1
|
Wang X, Xie J, Ma H, Li G, Li M, Li S, Sun X, Zhao Y, Sun W, Yang S, Li J. The relationship between alterations in plasma metabolites and treatment responses in antipsychotic-naïve female patients with schizophrenia. World J Biol Psychiatry 2024; 25:106-115. [PMID: 37867221 DOI: 10.1080/15622975.2023.2271965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
This study aimed to explore the relationship between alterations in plasma metabolites and treatment responses amongst antipsychotic-naïve female patients with schizophrenia. A total of 38 antipsychotic-naïve female schizophrenia patients (ANS) and 19 healthy female controls (HC) were recruited. Plasma samples were obtained from all participants, and targeted metabolomics were measured with FIA-MS/MS and LC-MS/MS. The positive and negative syndrome scale (PANSS) was used to assess the severity of psychotic symptoms before and after eight weeks of treatment. Receiver operator characteristics (ROC) curves were used to predict diagnostic and therapeutic responses. A total of 186 metabolites passed quality control procedures and were used in statistical analysis to identify potential biomarkers. Before treatment, the ANS patients had lower levels of γ -Aminobutyric Acid (GABA) and higher levels of Cholesteryl esters (CE) (20:3), Cholic Acid (CA) and Glycocholic Acid (GCA) compared to the HCs. These four differential metabonomic markers were synthesised into a combinatorial biomarker panel. This panel significantly distinguished ANS from HC. Moreover, this biomarker panel was able to effectively predict therapeutic responses. Our results suggest that plasma CE (20:3), CA, GCA, and GABA levels may be useful for diagnosing and predicting antipsychotic efficacy amongst female schizophrenia patients.
Collapse
Affiliation(s)
- Xiaoli Wang
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jun Xie
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Hongyun Ma
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
- Chifeng Anding Hospital, Inner Mongolia, China
| | - Meijuan Li
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Shen Li
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xiaoxiao Sun
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Yongping Zhao
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Wei Sun
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Shu Yang
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jie Li
- Tianjin Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Ferreira HB, Barros C, Melo T, Paiva A, Domingues MR. Looking in Depth at Oxidized Cholesteryl Esters by LC-MS/MS: Reporting Specific Fragmentation Fingerprints and Isomer Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:793-802. [PMID: 35438496 DOI: 10.1021/jasms.1c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cholesteryl esters (CE) are prone to oxidation under increased oxidative stress conditions, but little is known about oxidized CE species (oxCE). To date, only a few oxCE have been identified, however, mainly based on the detection of molecular ions by mass spectrometry (MS) or target approaches for specific oxCE. The study of oxCE occurring from radical oxidation is still scarcely addressed. In this work, we made a comprehensive assessment of oxCE derivatives and their specific fragmentation patterns to identify detailed structural features and isomer differentiation using high-resolution C18 HPLC-MS- and MS/MS-based lipidomic approaches. The LC-MS/MS analysis allowed us to pinpoint oxCE structural isomers of long-chain and short-chain species, eluting at different retention times (tR). Data analysis revealed that oxCE can be modified either in the fatty acyl moiety or in the cholesterol ring. The location of the hydroxy/hydroperoxy group originates characteristic fragment ions, namely the unmodified cholestenyl cation (m/z 369) for the isomer with oxidation in the fatty acyl chain or ions at m/z 367 and m/z 385 (369 + 16) when oxygenation occurs in the cholesterol ring. Additionally, we identified CE 18:2 and 20:4 aldehydic and carboxylic short-chain products that showed a clear fragmentation pattern that confirmed the modification in the fatty acyl chain. Specific fragmentation fingerprinting allowed discrimination of the isobaric short-chain species, namely carboxylic short-chain products, from hydroxy aldehyde short-chain products, with a hydroxycholesterol moiety. This new information is important to identify different oxCE in biological samples and will contribute to unraveling their role in biological conditions and diseases such as cardiovascular disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Cristina Barros
