1
|
Kobayashi H, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Metabolic phenotypes and vitamin D response in the critically ill: A metabolomic cohort study. Clin Nutr 2024; 43:10-19. [PMID: 39307095 DOI: 10.1016/j.clnu.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND & AIMS Although vitamin D deficiency is common in critically ill patients, randomized controlled trials fail to demonstrate benefits of supplementation. We aimed to identify distinct vitamin D3 responsive metabolic phenotypes prior to trial intervention of high-dose vitamin D3 by applying machine learning clustering method to metabolomics data from the Correction of Vitamin D Deficiency in Critically Ill Patients (VITdAL-ICU) trial. METHODS In the randomized, placebo-controlled VITdAL-ICU trial, critically ill adults received placebo or high-dose vitamin D3. To distinguish vitamin D3 responsive metabolic phenotypes prior to intervention, we implemented consensus clustering with partitioning around medoids algorithm to the plasma metabolome data before randomization. Individual metabolite differences were determined utilizing linear mixed-effects regression models stratified for metabolomic phenotypes with false discovery rate adjustment. The association between vitamin D3 supplementation and 180-day mortality was evaluated in each metabolic phenotype, applying multivariable logistic regression analysis. RESULTS In 453 critically ill adults, the study identified 4 distinct metabolic phenotypes (clusters A. N = 134; B. N = 123; C. N = 92; D. N = 104). We found differential metabolic pathway patterns in the four clusters. Specifically, branched chain amino acid catabolic metabolites, long-chain acylcarnitines and diacylglycerol species are significantly increased in a specific metabolic phenotype (cluster D) following high-dose vitamin D3. Further, in cluster D high-dose vitamin D3 supplementation had a significantly lower adjusted odds of 180-day mortality after controlling age, sex, Simplified Acute Physiology Score II, admission diagnosis, and baseline 25-hydroxyvitamin D (OR 0.28 (95%CI, 0.09-0.89); P = 0.03). In metabotype A, B, and C, high-dose vitamin D3 supplementation was not significantly associated with lower 180-day mortality following multivariable adjustment. CONCLUSION In this post-hoc cohort study of the VITdAL-ICU trial, the clustering analysis of plasma metabolome data identified biologically distinct metabolic phenotypes. Among clusters, we found the different associations between high-dose vitamin D3 supplementation and specific metabolite pathways as well as 180-day mortality. Our findings facilitate further research to validate metabolic phenotype-targeted strategies for critical illness treatments.
Collapse
Affiliation(s)
- Hirotada Kobayashi
- Department of Critical Care Medicine, Sunnybrook Health Sciences Center, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, 204 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Sherif H Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, USA; Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, USA.
| |
Collapse
|
2
|
Kim HS, Ahn JW, Ha NR, Damodar K, Jang SK, Yoo YM, Gyoung YS, Joo SS. Antibacterial and Immunosuppressive Effects of a Novel Marine Brown Alga-Derived Ester in Atopic Dermatitis. Mar Drugs 2024; 22:354. [PMID: 39195470 DOI: 10.3390/md22080354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic skin condition that is characterized by dysregulated immune responses and a heightened risk of Staphylococcus aureus infections, necessitating the advancement of innovative therapeutic methods. This study explored the potential of (6Z,9Z,12Z,15Z)-(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl octadeca-6,9,12,15-tetraenoate (HSN-S1), a compound derived from the marine alga Hizikia fusiformis, which shows anti-inflammatory, antimicrobial, and immunomodulatory properties. HSN-S1 was isolated and characterized using advanced chromatographic and spectroscopic methods. Its efficacy was evaluated via in vitro assays with keratinocytes, macrophages, and T cells to assess cytokine suppression and its immunomodulatory effects; its antibacterial activity against S. aureus was quantified. The in vivo effectiveness was validated using a 2,4-dinitrochlorobenzene-induced AD mouse model that focused on skin pathology and cytokine modulation. HSN-S1 significantly reduced pro-inflammatory cytokine secretion, altered T-helper cell cytokine profiles, and showed strong antibacterial activity against S. aureus. In vivo, HSN-S1 alleviated AD-like symptoms in mice and reduced skin inflammation, transepidermal water loss, serum immunoglobulin-E levels, and Th2/Th17 cytokine outputs. These findings suggest HSN-S1 to be a promising marine-derived candidate for AD treatment, as it offers a dual-target approach that could overcome the limitations of existing therapies, hence warranting further clinical investigation.
Collapse
Affiliation(s)
- Hyun Soo Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Jeong Won Ahn
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Na Reum Ha
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Kongara Damodar
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Su Kil Jang
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Yeong-Min Yoo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Young Soo Gyoung
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
- Huscion MAJIC R&D Center, 331 Pangyo-ro, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
3
|
Ma Y, Han L, Hou S, Gui L, Sun S, Yuan Z, Yang C, Wang Z, Yang B. Fatty Acids and Volatile Flavor Components of Adipose Tissue from Local Tibetan Sheep in Qinghai with Dietary Supplementation of Palm Kernel Meal (PKM). Animals (Basel) 2024; 14:2113. [PMID: 39061575 PMCID: PMC11274258 DOI: 10.3390/ani14142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Substituting traditional protein feed with palm kernel meal (PKM) in the diet of Tibetan sheep can be a cost-effective feeding strategy. To determine the impact of PKM on flavor development in different adipose tissues of Tibetan sheep, subjects were fed with 15% and 18% of PKM, while the control group received no PKM. The fatty acids and volatile compounds in the samples were then analyzed by GC-MS and HS-GC-IMS. Adding PKM to the diet significantly increased the C12:0, C14:0, C16:0 and C18:1N9 content in adipose tissues compared with the control, and most of these were associated with flavor formation (p < 0.05). The flavor compounds in the adipose tissues predominantly consisted of alcohols, ketones, acids and aldehydes. In particular, including PKM in the diet increased the proportion of ketones but decreased the proportion of alcohols, acids and aldehydes in subcutaneous and tail fat. Specifically, the proportion of acetone, acetoin monomer, 2,3-butanedione, 2-butanone monomer, 2-methyl-2-propanol, 2-methyl-2-propanol and methyl acetate increased significantly in the subcutaneous and tail fat (p < 0.05), while that of ethanol, 1-propanol monomer, butanol monomer, acetic acid monomer and acetic acid monomer decreased. Intermuscular fat exhibited variable results, mainly because the addition of PKM resulted in higher proportions of alcohols, including ethanol, 1-propanol and butanol monomer, especially at 15% PKM. In summary, the addition of PKM improved the flavor of Tibetan sheep fat and increased the amount of favorable volatile flavor compounds. This study can serve as reference for understanding the effects of dietary PKM on the adipose tissue flavor profile of Tibetan sheep.
Collapse
Affiliation(s)
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.M.); (S.H.); (L.G.); (S.S.); (Z.Y.); (C.Y.); (Z.W.); (B.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
5
|
Thompson PT, Boamah VE, Badu M. In-vitro antioxidant, antimicrobial and phytochemical properties of extracts from the pulp and seeds of the African baobab fruit ( Adansonia digitata L.). Heliyon 2024; 10:e29660. [PMID: 38665573 PMCID: PMC11044038 DOI: 10.1016/j.heliyon.2024.e29660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Adansonia digitata, commonly known as the African Baobab plant is used widely in traditional medicine for treating of many diseases. The current study investigates the antioxidant and antimicrobial properties, and nutritional composition of the pulp and seeds from the fruit of African Baobab plant. Matured fruits were harvested and processed by separating the fruit pulp and seeds. Water, 70 % Ethanol/water mixture, and Hexane were used as solvents for extraction. Antioxidant properties of extracts in this study were investigated using the 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxidescavenging assays., Total Flavonoid Content, Total Phenolic Content, Total Tannin Content, and Total Antioxidant Capacity were also investigated. Agar Well Diffusion and Broth Dilution methods were used to estimate the antimicrobial properties of the extracts. The proximate composition of the seeds and fruit pulps was also determined. GC-MS was employed to determine the fatty acid composition. Results obtained showed the presence of Total phenolics (range 4.1-5.5 mg GAE/g), Total flavonoids (range 10.1-16.5 mg QE/g), Total Tannins (range 1.7-15.6 mg CE/g), and Antioxidants (range 2.0-14.5 mg AAE/g). The H2O2 and DPPH assays gave IC50s in the ranges of 300-1800 mg/L and 700-1600 mg/L respectively. Extract from the fruit pulp was found to inhibit the growth of a panel of 2 g-positive bacteria, 2 g-negative bacteria, and two fungi microorganisms. Fatty acids such as myristic acid, palmitic acid, and stearic acid were found to be present in oil from the seeds. Proximate components such as crude protein, crude fat, and crude fibre were found to be high. From the results, seeds and the fruit pulp of the African Baobab plant have significant antioxidant properties and can inhibit microbial growth.
Collapse
Affiliation(s)
- Philip T. Thompson
- Department of Chemistry, Faculty of Physical and Computational Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Vivian E. Boamah
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mercy Badu
- Department of Chemistry, Faculty of Physical and Computational Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Fan L, Wang X, Szeto IMY, Liu B, Sinclair AJ, Li D. Dietary intake of different ratios of ARA/DHA in early stages and its impact on infant development. Food Funct 2024; 15:3259-3273. [PMID: 38469864 DOI: 10.1039/d3fo04629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs), arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are essential in the development of infants. ARA and DHA from breast milk or infant formula are the main sources of access for infants to meet their physiological and metabolic needs. The ratio of ARA to DHA in breast milk varies among regions and different lactation stages. Different ratios of ARA and DHA mainly from algal oil, animal fat, fish oil, and microbial oil, are added to infant formula in different regions and infant age ranges. Supplementing with appropriate ratios of ARA and DHA during infancy promotes brain, neural, visual, and other development aspects. In this review, we first introduced the current intake status of ARA and DHA in different locations, lactation stages, and age ranges in breast milk and infant formula. Finally, we discussed the effect of different ratios of ARA and DHA on infant development. This review provided a comprehensive research basis for the nutritional research of infants who consume different ratios of ARA and DHA.
