1
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
2
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
3
|
Olejnik A, Gornowicz-Porowska J, Jenerowicz D, Polańska A, Dobrzyńska M, Przysławski J, Sansone A, Ferreri C. Fatty Acids Profile and the Relevance of Membranes as the Target of Nutrition-Based Strategies in Atopic Dermatitis: A Narrative Review. Nutrients 2023; 15:3857. [PMID: 37686888 PMCID: PMC10489657 DOI: 10.3390/nu15173857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, the prevalence of atopic dermatitis has increased drastically, especially in urban populations. This multifactorial skin disease is caused by complex interactions between various factors including genetics, environment, lifestyle, and diet. In eczema, apart from using an elimination diet, the adequate content of fatty acids from foods (saturated, monounsaturated, and polyunsaturated fatty acids) plays an important role as an immunomodulatory agent. Different aspects regarding atopic dermatitis include connections between lipid metabolism in atopic dermatitis, with the importance of the MUFA levels, as well as of the omega-6/omega-3 balance that affects the formation of long-chain (C20 eicosanoic and C22 docosaenoic) fatty acids and bioactive lipids from them (such as prostaglandins). Impair/repair of the functioning of epidermal barrier is influenced by these fatty acid levels. The purpose of this review is to drive attention to membrane fatty acid composition and its involvement as the target of fatty acid supplementation. The membrane-targeted strategy indicates the future direction for dermatological research regarding the use of nutritional synergies, in particular using red blood cell fatty acid profiles as a tool for checking the effects of supplementations to reach the target and influence the inflammatory/anti-inflammatory balance of lipid mediators. This knowledge gives the opportunity to develop personalized strategies to create a healthy balance by nutrition with an anti-inflammatory outcome in skin disorders.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Dorota Jenerowicz
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Adriana Polańska
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznań, Poland; (D.J.); (A.P.)
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnica 3, 60-806 Poznań, Poland; (M.D.); (J.P.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale Delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| |
Collapse
|
4
|
Fatty-Acid-Based Membrane Lipidome Profile of Peanut Allergy Patients: An Exploratory Study of a Lifelong Health Condition. Int J Mol Sci 2022; 24:ijms24010120. [PMID: 36613559 PMCID: PMC9820545 DOI: 10.3390/ijms24010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Peanut allergy is a lifelong, increasingly prevalent, and potentially life-threatening disease burdening families and communities. Dietary, particularly polyunsaturated fatty acids (PUFAs), intakes can exert positive effects on immune and inflammatory responses, and the red blood cell (RBC) membrane lipidome contains stabilized metabolic and nutritional information connected with such responses. The fatty-acid-based membrane lipidome profile has been exploratorily evaluated in a small cohort of patients (eight males and one female, age range 4.1−21.7 years old, body mass index BMI < 25) with angioedema and/or anaphylaxis after peanut ingestion. This analysis was performed according to an ISO 17025 certified robotic protocol, isolating mature RBCs, extracting membrane lipids, and transforming them to fatty acid methyl esters for gas chromatography recognition and quantification. Comparison with a group of age- and BMI-matched healthy individuals and with benchmark interval values of a healthy population evidenced significant differences, such as higher levels of ω-6 (arachidonic acid), lower values of ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), together with an increased ω-6/ω-3 ratio in allergic patients. A significant inverse correlation was also found between specific immunoglobulin E (IgE) levels and ω-6 di-homo-gamma-linolenic acid (DGLA) and total PUFAs. Results of this preliminary study encourage screenings in larger cohorts, also in view of precision nutrition and nutraceuticals strategies, and stimulate interest to expand basic and applied research for unveiling molecular mechanisms that are still missing and individuating treatments in chronic allergic disorders.
Collapse
|
5
|
Reductive Stress of Sulfur-Containing Amino Acids within Proteins and Implication of Tandem Protein-Lipid Damage. Int J Mol Sci 2021; 22:ijms222312863. [PMID: 34884668 PMCID: PMC8657892 DOI: 10.3390/ijms222312863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Reductive radical stress represents the other side of the redox spectrum, less studied but equally important compared to oxidative stress. The reactivity of hydrogen atoms (H•) and hydrated electrons (e-aq) connected with peptides/proteins is summarized, focusing on the chemical transformations of methionine (Met) and cystine (CysS-SCys) residues into α-aminobutyric acid and alanine, respectively. Chemical and mechanistic aspects of desulfurization processes with formation of diffusible sulfur-centered radicals, such as methanethiyl (CH3S•) and sulfhydryl (HS•) radicals, are discussed. These findings are further applied to biomimetic radical chemistry, modeling the occurrence of tandem protein-lipid damages in proteo-liposomes and demonstrating that generation of sulfur-centered radicals from a variety of proteins is coupled with the cis-trans isomerization of unsaturated lipids in membranes. Recent applications to pharmaceutical and pharmacological contexts are described, evidencing novel perspectives in the stability of formulations and mode of action of drugs, respectively.