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Liu X, Hartman CL, Li L, Albert CJ, Si F, Gao A, Huang L, Zhao Y, Lin W, Hsueh EC, Shen L, Shao Q, Hoft DF, Ford DA, Peng G. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med 2021; 13:eaaz6314. [PMID: 33790024 DOI: 10.1126/scitranslmed.aaz6314] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/27/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023]
Abstract
The functional state of T cells is a key determinant for effective antitumor immunity and immunotherapy. Cellular metabolism, including lipid metabolism, controls T cell differentiation, survival, and effector functions. Here, we report that development of T cell senescence driven by both malignant tumor cells and regulatory T cells is a general feature in cancers. Senescent T cells have active glucose metabolism but exhibit unbalanced lipid metabolism. This unbalanced lipid metabolism results in changes of expression of lipid metabolic enzymes, which, in turn, alters lipid species and accumulation of lipid droplets in T cells. Tumor cells and Treg cells drove elevated expression of group IVA phospholipase A2, which, in turn, was responsible for the altered lipid metabolism and senescence induction observed in T cells. Mitogen-activated protein kinase signaling and signal transducer and activator of transcription signaling coordinately control lipid metabolism and group IVA phospholipase A2 activity in responder T cells during T cell senescence. Inhibition of group IVA phospholipase A2 reprogrammed effector T cell lipid metabolism, prevented T cell senescence in vitro, and enhanced antitumor immunity and immunotherapy efficacy in mouse models of melanoma and breast cancer in vivo. Together, these findings identify mechanistic links between T cell senescence and regulation of lipid metabolism in the tumor microenvironment and provide a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Lingyun Li
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Carolyn J Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Fusheng Si
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Aiqin Gao
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenli Lin
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Eddy C Hsueh
- Division of General Surgery and Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| |
Collapse
|
4
|
Khojandi N, Kuehm LM, Piening A, Donlin MJ, Hsueh EC, Schwartz TL, Farrell K, Richart JM, Geerling E, Pinto AK, George SL, Albert CJ, Ford DA, Chen X, Kline J, Teague RM. Oxidized Lipoproteins Promote Resistance to Cancer Immunotherapy Independent of Patient Obesity. Cancer Immunol Res 2021; 9:214-226. [PMID: 33303575 PMCID: PMC7864876 DOI: 10.1158/2326-6066.cir-20-0358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Antitumor immunity is impaired in obese mice. Mechanistic insight into this observation remains sparse and whether it is recapitulated in patients with cancer is unclear because clinical studies have produced conflicting and controversial findings. We addressed this by analyzing data from patients with a diverse array of cancer types. We found that survival after immunotherapy was not accurately predicted by body mass index or serum leptin concentrations. However, oxidized low-density lipoprotein (ox-LDL) in serum was identified as a suppressor of T-cell function and a driver of tumor cytoprotection mediated by heme oxygenase-1 (HO-1). Analysis of a human melanoma gene expression database showed a clear association between higher HMOX1 (HO-1) expression and reduced progression-free survival. Our in vivo experiments using mouse models of both melanoma and breast cancer revealed HO-1 as a mechanism of resistance to anti-PD1 immunotherapy but also exposed HO-1 as a vulnerability that could be exploited therapeutically using a small-molecule inhibitor. In conclusion, our clinical data have implicated serum ox-LDL as a mediator of therapeutic resistance in patients with cancer, operating as a double-edged sword that both suppressed T-cell immunity and simultaneously induced HO-1-mediated tumor cell protection. Our studies also highlight the therapeutic potential of targeting HO-1 during immunotherapy, encouraging further translational development of this combination approach.See article by Kuehm et al., p. 227.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Alexander Piening
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Theresa L Schwartz
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kaitlin Farrell
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John M Richart
- Department of Internal Medicine, Division of Hematology and Oncology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Sarah L George
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Justin Kline
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri.