Collapse
Affiliation(s)
- Lijiao Fan
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xincen Wang
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | | | - Biao Liu
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
| | - Duo Li
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Brouns F, Van Haaps A, Keszthelyi D, Venema K, Bongers M, Maas J, Mijatovic V. Diet associations in endometriosis: a critical narrative assessment with special reference to gluten. Front Nutr 2023; 10:1166929. [PMID: 37731404 PMCID: PMC10507348 DOI: 10.3389/fnut.2023.1166929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Endometriosis is characterized by the presence of endometrium-like tissue outside the uterus. The etiology remains largely unknown. Despite adequate treatment, patients can still experience symptoms or side effects resulting in therapy incompliance and in self-management strategies such as dietary measures is increasing. A gluten free diet is thought to be contributory in reducing endometriosis-related pain, thereby optimizing quality of life. However, data is conflicting and currently provides no evidence for causality. This narrative review aims to put the effect of dietary self-management strategies on endometriosis in a balanced perspective, especially the effect of gluten and a gluten free diet. Several studies have found a strong overlap in symptoms, metabolic and immune responses associated with endometriosis and those associated with celiac disease, ulcerative colitis, Crohn's disease, irritable bowel syndrome and non-celiac wheat sensitivity. However, it remains unclear whether these diseases and/or disorders are causal to an increased risk of endometriosis. Some studies have found a positive effect on the risk of endometriosis, endometriosis-related symptoms and quality of life (QoL) when women either avoided certain nutrients or foods, or applied a specific nutrient supplementation. This includes the avoidance of red meat, an increasing intake of foods rich in anti-oxidants, omega-3, micronutrients and dietary fibers (e.g., fruit, vegetables) and the appliance of a gluten free diet. However, data from the available studies were generally graded of low quality and it was noted that placebo and/or nocebo effects influenced the reported positive effects. In addition, such effects were no longer seen when adjusting for confounders such as overweight, when a translation was made from in vitro to in vivo, or when the nutrients were not supplemented as isolated sources but as part of a mixed daily diet. Finally, some studies showed that long-term adherence to a gluten free diet is often associated with an impaired diet quality and nutrient intake, leading to negative health outcomes and reduced QoL. Concluding, scientific evidence on the efficacy of dietary interventions on well-defined clinical endpoints of endometriosis is lacking and recommending a gluten free diet to women solely diagnosed with endometriosis should therefore not be advised.
Collapse
Affiliation(s)
- Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Annelotte Van Haaps
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University, Maastricht, Netherlands
| | - Marlies Bongers
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, Netherlands
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Jacques Maas
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology MUMC+, Maastricht, Netherlands
| | - Velja Mijatovic
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
8
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
9
|
Panezai J, van Dyke T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023; 15:nu15040821. [PMID: 36839179 PMCID: PMC9965392 DOI: 10.3390/nu15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable contributions to human physiology. They not only serve as sources of fuel but also cellular structural components as well as substrates that provide bioactive metabolites. A growing body of evidence demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory reactions in periodontitis is only beginning to be uncovered as research continues to unravel their far-reaching immunologic implications.
Collapse
Affiliation(s)
- Jeneen Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Thomas van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Centre for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard Faculty of Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
10
|
Zhao Y, Zhao W, Li J, Lin S, Li L, Ren Z, Lu J, Xing X, Liu X. Effect of dietary consumption on the survival of esophageal squamous cell carcinoma: a prospective cohort study. Eur J Clin Nutr 2023; 77:55-64. [PMID: 35974139 DOI: 10.1038/s41430-022-01194-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND/OBJECTIVES This prospective cohort study was to assess the association of pre-diagnostic dietary intake and dietary pattern with the survival of esophageal squamous cell carcinoma (ESCC) patients. SUBJECTS/METHODS 855 patients were recruited and successfully followed. Information on diet over past five years before diagnosis was collected using a food frequency questionnaire, and dietary patterns were extracted using principal component analysis. Hazard ratio (HR) with 95% confidence interval (95% CI) was calculated using the Cox proportional hazard model. RESULTS 164 (19.18%) ESCC patients survived during the follow-up. Every 25-g increment intake of pickled vegetables was associated with a 6.0% (HR: 1.060, 95% CI: 1.003-1.121) increased risk of death after adjustment for covariates. When comparing the highest with lowest tertiles of energy-adjusted intake, pickled vegetables intake was associated with a 21.9% elevated risk of death (HR: 1.219, 95% CI: 1.014-1.465), while fish and shrimp intake was associated with a 19.4% (HR: 0.816, 95% CI: 0.675-0.986) reduced risk of death. Three dietary patterns were defined and labeled as patterns I, II, and III. Every 10-score increment of dietary pattern II, characterized with a higher loading of preserved vegetables, pickled vegetables, and salted meat, was associated with a 1.7% (HR: 1.017, 95% CI: 1.003-1.032) increased risk of death. CONCLUSIONS A diet characterized with higher loading of preserved vegetables, pickled vegetables, and salted meat, was negatively associated with death risk among ESCC patients. Prospective studies concerning the role of post-diagnosis dietary intake in ESCC prognosis are needed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Jun Li
- Department of Cancer Prevention and Treatment, Yanting Cancer Hospital, Mianyang, China
| | - Sihao Lin
- School of Management, Putian University, Putian, China
| | - Lin Li
- Department of Cancer Prevention and Treatment, Yanting Cancer Hospital, Mianyang, China
| | - Zefang Ren
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiangbing Xing
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xudong Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
11
|
Wu H, Yang C, Hao R, Liao Y, Wang Q, Deng Y. Lipidomic insights into the immune response and pearl formation in transplanted pearl oyster Pinctada fucata martensii. Front Immunol 2022; 13:1018423. [PMID: 36275716 PMCID: PMC9585204 DOI: 10.3389/fimmu.2022.1018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
During pearl culture, the excess immune responses may induce nucleus rejection and death of pearl oysters after transplantation. To better understand the immune response and pearl formation, lipidomic analysis was applied to investigate changes in the serum lipid profile of pearl oyster Pinctada fucata martensii following transplantation. In total, 296 lipid species were identified by absolute quantitation. During wound healing, the content of TG and DG initially increased and then decreased after 3 days of transplantation with no significant differences, while the level of C22:6 decreased significantly on days 1 and 3. In the early stages of transplantation, sphingosine was upregulated, whereas PC and PUFAs were downregulated in transplanted pearl oyster. PI was upregulated during pearl sac development stages. GP and LC-PUFA levels were upregulated during pearl formation stage. In order to identify enriched metabolic pathways, pathway enrichment analysis was conducted. Five metabolic pathways were found significantly enriched, namely glycosylphosphatidylinositol-anchor biosynthesis, glycerophospholipid metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism and arachidonic acid metabolism. Herein, results suggested that the lipids involved in immune response, pearl sac maturation, and pearl formation in the host pearl oyster after transplantation, which might lead to an improvement in the survival rate and pearl quality of transplanted pearl oyster.
Collapse
Affiliation(s)
- Hailing Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Chuangye Yang,
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
12
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
13
|
Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, Vari SG. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life (Basel) 2022; 12:life12071093. [PMID: 35888181 PMCID: PMC9323340 DOI: 10.3390/life12071093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023] Open
Abstract
Gestation and the neonatal period are crucial periods in infant development. Many components of breast milk, including fatty acids, play an important role in strengthening the immune system. The aim of our research was to evaluate the fatty acid profiles of milk from 69 mothers, including subjects having a normal weight, obesity, or gestational diabetes. For the analyses, we used gas chromatography (GC) with flame ionization detection (FID) and GC coupled with mass spectrometry (GC/MS). The main fatty acids found in breast milk were palmitic acid (C16:0; 26-28%), linoleic acid (C18:2; 23-28%), and α-linolenic acid linoleic acid (C18:3; 15-17%), followed by myristic acid (C14:0; 5-8%), lauric acid (C12:0; 4-6%) and stearic acid (C18:0; 4-5%). The average breakdown of fatty acids was 50% saturated, 44% polyunsaturated, and 6% monounsaturated. Breast milk samples were classified using principal component analysis and linear discriminant analysis. Results showed that milk from the two major groups of obese and normal body mass index (BMI) could be distinguished with an accuracy of 89.66%. Breast milk samples of Hungarian and Ukrainian mothers showed significant differences based on the fatty acid composition, which variations are attributable to the mothers' dietary habits.