Collapse
|
6
|
Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2020; 21:E741. [PMID: 31979308 PMCID: PMC7037798 DOI: 10.3390/ijms21030741] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.
Collapse
Affiliation(s)
- Anamaria Balić
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Domagoj Vlašić
- Department of Ophtalmology and Optometry, General Hospital Dubrovnik, Ulica dr. Roka Mišetića 2, 20000 Dubrovnik, Croatia;
| | - Kristina Žužul
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| |
Collapse
|
7
|
Torreggiani A, Tinti A, Jurasekova Z, Capdevila M, Saracino M, Di Foggia M. Structural Lesions of Proteins Connected to Lipid Membrane Damages Caused by Radical Stress: Assessment by Biomimetic Systems and Raman Spectroscopy. Biomolecules 2019; 9:E794. [PMID: 31783702 PMCID: PMC6995617 DOI: 10.3390/biom9120794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Model systems constituted by proteins and unsaturated lipid vesicles were used to gain more insight into the effects of the propagation of an initial radical damage on protein to the lipid compartment. The latter is based on liposome technology and allows measuring the trans unsaturated fatty acid content as a result of free radical stress on proteins. Two kinds of sulfur-containing proteins were chosen to connect their chemical reactivity with membrane lipid transformation, serum albumins and metallothioneins. Biomimetic systems based on radiation chemistry were used to mimic the protein exposure to different kinds of free radical stress and Raman spectroscopy to shed light on protein structural changes caused by the free radical attack. Among the amino acid residues, Cys is one of the most sensitive residues towards the attack of free radicals, thus suggesting that metal-Cys clusters are good interceptors of reactive species in metallothioneins, together with disulfides moieties in serum albumins. Met is another important site of the attack, in particular under reductive conditions. Tyr and Phe are sensitive to radical stress too, leading to electron transfer reactions or radical-induced modifications of their structures. Finally, modifications in protein folding take place depending on reactive species attacking the protein.
Collapse
Affiliation(s)
| | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| | - Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia;
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia
| | - Mercè Capdevila
- Departament de Quimica, Facultat de ciencies, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| | - Michela Saracino
- Istituto I.S.O.F. (C.N.R.), via P. Gobetti 101, 40129 Bologna, Italy;
| | - Michele Di Foggia
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| |
Collapse
|
8
|
GC/MS Analysis of Fatty Acids on Pliek U Oil and Its Pharmacological Study by Molecular Docking to Filaggrin as a Drug Candidate in Atopic Dermatitis Treatment. ScientificWorldJournal 2019; 2019:8605743. [PMID: 31780876 PMCID: PMC6874865 DOI: 10.1155/2019/8605743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
Analysis of fatty acid contents and pharmacological properties of Pliek U oil was performed. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC-MS), and pharmacological properties based on its potential on filament-aggregating protein (filaggrin) were studied with bioinformatics approach by the reverse docking technique using palmitic acid as a control compound. Two Pliek U extracts, namely, Pliek U oil (PUO) and ethanolic Pliek U oil extract (EPUOE), were prepared. The GC-MS results revealed that lauric acid, myristic acid, palmitic acid, and oleic acid are the predominant fatty acids, with lauric acid being the abundant one in all Pliek U oil extracts. The reverse docking technique results showed that oleic acid had the most stable interaction to filaggrin with the lowest binding affinity (−6.1 kcal/mol). Oleic acid and palmitic acid have one same side binding to filaggrin on amino acid LEU D75. These findings indicated that oleic acid has the best potential to be used as a drug candidate in atopic dermatitis treatment.