- Alvin J. Siteman National Cancer Institute Comprehensive Cancer Center, St. Louis, Missouri
| |
Collapse
|
5
|
Wang J, Wang C, Han X. Mass Spectrometry-Based Shotgun Lipidomics for Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:39-55. [PMID: 33791973 DOI: 10.1007/978-3-030-51652-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shotgun lipidomics is an analytical approach for large-scale and systematic analysis of the composition, structure, and quantity of cellular lipids directly from lipid extracts of biological samples by mass spectrometry. This approach possesses advantages of high throughput and quantitative accuracy, especially in absolute quantification. As cancer research deepens at the level of quantitative biology and metabolomics, the demand for lipidomics approaches such as shotgun lipidomics is becoming greater. In this chapter, the principles, approaches, and some applications of shotgun lipidomics for cancer research are overviewed.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M] +. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta 2020; 1141:100-109. [PMID: 33248642 DOI: 10.1016/j.aca.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Sterols are a class of lipid molecules that include cholesterol, oxysterols, and sterol esters. Sterol lipids play critical functional roles in mammalian biology, including the dynamic regulation of cell membrane fluidity, as precursors for the synthesis of bile acids, steroid hormones and vitamin D, as regulators of gene expression in lipid metabolism, and for cholesterol transport and storage. The most common method employed for sterol analysis is high performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). However, conventional collision induced dissociation (CID) methods used for ion activation during MS/MS typically fail to provide sufficient structural information for unambiguous assignment of sterol species based on their fragmentation behaviour alone. This places a significant burden on the efficiency of the chromatographic separation methods for the effective separation of isomeric sterols. Here, toward developing an improved analysis strategy for sterol lipids, we have explored the novel use of 213 nm photodissociation MS/MS and hybrid multistage-MS/MS (i.e., MSn) data acquisition approaches for the improved structural characterization of cholesterol, representative isomeric oxysterols, and cholesteryl esters. Most notably, UVPD-MS/MS of ammoniated, lithiated and sodiated adducts of cholesterol, several representative oxysterol species, and an oxosterol lipid, are shown to give rise to abundant [M]+. radical cation products, that subsequently fragment during collision induced MS3 to yield extensive structurally informative product ions, similar to those observed by Electron Ionization, and that enable their unambiguously assignment, including isomeric differentiation of oxysterols. For cholesterol esters, a reversed hybrid collision induced-MS/MS and UVPD-MS3 approach is shown to enable assignment of the sterol backbone, and localization of the site(s) of unsaturation within esterified fatty acyl chains.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Bio 21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Xie X, Zhao J, Lin M, Zhang JL, Xia Y. Profiling of Cholesteryl Esters by Coupling Charge-Tagging Paternò-Büchi Reaction and Liquid Chromatography-Mass Spectrometry. Anal Chem 2020; 92:8487-8496. [PMID: 32412732 DOI: 10.1021/acs.analchem.0c01241] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The profile of cholesteryl esters (CEs) is increasingly used in metabolic disease monitoring due to the roles of CE in regulating the cholesterol level. While electrospray ionization-tandem mass spectrometry is routinely applied for the identification and quantitation of CE, it has a limitation of not being able to provide the location of carbon-carbon double bond (C═C) within unsaturated fatty acyls. In this study, we paired offline 2-acetylpyridine (2-AP) Paternò-Büchi (PB) reaction and reversed-phase liquid chromatography-tandem mass spectrometry to achieve highly sensitive and structural informative CE analysis from complex mixtures. The 2-AP PB reactions of CE standards provided 20-30% conversion but resulted in enhanced ion signal relative to that of intact CE detected as ammonium adduct ions. MS/MS of 2-AP derivatized CE via collision-induced dissociation produced two abundant diagnostic ions for each C═C in a fatty acyl, leading to both sensitive identification and quantitation of C═C location isomers. Twelve saturated and twenty-seven unsaturated CEs were profiled in pooled human plasma; of the latter group, relative quantitation of 6 groups of C═C location isomers was achieved. A dehydrocholesteryl ester, DHE 18:2 (Δ9,12), was confidently differentiated from coexisting compositional isomers: CE 18:3 (Δ9,12,15) and CE 18:3 (Δ6,9,12). The above results represented improved CE coverage at the C═C location level over those reported by gas chromatography MS or acetone PB-MS/MS methods.