Collapse
Affiliation(s)
- Livia Simon Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Miaomiao Zhang
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Géza Muránszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Réka Anna Vass
- Department of Obstetrics and Gynecology, University of Pécs Medical School, 7624 Pecs, Hungary;
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pecs, Hungary
| | - Oksana Matsyura
- Department of Pediatrics No. 2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Eszter Benes
- Department of Food and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
14
|
Mezzetti M, Piccioli-Cappelli F, Minuti A, Trevisi E. Effects of an Intravenous Infusion of Emulsified Fish Oil Rich in Long-Chained Omega-3 Fatty Acids on Plasma Total Fatty Acids Profile, Metabolic Conditions, and Performances of Postpartum Dairy Cows During the Early Lactation. Front Vet Sci 2022; 9:870901. [PMID: 35651967 PMCID: PMC9149583 DOI: 10.3389/fvets.2022.870901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
A group of 10 multiparous Italian Holstein cows were housed in individual tied stalls and infused with 150 ml of saline (CTR; 5 cows), or of 10% solution rich in long-chained omega-3 fatty acids (n3FA; 5 cows) at 12, 24, and 48 h after calving. From −7 to 21 days from calving (DFC), the body condition score, body weight, dry matter intake (DMI), and milk yield were measured, blood samples were collected to assess the plasma fatty acids (FA) and metabolic profiles, and milk samples were collected to assess the milk composition. Data underwent a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Plasma FA profile from n3FA cows had lower myristic and higher myristoleic proportions, higher cis-11,14-eicosadienoic acid and monounsaturated FA proportions at 3 DFC, and lower cis-10-pentadecanoic proportion at 10 DFC. Besides these, n3FA cows had higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) proportions (1.09 vs. 0.71 and 0.33 vs. 0.08 g/100 g), confirming the effectiveness of the infusion in elevating plasma availability of these FA. The plasma metabolic profile from n3FA cows revealed a tendency toward a lower concentration of reactive oxygen metabolites at 1 DFC and lower haptoglobin at 2 and 3 DFC, reflecting a mitigated inflammatory state. Furthermore, n3FA cows had a higher DMI during the first week of lactation. Higher DMI of n3FA could account for the changes detected on their plasma FAs, the higher milk yield they had at 1 and 2 DFC, the reduced lactose and urea nitrogen content in their milk. Higher DMI could also account for the lower plasma urea that n3FA cows had at 1 and 2 DFC, suggesting a lower amount of endogenous amino acids deserved to gluconeogenic fate. Milk from n3FA cows had lower rennet clotting time and higher curd firmness, which is probably driven by a higher EPA and DHA inclusion in the milk fat. Together, these outcomes suggest that the infusion exerts a short-term anti-inflammatory action on dairy cows at the onset of lactation.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Erminio Trevisi
| |
Collapse
|
15
|
Thum C, Wall C, Day L, Szeto IMY, Li F, Yan Y, Barnett MPG. Changes in Human Milk Fat Globule Composition Throughout Lactation: A Review. Front Nutr 2022; 9:835856. [PMID: 35634409 PMCID: PMC9137899 DOI: 10.3389/fnut.2022.835856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in understanding how the relative levels of human milk fat globule (MFG) components change over the course of lactation, how they differ between populations, and implications of these changes for the health of the infant. In this article, we describe studies published over the last 30 years which have investigated components of the MFG in term milk, focusing on changes over the course of lactation and highlighting infant and maternal factors that may influence these changes. We then consider how the potential health benefits of some of the milk fat globule membrane (MFGM) components and derived ingredients relate to compositional and functional aspects and how these change throughout lactation. The results show that the concentrations of phospholipids, gangliosides, cholesterol, fatty acids and proteins vary throughout lactation, and such changes are likely to reflect the changing requirements of the growing infant. There is a lack of consistent trends for changes in phospholipids and gangliosides across lactation which may reflect different methodological approaches. Other factors such as maternal diet and geographical location have been shown to influence human MFGM composition. The majority of research on the health benefits of MFGM have been conducted using MFGM ingredients derived from bovine milk, and using animal models which have clearly demonstrated the role of the MFGM in supporting cognitive and immune health of infants at different stages of growth and development.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- *Correspondence: Caroline Thum
| | - Clare Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Li Day
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Ignatius M. Y. Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Fang Li
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | | |
Collapse
|
16
|
Metabolomics Reveals the Effects of High Dietary Energy Density on the Metabolism of Transition Angus Cows. Animals (Basel) 2022; 12:ani12091147. [PMID: 35565573 PMCID: PMC9105006 DOI: 10.3390/ani12091147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The increase in the metabolic demand and the dramatically decreased feed intake of cows around parturition often cause a negative energy balance status in cows, which can cause metabolic disorders. Before parturition, dry matter intake of cows starts to decline, and this decline is practically unavoidable. Therefore, increasing the energy density of the diet is extremely important. We used untargeted metabolomics to reveal the effect of high dietary energy density on body metabolism and explore whether it can alleviate negative energy balance. Our research shows that feeding a high-energy diet could significantly improve antioxidant capacity, maintain phosphatidylcholine homeostasis and reduce the negative energy balance of cows by regulating lipid mobilization, muscle mobilization, and protein turnover. Abstract The diet energy level plays a vital role in the energy balance of transition cows. We investigated the effects of high dietary energy density on body metabolism. Twenty multiparous Angus cows were randomly assigned to two treatment groups (10 cows/treatment), one receiving a high-energy (HE) diet (NEm = 1.67 Mcal/kg of DM) and the other administered a control (CON) diet (NEm = 1.53 Mcal/kg of DM). The results indicated that feeding a high-energy diet resulted in higher plasma glucose concentration and lower concentrations of plasma NEFA and BHBA on d 14 relative to calving in the HE-fed cows compared to the CON-fed ones. The postpartum plasma levels of T-AOC were lower in cows that received the CON diet than in cows in the HE group, while the concentration of malondialdehyde (MDA) showed an opposite trend. Among the 51 significantly different metabolites, the concentrations of most identified fatty acids decreased in HE cows. The concentrations of inosine, glutamine, and citric acid were higher in HE-fed cows than in CON-fed cows. Enrichment analysis revealed that linoleic acid metabolism, valine, leucine as well as isoleucine biosynthesis, and glycerophospholipid metabolism were significantly enriched in the two groups.
Collapse
|
17
|
GİRGİN E, ÖNGÜN YILMAZ H. Association between Omega-6 and Omega-3 Polyunsaturated Fatty Acids Intake and <i>IL-6</i> G(-174)C Polymorphism with Hs-CRP Level in Healthy Subjects. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2020.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Yang X, Zhi X, Song Z, Wang G, Zhao X, Chi S, Tan B. Flesh quality of hybrid grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) fed with hydrolyzed porcine mucosa-supplemented low fishmeal diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:114-124. [PMID: 34977381 PMCID: PMC8669251 DOI: 10.1016/j.aninu.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
Iso-nitrogenous and iso-lipidic diets containing 0%, 3%, 6%, 9%, and 12% hydrolyzed porcine mucosa (namely, HPM0, HPM3, HPM6, HPM9, and HPM12) were prepared to evaluate their effects on the growth performance, muscle nutrition composition, texture property, and gene expression related to muscle growth of hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Groupers were fed to apparent satiation at 08:00 and 16:00 every day for a total of 56 days. It was found that the weight gain percentage in the HPM0, HPM3, and HPM6 groups did not differ (P > 0.05). The cooking loss and drip loss of the dorsal muscle in the HPM3 group were lower than those in the HPM6 and HPM9 groups (P < 0.05). The hardness and chewiness of the dorsal muscle in the HPM3 group were higher than those in the HPM0, HPM9, and HPM12 groups (P < 0.05). The gumminess in the HPM3 group was higher than that in the HPM9 and HPM12 groups (P < 0.05). The total essential amino acid content of the dorsal muscle in the HPM12 group was higher than that in the HPM0 group (P < 0.05). The contents of total n-3 polyunsaturated fatty acid and total n-3 highly unsaturated fatty acid, as well as the ratio of n-3/n-6 polyunsaturated fatty acid in the dorsal muscle was higher in the HPM0 group than in all other groups (P < 0.05). The relative expressions of gene myogenic factor 5, myocyte enhancer factor 2c, myocyte enhancer factor 2a, myosin heavy chain, transforming growth factor-beta 1 (TGF-β1), and follistatin (FST) were the highest in the dorsal muscle of the HPM3 group. The results indicated that the growth performance of hybrid grouper fed a diet with 6% HPM and 27% fish meal was as good as that of the HPM0 group. When fish ingested a diet containing 3% HPM, the expression of genes TGF-β1 and FST involved in muscle growth were upregulated, and then the muscle quality related to hardness and chewiness were improved. An appropriate amount of HPM could be better used in grouper feed.
Collapse
Affiliation(s)
- Xuanyi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Xinyan Zhi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziling Song
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guanghui Wang
- Yichang Huatai Biological Technology Co., Ltd., Yichang 443500, China
| | - Xumin Zhao
- Yichang Huatai Biological Technology Co., Ltd., Yichang 443500, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
19
|
Tański W, Świątoniowska-Lonc N, Tabin M, Jankowska-Polańska B. The Relationship between Fatty Acids and the Development, Course and Treatment of Rheumatoid Arthritis. Nutrients 2022; 14:nu14051030. [PMID: 35268002 PMCID: PMC8912339 DOI: 10.3390/nu14051030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
For this systematic review, a search of the relevant literature was conducted in the EMBASE and PubMed databases. We used the following terms: ‘rheumatoid arthritis’ in conjunction with ‘fatty acid’. The following inclusion criteria had to be satisfied for the studies to be included in the analysis: an RCT/observational/cohort study published in English. A total of seventy-one studies were analysed. The presented systematic review of the available data indicates that increased consumption of omega-3 fatty acids (FAs) may have a beneficial effect on human health by decreasing pain and disease activity in patients with RA. The beneficial effect of unsaturated FA on the clinical parameters of RA was demonstrated in all 71 studies analysed. The content of omega-3 FAs in the diet and the consumption of fish, which are their main source, may contribute to a reduced incidence of RA. FAs are an essential component in the synthesis of eicosanoids that exhibit anti-inflammatory properties. Due to the documented positive influence of unsaturated FAs on treatment outcomes, the use of a diet rich in long-chain unsaturated FAs should be the standard of care, along with pharmacotherapy, in the treatment of RA patients. An important element in the control of the treatment process should be the routine assessment of the quality of life of RA patients.
