1
|
Shen Y, Li J, Zhao Z, Chen X. Progress on long non-coding RNAs in calcific aortic valve disease. Front Cardiovasc Med 2025; 12:1522544. [PMID: 39898106 PMCID: PMC11782120 DOI: 10.3389/fcvm.2025.1522544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular condition in the elderly population. The aortic valve, influenced by factors such as endothelial dysfunction, inflammation, oxidative stress, lipid metabolism disorders, calcium deposition, and extracellular matrix remodeling, undergoes fibrosis and calcification, ultimately leading to stenosis. In recent years, long non-coding RNAs (lncRNAs) have emerged as significant regulators of gene expression, playing crucial roles in the occurrence and progression of various diseases. Research has shown that lncRNAs participate in the pathological process underlying CAVD by regulating osteogenic differentiation and inflammatory response of valve interstitial cells. Specifically, lncRNAs, such as H19, MALAT1, and TUG1, are closely associated with CAVD. Some lncRNAs can act as miRNA sponges, form complex regulatory networks, and modulate the expression of calcification-related genes. In brief, this review discusses the mechanisms and potential therapeutic targets of lncRNAs in CAVD.
Collapse
Affiliation(s)
- Yan Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zehao Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Villa-Roel N, Park C, Andueza A, Baek KI, Su A, Blaser MC, Leshnower BG, Yoganathan A, Aikawa E, Jo H. Side- and Disease-Dependent Changes in Human Aortic Valve Cell Population and Transcriptomic Heterogeneity Determined by Single-Cell RNA Sequencing. Genes (Basel) 2024; 15:1623. [PMID: 39766890 PMCID: PMC11675841 DOI: 10.3390/genes15121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes. METHODS To test this hypothesis, we performed single-cell RNA sequencing using a new method to collect endothelial-enriched samples independently from the fibrosa and ventricularis sides of freshly obtained human aortic valve leaflets from five donors, ranging from non-diseased to fibrocalcific stages. RESULTS From the 82,356 aortic valve cells analyzed, we found 27 cell clusters, including seven valvular endothelial cell (VEC), nine valvular interstitial cell (VIC), and seven immune, three transitional, and one stromal cell population. We identified several side-dependent VEC subtypes with unique gene expression patterns. Homeostatic VIC clusters were abundant in non-diseased tissues, while VICs enriched with fibrocalcific genes and pathways were more prevalent in diseased leaflets. Furthermore, homeostatic macrophage (MΦ) clusters decreased while inflammatory MΦ and T-cell clusters increased with disease progression. A foamy MΦ cluster was increased in the fibrosa of mildly diseased tissues. Some side-dependent VEC clusters represented non-diseased, protective phenotypes, while others were CAVD-associated and were characterized by genes enriched in pathways of inflammation, endothelial-mesenchymal transition, apoptosis, proliferation, and fibrosis. Interestingly, we found several activator protein-1 (AP-1)-related transcription factors (FOSB, FOS, JUN, JUNB) and EGR1 to be upregulated in the fibrosa and diseased aortic valve leaflets. CONCLUSIONS Our results showed that VECs are highly heterogeneous in a side- and CAVD-dependent manner. Unique VEC clusters and their differentially regulated genes and pathways found in the fibrosa of diseased tissues may represent novel pathogenic mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Ally Su
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.C.B.); (E.A.)
| | | | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.C.B.); (E.A.)
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA (C.P.); (A.A.); (K.I.B.); (A.S.); (A.Y.)
