1
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
2
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Mousavian Z, Fahimi-Kashani E, Nafisi V, Fahimi-Kashani N. Recent Advances in Development of Biosensors for Monitoring of Airborne Microorganisms. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3722. [PMID: 39220332 PMCID: PMC11364924 DOI: 10.30498/ijb.2024.399314.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 09/04/2024]
Abstract
Background The early detection of infectious microorganisms is crucial for preventing and controlling the transmission of diseases. This article provides a comprehensive review of biosensors based on various diagnostic methods for measuring airborne pathogens. Objective This article aims to explore recent advancements in the field of biosensors tailored for the detection and monitoring of airborne microorganisms, offering insights into emerging technologies and their potential applications in environmental surveillance and public health management. Materials and Methods The study summarizes the research conducted on novel methods of detecting airborne microorganisms using different biological sensors, as well as the application of signal amplification technologies such as polymerase chain reaction (PCR), immunoassay reactions, molecular imprinted polymers (MIP) technique, lectin and cascade reactions, and nanomaterials. Results Antibody and PCR detection methods are effective for specific microbial strains, but they have limitations including limited stability, high cost, and the need for skilled operators with basic knowledge of the target structure. Biosensors based on MIP and lectin offer a low-cost, stable, sensitive, and selective alternative to antibodies and PCR. However, challenges remain, such as the detection of small gas molecules by MIP and the lower sensitivity of lectins compared to antibodies. Additionally, achieving high sensitivity in complex environments poses difficulties for both methods. Conclusion The development of sensitive, reliable, accessible, portable, and inexpensive biosensors holds great potential for clinical and environmental applications, including disease diagnosis, treatment monitoring, and point-of-care testing, offering a promising future in this field. This review presents an overview of biosensor detection principles, covering component identification, energy conversion principles, and signal amplification. Additionally, it summarizes the research and applications of biosensors in the detection of airborne microorganisms. The latest advancements and future trends in biosensor detection of airborne microorganisms are also analyzed.
Collapse
Affiliation(s)
- Zahra Mousavian
- Ph.D. Candidate, Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Ensieh Fahimi-Kashani
- Bachelor student, Faculty of Basic Sciences, Malayer International University, Hamedan
| | - Vahidreza Nafisi
- Associate Professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Nafiseh Fahimi-Kashani
- Assistant Professor, Faculty of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Du M, Ma J, Zhang Z, Wu G, Wu J, Wang H, Xie X, Wang C. Direct, ultrafast, and sensitive detection of environmental pathogenic microorganisms based on a graphene biosensor. Anal Chim Acta 2023; 1279:341810. [PMID: 37827618 DOI: 10.1016/j.aca.2023.341810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Pathogenic microorganisms in the environment pose a serious threat to global human health. This study developed a reduced graphene oxide (rGO)-field effect transistor (FET) biosensor to realize the rapid and sensitive detection of pathogenic microorganisms. The rGO-FET sensors were prepared by in-situ thermal reduction method, and biorecognition elements were immobilized using a crosslinking agent to realize the surface functionalization of rGO. The rGO-FET biosensors can detect Escherichia coli O157:H7 as low as 1.4 CFU mL-1 within 46 s. The normalized current response was linearly correlated with E. coli concentration in the range of 1.4-1.4 × 107 CFU mL-1. The normalized current response of E. coli O157:H7 was about an order of magnitude higher than those of other microorganisms, indicating that the biosensor has good specificity. The current loss rates of the unmodified rGO-FET sensors and the biosensors modified with anti-E. coli O157:H7 after 30 days of storage at 4 °C were approximately 8% and 15%, respectively. Most importantly, the rGO-FET biosensors can directly detect real samples without pretreatment. Compared with other technologies, the rGO-FET biosensors can detect pathogenic microorganisms with a wider linear range in a shorter time, which is of great importance for the rapid warning and control of pathogenic microorganisms in the environment.