Collapse
Affiliation(s)
- Wojciech Tański
- Department of Internal Medicine, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Natalia Świątoniowska-Lonc
- Center for Research and Innovation, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
- Correspondence:
| | - Mateusz Tabin
- Clinical Endocrinology Department, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | | |
Collapse
|
20
|
Holen E, Chen M, Fjelldal PG, Skjærven K, Sissener NH, Remø S, Prabhu AJ, Hamre K, Vikeså V, Subramanian S, Espe M. Tailoring freshwater diets towards boosted immunity and pancreas disease infection robustness in Atlantic salmon post smolts. FISH & SHELLFISH IMMUNOLOGY 2022; 120:377-391. [PMID: 34808357 DOI: 10.1016/j.fsi.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of the current study was to investigate how freshwater diets impact on immunity in Atlantic salmon smolts in freshwater, during transfer to seawater and in post smolts during the seawater stage with and without pancreas disease (PD) infection. Three specific freshwater diets were prepared: (i) A diet similar in composition to commercial salmon freshwater diets (Standard diet); (ii) A diet composed of vegetable oils (rapeseed, palm and linseed oils) mimicking the fat composition in aquatic insects - the natural diet of wild salmon in freshwater (Fatty acid diet); (iii) A diet enriched with possible immune modulating amino acids including dl-methionine, l-lysine, l-threonine and taurine (Amino acid diet). After seawater transfer, all fish were fed the same commercial diet. Head kidneys were extracted, and their leukocytes isolated from smolts right before transfer to seawater, from post smolts one and six weeks after transfer to seawater, and from post smolts in seawater after 8 weeks of ongoing PD infection. In addition, to provoke bacterial or virus induced inflammation in vitro, the individual leukocyte suspension from all fish were stimulated by lipopolysaccharide (LPS) or polyinosinic acid: polycytidylic acid (PIC). The transfer of smolts from fresh-to seawater changed the transcription of several types of genes. Particularly in isolates from fish fed the Standard or Fatty acid diet in freshwater, overall gene transcription (IL-1β, CD83, INF-γ, cox2, cd36, MGAT2, catalase) declined. However, the Amino acid diet stimulated the LPS induced gene transcription of IL-1β, CD83, Cox2, and INF-γ at this stage. In freshwater smolts, PIC stimulated leukocytes showed higher transcription level of Mx and viperin in the Fatty acid and Amino acid diet groups compared to the Standard diet group. In seawater post smolts, Mx and viperin responded similarly to PIC challenge in all diet groups. Furthermore, leukocytes isolated from PD infected fish, continued responding to PIC, regardless of freshwater diet.
Collapse
Affiliation(s)
- E Holen
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway.
| | - M Chen
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway; Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - P G Fjelldal
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - K Skjærven
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - N H Sissener
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - S Remø
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - A J Prabhu
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - K Hamre
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - V Vikeså
- Skretting ARC, Sjøhagen 3, 4026, Stavanger, Norway
| | | | - M Espe
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| |
Collapse
|
21
|
Ibrahim Alhazmi A, Saleh Al-Sowayan N. Treatment and Prevention of Viral Infections through Nutrition and Strengthened Immunity: The COVID-19 Pandemic Case Scenario. Pak J Biol Sci 2022; 25:106-111. [PMID: 35233998 DOI: 10.3923/pjbs.2022.106.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cause of the ongoing massive pandemic, the SARS-CoV-2 virus, originated in Wuhan, China and spread rapidly worldwide. The pandemic has helped identify the difficulties associated with devising best practices necessary to augment the immune system to prevent the contraction of viral infections, as well as enhance the process of recovery if an infection does occur. Medical scholars and researchers have been actively assessing dietary aspects that may improve the health of immune systems. It is already well-established that malnourishment can lead to increased oxidative stress and cause inflammation. Such conditions weaken the immune system and make people vulnerable to bacterial and infectious illnesses. In the current scenario, scientists have confirmed that some dietary components can enhance immunity in COVID-19 patients. Empirical evidence suggested that the condition of COVID-19 patients is largely attributable to increased metabolic rates that drain the body's glucose supplies. This highlights the necessity of improving the quality of enteral nutrition provided to COVID-19 patients. Despite being dietarily sensitive, these individuals require regular monitoring and assessments to discern their nutritional deficiencies. In general, the diet should include foodstuffs with anti-inflammatory properties and micronutrients, including polyphenols, carotenoids, vitamin C, vitamin E, etc. Considering nutrition in the overall treatment provided will greatly fortify the immunity of COVID-19 patients and increase the probability of survival.
Collapse
|
22
|
Gustafsson HC, Dunn GA, Mitchell AJ, Holton KF, Loftis JM, Nigg JT, Sullivan EL. The association between heightened ADHD symptoms and cytokine and fatty acid concentrations during pregnancy. Front Psychiatry 2022; 13:855265. [PMID: 35935444 PMCID: PMC9353213 DOI: 10.3389/fpsyt.2022.855265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Previous research conducted with samples of children suggest that individuals with attention-deficit/hyperactivity disorder (ADHD) have altered fatty acid concentrations and may have increased systemic inflammation. Whether these differences are also apparent in other populations of individuals with heightened ADHD symptoms (e.g., pregnant adults) is unknown. The goal of the current study was to examine whether there are ADHD-associated differences in polyunsaturated fatty acid concentrations or pro-inflammatory cytokine concentrations during pregnancy, a developmental period when fatty acid concentrations and systemic inflammation have implications for the health of both the pregnant person and the developing child. We hypothesized that plasma levels of the ratio of omega-6s to omega-3s (n-6:n-3) and plasma inflammatory cytokine levels would be higher in individuals with heightened ADHD symptoms, consistent with previous findings in children with ADHD. METHODS Data (N = 68) came from a prospective study of pregnant community volunteers who were oversampled for ADHD symptoms. During the 3rd trimester, plasma concentrations of fatty acids and the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were assessed. Dietary intake was examined in the 3rd trimester using three 24-h recalls conducted by trained dietitians and by examining plasma levels of conjugated linoleic acid (n-6) and α-linolenic acid (n-3), essential fatty acids that must come from dietary intake. RESULTS The group with heightened ADHD symptoms had higher n-6:n-3s (β = 0.30, p < 0.01) and higher TNF-α concentrations (β = 0.35, p < 0.001) relative to controls. There were no group differences in dietary variables, as assessed by self-report and via plasma concentrations of essential fatty acids. IL-6 was not reliably associated with ADHD status in this sample. CONCLUSION Pregnant individuals with ADHD, on average, had higher plasma n-6:n-3s and higher TNF-α concentrations relative to controls. A difference was not detected in their dietary intake of fatty acids or other relevant nutrients. Though these null findings are inconclusive, they are consistent with the hypothesis that ADHD-associated differences in plasma fatty acid concentrations are the result of ADHD-associated differences in fatty acid metabolism, rather than simply differences in dietary intake.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kathleen F Holton
- Departments of Health Studies and Neuroscience, American University, Washington, DC, United States
| | - Jennifer M Loftis
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,VA Portland Health Care System, Portland, OR, United States
| | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| |
Collapse
|
23
|
Khalili L, Valdes-Ramos R, Harbige LS. Effect of n-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites 2021; 11:metabo11110742. [PMID: 34822400 PMCID: PMC8620218 DOI: 10.3390/metabo11110742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022] Open
Abstract
Beneficial effects of n-3 fatty acids on metabolic biomarkers in patients with type 2 diabetes (T2DM) has been reported. The objectives of this current research were to investigate the effects of n-3 supplementation on metabolic factors, weight, and body mass index (BMI) in patients with type 2 diabetes mellitus (T2DM), using a meta-analysis of randomized, controlled trials (RCTs). Online databases PubMed, Embase, Web of Science, and Science Direct were searched until 2021 to identify eligible articles. Thirty trials were included. The results showed that n-3 consumption can significantly reduce glycemic factors including fasting blood sugar (FBS) (−0.36 (−0.71 to −0.01)), glycated hemoglobulin (HbA1c) (−0.74 (−1.13 to −0.35)), and homeostatic model assessment of insulin resistance (HOMA.IR) (−0.58 (−1.13 to −0.03)). Furthermore, significant improvement in lipid profile including triglycerides (TG) (−0.27 (−0.37 to −0.18)), total cholesterol (−0.60 (−0.88 to −0.32)), low density lipoprotein (LDL) (−0.54 (−0.85 to −0.23)), and high-density lipoprotein (HDL) (0.60 (0.23 to 0.96)) levels were found in the present meta-analysis. The reduction in the inflammatory marker’s tumor necrosis factor-alpha (TNF-α) (−0.13 (−0.75 to 0.48)) and c-reactive protein (CRP) (−0.72 (−1.70 to 0.27)), as well as weight (−0.09 (−0.24 to 0.07)) and BMI (−0.13 (−0.29 to 0.02)) were not statistically significant. Furthermore, the findings revealed that the optimal dose and duration of n-3 consumption for patients with T2DM is 1000–2000 mg/d for more than 8 weeks. The present meta-analysis and review reveals that n-3 supplementation can improve glycemic factors and lipid profile in patients with T2DM. Furthermore, n-3 supplementation may provide beneficial effects on inflammatory markers and body weight if used at the appropriate dose and duration.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (L.K.); (L.S.H.)