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Hung Vu M, Shiwakoti S, Ko JY, Bang G, Lee E, Kim E, Park SH, Park EH, Woo Kim C, Young Kim J, Sim HH, Chang K, Kim MS, Oak MH. Niclosamide attenuates calcification in human heart valvular interstitial cells through inhibition of the AMPK/mTOR signaling pathway. Biochem Pharmacol 2024; 230:116614. [PMID: 39515588 DOI: 10.1016/j.bcp.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Calcific aortic valve disease (CAVD) is a considerable health burden with a lack of effective therapeutic options. There is an urgent need to develop interventions that inhibit the osteogenic transformation of valvular interstitial cells (VICs) and delay the calcification process. Niclosamide, an FDA-approved anti-helminthic drug, has emerged as a promising candidate that demonstrates a negative regulatory effect on porcine VICs calcification. However, its molecular mechanism in human VICs (hVICs) remains to be investigated. In this study, high-resolution mass spectrometry-based proteomics and phosphoproteomics were employed, and 8373 proteins and 3697 phosphosites were identified in hVICs treated with a pro-calcifying medium and niclosamide. The quantitative proteomic and phosphoproteomic analysis resulted in the identification of calcification markers and osteogenesis-associated proteins. Bioinformatic analysis of the protein-protein interaction network and affected kinase prediction revealed that the AMPK/mTOR/p70S6K signaling cascade was altered upon calcific induction and niclosamide treatment. Further validation indicated that niclosamide inhibited the calcification of hVICs by targeting the mammalian target of the rapamycin (mTOR) signaling pathway. This study provides the first evidence that niclosamide could prevent osteoblastic differentiation in hVICs partially through the inhibition of the AMPK/mTOR/p70S6k signaling pathway, thereby mitigating hVICs calcification. These findings present a foundation for potential therapeutic strategies to impede the progression of CAVD and provide valuable insights into the pharmacological effects of niclosamide on human VICs.
Collapse
Affiliation(s)
- Minh Hung Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam 58554, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Eunmi Lee
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eunmin Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun-Hye Park
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Woo Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea; Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hwan-Hee Sim
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam 58554, Republic of Korea
| | - Kiyuk Chang
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-Ro, Cheonggye-Myeon, Muan-Gun, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
4
|
Das D, Jothimani G, Banerjee A, Dey A, Duttaroy AK, Pathak S. A brief review on recent advances in diagnostic and therapeutic applications of extracellular vesicles in cardiovascular disease. Int J Biochem Cell Biol 2024; 173:106616. [PMID: 38992790 DOI: 10.1016/j.biocel.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication within the cardiovascular system, playing essential roles in physiological homeostasis and contributing to the pathogenesis of various cardiovascular diseases (CVDs). However, their potential as diagnostic biomarkers and therapeutic agents in rare cardiovascular diseases, such as valvular heart disease (VHD) and cardiomyopathies, remains largely unexplored. This review comprehensively emphasizes recent advancements in extracellular vesicle research, explicitly highlighting their growing significance in diagnosing and potentially treating rare cardiovascular diseases, with a particular focus on valvular heart disease and cardiomyopathies. We highlight the potential of extracellular vesicle-based liquid biopsies as non-invasive tools for early disease detection and risk stratification, showcasing specific extracellular vesicle-associated biomarkers (proteins, microRNAs, lipids) with diagnostic and prognostic value. Furthermore, we discussed the therapeutic promise of extracellular vesicles derived from various sources, including stem cells and engineered extracellular vesicles, for cardiac repair and regeneration through their ability to modulate inflammation, promote angiogenesis, and reduce fibrosis. By integrating the findings and addressing critical knowledge gaps, this review aims to stimulate further research and innovation in extracellular vesicle-based diagnostics and therapeutics of cardiovascular disease.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India.