Collapse
|
9
|
Takeuchi H, Sugano M. Industrial Trans Fatty Acid and Serum Cholesterol: The Allowable Dietary Level. J Lipids 2017; 2017:9751756. [PMID: 28951788 PMCID: PMC5603143 DOI: 10.1155/2017/9751756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 01/03/2023] Open
Abstract
Trans fatty acid (TFA) from partially hydrogenated oil is regarded as the worst dietary fatty acid per gram due to its role in coronary heart disease. TFA consumption is decreasing worldwide, but some but not all observational studies indicate that TFA intake has little relevance to serum cholesterol levels in populations with low TFA intake (<1% E [percentage of total energy intake],
Collapse
Affiliation(s)
- Hiroyuki Takeuchi
- Department of Food and Nutrition, Toyama College, 444 Mizuguchi, Gankai-ji, Toyama 930-0193, Japan
| | - Michihiro Sugano
- Kyushu University, 5-38-23 Najima, Higashi-ku, Fukuoka 813-0043, Japan
| |
Collapse
|
10
|
Chatgilialoglu C, Ferreri C, Guerra M, Samadi A, Bowry VW. The Reaction of Thiyl Radical with Methyl Linoleate: Completing the Picture. J Am Chem Soc 2017; 139:4704-4714. [PMID: 28253623 DOI: 10.1021/jacs.6b11320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cis lipids can be converted by thiols and free radicals into trans lipids, which are therefore a valuable tell-tale for free radical activity in the cell's lipidome. Our previous studies have shown that polyunsaturated lipids are isomerized by alkanethiyl radicals (S•) in a cycle propagated by reversible double-bond addition and terminated by radical H-abstraction from the lipid. A critical flaw in this picture has long been that the reported lipid abstraction rate from radiolysis studies is faster than addition-isomerization, implying that the "cycle" must be terminating faster than it is propagating! Herein, we resolved this longstanding puzzle by combining a detailed product analysis, with reinvestigation of the time-resolved kinetics, DFT calculations of the indicated pathways, and reformulation of the radical-stasis equations. We have determined thiol-coupled products in dilute solutions arise mainly from addition to the inside position of the bisallylic group, followed by rapid intramolecular H• transfer, yielding allylic radicals (LZZ + S• ⇄ SL• → SL'•) that are slowly reduced by thiol (SL'• + SH → SL'H + S•). The first-order grow-in rate of the L-H• signal (kexp280nm) may therefore be dominated by the addition-H-translocation rather than slower direct H•-abstraction. Steady-state kinetic analysis of the new mechanism is consistent with products and the rates and trends for polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and mixtures, with and without physiological [O2]. Implications of this new paradigm for the thiol-ene reactivity fall in an interdisciplinary research area spanning from synthetic applications to metabolomics.
Collapse
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101, 40129 Bologna, Italy
| | - Maurizio Guerra
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101, 40129 Bologna, Italy
| | - Abdelouahid Samadi
- Department of Chemistry, United Arab Emirates University , P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
11
|
Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics (Basel) 2016; 7:diagnostics7010001. [PMID: 28025506 PMCID: PMC5373010 DOI: 10.3390/diagnostics7010001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Collapse
|
12
|
Malan L, Baumgartner J, Calder PC, Smuts CM. Low immune cell ARA and high plasma 12-HETE and 17-HDHA in iron-deficient South African school children with allergy. Prostaglandins Leukot Essent Fatty Acids 2016; 110:35-41. [PMID: 27255641 DOI: 10.1016/j.plefa.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/20/2023]
Abstract
Allergy has been associated with altered fatty acid and inflammatory status. In this cross-sectional study of 321 rural iron deficient (ID) South African children (aged 6-11 years), a subsample (n=111) of children with parent-reported allergy data were divided into an allergic (n=30) and non-allergic (n=81) group and compared. PBMC arachidonic acid (ARA; P=0.010) and the PBMC ARA to dihomo-gamma-linolenic acid (DGLA) ratio (P=0.035) were lower in the allergic children. Plasma 12-hydroxyeicosatetraenoic acid and 17-hydroxydocosahexaenoic acid (17-HDHA) were higher (P=0.040 and 0.020, respectively) in the allergic group. Thus, a fatty acid composition and lipid mediator levels indicative of increased release of ARA from PBMC membranes, increased inflammation as well as the resolving thereof, were associated with parent-reported allergy symptoms. This study used baseline data of an intervention study which was registered at clinicaltrials.gov as NCT01092377.