Collapse
Affiliation(s)
- Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Miao Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wang J, Wang C, Han X. Tutorial on lipidomics. Anal Chim Acta 2019; 1061:28-41. [PMID: 30926037 PMCID: PMC7375172 DOI: 10.1016/j.aca.2019.01.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
The mainstream of lipidomics involves mass spectrometry-based, systematic, and large-scale studies of the structure, composition, and quantity of lipids in biological systems such as organs, cells, and body fluids. As increasingly more researchers in broad fields are beginning to pay attention to and actively learn about the lipidomic technology, some introduction on the topic is needed to help the newcomers to better understand the field. This tutorial seeks to introduce the basic knowledge about lipidomics and to provide readers with some core ideas and the most important approaches for studying the field.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, Hartman CL, Ford DA, Allen RM, Vickers KC, Liu Q, Franklin JL, Bellis SL, Coffey RJ. Transfer of Functional Cargo in Exomeres. Cell Rep 2019; 27:940-954.e6. [PMID: 30956133 PMCID: PMC6559347 DOI: 10.1016/j.celrep.2019.01.009] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including β1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James N Higginbotham
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis K Jeppesen
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu-Ping Yang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Li
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Britain
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kaitlyn A Dorsett
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ryan M Allen
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Robert J Coffey
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA.
| |
Collapse
|
10
|
Abstract
Due to their role in cellular structure, energetics, and signaling, characterization of changes in cellular and extracellular lipid composition is of key importance to understand cancer biology. In addition, several mass spectrometry-based profiling as well as imaging studies have indicated that lipid molecules may be useful to augment existing biochemical and histopathological methods for diagnosis, staging, and prognosis of cancer. Therefore, analysis of lipidomic changes associated with cancer cells and tumor tissues can be useful for both fundamental and translational studies. Here, we provide a high-throughput single-extraction-based method that can be used for simultaneous lipidomic and metabolomic analysis of cancer cells or healthy or tumor tissue samples. In this chapter, a modified Bligh-Dyer method is described for extraction of lipids followed by analysis of fatty acid composition by gas chromatography-mass spectrometry (GC-MS) or untargeted lipidomics using electrospray ionization mass spectrometry (ESIMS) coupled with reverse-phase (RP) ultraperformance liquid chromatography (UPLC) followed by multivariate data analysis to identify features of interest.
Collapse
Affiliation(s)
- Sk Ramiz Islam
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics (HBNI), Kolkata, India
| | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics (HBNI), Kolkata, India.
| |
Collapse
|
11
|
Shim SH, Sur S, Steele R, Albert CJ, Huang C, Ford DA, Ray RB. Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth. Mol Carcinog 2018; 57:1599-1607. [PMID: 30074275 DOI: 10.1002/mc.22882] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer (TNBC) is aggressive with a worse prognosis. We have recently shown that bitter melon extract (BME) treatment was more effective in inhibition of TNBC tumor growth in mouse models as compared to ER positive breast tumor growth. Aberrant dysregulation of lipid metabolism is associated with breast cancer progression, however, anti-cancer mechanism of BME linking lipid metabolism in breast cancer growth remains unexplored. Here, we observed that accumulation of esterified cholesterol was reduced in BME treated TNBC cell lines as compared to control cells. We next evaluated expression levels of acyl-CoA: cholesterol acyltransferase 1 (ACAT-1) in TNBC cells treated with BME. Our results demonstrated that BME treatment inhibited ACAT-1 expression in TNBC cells. Subsequently, we found that sterol regulatory element-binding proteins-1 and -2, and FASN was significantly reduced in BME treated TNBC cell lines. Low-density lipoprotein receptor was also downregulated in BME treated TNBC cells as compared to control cells. We further demonstrated that BME feeding reduced tumor growth in TNBC mammospheres implanted into NSG mice, and inhibits ACAT-1 expression. To our knowledge, this is the first report demonstrating BME suppresses TNBC cell growth through ACAT-1 inhibition, and have potential for additional therapeutic regimen against human breast cancer.
Collapse
Affiliation(s)
- So Hee Shim
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Subhayan Sur
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Carolyn J Albert
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Chunfa Huang
- Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - David A Ford
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, Missouri.,Internal Medicine, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
12
|
Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, Weston TA, Vashi D, Ferrari A, Orozco JL, Hartman CL, Strugatsky D, Lee SD, He C, Hong C, Jiang H, Bentolila LA, Gatta AT, Levine TP, Ferng A, Lee R, Ford DA, Young SG, Ikonen E, Schwabe JWR, Tontonoz P. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell 2018; 175:514-529.e20. [PMID: 30220461 DOI: 10.1016/j.cell.2018.08.033] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/08/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.