| |
Collapse
|
5
|
Azimi-Boulali J, Mahler GJ, Murray BT, Huang P. Multiscale computational modeling of aortic valve calcification. Biomech Model Mechanobiol 2024; 23:581-599. [PMID: 38093148 DOI: 10.1007/s10237-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 03/26/2024]
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, including the transforming growth factor beta (TGF β ) pathway. In this study, we developed a multiscale computational model for TGF β -stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD and TGF β signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involving cellular mechanobiology.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
6
|
Zheng Y, Wen S, Jiang S, He S, Qiao W, Liu Y, Yang W, Zhou J, Wang B, Li D, Lin J. CircRNA/lncRNA-miRNA-mRNA network and gene landscape in calcific aortic valve disease. BMC Genomics 2023; 24:419. [PMID: 37491214 PMCID: PMC10367311 DOI: 10.1186/s12864-023-09441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a common valve disease with an increasing incidence, but no effective drugs as of yet. With the development of sequencing technology, non-coding RNAs have been found to play roles in many diseases as well as CAVD, but no circRNA/lncRNA-miRNA-mRNA interaction axis has been established. Moreover, valve interstitial cells (VICs) and valvular endothelial cells (VECs) play important roles in CAVD, and CAVD differed between leaflet phenotypes and genders. This work aims to explore the mechanism of circRNA/lncRNA-miRNA-mRNA network in CAVD, and perform subgroup analysis on the important characteristics of CAVD, such as key cells, leaflet phenotypes and genders. RESULTS We identified 158 differentially expressed circRNAs (DEcircRNAs), 397 DElncRNAs, 45 DEmiRNAs and 167 DEmRNAs, and constructed a hsa-circ-0073813/hsa-circ-0027587-hsa-miR-525-5p-SPP1/HMOX1/CD28 network in CAVD after qRT-PCR verification. Additionally, 17 differentially expressed genes (DEGs) in VICs, 9 DEGs in VECs, 7 DEGs between different leaflet phenotypes and 24 DEGs between different genders were identified. Enrichment analysis suggested the potentially important pathways in inflammation and fibro-calcification during the pathogenesis of CAVD, and immune cell patterns in CAVD suggest that M0 macrophages and memory B cells memory were significantly increased, and many genes in immune cells were also differently expressed. CONCLUSIONS The circRNA/lncRNA-miRNA-mRNA interaction axis constructed in this work and the DEGs identified between different characteristics of CAVD provide a direction for a deeper understanding of CAVD and provide possible diagnostic markers and treatment targets for CAVD in the future.
Collapse
Affiliation(s)
- Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Abdul-Rahman T, Lizano-Jubert I, Garg N, Talukder S, Lopez PP, Awuah WA, Shah R, Chambergo D, Cantu-Herrera E, Farooqi M, Pyrpyris N, de Andrade H, Mares AC, Gupta R, Aldosoky W, Mir T, Lavie CJ, Abohashem S. The common pathobiology between coronary artery disease and calcific aortic stenosis: Evidence and clinical implications. Prog Cardiovasc Dis 2023; 79:89-99. [PMID: 37302652 DOI: 10.1016/j.pcad.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Calcific aortic valve stenosis (CAS), the most prevalent valvular disease worldwide, has been demonstrated to frequently occur in conjunction with coronary artery disease (CAD), the third leading cause of death worldwide. Atherosclerosis has been proven to be the main mechanism involved in CAS and CAD. Evidence also exists that obesity, diabetes, and metabolic syndrome (among others), along with specific genes involved in lipid metabolism, are important risk factors for CAS and CAD, leading to common pathological processes of atherosclerosis in both diseases. Therefore, it has been suggested that CAS could also be used as a marker of CAD. An understanding of the commonalities between the two conditions may improve therapeutic strategies for treating both CAD and CAS. This review explores the common pathogenesis and disparities between CAS and CAD, alongside their etiology. It also discusses clinical implications and provides evidence-based recommendations for the clinical management of both diseases.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University; Toufik's World Medical Association, Sumy, Ukraine
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive, Stratford, NJ, United States
| | | | - Pablo Perez Lopez
- Faculty of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain; Puerta de Hierro Majadahonda University Hospital, Majadahonda, Spain
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University; Toufik's World Medical Association, Sumy, Ukraine
| | | | - Diego Chambergo
- Faculty of Medicine, Anahuac University, Huixquilucan, Mexico
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | | | - Nikolaos Pyrpyris
- School of Medicine, National and Kapodistrian University of Athens, Greece
| | | | - Adriana C Mares
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Rahul Gupta
- Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, United States of America.