Collapse
Affiliation(s)
- L Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - J Baumgartner
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - P C Calder
- The Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre in Nutrition, Southampton University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - C M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
13
|
Remesar X, Antelo A, Llivina C, Albà E, Berdié L, Agnelli S, Arriarán S, Fernández-López JA, Alemany M. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats. PeerJ 2015. [PMID: 26213652 PMCID: PMC4512764 DOI: 10.7717/peerj.1083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells' extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Arantxa Antelo
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Clàudia Llivina
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Emma Albà
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Lourdes Berdié
- Scientific & Technical Services, University of Barcelona , Barcelona , Spain
| | - Silvia Agnelli
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - Sofía Arriarán
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain
| | - José Antonio Fernández-López
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| | - Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona , Barcelona , Spain ; Institute of Biomedicine, University of Barcelona , Barcelona , Spain ; CIBER OBN , Barcelona , Spain
| |
Collapse
|
14
|
Melchiorre M, Ferreri C, Tinti A, Chatgilialoglu C, Torreggiani A. A Promising Raman Spectroscopy Technique for the Investigation of trans and cis Cholesteryl Ester Isomers in Biological Samples. APPLIED SPECTROSCOPY 2015; 69:613-622. [PMID: 25812111 DOI: 10.1366/14-07706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lipid geometry is an important issue in biology and medicine. The cis-trans geometry conversion of double bonds in lipids is an endogenous process that can be mediated by sulfur-centered free radicals. Trans isomers of polyunsaturated fatty acids can be used as biological markers of free radical stress, and their presence in biological samples can be determined by synthesis and characterization of appropriate reference compounds. Fractions of plasma lipids, such as cholesteryl linoleate and arachidonate esters, are interesting targets because of their connection with membrane phospholipid turnover and their roles in cardiovascular health. In this context, Raman spectroscopy can provide a useful contribution, since Raman analysis can be performed directly on the lipid extracts without any derivatization reaction, is nondestructive, and can rapidly supply biochemical information. This study focused on the build up of Raman spectral libraries of different cis and trans isomers of cholesteryl esters to be used as references for the examination of complex biological samples and to facilitate isomer recognition. Unsaturated cholesteryl esters obtained by chemical synthesis and with different alkyl chain lengths, double bond numbers, or both, were analyzed. The potential of Raman analysis for trans isomer detection in biological samples was successfully tested on some cholesteryl ester lipid fractions from human serum. The data suggest promising applications of Raman spectroscopy in metabolomics and lipidomics.
Collapse
|
15
|
Lipidomic analysis of fatty acids in erythrocytes of coeliac patients before and after a gluten-free diet intervention: a comparison with healthy subjects. Br J Nutr 2014; 112:1787-96. [PMID: 25266177 DOI: 10.1017/s0007114514002815] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coeliac disease (CD) patients may exhibit a pro-inflammatory profile and fatty acids (FA) can influence inflammation through a variety of cellular pathways in them. The aims of the present study were to (1) evaluate the FA composition of erythrocytes obtained from newly diagnosed CD patients by lipidomic analysis and compare it with that in healthy subjects and (2) determine the effects of 1-year gluten-free diet (GFD) intervention. A total of twenty CD patients (five men and fifteen women; mean age 34.0 (sem 1.7) years) were evaluated at diagnosis and after 1 year of GFD intervention. A total of twenty healthy subjects (seven men and thirteen women; mean age 40.2 (sem 2.5) years) served as controls. CD patients on an unrestricted diet exhibited a significant 2.08-fold higher concentration of arachidic acid when compared with healthy subjects, suggesting that it can be considered as a putative marker of CD. Besides, the arachidonic acid (AA):dihomo-γ-linolenic acid ratio was 2.01-fold significantly lower in CD patients than in healthy subjects (P< 0.01), underlying an inefficient synthesis of PUFA from their precursors in terms of desaturase activity. In addition, mainly due to lower concentrations of docosahexaenoic acid, the inflammation marker AA:docosahexaenoic acid ratio was 1.40-fold significantly higher in CD patients than in healthy subjects. After 1 year of GFD intervention, FA concentrations in CD patients were still different from those observed in healthy subjects. The lipidomic analysis of erythrocyte membranes confirmed the presence of an altered FA composition in CD patients and the GFD's ability to modify FA profile, even if 1-year GFD intervention seems to be not sufficient to restore FA concentrations to normality. This procedure, being easier and non-invasive compared with the evaluation of the FA pattern of the intestinal mucosa, could offer more potentiality for also evaluating therapeutic interventions in CD patients by using FA supplementation.