Collapse
Affiliation(s)
- Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiqian Li
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Louise Fairall
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Simon G Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Jennifer E Gurnett
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dipti Vashi
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose L Orozco
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David Strugatsky
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Laurent A Bentolila
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Alberto T Gatta
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Tim P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Annie Ferng
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - John W R Schwabe
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Rudnicki K, Landová P, Wrońska M, Domagała S, Čáslavský J, Vávrová M, Skrzypek S. Quantitative determination of the veterinary drug monensin in horse feed samples by square wave voltammetry (SWV) and direct infusion electrospray ionization tandem mass spectrometry (DI–ESI–MS/MS). Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Ren J, Franklin ET, Xia Y. Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1432-1441. [PMID: 28417305 PMCID: PMC5483228 DOI: 10.1007/s13361-017-1639-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 05/09/2023]
Abstract
Mass spectrometry analysis of cholesteryl esters (CEs) faces several challenges, with one of them being the determination of the carbon-carbon double bond (C=C) locations within unsaturated fatty acyl chains. Paternὸ-Büchi (PB) reaction, a photochemical reaction based on the addition of acetone to C=C, is capable of C=C location determination when coupled with tandem mass spectrometry (MS/MS). In this study, the PB reaction conditions were tailored for CEs and subsequent nanoelectrospray ionization (nanoESI). A solvent system containing acetone/methanol/dichloromethane/water (40/30/20/10, volume ratios) and 100 μM LiOH was determined to be optimal, resulting in reasonable PB reaction yield (~30%) and good ionization efficiency (forming lithium adduct of CEs). Collision-induced dissociation (CID) of the PB reaction products produced characteristic fragment ions of CE together with those modified by the PB reactions, such as lithiated fatty acyl ([FA + Li]+) and its PB product ([FA - PB + Li]+). MS3 CID of [FA - PB + Li]+ led to abundant C=C diagnostic ion formation, which was used for C=C location determination and isomer quantitation. A PB-MS3 CID approach was developed and applied for CE analysis from human plasma. A series of unsaturated CEs was identified with specific C=C locations within fatty acyl chains. Absolute quantitation for each CE species was achieved including coexisting C=C location isomers, such as Δ9 and Δ11 isomers of CE 18:1 and ω-6 and ω-3 isomers of CE 18:3. These results show that PB-MS/MS is useful in uncovering structural diversity of CEs due to unsaturation in fatty acyls, which is often undetected from current lipid analysis approach. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jia Ren
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Elissia T Franklin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
15
|
Miura Y, Furukawa T, Kobayashi M, Shrestha R, Takahashi R, Shimizu C, Chiba H, Hui SP. Absolute quantification of cholesteryl esters using liquid chromatography-tandem mass spectrometry uncovers novel diagnostic potential of urinary sediment. Steroids 2017; 123:43-49. [PMID: 28502858 DOI: 10.1016/j.steroids.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Urine has been utilized as a source of biomarkers in renal disease. However, urinary lipids have not attracted much attention so far. Here we studied urinary cholesteryl ester (CE) and its relevance in renal disease. METHODS Quantitative analysis of CE molecular species in serum, urinary supernatant, and urinary sediment from patients with renal disease (N=64) and non-renal disease (N=23) was carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and deuterated CEs as internal standards. RESULTS Validation study showed good precision and accuracy of LC-MS/MS. Many CE species were detected in the urinary sediment and supernatant in the renal disease group, whereas only a few CE species were detected in the other group. In the renal disease group, the sum of the concentrations of all CE species showed a significant correlation between the sediment and the supernatant from urinary samples (r=0.876, p<0.001); however, the composition of CEs was significantly different between them. Further, the composition of CEs of the supernatant was similar to that of the serum. CONCLUSIONS Our LC-MS/MS analysis uncovered a distinct CE profile in urinary sediment from patients with renal disease, suggesting a possible contribution of CEs in urothelial cells to the development of renal disease.