| | - Wesam Aldosoky
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Tanveer Mir
- Detroit Medical Center - Cardiology department, Wayne State University, Detroit, United States
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic Foundation, New Orleans, LA, United States of America; The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA, United States of America
| | - Shady Abohashem
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Boston, MA, United States; Epidemiology Department, Harvard T. Chan of Public Health, Boston, MA, United States
| |
Collapse
|
8
|
Song L, Wang Y, Feng Y, Peng H, Wang C, Duan J, Liu K, Shen X, Gu W, Qi Y, Jin S, Pang L. Bioinformatics-Based Identification of CircRNA-MicroRNA-mRNA Network for Calcific Aortic Valve Disease. Genet Res (Camb) 2023; 2023:8194338. [PMID: 37234568 PMCID: PMC10208756 DOI: 10.1155/2023/8194338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most common native valve disease. Valvular interstitial cell (VIC) osteogenic differentiation and valvular endothelial cell (VEC) dysfunction are key steps in CAVD progression. Circular RNA (circRNAs) is involved in regulating osteogenic differentiation with mesenchymal cells and is associated with multiple disease progression, but the function of circRNAs in CAVD remains unknown. Here, we aimed to investigate the effect and potential significance of circRNA-miRNA-mRNA networks in CAVD. Methods Two mRNA datasets, one miRNA dataset, and one circRNA dataset of CAVD downloaded from GEO were used to identify DE-circRNAs, DE-miRNAs, and DE-mRNAs. Based on the online website prediction function, the common mRNAs (FmRNAs) for constructing circRNA-miRNA-mRNA networks were identified. GO and KEGG enrichment analyses were performed on FmRNAs. In addition, hub genes were identified by PPI networks. Based on the expression of each data set, the circRNA-miRNA-hub gene network was constructed by Cytoscape (version 3.6.1). Results 32 DE-circRNAs, 206 DE-miRNAs, and 2170 DE-mRNAs were identified. Fifty-nine FmRNAs were obtained by intersection. The KEGG pathway analysis of FmRNAs was enriched in pathways in cancer, JAK-STAT signaling pathway, cell cycle, and MAPK signaling pathway. Meanwhile, transcription, nucleolus, and protein homodimerization activity were significantly enriched in GO analysis. Eight hub genes were identified based on the PPI network. Three possible regulatory networks in CAVD disease were obtained based on the biological functions of circRNAs including: hsa_circ_0026817-hsa-miR-211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and hsa_circ_0007215-hsa-miR-1343-3p- RBL1. Conclusion The present bionformatics analysis suggests the functional effect for the circRNA-miRNA-mRNA network in CAVD pathogenesis and provides new targets for therapeutics.
Collapse
Affiliation(s)
- Linghong Song
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yubing Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yufei Feng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hao Peng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chengyan Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Juncang Duan
- Department of Cardiology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Kejian Liu
- Department of Cardiology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xihua Shen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Yan Qi
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shan Jin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Adhikari R, Jung J, Shiwakoti S, Park EY, Kim HJ, Ko JY, You J, Lee M, Oak MH. Capsaicin inhibits aortic valvular interstitial cell calcification via the redox-sensitive NFκB/AKT/ERK1/2 pathway. Biochem Pharmacol 2023; 212:115530. [PMID: 37028459 DOI: 10.1016/j.bcp.2023.115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Calcific aortic valve stenosis (CAVS), the third most prevalent cardiovascular disorder is known to impose a huge social and economic burden on patients. However, no pharmacotherapy has yet been established. Aortic valve replacement is the only treatment option, although its lifelong efficacy is not guaranteed and involves inevitable complications. So, there is a crucial need to find novel pharmacological targets to delay or prevent CAVS progression. Capsaicin is well known for its anti-inflammatory and antioxidant properties and has recently been revealed to inhibit arterial calcification. We thus investigated the effect of capsaicin in attenuating aortic valve interstitial cells (VICs) calcification induced by pro-calcifying medium (PCM). Capsaicin reduced the level of calcium deposition in calcified VICs, along with reductions in gene and protein expression of the calcification markers Runx2, osteopontin, and BMP2. Based on Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway analysis oxidative stress, AKT and AGE-RAGE signaling pathways were selected. The AGE-RAGE signaling pathway activates oxidative stress and inflammation-mediated pathways including ERK and NFκB signaling pathways. Capsaicin successfully inhibited oxidative stress- and reactive oxygen species-related markers NOX2 and p22phox. The markers of the AKT, ERK1/2, and NFκB signaling pathways, namely, phosphorylated AKT, ERK1/2, NFκB, and IκBα were upregulated in calcified cells, while being significantly downregulated upon capsaicin treatment. Capsaicin attenuates VICs calcification in vitro by inhibition of redox-sensitive NFκB/AKT/ERK1/2 signaling pathway, indicating its potential as a candidate to alleviate CAVS.
