peripheral Nerve Injury: Current Concepts and Emerging Techniques to Improve Recovery. MISSOURI MEDICINE 2022; 119:129-135. [PMID: 36036028 PMCID: PMC9339399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the surgical advances in treatment of peripheral nerve injuries, consistent recovery of function is limited suggesting that a multimodal approach is required to optimize nerve regeneration. This approach should include advanced surgical repair techniques, as well as tissue engineering, cellular therapies, and application of local and systemic modulators of neuroregeneration. Further research is needed to advance these therapies from the laboratory to clinical practice, and to further understand how these treatments and techniques can act in concert to optimize functional nerve regeneration.
Collapse
Affiliation(s)
- Julia A V Nuelle
- Department of Orthopaedic Surgery, University of Missouri - Columbia School of Medicine
| | - Chantelle Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri - Columbia, Columbia, Missouri
| | - Aaron Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
30
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
31
|
Facial Nerve Reconstruction Using Acellular Nerve Allograft. J Craniofac Surg 2021; 33:e413-e414. [PMID: 34690309 DOI: 10.1097/scs.0000000000008313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT When repaired with interposition nerve grafts, segmental facial nerve defects are traditionally treated with nerve autograft. The authors present a patient who presented after partial resection of a basal cell carcinoma over the left zygomatic region with positive deep and peripheral margins and complete loss of frontal and zygomatic facial nerve function. She was subsequently treated with wide resection, superficial parotidectomy, and cervicofacial flap. The parotidectomy was performed for deep margin control and the facial nerve was dissected distally demonstrating the prior resection of a segment of frontal and zygomatic branches consistent with clinical exam. For acute segmental facial nerve defects, nerve autograft has been the gold standard. In our patient, segmental repair using processed nerve allograft demonstrated rapid and complete recovery. This is a viable option for facial nerve reconstruction with various benefits of avoiding donor site morbidity, ease of allograft nerve handling and decreased operative time.
Collapse
|
32
|
Pozzobon LG, Sperling LE, Teixeira CE, Malysz T, Pranke P. Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chem Biol Interact 2021; 348:109621. [PMID: 34450165 DOI: 10.1016/j.cbi.2021.109621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
A promising alternative to conventional nerve grafting is the use of artificial grafts made from biodegradable and biocompatible materials and support cells. The aim of this study has been to produce a biodegradable nerve conduit and investigate the cytocompatibility with stem cells and its regeneration promoting properties in a rat animal model. A poly (lactic-co-glycolic acid) (PLGA) conduit of aligned nanofibers was produced by the electrospinning method, functionalized with gelatin and seeded either with mouse embryonic stem cells (mESCs) or with human mesenchymal stem cells (SHED). The cell proliferation and viability were analyzed in vitro. The conduits were implanted in a rat model of sciatic nerve lesion by transection. The functional recovery was monitored for 8 weeks using the Sciatic Functional Index (SFI) and histological analyses were used to assess the nerve regeneration. Scaffolds of aligned PLGA fibers with an average diameter of 0.90 ± 0.36 μm and an alignment coefficient of 0.817 ± 0.07 were produced. The treatment with gelatin increased the fiber diameter to 1.05 ± 0.32 μm, reduced the alignment coefficient to 0.655 ± 0.045 and made the scaffold very hydrophilic. The cell viability and Live/dead assay showed that the stem cells remained viable and proliferated after 7 days in culture. Confocal images of phalloidin/DAPI staining showed that the cells adhered and proliferated widely, in fully adaptation with the biomaterial. The SFI values of the group that received the conduit were similar to the values of the control lesioned group. In conclusion, conduits composed of PLGA-gelatin nanofibers were produced and promoted a very good interaction with the stem cells. Although in vitro studies have shown this biomaterial to be a promising biomaterial for the regeneration of nerve tissue, in vivo studies of this graft have not shown significant improvements in nerve regeneration.