| | - Roxana Valdes-Ramos
- Lider del Cuerpo Academico de Nutricion y Salud, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan, esq. Jesus Carranza, Col. Moderna de la Cruz, Toluca 52180, Mexico;
| | - Laurence S. Harbige
- Lipidomics and Nutrition Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Correspondence: (L.K.); (L.S.H.)
| |
Collapse
|
24
|
Abrahamsen F, Reddy G, Abebe W, Gurung N. Effect of Varying Levels of Hempseed Meal Supplementation on Humoral and Cell-Mediated Immune Responses of Goats. Animals (Basel) 2021; 11:ani11102764. [PMID: 34679786 PMCID: PMC8532981 DOI: 10.3390/ani11102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effect of varying levels of hempseed meal supplementation on antibody and cell-mediated immune responses, as well as the expression of some of the important immunoregulatory cytokines. Treatments consisted of hempseed meal supplementation at 0 (control), 10, 20, and 30% of the total diet. Goats were randomly assigned to one of the four treatments n = 10. Cell-mediated immune response was evaluated on day 59 of the feeding period by measuring skinfold thickness at 24 h following intradermal injection of phytohemagglutinin. A significant increase in skinfold thickness was observed with increasing levels of supplementation as compared to that of the control group. Serum antibody titers to chicken ovalbumin were not significantly different between treatment groups. Cytokine concentrations of IL-6 increased linearly with increasing level of supplementation (p < 0.05), contrarily to the linear decrease that was observed for TNF-α (p < 0.05). Although IL-2 tended to increase with the 10 and 30% levels of supplementation (p < 0.07), the result was not significant, and no significant differences were obtained with respect to IL-4 concentrations. Cytokine gene expression values measured by RT-PCR, however, demonstrated some significant differences. HSM supplementation had no significant effect on the expression of IL-2 or IL-6. However, significant differences were observed with the 30% supplementation for IL-4 and TNF-α as compared to that of the control group (p < 0.05). IL-4 was down regulated for the 10 and 20% treatment groups but was upregulated for the 30% treatment group. TNF-α was downregulated in the 10% but upregulated for the 20 and 30% treatment groups. No significant differences were observed for the serum cortisol concentration or white blood cell counts. These results suggested that hempseed meal supplementation may improve cell-mediated immune response while having no effect on antibody-mediated immune response. However, more research needs to be conducted to determine the most efficacious inclusion rate.
Collapse
Affiliation(s)
- Frank Abrahamsen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Gopal Reddy
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| | - Woubit Abebe
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Nar Gurung
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| |
Collapse
|
25
|
Zhao P, Zhang X, Jin Y, Xu L. Long‐term stability of blends of sesame oil or soybean oil with tuna oil under daily use conditions. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Zhao
- School of Biological and Chemical Engineering Qingdao Technology College Qingdao Shandong China
| | - Xin Zhang
- Qingdao Sparta Analysis & Testing Co., Ltd. Qingdao Shandong China
| | - Yan Jin
- Novasana (Taicang) Bioscience Co., Ltd. Suzhou Jiangsu China
| | - Luyan Xu
- Department of Quality Control Bohi Agricultural Science Co., Ltd. Qingdao Shandong China
| |
Collapse
|
26
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
Affiliation(s)
| | | | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin, Austin, TX, USA,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’Granda- Ospedale Maggiore Policlinico, Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus–French National Institute of Health and Medical Research, Rennes, France
| | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands,Department of Pediatrics, University Medical Center, Groningen, The Netherlands
| | - Berthold V Koletzko
- Ludwig-Maximilians-Universität Munich, Department of Paediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Beverly Muhlhausler
- Nutrition and Health Program, Health and Biosecurity, CSIRO, Adelaide, Australia,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Kobayashi Y, Ohfuji S, Kondo K, Fukushima W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y, Hirota Y. Association of Dietary Fatty Acid Intake With the Development of Ulcerative Colitis: A Multicenter Case-Control Study in Japan. Inflamm Bowel Dis 2021; 27:617-628. [PMID: 32507894 DOI: 10.1093/ibd/izaa140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dietary fatty acids can affect chronic intestinal inflammation and have been reported to be associated with the development of ulcerative colitis (UC), mainly in Europe and the United States. The association of dietary intake of fatty acids and the risk for UC was investigated in Japan, where dietary habits lead to lower meat and higher fish consumption than in Western countries. METHODS A multicenter case-control study of 83 newly diagnosed patients with UC and 128 age- and sex-matched control patients in the hospital was conducted from 2008 to 2014. Dietary fatty acid intake in the preceding 1 month and 1 year were examined using a self-administered diet history questionnaire that was developed for Japanese people. RESULTS About 92% of patients had experienced the first symptoms of UC within the preceding 11 months. Regarding dietary habits in the preceding year, the risk for UC was significantly decreased in patients who consumed n-6/n-3 polyunsaturated fatty acids at a ratio of ≥5.2 (odds ratio [OR] = 0.26; 95% confidence interval [CI], 0.10-0.68). Conversely, an increased risk for UC was observed in the highest tertiles of consumption of docosahexaenoic acid (OR = 7.22; 95% CI, 2.09-24.95), eicosapentaenoic acid (OR = 6.91; 95% CI, 1.88-25.44), and docosapentaenoic acid (OR = 4.83; 95% CI, 1.56-14.95). CONCLUSIONS The ratio of n-6/n-3 polyunsaturated fatty acid intake was associated with a decreased risk for UC development. However, high intakes of docosahexaenoic acid, eicosapentaenoic acid, and docosapentaenoic acid may increase the risk for UC development.
Collapse
Affiliation(s)
- Yumie Kobayashi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoko Ohfuji
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kyoko Kondo
- Administration Division, Osaka City University Hospital, Osaka, Japan
| | - Wakaba Fukushima
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Sakura Medical Center, Toho University, Chiba, Japan
| | - Yoshio Hirota
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan.,College of Healthcare Management, Fukuoka, Japan
| | | |
Collapse
|
28
|
Abuknesha NR, Ibrahim F, Mohamed IN, Salih M, Daak AA, Elbashir MI, Ghebremeskel K. Plasma fatty acid abnormality in Sudanese drug-resistant epileptic patients. Prostaglandins Leukot Essent Fatty Acids 2021; 167:102271. [PMID: 33798873 DOI: 10.1016/j.plefa.2021.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Intervention studies have demonstrated that the n-3 fatty acids, docosahexaenoic and eicosapentaenoic acids, ameliorate seizure frequency in patients with drug-resistant epilepsy (DRE). There is a scarcity of fatty acid status of patients with epilepsy. We have investigated blood fatty acids of patients with DRE and assessed the indices of elongase and desaturase activities. DRE patients (n = 83) and healthy controls (n = 31) were recruited form Soba University Hospital Neurology Referral Clinic and Ibn-Auf paediatric Teaching Hospital Neurology Referral Clinic, Khartoum, Sudan. Fatty acid composition of plasma total lipids, phosphatidylcholine and neutral lipids were analysed. The patients compared with their healthy counterparts had higher levels of C14:0, C16:0, C18:0, C20:0, C22:0 (p<0.05) and C24:0, and total saturates (p<0.05). Similarly, the proportions of C16:1n-7, 18:1n-7, C18:1n-9, C20:1n-9, C24:1n-9 and total monounsaturated fatty acids; p<0.005) were higher in the drug-resistant patients. Conversely, the patients had lower levels of n-6 (C18:2n-6, C18:3n-6, C20:4n-6, n-6 metabolites and total n-6; p<0.005 and C20:2n-6 and C20:3n-6; p<0.05) and n-3 (C20:5n-3, C22:5n-3, C22:6n-3, ∑EPA and DHA, n-3 metabolites and total n-3; p<0.05) fatty acids. Indices of elongase and desaturase activities - The plasma total lipid ratios of C16:0/C14:0 (p = 0.001), C18:0/C16:0 (p = 0.001), C16:1n-7/C16:0 (p = 0.027), C18:1n-9/C18:0 (p = 0.022) and C22:4n-6/C20:4n-6 (p = 0.008) were higher and C18:3n-6/C18:2n-6 (p = 0.05), C20:4n-6/C20:3n-6 (p = 0.032) and C20:4n-6/C18:2n-6 (p>0.05) lower in the patients with drug-resistant epilepsy than in the healthy control subjects. DRE is associated with blood fatty acid perturbation and abnormal activities of long-chain fatty acid elongase (ELOVL-6), stearoyl-coenzyme A desaturase-1 (SCD-1), delta 6-fatty acid desaturase (D6D) and delta 5 fatty acid desaturase (D5D). N-3 fatty acids are known to ameliorate seizures frequency and dampen neuronal hyperexcitability. Therefore, patients with DRE should be regularly monitored and, if necessary, supplemented with n-3 fatty acids.