Collapse
Affiliation(s)
- Yusuke Miura
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Takayuki Furukawa
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Miho Kobayashi
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo 060-8648, Japan
| | - Rojeet Shrestha
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ryoji Takahashi
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Chikara Shimizu
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Kita-14, Nishi-5, Kita-ku, Sapporo 060-8648, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
16
|
Bautista G, Pfisterer SG, Huttunen MJ, Ranjan S, Kanerva K, Ikonen E, Kauranen M. Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells. Biophys J 2015; 107:2230-6. [PMID: 25418291 PMCID: PMC4241439 DOI: 10.1016/j.bpj.2014.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 11/27/2022] Open
Abstract
Cells store excess lipids as two major compounds, triacylglycerols (TAGs) and cholesteryl esters (CEs), inside lipid droplets (LDs). The degree of lipid ordering is considered to play a major role in the mobility and enzymatic processing of lipids in LDs. Here, we provide evidence that polarized third-harmonic generation (THG) microscopy distinguishes between native TAG- and CE-enriched LDs in cells due to the different ordering of the two lipid species. We first demonstrate that the responses from synthetic TAG- and CE-enriched LDs using THG microscopy with linear and circular polarizations differ according to their different intrinsic ordering. We then employ simulations to dissect how polarization effects influence the THG from an isotropic LD. Finally, we induce TAG- and CE-enriched LDs in murine macrophages and demonstrate that polarized THG responses increase in a nonlinear fashion with increasing CE/TAG ratio. This suggests that with an increasing CE content, there is a rather sharp transition toward increased LD ordering. Our results demonstrate that polarized THG microscopy enables label-free quantitative analysis of LD ordering and discriminates between compositionally different LDs in intact mammalian cells.
Collapse
Affiliation(s)
- Godofredo Bautista
- Department of Physics, Tampere University of Technology, Tampere, Finland.
| | - Simon G Pfisterer
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko J Huttunen
- Department of Physics, Tampere University of Technology, Tampere, Finland; COMP Centre of Excellence and Department of Applied Physics, Aalto University, Aalto, Finland
| | - Sanjeev Ranjan
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kristiina Kanerva
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Martti Kauranen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
17
|
Rong X, Wang B, Dunham MM, Hedde PN, Wong JS, Gratton E, Young SG, Ford DA, Tontonoz P. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 2015; 4. [PMID: 25806685 PMCID: PMC4400582 DOI: 10.7554/elife.06557] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/24/2015] [Indexed: 11/13/2022] Open
Abstract
The role of specific phospholipids (PLs) in lipid transport has been difficult to assess due to an inability to selectively manipulate membrane composition in vivo. Here we show that the phospholipid remodeling enzyme lysophosphatidylcholine acyltransferase 3 (Lpcat3) is a critical determinant of triglyceride (TG) secretion due to its unique ability to catalyze the incorporation of arachidonate into membranes. Mice lacking Lpcat3 in the intestine fail to thrive during weaning and exhibit enterocyte lipid accumulation and reduced plasma TGs. Mice lacking Lpcat3 in the liver show reduced plasma TGs, hepatosteatosis, and secrete lipid-poor very low-density lipoprotein (VLDL) lacking arachidonoyl PLs. Mechanistic studies indicate that Lpcat3 activity impacts membrane lipid mobility in living cells, suggesting a biophysical basis for the requirement of arachidonoyl PLs in lipidating lipoprotein particles. These data identify Lpcat3 as a key factor in lipoprotein production and illustrate how manipulation of membrane composition can be used as a regulatory mechanism to control metabolic pathways.