Collapse
Affiliation(s)
- Laura Gonçalves Pozzobon
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristian E Teixeira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tais Malysz
- Instituto de Ciências básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto de Pesquisa com Células-tronco, IPCT, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Burks SS, Diaz A, Haggerty AE, Oliva NDL, Midha R, Levi AD. Schwann cell delivery via a novel 3D collagen matrix conduit improves outcomes in critical length nerve gap repairs. J Neurosurg 2021; 135:1241-1251. [PMID: 33607621 DOI: 10.3171/2020.8.jns202349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The current clinical standard of harvesting a nerve autograft for repair of long-segment peripheral nerve injuries (PNIs) is associated with many potential complications. Guidance channels offer an alternative therapy. The authors investigate whether autologous Schwann cells (SCs) implanted within a novel collagen-glycosaminoglycan conduit will improve axonal regeneration in a long-segment PNI model. METHODS Novel NeuraGen 3D collagen matrix conduits were implanted with autologous SCs to investigate axonal regeneration across a critical size defect (13 mm) in male Fischer rat sciatic nerve. Reversed sciatic nerve autografts served as positive controls, and conduits filled with serum only as negative controls. Electrophysiological assessments were made in vivo. Animals were killed at 4 or 16 weeks postinjury, muscle weights were measured, and grafts underwent immunohistochemical and morphometric analysis. RESULTS SC survival was confirmed by the presence of green fluorescent protein-labeled SCs within regenerated fibers. Regeneration and elongation of myelinated axons in all segments of the graft were significantly enhanced at 16 weeks in the SC-filled conduits compared to the conduit alone and were statistically similar to those of the autograft. Nerves repaired with SC-filled conduits exhibited onset latencies and nerve conduction amplitudes similar to those of the contralateral controls and autograft (p < 0.05). Adding SCs to the conduit also significantly reduced muscle atrophy compared to conduit alone (p < 0.0001). CONCLUSIONS Repair of long-segment PNI of rat sciatic nerve is significantly enhanced by SC-filled NeuraGen 3D conduits. Improvements in the total number of myelinated axons, axon diameter, and myelin thickness throughout SC-filled conduits allow for significant recovery in nerve conduction and a decrease in muscle atrophy.
Collapse
Affiliation(s)
- S Shelby Burks
- 1Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Anthony Diaz
- 1Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Agnes E Haggerty
- 1Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Natalia de la Oliva
- 1Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Rajiv Midha
- 2Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Allan D Levi
- 1Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
34
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
35
|
Abstract
With the development of newer techniques for symptomatic neuroma treatment, such as regenerative peripheral nerve interface and targeted muscle reinnervation, transposition and coverage techniques often have been referred to as "passive techniques." In spite of its negative connotation, these passive techniques yield positive results in a majority of patients treated. The experienced surgeon has more options than ever before in the prevention and management of problematic neuromas. Critical appraisal of the current literature reveals no single, optimal standard of care. Instead, surgeons have a plethora of useful techniques that can be implemented on a case-by-case basis to optimize outcomes.
Collapse
Affiliation(s)
- Brian W Starr
- Section of Plastic Surgery, University of Cincinnati Medical Center, 231 Albert Sabin Way, Mail Location: 0513, Cincinnati, OH 45229, USA.
| | - Kevin C Chung
- Section of Plastic Surgery, The University of Michigan Health System, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109-5340, USA
| |
Collapse
|
36
|
Holland JDR, Webster G, Rooney P, Wilshaw SP, Jennings LM, Berry HE. Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves. Front Bioeng Biotechnol 2021; 9:660453. [PMID: 34150728 PMCID: PMC8209421 DOI: 10.3389/fbioe.2021.660453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25-28 kGy) or E Beam (33-37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves.