Collapse
Affiliation(s)
- N R Abuknesha
- Lipidomics and Nutrition Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Fas Ibrahim
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - I N Mohamed
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - Mam Salih
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - A A Daak
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - M I Elbashir
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
29
|
Candiloro F, Borioli V, Borsellino G, Picozza M, Pellini R, Cereda E, Gargano F, Caraccia M, Nardi MT, Bellu L, Tondulli L, Imarisio I, Pozzi E, Pedrazzoli P, Caccialanza R, Battistini L. Influence of different lipid emulsions on specific immune cell functions in head and neck cancer patients receiving supplemental parenteral nutrition: An exploratory analysis. Nutrition 2021; 86:111178. [PMID: 33631618 DOI: 10.1016/j.nut.2021.111178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The effect of diet on immune responses is an area of intense investigation. Dietary lipids have been shown to differently influence and fine-tune the reactivity of immune cell subsets, thus potentially affecting clinical outcomes. Patients with head and neck squamous cell carcinoma face malnutrition, due to swallowing impairment related to the tumor site or to treatment sequalae, and may need supplemental parenteral nutrition (SPN) in addition to oral feeding when enteral nutrition is not feasible. Additionally, immune depression is a well-known complication in these patients. Parenteral nutrition (PN) bags contain amino acids, minerals, electrolytes and mostly lipids that provide calories in a concentrated form and are enriched with essential fatty acids. The aim of this study was to investigate multiple parameters of the immune responses in a cohort of patients with head and neck squamous cell carcinoma undergoing supplemental PN with bags enriched in ω-3 or ω-9 and ω-6 fatty acids. METHODS To our knowledge, this was the first exploratory study to investigate the effects of two different PN lipid emulsions on specific immune cells function of patients with advanced head and neck squamous carcinoma. ω-3-enriched fish-oil-based- and ω-6- and ω-9-enriched olive-oil-basedSPN was administered to two groups of patients for 1 wk in the context of an observational multicentric study. Polychromatic flow cytometry was used to investigate multiple subsets of leukocytes, with a special focus on cellular populations endowed with antitumor activity. RESULTS Patients treated with olive-oil-based PN showed an increase in the function of the innate (natural killer cells and monocytes) and adaptive (both CD4 and CD8 cells) arms of the immune response. CONCLUSION An increase in the function of the innate and adaptive arms of the immune response may favor antitumoral responses.
Collapse
Affiliation(s)
| | - Valeria Borioli
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | | | - Mario Picozza
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | | | - Marilisa Caraccia
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Maria Teresa Nardi
- Nutritional Support Unit and Department of Clinical & Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Italy
| | - Luisa Bellu
- Nutritional Support Unit and Department of Clinical & Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Italy
| | - Luca Tondulli
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata (AOUI), Italy
| | - Ilaria Imarisio
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Italy; Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
30
|
Luvián-Morales J, Varela-Castillo FO, Flores-Cisneros L, Cetina-Pérez L, Castro-Eguiluz D. Functional foods modulating inflammation and metabolism in chronic diseases: a systematic review. Crit Rev Food Sci Nutr 2021; 62:4371-4392. [PMID: 33506690 DOI: 10.1080/10408398.2021.1875189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic diseases are responsible for approximately 71% global deaths. These are characterized by chronic low-grade inflammation and metabolic alterations. "Functional foods" have been attributed with anti-inflammatory properties, demonstrated in cell lines and murine models; however, studies in humans are inconclusive. The purpose of this systematic review is to identify clinical trials that analyzed changes in inflammatory and metabolic mediators, in response to consumption of specific functional foods. A total of 3581 trials were screened and 88 were included for this review. Foods identified to regulate inflammation included cranberries, grapes, pomegranate, strawberries, wheat, whole grain products, low fat dairy products, yogurt, green tea, cardamom, turmeric, soy foods, almonds, chia seeds, flaxseed, pistachios, algae oil, flaxseed oil and grape seed oil. Clinical trials that focus on a dietary pattern rich in functional foods are necessary to explore if the additive effect of these foods lead to more clinically relevant outcomes.
Collapse
Affiliation(s)
- Julissa Luvián-Morales
- Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico.,Department of Postgraduate Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Laura Flores-Cisneros
- Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico.,Department of Postgraduate Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucely Cetina-Pérez
- Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Denisse Castro-Eguiluz
- Consejo Nacional de Ciencia y Tecnología (CONACyT) - Department of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
31
|
Conway MC, McSorley EM, Mulhern MS, Strain JJ, van Wijngaarden E, Yeates AJ. Influence of fatty acid desaturase (FADS) genotype on maternal and child polyunsaturated fatty acids (PUFA) status and child health outcomes: a systematic review. Nutr Rev 2020; 78:627-646. [PMID: 31943072 DOI: 10.1093/nutrit/nuz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Polyunsaturated fatty acids (PUFA) are important during pregnancy for fetal development and child health outcomes. The fatty acid desaturase (FADS) genes also influence PUFA status, with the FADS genes controlling how much product (eg, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid) is metabolized from the precursor molecules linoleic acid and α-linolenic acid. OBJECTIVE The current review discusses the influence of FADS genotype on PUFA status of pregnant women, breast milk, and children, and also how FADS may influence child health outcomes. DATA SOURCES The Ovid Medline, Scopus, Embase, Cochrane Library, CINAHL Plus, PubMed and Web of Science databases were searched from their inception to September 2018. DATA EXTRACTION Eligible studies reported FADS genotype and blood concentrations of PUFA during pregnancy, in childhood, breast milk concentrations of PUFA or child health outcomes. DATA ANALYSIS In pregnant and lactating women, minor allele carriers have higher concentrations of linoleic acid and α-linolenic acid, and lower concentrations of arachidonic acid, in blood and breast milk, respectively. In children, FADS genotype influences PUFA status in the same manner and may impact child outcomes such as cognition and allergies; however, the direction of effects for the evidence to date is not consistent. CONCLUSION Further studies are needed to further investigate associations between FADS and outcomes, as well as the diet-gene interaction.
Collapse
Affiliation(s)
- Marie C Conway
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Edwin van Wijngaarden
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland. E. van Wijngaarden is with the School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
32
|
Wang Y, Cai M, Hua D, Zhang F, Jiang L, Zhao Y, Wang H, Nan X, Xiong B. Metabolomics reveals effects of rumen-protected glucose on metabolism of dairy cows in early lactation. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Hahn KE, Dahms I, Butt CM, Salem N, Grimshaw V, Bailey E, Fleming SA, Smith BN, Dilger RN. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front Nutr 2020; 7:592364. [PMID: 33195377 PMCID: PMC7658628 DOI: 10.3389/fnut.2020.592364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA) profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants that are more like those observed in breastfed infants. Consequently, ARA and DHA have been historically added together to infant formula. This study investigated the impact of ARA or DHA supplementation alone or in combination on tissue FA incorporation, immune responses, and neurodevelopment in the young pig. Methods: Male pigs (N = 48 total) received one of four dietary treatments from postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80). Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis. Blood was collected for T cell immunophenotyping and to quantify a panel of immune outcomes. Myelin thickness in the corpus callosum was measured by transmission electron microscopy and pig movement was measured by actigraphy. Results: There were no differences in formula intake or growth between dietary groups. DHA supplementation increased brain DHA, but decreased ARA, compared with all other groups. ARA supplementation increased brain ARA compared with all other groups but did not affect brain DHA. Combined supplementation increased brain DHA levels but did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had the highest. No differences were observed for immune or myelination outcomes. Conclusion: Supplementation with ARA and DHA did not differentially affect immune responses, but ARA levels in RBC and PFC were reduced when DHA was provided without ARA. Supplementation of either ARA or DHA alone induced differences in time spent asleep, and ARA inclusion increased general activity. Therefore, the current data support the combined supplementation with both ARA and DHA in infant formula and raise questions regarding the safety and nutritional suitability of ARA or DHA supplementation individually.
Collapse
Affiliation(s)
- Kaylee E Hahn
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States
| | - Irina Dahms
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD, United States
| | | | - Eileen Bailey
- DSM Nutritional Products, Columbia, MD, United States
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Brooke N Smith
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
34
|
Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy. Nutrients 2020; 12:nu12092761. [PMID: 32927766 PMCID: PMC7551002 DOI: 10.3390/nu12092761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
We studied the influence of experimentally induced DM1, in combination with different dietary n6:n3 polyunsaturated fatty acid (PUFA) ratios on different types of nerve fibers in rat myocardium, in order to reveal whether protective/unfavorable effects of different PUFAs on myocardial function in diabetic patients could be a (partial) repercussion of their effect on the changes in cardiac innervation. The control group (c) and diabetic group (stz) were fed with an n6/n3 ratio of ≈7; the diet of the stz+n6 group had an n6/n3 ratio ≈60, while the diet for the stz+DHA group contained 2.5% of fish oil (containing 16% eicosapentaenoic acid—EPA and 19% docosahexaenoic acid—DHA), n6/n3 ratio of ≈1. DM1 was induced by i.p. injection of streptozotocin (55 mg/kg) and rats were euthanized 30 days after induction. Immunohistochemistry was used for the detection and quantification of different types of neuronal fibers in the cardiac septum. We found changes in cardiac innervations characteristics for the initial phase of experimental DM1, which manifested as an increase in total number and area density of all neuronal fibers, measured by Pgp9.5 immunoreactivity. By detailed analysis, we found that this increase consisted mostly of heavy myelinated NF200 immunoreactive fibers and TH immunoreactive sympathetic fibers, while the density of ChAT immunoreactive parasympathetic fibers decreased. In the deep (middle) part of the myocardium, where rare fibers (of all studied types) were found, significant differences were not found. Surprisingly, we found a more consistent protective effect of n6 PUFAs, in comparison to n3 PUFAs supplementation. These results may provide a better understanding of the potential impacts of different PUFA ratios in the diet of diabetic patients on cardiac innervation and genesis and outcome of diabetic autonomic cardiomyopathy.