Collapse
Affiliation(s)
- Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China; Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China
| | - Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Zhiwei Zhang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China
| | - Guangzu Wu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China
| | - Jianguo Wu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China; School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Hao Wang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China; School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Xinwu Xie
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 300161, China; National Bio-Protection Engineering Center, Tianjin, 300161, China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| |
Collapse
|
5
|
Zhou X, Zhang X, Peng Y, Douka AI, You F, Yao J, Jiang X, Hu R, Yang H. Electroactive Microorganisms in Advanced Energy Technologies. Molecules 2023; 28:molecules28114372. [PMID: 37298848 DOI: 10.3390/molecules28114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Collapse
Affiliation(s)
- Xingchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yujie Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
6
|
Lee I, Jeon E, Lee J. On-site bioaerosol sampling and detection in microfluidic platforms. Trends Analyt Chem 2023; 158:116880. [PMID: 36514783 PMCID: PMC9731818 DOI: 10.1016/j.trac.2022.116880] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
As the recent coronavirus disease (COVID-19) pandemic and several severe illnesses such as Middle East respiratory syndrome coronavirus (MERS-CoV), Influenza A virus (IAV) flu, and severe acute respiratory syndrome (SARS) have been found to be airborne, the importance of monitoring bioaerosols for the control and prevention of airborne epidemic diseases outbreaks is increasing. However, current aerosol collection and detection technologies may be limited to on-field use for real-time monitoring because of the relatively low concentrations of targeted bioaerosols in air samples. Microfluidic devices have been used as lab-on-a-chip platforms and exhibit outstanding capabilities in airborne particulate collection, sample processing, and target molecule analysis, thereby highlighting their potential for on-site bioaerosol monitoring. This review discusses the measurement of airborne microorganisms from air samples, including sources and transmission of bioaerosols, sampling strategies, and analytical methodologies. Recent advancements in microfluidic platforms have focused on bioaerosol sample preparation strategies, such as sorting, concentrating, and extracting, as well as rapid and field-deployable detection methods for analytes on microfluidic chips. Furthermore, we discuss an integrated platform for on-site bioaerosol analyses. We believe that our review significantly contributes to the literature as it assists in bridging the knowledge gaps in bioaerosol monitoring using microfluidic platforms.
Collapse
Affiliation(s)
- Inae Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
| | - Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
7
|
Deng CF, Su YY, Yang SH, Jiang QR, Xie R, Ju XJ, Liu Z, Pan DW, Wang W, Chu LY. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets. LAB ON A CHIP 2022; 22:1702-1713. [PMID: 36420612 DOI: 10.1039/d1lc01056e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Controllable mass production of monodisperse droplets plays a key role in numerous fields ranging from scientific research to industrial application. Microfluidic ladder networks show great potential in mass production of monodisperse droplets, but their design with uniform microflow distribution remains challenging due to the lack of a rational design strategy. Here an effective design strategy based on backstepping microflow analysis (BMA) is proposed for the rational development of microfluidic ladder networks for mass production of controllable monodisperse microdroplets. The performance of our BMA rule for rational microfluidic ladder network design is demonstrated by using an existing analogism-derived rule that is widely used for the design of microfluidic ladder networks as the control group. The microfluidic ladder network designed by the BMA rule shows a more uniform flow distribution in each branch microchannel than that designed by the existing rule, as confirmed by single-phase flow simulation. Meanwhile, the microfluidic ladder network designed by the BMA rule allows mass production of droplets with higher size monodispersity in a wider window of flow rates and mass production of polymeric microspheres from such highly monodisperse droplet templates. The proposed BMA rule provides new insights into the microflow distribution behaviors in microfluidic ladder networks based on backstepping microflow analysis and provides a rational guideline for the efficient development of microfluidic ladder networks with uniform flow distribution for mass production of highly monodisperse droplets. Moreover, the BMA method provides a general analysis strategy for microfluidic networks with parallel multiple microchannels for rational scale-up.