Collapse
|
16
|
Verebes GS, Melchiorre M, Garcia-Leis A, Ferreri C, Marzetti C, Torreggiani A. Hyperspectral enhanced dark field microscopy for imaging blood cells. JOURNAL OF BIOPHOTONICS 2013; 6:960-7. [PMID: 23913514 DOI: 10.1002/jbio.201300067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 07/13/2013] [Indexed: 05/05/2023]
Abstract
In this work, a novel methodology based on hyperspectral imagery with enhanced Darkfield microscopy for probing and characterizing changes in blood cell components was tested. Two main categories of blood cells were analyzed, red and white blood cells. Unique spectral signatures of ordinary and most common deformed morphologies of red blood cells were identified. Moreover, examination of white blood cells allowed to characterize and differentiate active from inactive cells. The findings indicate the ability of this technique to detect changes in light scattering property of blood cells due to their morphological properties Since pathological states can alterate the discocyte shape, this preliminary, but promising application of the hyperspectral analysis to blood cells can be useful to evaluate significant correlations of blood cell spectral features in healthy and pathological conditions. The combination of the quali- and quantitative spectral signatures of hyperspectral imaging microscopy with the information of the subject health conditions may provide a new tool for clinical applications.
Collapse
|
17
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Ferreri C, Chatgilialoglu C. Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Rev Mol Diagn 2013; 12:767-80. [PMID: 23153242 DOI: 10.1586/erm.12.73] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids are molecules with different structures which have the feature of water insolubility in common. They have very important biological roles within structural, functional and signaling activities that have recently received renewed attention from life science research. Lipidomics considers the structural and functional roles played by lipids, but also their in vivo changes due to metabolic or degradation pathways, as well as their biological consequences. In this context, the dynamic vision of phospholipid metabolism and, in particular, fatty acid transformations combine with nutritional aspects and health consequences, providing important information for molecular medicine. Fatty acid-based functional lipidomics can be successfully applied to the follow-up of human lipid profiles under normal and pathological conditions, and this review provides several examples of this powerful molecular diagnostic tool, which is expected to have a strong influence on biomedical research in the 21st century.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|
19
|
Consumption of Dietary n-3 Fatty Acids Decreases Fat Deposition and Adipocyte Size, but Increases Oxidative Susceptibility in Broiler Chickens. Lipids 2013; 48:705-17. [DOI: 10.1007/s11745-013-3785-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/27/2012] [Indexed: 01/03/2023]
|
20
|
Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 2013; 8:e55537. [PMID: 23405167 PMCID: PMC3566009 DOI: 10.1371/journal.pone.0055537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Palmitic acid is known to be apoptotic for nervous cells but no data are available on membrane lipidome transformations occurring during its supplementation, although membrane lipids are clearly involved in the apoptotic signaling cascade. NB100 neuroblastoma cells were supplemented with palmitic acid and membrane fatty acids were isolated, derivatized and analysed by gas chromatography at defined time intervals. Parallely, cell viability, morphology, apoptosis, cPLA(2) and caspase activations were checked. Interestingly, under 150 µM supplementation the incorporation of palmitic acid was accompanied by the specific release of arachidonic acid. This event was timely correlated with cPLA(2) and caspases activations, and the time window of 60 minutes was envisaged for crucial membrane lipidome changes. The simultaneous addition of 50 µM oleic, 50 µM arachidonic and 150 µM palmitic acids to the cell cultures influenced membrane changes with suppression of caspase activation and maintenance of cell viability. These results highlight the role of the membrane asset with fatty acid remodeling and suggest the potential of lipid-based strategies for influencing cell response and fate in human diseases, such as neurodegenerative disorders or tumours.