Collapse
|
35
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
36
|
Dietary Supplementation with Omega-6 LC-PUFA-Rich Microalgae Regulates Mucosal Immune Response and Promotes Microbial Diversity in the Zebrafish Gut. BIOLOGY 2020; 9:biology9060119. [PMID: 32517017 PMCID: PMC7344589 DOI: 10.3390/biology9060119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The effect of dietary omega-6 long-chain polyunsaturated fatty acid (LC-PUFA) on host microbiome and gut associated immune function in fish is unexplored. The effect of dietary supplementation with the omega-6 LC-PUFA-rich microalga Lobosphaera incisa wild type (WT) and its delta-5 desaturase mutant (MUT), rich in arachidonic-acid and dihomo-gamma-linolenic acid (DGLA), respectively, on intestinal gene expression and microbial diversity was analyzed in zebrafish. For 1 month, fish were fed diets supplemented with broken biomass at 7.5% and 15% (w/w) of the two L. incisa strains and a control nonsupplemented commercial diet. Dietary supplementation resulted in elevated expression of genes related to arachidonic acid metabolism-cyclooxygenase 2 (cox-2), lipoxygenase 1(lox-1), anti-inflammatory cytokine-interleukin 10 (il-10), immune defense-lysozyme (lys), intestinal alkaline phosphatase (iap), complement (c3b), and antioxidants-catalase (cat), glutathione peroxidase (gpx). Microbiome analysis of the gut showed higher diversity indices for microbial communities in fish that were fed the supplemented diets compared to controls. Different treatment groups shared 237 operational taxonomic units (OTUs) that corresponded to the core microbiome, and unique OTUs were evident in different dietary groups. Overall, the zebrafish gut microbiome was dominated by the phylum Fusobacteria and Proteobacteria (averaging 38.4% and 34.6%, respectively), followed by Bacteroidetes (12.9%), Tenericutes, Planctomycetes, and Actinobacteria (at 3.1–1.3%). Significant interaction between some of the immune-related genes and microbial community was demonstrated.
Collapse
|
37
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|
38
|
Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102023. [PMID: 31699594 DOI: 10.1016/j.plefa.2019.102023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lipids in human milk (HM) provide the majority of energy for developing infants, as well as crucial essential fatty acids (FA). The FA composition of HM is highly variable and influenced by multiple factors. We sought to increase understanding of the variation in HMFA profiles and their development over the course of lactation, and after term and preterm delivery, using a pooled data analysis. OBJECTIVE To review the literature and perform a pooled data analysis to qualitatively describe an extensive FA profile (36 FAs) in term and preterm colostrum, transitional - and mature milk up to 60 days postpartum. DESIGN A Medline search was conducted for HMFA profile data following term or preterm delivery. The search was confined to English language papers published between January 1980 and August 2018. Studies reporting original data, extensive FA profiles in HM from healthy mothers were included. Weighted least squares (WLS) means were calculated from the pooled data using random or fixed effect models. RESULTS Our pooled data analysis included data from 55 studies worldwide, for a total of 4374 term milk samples and 1017 preterm milk samples, providing WLS means for 36 FAs. Patterns in both term and preterm milk were apparent throughout lactation for some FAs: The most abundant FAs (palmitic, linoleic and oleic acid) remained stable over time, whereas several long-chain polyunsaturated FAs (including ARA and DHA) seemed to decrease and short- and medium-chain FAs increased over time. CONCLUSIONS High heterogeneity between individual studies was observed for the reported levels of some FAs, whereas other FAs were remarkably consistent between studies. Our pooled data suggests that specific FA categories fluctuate according to distinct patterns over the course of lactation; many of these patterns are comparable between term and preterm milk.
Collapse
Affiliation(s)
- L M Floris
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| | - B Stahl
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | | | - I C Teller
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
39
|
Huang M, Kelly RS, Kachroo P, Chu SH, Lee-Sarwar K, Chawes BL, Bisgaard H, Litonjua AA, Weiss ST, Lasky-Su J. Plasma 25-Hydroxyvitamin D Concentrations are Associated with Polyunsaturated Fatty Acid Metabolites in Young Children: Results from the Vitamin D Antenatal Asthma Reduction Trial. Metabolites 2020; 10:E151. [PMID: 32295265 PMCID: PMC7240965 DOI: 10.3390/metabo10040151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin D deficiency contributes to a multitude of health conditions, but its biological mechanisms are not adequately understood. Untargeted metabolomics offers the opportunity to comprehensively examine the metabolic profile associated with variations in vitamin D concentrations. The objective of the current analysis was to identify metabolites and metabolic pathways associated with plasma 25-hydroxyvitamin D [25(OH)D] concentrations. The current study included children of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial, who had 25(OH)D and global metabolomics data at age 1 and 3 years. We assessed the cross-sectional associations between individual metabolites and 25(OH)D using linear regression adjusting for confounding factors. Twelve metabolites were significantly associated with plasma 25(OH)D concentrations at both age 1 and 3 after correction for multiple comparisons, including three members of the n-6 polyunsaturated fatty acid (PUFA) metabolism pathway (linoleate, arachidonate, and docosapentaenoate) inversely associated with 25(OH)D. These PUFAs along with four other significant metabolites were replicated in the independent Childhood Asthma Management Program (CAMP) cohort. Both vitamin D and n-6 PUFAs are involved in inflammatory processes, and evidence from cell and animal studies demonstrate a plausible biological mechanism where the active form of 25(OH)D may influence n-6 PUFA metabolism. These relationships warrant further investigation in other populations.
Collapse
Affiliation(s)
- Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| | - Su H. Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bo L. Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark; (B.L.C.); (H.B.)
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark; (B.L.C.); (H.B.)
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (M.H.); (R.S.K.); (P.K.); (S.H.C.); (K.L.-S.); (S.T.W.)
| |
Collapse
|
40
|
Harauma A, Sueyasu T, Tokuda H, Yasuda H, Hoshi Y, Kaneda Y, Rogi T, Shibata H, Nakamura MT, Moriguchi T. Changes in behavior and fatty acid composition induced by long-term reduction in murine Δ6-desaturation activity. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102079. [PMID: 32145668 DOI: 10.1016/j.plefa.2020.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in biological regulation. In our previous study using mice deficient in Δ6 desaturase (D6D), we reported that ARA is required for body growth, while DHA is necessary for functional development. In mammals, ARA and DHA are supplied directly or by synthesis from linoleic acid (LA) and α-linolenic acid (ALA). However, as desaturase enzyme activity is immature or low in newborns, and humans with minor alleles of the gene encoding desaturase, respectively, they require dietary supplementation with ARA and DHA. To investigate how the body reacts to a long-term reduction in fatty acid synthesis, we measured behavioral changes and fatty acid composition in mice heterozygous for the D6D null mutation with reduced D6D activity fed a diet containing only LA and ALA as PUFAs. During the growth-maturity period, heterozygous mice showed a slightly change in interest and curiosity compared with the wild-type group. ARA levels were decreased in the brain and liver in the heterozygous group, especially during the growth-maturity period, whereas DHA levels were decreased in the liver only in the old age period, suggesting that there are differences in the synthesis of and demand for ARA and DHA during life. For newborns, and humans with minor alleles with low desaturase activity, direct ARA intake is particularly important during the growth-maturity period, but they may need to be supplemented with DHA in the old age period. Further research is needed to determine the optimal intake and duration of these fatty acids.
Collapse
Affiliation(s)
- Akiko Harauma
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toshiaki Sueyasu
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hidemi Yasuda
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Hoshi
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yoshihisa Kaneda
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd. 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, United States
| | - Toru Moriguchi
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
41
|
He C, Hao R, Deng Y, Yang C, Du X. Response of pearl oyster Pinctada fucata martensii to allograft-induced stress from lipid metabolism. FISH & SHELLFISH IMMUNOLOGY 2020; 98:1001-1007. [PMID: 31734283 DOI: 10.1016/j.fsi.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The pearl oyster, Pinctada fucata martensii, produces high-quality pearls. During pearl production, excess immune and inflammatory response after transplantation will lead to nucleus rejection, pearl sac formation failure, and death of the host pearl oyster. The hemocyte transcriptome and fatty acid (FA) contents in the adductor muscle before and after transplantation were analyzed to investigate the response of pearl oyster P. f. martensii to allograft-induced stress from lipid metabolism. The hemocyte transcriptome analysis detected 193 lipid metabolism-related genes, such as the elongation of very long-chain FA protein 5, acyl-CoA 6-desaturase, cytochrome P450, phospholipase A2, glycerol-3-phosphate O-acyltransferase, and prostaglandin-H2 d-isomerase. Pathway enrichment analyses revealed that these genes were mainly involved in the "biosynthesis of unsaturated FAs," "FA biosynthesis," "ARA metabolism," and "glycerolipid metabolism." An analysis of FA contents in the adductor muscle indicated no significant difference in the contents of lauric acid, myristic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, arachidic acid, α-linolenic acid, eicosadienoic acid, docosadienoic acid, and 11,14,17-eicosatrienoic acid. However, ARA, DHA, and EPA in the adductor muscle after transplantation were significantly greater than those processed without grafting surgery. These results suggest that pearl oysters require more polyunsaturated FAs (PUFAs) to regulate their inflammatory and immune response after transplantation. However, their ability to biosynthesize unsaturated FAs is limited. Given these results, the addition of PUFA-containing diets or selection of a line with strong ability to biosynthesize unsaturated FAs may be valuable for pearl oyster recovery after transplantation.