Collapse
Affiliation(s)
- Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qing-Rong Jiang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Naumova O, Generalov V, Shcherbakov D, Zaitseva E, Zhivodkov Y, Kozhukhov A, Latyshev A, Aseev A, Safatov A, Buryak G, Cheremiskina A, Merkuleva J, Rudometova N. SOI-FET Sensors with Dielectrophoretic Concentration of Viruses and Proteins. BIOSENSORS 2022; 12:992. [PMID: 36354501 PMCID: PMC9688205 DOI: 10.3390/bios12110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Quick label-free virus screening and highly sensitive analytical tools/techniques are becoming extremely important in a pandemic. In this study, we developed a biosensing device based on the silicon nanoribbon multichannel and dielectrophoretic controlled sensors functionalized with SARS-CoV-2 spike antibodies for the use as a platform for the detection and studding of properties of viruses and their protein components. Replicatively defective viral particles based on vesicular stomatitis viruses and HIV-1 were used as carrier molecules to deliver the target SARS-CoV-2 spike S-proteins to sensory elements. It was shown that fully CMOS-compatible nanoribbon sensors have the subattomolar sensitivity and dynamic range of 4 orders. Specific interaction between S-proteins and antibodies leads to the accumulation of the negative charge on the sensor surface. Nonspecific interactions of the viral particles lead to the positive charge accumulation. It was shown that dielectrophoretic controlled sensors allow to estimate the effective charge of the single virus at the sensor surface and separate it from the charge associated with the binding of target proteins with the sensor surface.
Collapse
Affiliation(s)
- Olga Naumova
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Vladimir Generalov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
- Faculty of Automation and Computer Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Dmitry Shcherbakov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Elza Zaitseva
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Yuriy Zhivodkov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anton Kozhukhov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Alexander Latyshev
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Alexander Aseev
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Safatov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Galina Buryak
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Anastasia Cheremiskina
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Julia Merkuleva
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Nadezhda Rudometova
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| |
Collapse
|
9
|
Development of aptamers for rapid airborne bacteria detection. Anal Bioanal Chem 2022; 414:7763-7771. [PMID: 36071267 DOI: 10.1007/s00216-022-04308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 11/01/2022]
Abstract
Airborne microbes can rapidly spread and cause various infectious diseases worldwide. This necessitates the determination of a fast and highly sensitive detection method. There have been no studies on receptors targeting Citrobacter braakii (C. braakii), a pathogenic bacterium which can exist in the air. In this study, we rapidly isolate an aptamer, a nucleic acid molecule that can specifically bind to C. braakii by centrifugation-based partitioning method (CBPM) reported previously by our groups as omitting the repeated rounds of binding incubation, separation, and amplification that are indispensable for SELEX. The binding affinity and specificity of isolated aptamers are checked using bacteria in liquid culture and recollection solution from aerosolized bacteria. Recollection solutions of the recovered bacteria are obtained by nebulizing, drying, and recapturing with a biosampler. The CB-5 aptamer shows high affinity and specificity for C. braakii (Kd: 16.42 in liquid culture and 26.91 nM in recollection from aerosolized sample). Our results indicate the current protocol can be employed for the rapid development of reliable diagnostic receptors targeting airborne bacteria.