Collapse
Affiliation(s)
- James D. R. Holland
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Georgina Webster
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Paul Rooney
- National Health Service Blood and Transplant (NHSBT) Tissue and Eye Services, Liverpool, United Kingdom
| | - Stacy-Paul Wilshaw
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Louise M. Jennings
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Helen E. Berry
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
37
|
Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JDA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021; 12:303. [PMID: 34051869 PMCID: PMC8164252 DOI: 10.1186/s13287-021-02315-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Ana Livia Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Marcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Janaina de Andréa Dernowsek
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Marjorie Golim
- Hemocenter division of Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Mathues Bertanha
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
38
|
Onode E, Uemura T, Takamatsu K, Yokoi T, Shintani K, Hama S, Miyashima Y, Okada M, Nakamura H. Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats. Sci Rep 2021; 11:4204. [PMID: 33602991 PMCID: PMC7893001 DOI: 10.1038/s41598-021-83385-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve regeneration using nerve conduits has been less effective than autogenous nerve grafts. To overcome this hurdle, we developed a tissue-engineered nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres, for the first time, which accelerated nerve regeneration in mice. We previously demonstrated the long-term efficacy and safety outcomes of this hybrid nerve conduit for mouse peripheral nerve regeneration. In this study, we investigated the therapeutic potential of nerve conduits coated with human iPSC (hiPSC)-derived neurospheres in rat sciatic nerve defects, as a translational preclinical study. The hiPSC-derived quaternary neurospheres containing neural stem/progenitor cells were three-dimensionally cultured within the nerve conduit (poly l-lactide and polycaprolactone copolymer) for 14 days. Complete 5-mm defects were created as a small size peripheral nerve defect in sciatic nerves of athymic nude rats and reconstructed with nerve conduit alone (control group), nerve conduits coated with hiPSC-derived neurospheres (iPS group), and autogenous nerve grafts (autograft group) (n = 8 per group). The survival of the iPSC-derived neurospheres was continuously tracked using in vivo imaging. At 12 weeks postoperatively, motor and sensory function and histological nerve regeneration were evaluated. Before implantation, the hiPSC-derived quaternary neurospheres that three-dimensional coated the nerve conduit were differentiated into Schwann-like cells. The transplanted hiPSC-derived neurospheres survived for at least 56 days after implantation. The iPS group showed non-significance higher sensory regeneration than the autograft group. Although there was no actual motor functional nerve regeneration in the three groups: control, iPS, and autograft groups, the motor function in the iPS group recovered significantly better than that in the control group, but it did not recover to the same level as that in the autograft group. Histologically, the iPS group demonstrated significantly higher axon numbers and areas, and lower G-ratio values than the control group, whereas the autograft group demonstrated the highest axon numbers and areas and the lowest G-ratio values. Nerve conduit three-dimensionally coated with hiPSC-derived neurospheres promoted axonal regeneration and functional recovery in repairing rat sciatic nerve small size defects. Transplantation of hiPSC-derived neurospheres with nerve conduits is a promising clinical iPSC-based cell therapy for the treatment of peripheral nerve defects.
Collapse
Affiliation(s)
- Ema Onode
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Department of Orthopaedic Surgery, Osaka General Hospital of West Japan Railway Company, Osaka, Japan.
| | - Kiyohito Takamatsu
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Orthopaedic Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takuya Yokoi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosuke Shintani
- Department of Pediatric Orthopaedic Surgery, Osaka City General Hospital, Osaka, Japan
| | - Shunpei Hama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Miyashima
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mitsuhiro Okada
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
39
|
Kornfeld T, Nessler J, Helmer C, Hannemann R, Waldmann KH, Peck CT, Hoffmann P, Brandes G, Vogt PM, Radtke C. Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model. Biomaterials 2021; 271:120692. [PMID: 33607544 DOI: 10.1016/j.biomaterials.2021.120692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injuries with substantial tissue loss require autologous nerve transplantation or alternatively reconstruction with nerve conduits. Axonal elongation after nerve transection is about 1 mm/day. The precise time course of axonal regeneration on an ultrastructural level in nerve gap repair using either autologous or artificial implants has not been described. As peripheral nerve regeneration is a highly time critical process due to deterioration of the neuromuscular junction, this in vivo examination in a large animal model was performed in order to investigate axonal elongation rates and spider silk material degradation in a narrowly delimited time series (20, 30, 40, 50, 90, 120, 150 and 180 days) by using a novel spider silk based artificial nerve graft as a critical prerequisite for clinical translation. Autologous nerves or artificial nerve conduits based on spider silk of the spider species Trichonephila edulis were transplanted in a 6.0 cm nerve defect model in the black headed mutton. At each of the post-implant time point, electrophysiology recordings were performed to assess functional reinnervation of axonal fibers into the implants. Samples were analyzed by histology and immunofluorescence in order to verify the timeline of axonal regeneration including axonal regeneration rates of the spider silk implant and the autologous transplant groups. Spider silk was degraded within 3 month by a light immune response mainly mediated by Langhans Giant cells. In conjunction with behavioral analysis and electrophysiological measurements, the results indicate that the spider silk nerve implant supported an axonal regeneration comparable to an autologous nerve graft which is the current gold standard in nerve repair surgery. These findings indicate that a biomaterial based spider silk nerve conduit is as effective as autologous nerve implants and may be an important approach for long nerve defects.