Collapse
Affiliation(s)
- Xin Rong
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Bo Wang
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Merlow M Dunham
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, United States
| | - Per Niklas Hedde
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, United States
| | - Jinny S Wong
- Electron Microscopy Core, Gladstone Institute of Cardiovascular Disease, San Francisco, United States
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, United States
| | - Stephen G Young
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, United States
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
18
|
Yang Y, Kuwano T, Lagor WR, Albert CJ, Brenton S, Rader DJ, Ford DA, Brown RJ. Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species. Lipids 2014; 49:505-15. [PMID: 24777581 DOI: 10.1007/s11745-014-3907-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
Abstract
Hepatic lipase (HL) and endothelial lipase (EL) share overlapping and complementary roles in lipoprotein metabolism. The deletion of HL and EL alleles in mice raises plasma total cholesterol and phospholipid concentrations. However, the influence of HL and EL in vivo on individual molecular species from each class of lipid is not known. We hypothesized that the loss of HL, EL, or both in vivo may affect select molecular species from each class of lipids. To test this hypothesis, we performed lipidomic analyses on plasma and livers from fasted female wild-type, HL-knockout, EL-knockout, and HL/EL-double knockout mice. Overall, the loss of HL, EL, or both resulted in minimal changes to hepatic lipids; however, select species of CE were surprisingly reduced in the livers of mice only lacking EL. The loss of HL, EL, or both reduced the plasma concentrations for select molecular species of triacylglycerol, diacylglycerol, and free fatty acid. On the other hand, the loss of HL, EL, or both raised the plasma concentrations for select molecular species of phosphatidylcholine, cholesteryl ester, diacylglycerol, sphingomyelin, ceramide, plasmanylcholine, and plasmenylcholine. The increased plasma concentration of select ether phospholipids was evident in the absence of EL, thus suggesting that EL might exhibit a phospholipase A2 activity. Using recombinant EL, we showed that it could hydrolyse the artificial phospholipase A2 substrate 4-nitro-3-(octanoyloxy)benzoic acid. In summary, our study shows for the first time the influence of HL and EL on individual molecular species of several classes of lipids in vivo using lipidomic methods.
Collapse
Affiliation(s)
- Yanbo Yang
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu S, Dong J, Zhou W, Yang R, Li H, Zhao H, Zhang T, Guo H, Wang S, Zhang C, Chen W. A rapid and precise method for quantification of fatty acids in human serum cholesteryl esters by liquid chromatography and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:222-9. [PMID: 24820975 DOI: 10.1016/j.jchromb.2014.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/09/2014] [Accepted: 04/19/2014] [Indexed: 11/29/2022]
Abstract
We described a rapid and precise method for simultaneous quantification of eleven fatty acids in human serum cholesteryl esters (CEFAs) by liquid chromatography and tandem mass spectrometry (LC-MS/MS). After extraction of serum lipids with isopropanol, CEFAs were separated on reversed phase liquid chromatography and detected by mass spectrometry in positive ion mode with multiple reaction monitor. Individual CEFA was quantified by peak area normalization method and expressed as molar percent of total CEFAs. The run time was less than 5 min and detection limits were from 0.31 to 14.50 × 10(-5)mmol/L. Recoveries of the CEFAs ranged from 91.85% to 104.83% with a mean of 99.12%. The intra and total CVs for the measurement of CEFAs were 0.87-7.70% and 1.02-7.65%, respectively. This LC-MS/MS method required no internal standards, eliminated natural isotope interferences, and provided reproducible and reliable results for 11 major CEFAs in human serum. This method can be used in monitoring and evaluating dietary fatty acid intake. Additional studies are needed to evaluate the associations between serum CEFAs and cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Weiyan Zhou
- Beijing Hospital National Center for Clinical Laboratories, Ministry of Health, Beijing 100730, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Haijian Zhao
- Beijing Hospital National Center for Clinical Laboratories, Ministry of Health, Beijing 100730, China
| | - Tianjiao Zhang
- Beijing Hospital National Center for Clinical Laboratories, Ministry of Health, Beijing 100730, China
| | - Hanbang Guo
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Shu Wang
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Chuanbao Zhang
- Beijing Hospital National Center for Clinical Laboratories, Ministry of Health, Beijing 100730, China
| | - Wenxiang Chen
- The Key Laboratory of Geriatrics, Beijing Hospital Institute of Geriatrics, Ministry of Health, Beijing 100730, China; Beijing Hospital National Center for Clinical Laboratories, Ministry of Health, Beijing 100730, China.