Collapse
|
10
|
Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 2022; 1234:340297. [PMID: 36328717 PMCID: PMC9395976 DOI: 10.1016/j.aca.2022.340297] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The world is currently facing an adverse condition due to the pandemic of airborne pathogen SARS-CoV-2. Prevention is better than cure; thus, the rapid detection of airborne pathogens is necessary because it can reduce outbreaks and save many lives. Considering the immense role of diverse detection techniques for airborne pathogens, proper summarization of these techniques would be beneficial for humans. Hence, this review explores and summarizes emerging techniques, such as optical and electrochemical biosensors used for detecting airborne bacteria (Bacillus anthracis, Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae) and viruses (Influenza A, Avian influenza, Norovirus, and SARS-CoV-2). Significantly, the first section briefly focuses on various diagnostic modalities applied toward airborne pathogen detection. Next, the fabricated optical biosensors using various transducer materials involved in colorimetric and fluorescence strategies for infectious pathogen detection are extensively discussed. The third section is well documented based on electrochemical biosensors for airborne pathogen detection by differential pulse voltammetry, cyclic voltammetry, square-wave voltammetry, amperometry, and impedance spectroscopy. The unique pros and cons of these modalities and their future perspectives are addressed in the fourth and fifth sections. Overall, this review inspected 171 research articles published in the last decade and persuaded the importance of optical and electrochemical biosensors for airborne pathogen detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
11
|
Sheta SM, El-Sheikh SM. Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Anal Biochem 2022; 648:114680. [PMID: 35429447 PMCID: PMC9007753 DOI: 10.1016/j.ab.2022.114680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The world today lives in a state of terrible fear due to the mutation of the emerging COVID-19. With the continuation of this pandemic, there is an urgent need for fast, accurate testing devices to detect the emerging SARS-CoV-2 pandemic in terms of biosensors and point-of-care testing. Besides, the urgent development in personal defense tools, anti-viral surfaces and wearables, and smartphones open the door for simplifying the self-diagnosis process everywhere. This review introduces a quick COVID-19 overview: definition, transmission, pathophysiology, the identification and diagnosis, mutation and transformation, and the global situation. It also focuses on an overview of the rapidly advanced technologies based on nanomaterials and MOFs for biosensing, diagnosing, and viral control of the SARS-CoV-2 pandemic. Finally, highlight the latest technologies, applications, existing achievements, and preventive diagnostic strategies to control this epidemic and combat the emerging coronavirus. This humble effort aims to provide a helpful survey that can be used to develop a creative solution and to lay down the future vision of diagnosis against COVID-19.
Collapse
Affiliation(s)
- Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo, 11421, Egypt.
| |
Collapse
|
12
|
Ma J, Jiang G, Ma Q, Du M, Wang H, Wu J, Wang C, Xie X, Li T, Chen S, Zhang L, Wu M. Portable immunosensor directly and rapidly detects Mycobacterium tuberculosis in sputum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:438-448. [PMID: 35022623 DOI: 10.1039/d1ay01561c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) remains a public health problem that cannot be ignored. The portable and efficient detection of Mycobacterium tuberculosis (MTB) is important for the effective control of this disease. However, current detection techniques do not meet the requirements for MTB detection in the actual environment and often require cumbersome detection steps that are time consuming and inflexible. In this study, a portable immunosensor to detect MTB in sputum was prepared and then subjected to interface characterizations, such as scanning electron microscopy, hydrophilic angle test, and fluorescence characterization. The source and gate voltage of the device were optimized and tested using a non-contact photoresponse. The results showed that the sensitivity of the sensor to luminance increases with the decrease in source voltage. The gate voltage can substantially improve the response of the immunosensor to the normalized current of protein and amplify the signal at least 1.6 times. The optimal voltage detection conditions of source voltage (0.3 V) and gate voltage (0.1 V) were also determined. Several common proteins present in simulated saliva were used for anti-interference tests, and the sensor exhibited good specificity. Finally, the dilution gradient of an actual TB sputum sample was optimized. In the absence of preconditioning, a double-blind experiment was used to distinguish between the sputum from patients with TB and healthy individuals to shorten the TB detection time to a few minutes. Compared with the hospital's conventional detection method using cultures, the proposed method can complete the detection in a shorter time. This study provides a new strategy for the portable diagnosis of TB.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Qingqing Ma