Collapse
|
10
|
Sylvester CB, Amirkhosravi F, Bortoletto AS, West WJ, Connell JP, Grande-Allen KJ. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor. Front Cardiovasc Med 2023; 10:1112965. [PMID: 37063962 PMCID: PMC10100588 DOI: 10.3389/fcvm.2023.1112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Calcific aortic valve disease (CAVD), a fibrocalcific thickening of the aortic valve leaflets causing obstruction of the left ventricular outflow tract, affects nearly 10 million people worldwide. For those who reach end-stage CAVD, the only treatment is highly invasive valve replacement. The development of pharmaceutical treatments that can slow or reverse the progression in those affected by CAVD would greatly advance the treatment of this disease. The principal cell type responsible for the fibrocalcific thickening of the valve leaflets in CAVD is valvular interstitial cells (VICs). The cellular processes mediating this calcification are complex, but calcium second messenger signaling, regulated in part by the ryanodine receptor (RyR), has been shown to play a role in a number of other fibrocalcific diseases. We sought to determine if the blockade of calcium signaling in VICs could ameliorate calcification in an in vitro model. We previously found that VICs express RyR isotype 3 and that its modulation could prevent VIC calcific nodule formation in vitro. We sought to expand upon these results by further investigating the effects of calcium signaling blockade on VIC gene expression and behavior using dantrolene, an FDA-approved pan-RyR inhibitor. We found that dantrolene also prevented calcific nodule formation in VICs due to cholesterol-derived lysophosphatidylcholine (LPC). This protective effect corresponded with decreases in intracellular calcium flux, apoptosis, and ACTA2 expression but not reactive oxygen species formation caused by LPC. Interestingly, dantrolene increased the expression of the regulator genes RUNX2 and SOX9, indicating complex gene regulation changes. Further investigation via RNA sequencing revealed that dantrolene induced several cytoprotective genes that are likely also responsible for its attenuation of LPC-induced calcification. These results suggest that RyR3 is a viable therapeutic target for the treatment of CAVD. Further studies of the effects of RyR3 inhibition on CAVD are warranted.
Collapse
Affiliation(s)
- Christopher B. Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Farshad Amirkhosravi
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Angelina S. Bortoletto
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene, Stem Cells, and Regenerative Medicine Center, Translational and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, United States
| | - William J. West
- Department of Bioengineering, Rice University, Houston, TX, United States
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
- Correspondence: K. Jane Grande-Allen
| |
Collapse
|
11
|
Kong X, Meng L, Wei K, Lv X, Liu C, Lin F, Gu X. Exploration and validation of the influence of angiogenesis-related factors in aortic valve calcification. Front Cardiovasc Med 2023; 10:1061077. [PMID: 36824454 PMCID: PMC9941152 DOI: 10.3389/fcvm.2023.1061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Over the years, bioinformatics tools have been used to identify functional genes. In the present study, bioinformatics analyses were conducted to explore the underlying molecular mechanisms of angiogenic factors in calcific aortic valve disease (CAVD). The raw gene expression profiles were from datasets GSE153555, GSE83453, and GSE51472, and the angiogenesis-related gene set was from the Gene Set Enrichment Analysis database (GSEA). In this study, R was used to screen for differentially expressed genes (DEGs) and co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) Pathway enrichment analysis were performed on DEGs and validated in clinical samples. DEGs in CAVD were significantly enriched in numerous immune response pathways, inflammatory response pathways and angiogenesis-related pathways. Nine highly expressed angiogenesis-related genes were identified, of which secretogranin II (SCG2) was the most critical gene. MiRNA and transcription factors (TFs) networks were established centered on five DEGs, and zinc finger E-box binding homeobox 1 (ZEB1) was the most important transcription factor, verified by PCR, immunohistochemical staining and western blotting experiments. Overall, this study identified key genes and TFs that may be involved in the pathogenesis of CAVD and may have promising applications in the treatment of CAVD.