Collapse
Affiliation(s)
- T Kornfeld
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - J Nessler
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - C Helmer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - R Hannemann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - K H Waldmann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - C T Peck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P Hoffmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - G Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - C Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
40
|
Millesi F, Weiss T, Mann A, Haertinger M, Semmler L, Supper P, Pils D, Naghilou A, Radtke C. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts. FASEB J 2021; 35:e21196. [PMID: 33210360 PMCID: PMC7894153 DOI: 10.1096/fj.202001447r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
Collapse
Affiliation(s)
- Flavia Millesi
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Tamara Weiss
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Mann
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Maximilian Haertinger
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Paul Supper
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Dietmar Pils
- Division of General SurgeryDepartment of SurgeryComprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Aida Naghilou
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Christine Radtke
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
41
|
Ekram B, Abd El-Hady BM, El-Kady AM, Fouad MT, Sadek ZI, Amr SM, Gabr H, Waly AI, Guirguis OW. Enhanced mesenchymal stem cells growth on antibacterial microgrooved electrospun zinc chloride/polycaprolactone conduits for peripheral nerve regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520988305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have investigated the effect of adding zinc chloride (ZnCl2) on polycaprolactone (PCL) before and after electrospinning. The rheological properties and conductivity of ZnCl2/PCL solutions were measured prior to the electrospinning process. The resultant electrospun mats were characterized by SEM, contact angle, FTIR, XRD, mechanical properties, as well as its antibacterial and stem cell proliferation assessment were tested. It was found that the fibers became finer by increasing the zinc salt content. Moreover, stability increased slightly up to 5% Zn-PCL and also the hydrophilicity has been enhanced by 52%. By adding ZnCl2, the degradation rate and mechanical properties were significantly increased. Also, the resultant mats have shown antibacterial properties against S. aureus than E. coli. From the stem cells proliferation study, it can be observed that by increasing ZnCl2, the stem cells proliferation was significantly increased. Grooved multichannel nerve conduits were successfully fabricated by rolling the electrospun mats produced on corn husks which has shown better cell alignment and attachment. Hence, adding zinc chloride is a facile biocompatible enhancement to polycaprolactone nanofibers to be used in nerve regeneration.
Collapse
Affiliation(s)
- Basma Ekram
- Polymers and Pigments Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Abeer M El-Kady
- Glass Research Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed T Fouad
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab I Sadek
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherif M Amr
- Orthopaedics and Traumatology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Hala Gabr
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Ahmed I Waly
- Textile Department, National Research Centre, Dokki, Cairo, Egypt
| | - Osiris W Guirguis
- Biophysics Department, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
42
|
Mathot F, Rbia N, Thaler R, Dietz AB, van Wijnen AJ, Bishop AT, Shin AY. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regen Res 2021; 16:1613-1621. [PMID: 33433492 PMCID: PMC8323683 DOI: 10.4103/1673-5374.303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was hypothesized that mesenchymal stem cells (MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance® Nerve Grafts or NeuraGen® Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance® Nerve Grafts and 30 NeuraGen® Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), pleiotrophin (PTN), growth associated protein 43 (GAP43) and brain-derived neurotrophic factor (BDNF)], myelination [peripheral myelin protein 22 (PMP22) and myelin protein zero (MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1 (PECAM1/CD31) and vascular endothelial cell growth factor alpha (VEGFA)], extracellular matrix (ECM) [collagen type alpha I (COL1A1), collagen type alpha III (COL3A1), Fibulin 1 (FBLN1) and laminin subunit beta 2 (LAMB2)] and cell surface marker cluster of differentiation 96 (CD96) gene expression was quantified. Unseeded Avance® Nerve Grafts and NeuraGen® Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance® Nerve Grafts led to a short-term upregulation of neurotrophic (NGF, GDNF and BDNF), myelination (PMP22 and MPZ) and angiogenic genes (CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the NeuraGen® Nerve Guide led to short term upregulation of neurotrophic (NGF, GDNF and BDNF) myelination (PMP22 and MPZ), angiogenic (CD31 and VEGFA), ECM (COL1A1) and cell surface (CD96) genes and long-term upregulation of neurotrophic (GDNF and BDNF), angiogenic (CD31 and VEGFA), ECM genes (COL1A1, COL3A1, and FBLN1) and cell surface (CD96) genes. Analysis demonstrated MSCs seeded onto NeuraGen® Nerve Guides expressed significantly higher levels of neurotrophic (PTN), angiogenic (VEGFA) and ECM (COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance® Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the NeuraGen® Nerve Guide was more pronounced, particularly in the long term period (> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111219. [DOI: 10.1016/j.msec.2020.111219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