Collapse
Affiliation(s)
- Chengzhang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| |
Collapse
|
42
|
Tang L, Li X, Wan L, Wang H, Mai Q, Deng Z, Ding H. Ameliorative effect of orally administered different linoleic acid/α-linolenic acid ratios in a mouse model of DNFB-induced atopic dermatitis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
44
|
Gong Y, Xia W, Wen X, Lyu W, Xiao Y, Yang H, Zou X. Early inoculation with caecal fermentation broth alters small intestine morphology, gene expression of tight junction proteins in the ileum, and the caecal metabolomic profiling of broilers. J Anim Sci Biotechnol 2020; 11:8. [PMID: 31956411 PMCID: PMC6961334 DOI: 10.1186/s40104-019-0410-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background The establishment of stable microbiota in early life is beneficial to the individual. Changes in the intestinal environment during early life play a crucial role in modulating the gut microbiota. Therefore, early intervention to change the intestinal environment can be regarded as a new regulation strategy for the growth and health of poultry. However, the effects of intestinal environmental changes on host physiology and metabolism are rarely reported. This study was conducted to investigate the effects of early inoculation with caecal fermentation broth on small intestine morphology, gene expression of tight junction proteins in the ileum, and cecum microbial metabolism of broilers. Results Our data showed that early inoculation with caecal fermentation broth could improve intestine morphology. The small intestine villus height was significantly increased (P < 0.05) in the intervened broilers compared to the control group, especially on day 28. A similar result was observed in the ratio of villus height to crypt depth (P < 0.05). Meanwhile, we found early inoculation significantly increased (P < 0.05) the expression levels of zonula occludens-1 (ZO1) on days 14 and 28, claudin-1 (CLDN1) on day 28, whereas the gene expression of claudin-2 (CLDN2) was significantly decreased (P < 0.05) on days 14 and 28. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) technology was further implemented to systematically evaluate the microbial metabolite profiles. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) displayed a distinct trend towards separation between the fermentation broth group (F group) and the control group (C group). The differentially expressed metabolites were identified, and they were mainly functionally enriched in beta-alanine metabolism and biosynthesis of unsaturated fatty acids. In addition, 1,3-diaminopropane was selected as a key biomarker that responded to early inoculation with caecal fermentation broth. Conclusions These results provide insight into intestinal metabolomics and confirm that early inoculation with caecal fermentation broth can be used as a potential strategy to improve intestinal health of broilers.
Collapse
Affiliation(s)
- Yujie Gong
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wenrui Xia
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xueting Wen
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Wentao Lyu
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Yingping Xiao
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Hua Yang
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Xiaoting Zou
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
45
|
Zhao C, Zhou J, Meng Y, Shi N, Wang X, Zhou M, Li G, Yang Y. DHA Sensor GPR120 in Host Defense Exhibits the Dual Characteristics of Regulating Dendritic Cell Function and Skewing the Balance of Th17/Tregs. Int J Biol Sci 2020; 16:374-387. [PMID: 32015675 PMCID: PMC6990895 DOI: 10.7150/ijbs.39551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to functioning as an antioxidant, anti-inflammatory and age-defying cellular component, DHA impacts the immune system by facilitating the pathogen invasion. The mechanism through which DHA regulates immune suppression remains obscure. In our study, we postulated that DHA might interact with GPR120 to shape the dendritic cell (DC) differentiation and subsequently drive T cell proliferation during the virus infection. In vitro, the proportion of costimulatory molecules and HLA-DR on DC that generated from exogenous and endogenous (fad3b expression) DHA supplemented mice were significantly lower than wild-type mice. Given the importance of FAs, DHA is not only a critical cellular constituent but also a cell signaling molecule and FA deficiency reduces DC generation; we used GPR120-/- mice to determine whether DHA receptor deficiency disorders DC maturation processing. Novelty, the expression of GPR120 on DC from wild-type (WT) mice was inversely related to DC activation and DC from the GPR120-/- mice maintained a spontaneous maturation status. In vivo, both the excessive activation of GPR120 by DHA and the deletion of GPR120 effectively skewed the balance of Th17/Tregs and reduced the production of VNA and protection of vaccination. Overall, our results revealed a mechanism that the GPR120 self-regulation plays a crucial role in sensing DHA variation, which provides a new prospect for therapeutic manipulation in autoimmune diseases and the design of a vaccine adjuvant.
Collapse
Affiliation(s)
- Caiquan Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jinxiu Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanqing Meng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Niu Shi
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, CN 010017
| | - Xiao Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Zhou
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
46
|
Effect of Dietary n-3 Source on Rabbit Male Reproduction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3279670. [PMID: 32082475 PMCID: PMC7011472 DOI: 10.1155/2019/3279670] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
In the last two decades, the human sperm count linearly decreased in Western countries. Health problems, lifestyle, pollutants, and dietary behaviours are considered as the main risk factors, and the unbalance of dietary n‐6/n‐3 fatty acids is one of the most relevant. The aim of the present research is to study the effect of different dietary sources of n‐3 polyunsaturated fatty acids (PUFA) on reproductive traits using rabbit buck as the animal model. Fifteen rabbit bucks were assigned to three experimental groups: the control group, the FLAX group fed 10% extruded flaxseed, and the FISH group fed 3.5% fish oil for 110 days (50-day adaptation and 60-day experimental periods). Semen samples were collected weekly, whereas blood was collected every two weeks for the analytical determination of semen traits, oxidative status, fatty acid profiles, isoprostanes, neuroprostanes, and the immunocytochemistry of docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid. At the end of the trial, the rabbits were killed and the testes were removed and stored for the analysis of fatty acid profile and immunocytochemistry. Results showed that dietary administration of n‐3 PUFA improved the track speed of the sperm and increased the n‐3 long-chain PUFA mainly confined in the sperm tail. Seminal plasma increased the thiobarbituric reactive substances (TBARs) by three times in the groups fed supplemental n‐3, whereas the F2-isoprotanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were lower and higher, respectively, in both supplemented groups than in the control. The testes and sperm showed a higher DHA and EPA distribution in rabbits from the n‐3 supplemented groups compared with the control. In conclusion, supplemental dietary n‐3 PUFA improved sperm motion traits and resulted in an enrichment of membrane fatty acid in the sperm and testes of the rabbits. However, such an increased amount of PUFA negatively affected the sperm oxidative status, which was mainly correlated with the generation of F4-NeuroPs with respect to F2-IsoPs. Accordingly, the latter cannot be considered a good marker of oxidation when diets rich in n‐3 PUFA are provided.
Collapse
|
47
|
Delgado R, Menoyo D, Abad-Guamán R, Nicodemus N, Carabaño R, García J. Effect of dietary soluble fibre level and n-6/n-3 fatty acid ratio on digestion and health in growing rabbits. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Kouba J, Burns T, Webel S. Effect of dietary supplementation with long-chain n-3 fatty acids during late gestation and early lactation on mare and foal plasma fatty acid composition, milk fatty acid composition, and mare reproductive variables. Anim Reprod Sci 2019; 203:33-44. [DOI: 10.1016/j.anireprosci.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
|
49
|
Yan ZG, Xie LH, Wang N, Sun DY, Bai ZZ, Niu LX, Zhang YL, Ji XT. Phenotypic Characteristics and Fatty Acid Composition of Seeds from Different Herbaceous Peony Species Native to China. Chem Biodivers 2019; 16:e1800589. [PMID: 30793831 DOI: 10.1002/cbdv.201800589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 01/07/2023]
Abstract
Herbaceous peony has been widely cultivated in China due to its substantial ornamental and medicinal value. In the present study, the phenotypic characteristics, total fatty acid (FA) content, and nine FA compositions of herbaceous peony seeds from 14 populations belonging to six species and one subspecies were determined by normal test and gas chromatography/mass spectrometry (GC/MS). The results showed that the phenotypic characteristics of seeds varied dramatically among species. The concentrations of five major FAs in seed oils were as follows: linoleic acid (173.95-236.51 μg/mg), linolenic acid (227.82-302.71 μg/mg), oleic acid (135.32-208.81 μg/mg), stearic acid (6.52-11.7 μg/mg), and palmitic acid (30.67-47.64 μg/mg). Correlation analysis demonstrated that oleic acid had the highest partial correlation coefficient with total FAs and might be applied to develop a model of phenotypic characteristics. FAs were significantly influenced by the following environmental factors: latitude, elevation, and annual average temperature. Based on the FA levels in the seed oils, clustering analysis divided 14 populations into two clusters. It was found that the average contents of oleic acid, linoleic acid, and total FAs in cluster I (147.16 μg/mg, 200.31 μg/mg, and 671.24 μg/mg, respectively) were significantly lower than those in cluster II (196.65 μg/mg, 220.16 μg/mg, and 741.78 μg/mg, respectively). Cluster I was perfectly consistent with subsect. Foliolatae, while cluster II was in good agreement with subsect. Dissectifoliae. Therefore, the FA composition of wild herbaceous peony seed oil might be used as a chemotaxonomic marker.
Collapse
Affiliation(s)
- Zhen-Guo Yan
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Li-Hang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Ning Wang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Dao-Yang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Zhang-Zhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| | - Xiao-Tong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, P. R. China
| |
Collapse
|
50
|
Cao Y, Dong Z, Zhang D, Zhou H. Stillbirth risk on fat-1 transgenic foetus of sheep caused by deregulated DNA methylation of imprinted genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zhicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Huanmin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|