Collapse
|
21
|
Souabni H, Thoma V, Bizouarn T, Chatgilialoglu C, Siafaka-Kapadai A, Baciou L, Ferreri C, Houée-Levin C, Ostuni M. trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2314-24. [DOI: 10.1016/j.bbamem.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
22
|
Ferreri C, Grabovskiy SA, Aoun M, Melchiorre M, Kabal’nova N, Feillet-Coudray C, Fouret G, Coudray C, Chatgilialoglu C. Trans Fatty Acids: Chemical Synthesis of Eicosapentaenoic Acid Isomers and Detection in Rats Fed a Deodorized Fish Oil Diet. Chem Res Toxicol 2012; 25:687-94. [DOI: 10.1021/tx200467c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carla Ferreri
- ISOF, Consiglio Nazionale delle
Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Stanislav A. Grabovskiy
- ISOF, Consiglio Nazionale delle
Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Institute of Organic Chemistry, Ufa Research Center of RAS, 71 prospekt Oktyabrya,
450054 Ufa, Russia
| | - Manar Aoun
- INRA UMR
866, Dynamique Musculaire
et Métabolisme, INRA, 2 place Pierre Viala, Université
Montpellier 1, and Université Montpellier 2, 34060 Montpellier,
France
| | - Michele Melchiorre
- ISOF, Consiglio Nazionale delle
Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Natalia Kabal’nova
- Institute of Organic Chemistry, Ufa Research Center of RAS, 71 prospekt Oktyabrya,
450054 Ufa, Russia
| | - Christine Feillet-Coudray
- INRA UMR
866, Dynamique Musculaire
et Métabolisme, INRA, 2 place Pierre Viala, Université
Montpellier 1, and Université Montpellier 2, 34060 Montpellier,
France
| | - Gilles Fouret
- INRA UMR
866, Dynamique Musculaire
et Métabolisme, INRA, 2 place Pierre Viala, Université
Montpellier 1, and Université Montpellier 2, 34060 Montpellier,
France
| | - Charles Coudray
- INRA UMR
866, Dynamique Musculaire
et Métabolisme, INRA, 2 place Pierre Viala, Université
Montpellier 1, and Université Montpellier 2, 34060 Montpellier,
France
| | | |
Collapse
|
23
|
Salzano AM, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C. Human serum albumin modifications associated with reductive radical stress. ACTA ACUST UNITED AC 2011; 7:889-98. [DOI: 10.1039/c0mb00223b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Okugawa Y, Bascom JJ, Hirai Y. Epimorphin-derived peptide antagonists remedy epidermal parakeratosis triggered by unsaturated fatty acid. J Dermatol Sci 2010; 59:176-83. [DOI: 10.1016/j.jdermsci.2010.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
|
25
|
Ferreri C, Chatgilialoglu C. Membrane lipidomics and the geometry of unsaturated fatty acids from biomimetic models to biological consequences. Methods Mol Biol 2009; 579:391-411. [PMID: 19763487 DOI: 10.1007/978-1-60761-322-0_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the last decades, free radical processes delineated an interdisciplinary field linking chemistry to biology and medicine. Free radical mechanisms became of importance as molecular basis of physiological and pathological conditions. Lipids, in particular, unsaturated fatty acids, are susceptible of free radical attack. The reactivity of the double bond toward free radicals is well known, in particular the reversible addition of radical species to this functionality determines the cis-trans double bond isomerization. Since the prevalent geometry displayed by unsaturated fatty acids in eukaryotes is cis, the occurrence of the cis-trans isomerization by free radicals corresponds to the loss of an important structural information linked to biological activity. The formation of trans isomers can have important meaning and consequences connected to radical stress. Free radical isomerization of membrane fatty acids has been the subject of research coupling the top-down approach by model studies, such as biomimetic chemistry in liposomes, with the bottom-up approach dealing with the examination of cell membrane lipidome in living systems under several physiopathological conditions. Methodologies and molecular libraries have been settled, for both liposome experiments and the examination of the radical stress in biological membranes. This chapter will give an overview of the current procedures used for liposome models and the cis-trans isomerization experiments, in order to build-up a library of trans geometrical fatty acid isomers.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF-BioFree Radicals, Consiglio Nazionale delle Riceriche, Bologna, Italy
| | | |
Collapse
|
26
|
Abstract
It has recently been reported that the increased prevalence in childhood allergy may be linked to deviations in fetal immune development. One reason may be impaired nutrient supply. Hence, a well-differentiated placenta together with an optimal fetal nutrition via the mother are important prerequisites for the establishment of a functional immune system with normal immune responses. Fatty acids and their derivatives can influence both the early immune development and immune maturation by regulating numerous metabolic processes and the gene expression of important proteins such as enzymes and cytokines. The present review summarises the impact of nutritional fatty acids on the development of the immune system as well as the fetal development. It describes the mechanisms of action of PUFA, trans fatty acids and conjugated linoleic acids in programming the fetus with regard to its risk of acquiring atopic diseases in childhood.