|
44
|
Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS NANO 2020; 14:12579-12595. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Repairing peripheral nerve injury, especially long-range defects of thick nerves, is a great challenge in the clinic due to their limited regeneration capability. Most FDA-approved nerve guidance conduits with large hollow lumen are only suitable for short lesions, and their effects are unsatisfactory in repairing long gaps of thick nerves. Multichannel nerve guidance conduits have been shown to offer better regeneration of long nerve defects. However, existing approaches of fabricating multichannel nerve conduits are usually complicated and time-consuming. Inspired by the intelligent responsive shaping process of shape memory polymers, in this study, a self-forming multichannel nerve guidance conduit with topographical cues was constructed based on a degradable shape memory PLATMC polymer. With an initial tubular shape obtained by a high-temperature molding process, the electrospun shape memory nanofibrous mat could be temporarily formed into a planar shape for cell loading to realize the uniform distribution of cells. Then triggered by a physical temperature around 37 °C, it could automatically restore its permanent tubular shape to form the multichannel conduit. This multichannel conduit exhibits better performance in terms of cell growth and the repair of rat sciatic nerve defects. These results reveal that self-forming nerve conduits can be realized based on shape memory polymers; thus, the fabricated bioinspired multichannel nerve guidance conduit has great potential in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuan Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, P.R. China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - William Weijia Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong 999077, P.R. China
| |
Collapse
|
45
|
Gopalakrishnan-Prema V, Mohanan A, Shivaram SB, Madhusudanan P, Raju G, Menon D, Shankarappa SA. Electrical stimulation of co-woven nerve conduit for peripheral neurite differentiation. ACTA ACUST UNITED AC 2020; 15:065015. [PMID: 33016262 DOI: 10.1088/1748-605x/abaf06] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrically stimulable nerve conduits are implants that could potentially be utilized in patients with nerve injury for restoring function and limb mobility. Such conduits need to be developed from specialized scaffolds that are both electrically conductive and allow neuronal attachment and differentiation. In this study, we investigate neural cell attachment and axonal differentiation on scaffolds co-woven with poly-(L-lactic acid) (PLLA) yarns and conducting threads. Yarns obtained from electrospun PLLA were co-woven with polypyrrole (PPy)-coated PLLA yarns or ultrathin wires of copper or platinum using a custom built low-resistance semi-automated weaving machine. The conducting threads were first electrically characterized and tested for stability in cell growth media. Suitability of the conducting threads was further assessed via cell viability studies using PC12 cells. Neurite growth was then quantified after electrically stimulating rat dorsal root ganglion (DRG) sensory neurons cultured on the woven scaffolds. Electrical conductivity tests and cellular viability studies demonstrated better bio-tolerability of platinum wires over PPy-coated PLLA yarns and copper wires. Electrically stimulated DRG neurons cultured on platinum-PLLA co-woven scaffolds showed enhanced neurite outgrowth and length. We demonstrate that a woven scaffold design could be utilized to incorporate conducting materials into cell-tolerable polymer yarns for developing electrically stimulable nerve conduits.
Collapse
|
46
|
Uranues S, Bretthauer G, Tomasch G, Rafolt D, Nagele-Moser D, Berghold A, Kleinert R, Justich I, Waldert J, Koch H. A New Synthetic Conduit for the Treatment of Peripheral Nerve Injuries. World J Surg 2020; 44:3373-3382. [PMID: 32514775 PMCID: PMC7458941 DOI: 10.1007/s00268-020-05620-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Peripheral nerve defects (PND) often cause lifelong physical disability, and the available treatment options are often not satisfactory. PND are usually bridged with an autologous nerve transplant or a nerve guidance conduit (NGC), when coaptation as preferred technique is not possible. The aim of this experimental study was to determine the effectiveness of a novel NGC for regeneration in the treatment of PND. MATERIALS AND METHODS A conduit made of gelatin with an innovative interior structure was tested for the repair of a 6-mm gap versus direct microsurgical suture repair without gap. RESULTS We found that bridging the defect with this conduit was as effective as direct microsurgical coaptation without a defect. CONCLUSIONS This nerve conduit, effective in bridging neural defects, appears as an alternative to autologous nerve grafts, avoiding the problems related to nerve graft harvesting, host-donor differences in diameter, mismatches in number and pattern of fascicles, cross-sectional shape and area, and morbidity of the donor area.