| |
Collapse
|
20
|
Shao F, Ford DA. Elaidic acid increases hepatic lipogenesis by mediating sterol regulatory element binding protein-1c activity in HuH-7 cells. Lipids 2014; 49:403-13. [PMID: 24481861 DOI: 10.1007/s11745-014-3883-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
The liver is the major organ responsible for lipid biosynthesis. Sterol regulatory element-binding proteins (SREBP) are major transcription factors that regulate the expression of genes regulating fatty acid and cholesterol biosynthesis. Here we show that elaidic acid upregulates hepatic de-novo fatty acid and cholesterol synthesis in HuH-7 cells. To define the molecular mechanism involved in this unique regulation on hepatic lipogenesis, luciferase reporter gene assays were performed in HEK293 cells to compare the regulation of sterol regulatory element (SRE) that is present in SREBP-target promoter by elaidic acid and oleic acid. The results show that elaidic acid potently induced SRE-luciferase activity, whereas oleic acid inhibited this activity. Furthermore, elaidic acid increased SREBP-1c mRNA, while oleic acid did not alter it. Oleic acid inhibited mature form of SREBP-1 protein level, while elaidic acid did not show inhibitory effects. In addition, elaidic acid was also found to increase several selected lipogenic genes that are involved in fatty acids and sterol synthesis. These data demonstrate a unique role of elaidic acid, the most abundant trans fatty acid, in modulating hepatic lipogenesis.
Collapse
Affiliation(s)
- Fei Shao
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | | |
Collapse
|
21
|
Armitage EG, Rupérez FJ, Barbas C. Metabolomics of diet-related diseases using mass spectrometry. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Differential regulation of ABCA1 and macrophage cholesterol efflux by elaidic and oleic acids. Lipids 2013; 48:757-67. [PMID: 23800855 DOI: 10.1007/s11745-013-3808-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
Trans fatty acid consumption is associated with an increased risk of coronary heart disease. This increased risk has been attributed to decreased levels of HDL cholesterol and increased levels of LDL cholesterol. However, the mechanism by which trans fatty acid modulates cholesterol transit remains poorly defined. ATP-binding cassette transporter A1 (ABCA1)-mediated macrophage cholesterol efflux is the rate-limiting step initiating apolipoprotein A-I lipidation. In this study, elaidic acid, the most abundant trans fatty acid in partially hydrogenated vegetable oil, was shown to stabilize macrophage ABCA1 protein levels in comparison to that of its cis fatty acid isomer, oleic acid. The mechanism responsible for the disparate effects of oleic and elaidic acid on ABCA1 levels was through accelerated ABCA1 protein degradation in cells treated with oleic acid. In contrast, no apparent differences were observed in ABCA1 mRNA levels, and only minor changes were observed in Liver X receptor/Retinoic X receptor promoter activity in cells treated with elaidic and oleic acid. Efflux of both tracers and cholesterol mass revealed that elaidic acid slightly increased ABCA1-mediated cholesterol efflux, while oleic acid led to decreased ABCA1-mediated efflux. In conclusion, these studies show that cis and trans structural differences in 18 carbon n-9 monoenoic fatty acids variably impact cholesterol efflux through disparate effects on ABCA1 protein degradation.
Collapse
|
23
|
Brown RJ, Shao F, Baldán A, Albert CJ, Ford DA. Cholesterol efflux analyses using stable isotopes and mass spectrometry. Anal Biochem 2012; 433:56-64. [PMID: 23072980 DOI: 10.1016/j.ab.2012.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022]
Abstract
Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and medium content of [d(7)]cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple-quadrupole electrospray ionization-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning, and NL 368.5 scanning were used to detect cholesterol (as an acetylated derivative), [d(7)]cholesteryl ester (CE), and unlabeled CE, respectively. The same mass of [d(7)]cholesterol was substituted for [(3)H]cholesterol under standard efflux assay conditions. At the end of [d(7)]cholesterol loading, the intracellular mass of [d(7)]cholesterol was twofold greater than that of unlabeled cholesterol, and the intracellular [d(7)]CE profile was similar to that of unlabeled CE. Efflux of cholesterol to apolipoprotein A-I and high-density lipoproteins was similar comparing efflux of either [d(7)]cholesterol or [(3)H]cholesterol as measured by following efflux of the tracers only. This technique also can be used to assess the efflux of unlabeled cholesterol to acceptors in medium that are initially cholesterol-free (e.g., apolipoprotein A-I). Taken together, this mass spectrometry-based assay provides new molecular detail to assess cholesterol efflux.
Collapse
Affiliation(s)
- Robert J Brown
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | | | | | | | | |
Collapse
|