- Department of Respiratory Medicine, Shandong Public Health Clinical Center (Shandong Province Chest Hospital), Jinan, 250013, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Jianguo Wu
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- National Bio-Protection Engineering Center, Tianjin, 300161, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| |
Collapse
|
13
|
El-Sherif DM, Abouzid M, Gaballah MS, Ahmed AA, Adeel M, Sheta SM. New approach in SARS-CoV-2 surveillance using biosensor technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1677-1695. [PMID: 34689274 PMCID: PMC8541810 DOI: 10.1007/s11356-021-17096-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 05/14/2023]
Abstract
Biosensors are analytical tools that transform the bio-signal into an observable response. Biosensors are effective for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they target viral antigens to assess clinical development and provide information on the severity and critical trends of infection. The biosensors are capable of being on-site, fast, and extremely sensitive to the target viral antigen, opening the door for early detection of SARS-CoV-2. They can screen individuals in hospitals, airports, and other crowded locations. Microfluidics and nanotechnology are promising cornerstones for the development of biosensor-based techniques. Recently, due to high selectivity, simplicity, low cost, and reliability, the production of biosensor instruments have attracted considerable interest. This review article precisely provides the extensive scientific advancement and intensive look of basic principles and implementation of biosensors in SARS-CoV-2 surveillance, especially for human health. In this review, the importance of biosensors including Optical, Electrochemical, Piezoelectric, Microfluidic, Paper-based biosensors, Immunosensors, and Nano-Biosensors in the detection of SARS-CoV-2 has been underscored. Smartphone biosensors and calorimetric strips that target antibodies or antigens should be developed immediately to combat the rapidly spreading SARS-CoV-2. Wearable biosensors can constantly monitor patients, which is a highly desired feature of biosensors. Finally, we summarized the literature, outlined new approaches and future directions in diagnosing SARS-CoV-2 by biosensor-based techniques.
Collapse
Affiliation(s)
- Dina M El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, 60-781, Poznan, Poland.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, People's Republic of China
| | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
14
|
Ma J, Jiang G, Ma Q, Wang H, Du M, Wang C, Xie X, Li T, Chen S. Rapid detection of airborne protein from Mycobacterium tuberculosis using a biosensor detection system. Analyst 2022; 147:614-624. [DOI: 10.1039/d1an02104d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The developed biosensor detection system can complete the detection of air samples by collecting exhaled breath condensate, greatly reducing the time to diagnose tuberculosis.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Qingqing Ma
- Department of Respiratory Medicine, Shandong Public Health Clinical Center (Shandong Province Chest Hospital), Jinan, 250013, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China
- National Bio-Protection Engineering Center, Tianjin, 300161, PR China
| | - Tie Li
- Science and Technology on Micro-System Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-System Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
15
|
Park H, Kim G, Seo Y, Yoon Y, Min J, Park C, Lee T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. BIOSENSORS 2021; 11:525. [PMID: 34940282 PMCID: PMC8699174 DOI: 10.3390/bios11120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| |
Collapse
|
16
|
Ma J, Du M, Wang C, Xie X, Wang H, Li T, Chen S, Zhang L, Mao S, Zhou X, Wu M. Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosensor. ACS Sens 2021; 6:3367-3376. [PMID: 34470206 DOI: 10.1021/acssensors.1c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) mostly spreads from person to person through Mycobacterium tuberculosis (MTB). However, the majority of conventional detection methods for MTB cannot satisfy the requirements for actual TB detection. As one of the most promising powerful platforms, a silicon nanowire field-effect transistor (SiNW-FET) biosensor shows good prospect in TB detection. In this study, an enhanced SiNW-FET biosensor was developed for the rapid and sensitive detection of MTB. The surface functional parameters of the biosensor were explored and optimized. The SiNW-FET biosensor has good sensitivity with a detection limit of 0.01 fg/mL toward protein. The current change value shows a linear upward trend with the increase in protein concentration in the range of 1 fg/mL to 100 μg/mL. One whole test cycle can be accomplished within only 30 s. More importantly, a good distinction was realized in the sputum without pretreatment between normal people and TB patients, which greatly shortened the TB detection time (only 2-5 min, considering the dilution of sputum). Compared with other methods, the SiNW-FET biosensor can detect MTB with a remarkably broad dynamic linear range in a shorter time.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- National Bio-Protection Engineering Center, Tianjin 300161, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| | - Shun Mao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| |
Collapse
|