Collapse
Affiliation(s)
- XiangJin Kong
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - LingWei Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - KaiMing Wei
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Lv
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - ChuanZhen Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - FuShun Lin
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - XingHua Gu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China,*Correspondence: XingHua Gu,
| |
Collapse
|
12
|
Anam SB, Kovarovic BJ, Ghosh RP, Bianchi M, Hamdan A, Haj-Ali R, Bluestein D. Validating In Silico and In Vitro Patient-Specific Structural and Flow Models with Transcatheter Bicuspid Aortic Valve Replacement Procedure. Cardiovasc Eng Technol 2022; 13:840-856. [PMID: 35391657 DOI: 10.1007/s13239-022-00620-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.
Collapse
Affiliation(s)
- Salwa B Anam
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Brandon J Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ram P Ghosh
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Matteo Bianchi
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, 4941492, Petah Tikva, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA. .,Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
13
|
Joll JE, Riley LA, Bersi MR, Nyman JS, Merryman WD. Sclerostin ablation prevents aortic valve stenosis in mice. Am J Physiol Heart Circ Physiol 2022; 323:H1037-H1047. [PMID: 36240434 PMCID: PMC9662798 DOI: 10.1152/ajpheart.00355.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The objective of this study was to test the hypothesis that targeting sclerostin would accelerate the progression of aortic valve stenosis. Sclerostin (mouse gene, Sost) is a secreted glycoprotein that acts as a potent regulator of bone remodeling. Antibody therapy targeting sclerostin is approved for osteoporosis but results from a stage III clinical trial showed multiple off-target cardiovascular effects. Wild-type (WT, Sost+/+) and Sost-gene knockout-expression (Null, Sost-/-) mice were generated and maintained to 12 mo of age on a high-cholesterol diet to induce aortic valve stenosis. Mice were examined by echocardiography, histology, and RNAseq. Immortalized valve interstitial cells were developed from each genotype for in vitro studies. Null mice developed a bone overgrowth phenotype, similar to patients with sclerosteosis. Surprisingly, however, WT mice developed hemodynamic signs of aortic valve stenosis, whereas Null mice were unchanged. WT mice had thicker aortic valve leaflets and higher amounts of α-smooth muscle actin, a marker myofibroblast activation and dystrophic calcification, with very little evidence of Runx2 expression, a marker of osteogenic calcification. RNAseq analysis of aortic roots indicated the HOX family of transcription factors was significantly upregulated in Null mice, and valve interstitial cells from Null animals were enriched with Hoxa1, Hoxb2, and Hoxd3 subtypes with downregulated Hoxa7. In addition, Null valve interstitial cells were shown to be less contractile than their WT counterparts. Contrary to our hypothesis, sclerostin targeting prevented hallmarks of aortic valve stenosis and indicates that targeted antibody treatments for osteoporosis may be beneficial for these patients regarding aortic stenosis.NEW & NOTEWORTHY We have found that genetic ablation of the Sost gene (protein: sclerostin) prevents aortic valve stenosis in aged, Western diet mice. This is a new role for sclerostin in the cardiovascular system. To the knowledge of the authors, this is one of the first studies directly manipulating sclerostin in a cardiovascular disease model and the first to specifically study the aortic valve. We also provide a potential new role for Hox genes in cardiovascular disease, noting pan-Hox upregulation in the aortic roots of sclerostin genetic knockouts. The role of Hox genes in postnatal cardiovascular health and disease is another burgeoning field of study to which this article contributes.