Collapse
Affiliation(s)
- Selman Uranues
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.
| | - Georg Bretthauer
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gordana Tomasch
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Doris Nagele-Moser
- Section for Surgical Research, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036, Graz, Austria
| | - Reinhold Kleinert
- Institute of Pathology, Medical University of Graz, 8036, Graz, Austria
| | - Ivo Justich
- Clinical Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036, Graz, Austria
| | - Jörg Waldert
- State Hospital for Neurology and Psychiatrics, 8055, Graz, Austria
| | - Horst Koch
- Clinical Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036, Graz, Austria
| |
Collapse
|
47
|
Kasper M, Deister C, Beck F, Schmidt CE. Bench-to-Bedside Lessons Learned: Commercialization of an Acellular Nerve Graft. Adv Healthc Mater 2020; 9:e2000174. [PMID: 32583574 DOI: 10.1002/adhm.202000174] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury can result in debilitating outcomes including loss of function and neuropathic pain. Although nerve repair research and therapeutic development are widely studied, translation of these ideas into clinical interventions has not occurred at the same rate. At the turn of this century, approaches to peripheral nerve repair have included microsurgical techniques, hollow conduits, and autologous nerve grafts. These methods provide satisfactory results; however, they possess numerous limitations that can prevent effective surgical treatment. Commercialization of Avance, a processed nerve allograft, sought to address limitations of earlier approaches by providing an off-the-shelf alternative to hollow conduits while maintaining many proregenerative properties of autologous grafts. Since its launch in 2007, Avance has changed the landscape of the nerve repair market and is used to treat tens of thousands of patients. Although Avance has become an important addition to surgeon and patient clinical options, the product's journey from bench to bedside took over 20 years with many research and commercialization challenges. This article reviews the events that have brought a processed nerve allograft from the laboratory bench to the patient bedside. Additionally, this review provides a perspective on lessons and considerations that can assist in translation of future medical products.
Collapse
Affiliation(s)
- Mary Kasper
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville FL 32611 USA
| | | | | | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville FL 32611 USA
| |
Collapse
|
48
|
Nakada M, Itoh S, Tada K, Matsuta M, Murai A, Tsuchiya H. Effects of hybridization of decellularized allogenic nerves with adipose-derive stem cell sheets to facilitate nerve regeneration. Brain Res 2020; 1746:147025. [PMID: 32712125 DOI: 10.1016/j.brainres.2020.147025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 11/19/2022]
Abstract
We developed a sheet of stem cells derived from adipose tissue (ADSC sheet). To improve transplantation, we wrapped decellularized nerves with ADSC sheets and examined the efficacy of this recellularized nerves in nerve regeneration. Decellularized nerves were prepared from sciatic nerves of Sprague-Dawley rats. Wistar rats were subjected to sciatic nerve injury and then randomly assigned to three groups (n = 7 per group), which were transplanted with 15-mm bridge grafts; the first group received a decellularized allogenic nerve implant, the second an ADSC sheet-wrapped decellularized allogenic nerve implant, and the third an autogenous nerves were implant. No significant differences were found in S100-positive and neurofilament-positive areas, axon density, and sciatic functional index (SFI) score between rats transplanted with ADSC sheet-wrapped nerve grafts and those that received autografts. In contrast, these parameters except SFI and the amplitude ratio were significantly larger in rats grafted with ADSC sheet-wrapped nerve than with the decellularized nerve. These results suggest that the number of regenerating axons, as well as their regenerating velocity, and the number of migrating Schwann cells into the implant in rats transplanted with ADSC sheet-wrapped nerves matched those in rats transplanted with autografts. These positive effects are possibly attributable to secretion of growth factors of ADSCs.
Collapse
Affiliation(s)
- Mika Nakada
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, 13-1, Kanazawa, Ishikawa #920-8641, Japan
| | - Soichiro Itoh
- Strategic Innovation Research Hub, Laboratory of Strength of Material and Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo #173-8605, Japan
| | - Kaoru Tada
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, 13-1, Kanazawa, Ishikawa #920-8641, Japan.
| | - Masashi Matsuta
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, 13-1, Kanazawa, Ishikawa #920-8641, Japan
| | - Atsuro Murai
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, 13-1, Kanazawa, Ishikawa #920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, 13-1, Kanazawa, Ishikawa #920-8641, Japan
| |
Collapse
|
49
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
50
|
Management of Nerve Trauma in the Mangled Extremity. CURRENT TRAUMA REPORTS 2020. [DOI: 10.1007/s40719-020-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|