Collapse
|
27
|
Balazy M, Chemtob S. Trans-arachidonic acids: new mediators of nitro-oxidative stress. Pharmacol Ther 2008; 119:275-90. [PMID: 18606454 DOI: 10.1016/j.pharmthera.2008.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
A reaction of arachidonic acid with the nitrogen dioxide radical (*NO2) or its precursors (peroxynitrite, nitrous acid, nitrogen trioxide) generates a group of nitro lipids named nitroeicosanoids. A distinct feature of this reaction is abundant formation of four trans isomers of arachidonic acid (TAA) via reversible addition of the NO2 radical to the arachidonic acid cis double bonds. This cis-trans isomerization is biologically relevant because many pathologies that involve NO formation such as inflammation, hyperoxia, hypercapnia or exposure to cigarette smoke increase the TAA levels in cells, tissues and in the systemic circulation. Inflammatory conditions have been known to stimulate formation of a variety of oxidized lipids from unsaturated fatty acid precursors via lipid peroxidation mechanisms; however, nitration-dependent cis-trans-isomerization of arachidonic acid is a characteristic process for *NO2. TAA are likely to function as specific and selective biomarkers of the pathologic conditions that define nitro-oxidative stress. Diet independent biosynthesis of trans fatty acids as a result of disease is our new observation. In the past, experimental feeding and clinical studies have supported the concerns that dietary trans fatty acids are cardiovascular risk factors, however, clinical consequences of the endogenous formation of trans fatty acids are not known but potentially important given available studies on TAA. This review aims to summarize the emerging role of TAA as a unique group of biomarkers that target microcirculation and other systems. A biological mechanism that generates endogenous trans fatty acids poses new challenges for pharmacologic intervention and we suggest approaches that may limit TAA effects.
Collapse
|
28
|
Larqué E, Gil-Campos M, Ramírez-Tortosa MC, Linde J, Cañete R, Gil A. Postprandial response of trans fatty acids in prepubertal obese children. Int J Obes (Lond) 2006; 30:1488-93. [PMID: 16733524 DOI: 10.1038/sj.ijo.0803403] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the intake, plasma concentrations and postprandial response of trans fatty acids in obese and control children at prepubertal age in order to detect potential associations with childhood obesity. DESIGN Case-control study, clinical dietary intervention with a 428 kcal standardized breakfast and longitudinal 3 h postprandial follow-up for trans fatty acid plasma levels. SUBJECTS Fifty-four children aged 6-13 years of both sexes, 34 obese (body mass index >97th percentile for age and sex) and 20 non-obese (control group) at prepubertal period (Tanner I). MEASUREMENTS Various anthropometric parameters and sex hormones, fasting insulin and glucose, estimation of dietary trans fatty acid intake and their plasma quantitation in fasting conditions, and for 3 h following intake of a standardized breakfast. RESULTS Dietary trans fatty acid intake was less than 0.4% of total energy in both groups, with a trend towards higher intake in obese children. Fasting plasma trans fatty acid concentrations and percentages were similar in both groups. However, trans fatty acid levels at +3 h were significantly higher than at 0 h in obese children, but not in controls (obese, 0 h: 2.38+/-0.29; 3 h: 3.62+/-0.45; controls, 0 h: 2.29+/-0.24; 3.14+/-0.49 mg/dl); cis monounsaturated fatty acid concentrations were not significantly affected by the postprandial interval. Obese children exhibited hyperinsulinemia and insulin resistance; however, trans fatty acid intake or their plasma levels were not associated with them. CONCLUSION There is a low intake of trans fatty acids in Southern Spanish children, which is supported by their low concentrations in plasma. No difference in trans fatty acid intake is observed between obese and control children, although plasma levels remain higher in obese than in control children after 3 h of a meal. A marked insulin resistance is seen in obese, but it is not correlated with either trans fatty acid intake or plasma concentration.
Collapse
Affiliation(s)
- E Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Ferreri C, Pierotti S, Chatgilialoglu C, Barbieri A, Barigelletti F. Probing the influence of cis–trans isomers on model lipid membrane fluidity using cis-parinaric acid and a stop-flow technique. Chem Commun (Camb) 2006:529-31. [PMID: 16432572 DOI: 10.1039/b512812a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stop-flow experiments exploiting the fluorescence of cis-parinaric acid in monounsaturated lipid vesicles allow the model membrane behaviour, notably the membrane fluidity, to be correlated to the cis:trans lipid ratios.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | |
Collapse
|