Collapse
Affiliation(s)
- J Ethan Joll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
14
|
Peng X, Su S, Zeng J, Xie K, Yang X, Xian G, Xiao Z, Zhu P, Zheng S, Xu D, Zeng Q. 4-Octyl itaconate suppresses the osteogenic response in aortic valvular interstitial cells via the Nrf2 pathway and alleviates aortic stenosis in mice with direct wire injury. Free Radic Biol Med 2022; 188:404-418. [PMID: 35787451 DOI: 10.1016/j.freeradbiomed.2022.06.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in older individuals, but there is a lack of drug treatment. The cellular biological mechanisms of CAVD are still unclear. Oxidative stress and endoplasmic reticulum stress (ER stress) have been suggested to be involved in the progression of CAVD. Many studies have demonstrated that 4-octyl itaconate (OI) plays beneficial roles in limiting inflammation and oxidative injury. However, the potential role of OI in CAVD has not been thoroughly explored. Thus, we investigated OI-mediated modulation of ROS generation and endoplasmic reticulum stress to inhibit osteogenic differentiation in aortic valve interstitial cells (VICs). In our study, calcified aortic valves showed increased levels of ER stress and superoxide anion, as well as abnormal expression of Hmox1 and NQO1. In VICs, OI activated the Nrf2 signaling cascade and contributed to Nrf2 stabilization and nuclear translocation, thus augmenting the expression of genes downstream of Nrf2 (Hmox1 and NQO1). Moreover, OI ameliorated osteogenic medium (OM)-induced ROS production, mitochondrial ROS levels and the loss of mitochondrial membrane potential in VICs. Furthermore, OI attenuated the OM-induced upregulation of ER stress markers, osteogenic markers and calcium deposition, which were blocked by the Nrf2-specific inhibitor ML385. Interestingly, we found that OM-induced ER stress and osteogenic differentiation were ROS-dependent and that Hmox1 silencing triggered ROS production, ER stress and elevated osteogenic activity, which were inhibited by NAC. Overexpression of NQO1 mediated by adenovirus vectors significantly suppressed OM-induced ER stress and osteogenic markers. Collectively, these results showed the anti-osteogenic effects of OI on AVICs by regulating the generation of ROS and ER stress by activating the Nrf2 signaling pathway. Furthermore, OI alleviated aortic stenosis in a mouse model with direct wire injury. Due to its antioxidant properties, OI could be a potential drug for the prevention and/or treatment of CAVD.
Collapse
Affiliation(s)
- Xin Peng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Xi Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510515, Guangzhou, China.
| |
Collapse
|
15
|
Chakrabarti M, Bhattacharya A, Gebere MG, Johnson J, Ayub ZA, Chatzistamou I, Vyavahare NR, Azhar M. Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:770065. [PMID: 35928937 PMCID: PMC9343688 DOI: 10.3389/fcvm.2022.770065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Aims Calcific aortic valve disease (CAVD) is a progressive heart disease that is particularly prevalent in elderly patients. The current treatment of CAVD is surgical valve replacement, but this is not a permanent solution, and it is very challenging for elderly patients. Thus, a pharmacological intervention for CAVD may be beneficial. In this study, we intended to rescue aortic valve (AV) calcification through inhibition of TGFβ1 and SMAD3 signaling pathways. Methods and Results The klotho gene, which was discovered as an aging-suppressor gene, has been observed to play a crucial role in AV calcification. The klotho knockout (Kl–/–) mice have shorter life span (8–12 weeks) and develop severe AV calcification. Here, we showed that increased TGFβ1 and TGFβ-dependent SMAD3 signaling were associated with AV calcification in Kl–/– mice. Next, we generated Tgfb1- and Smad3-haploinsufficient Kl–/– mice to determine the contribution of TGFβ1 and SMAD3 to the AV calcification in Kl–/– mice. The histological and morphometric evaluation suggested a significant reduction of AV calcification in Kl–/–; Tgfb1± mice compared to Kl–/– mice. Smad3 heterozygous deletion was observed to be more potent in reducing AV calcification in Kl–/– mice compared to the Kl–/–; Tgfb1± mice. We observed significant inhibition of Tgfb1, Pai1, Bmp2, Alk2, Spp1, and Runx2 mRNA expression in Kl–/–; Tgfb1± and Kl–/–; Smad3± mice compared to Kl–/– mice. Western blot analysis confirmed that the inhibition of TGFβ canonical and non-canonical signaling pathways were associated with the rescue of AV calcification of both Kl–/–; Tgfb1± and Kl–/–; Smad3± mice. Conclusion Overall, inhibition of the TGFβ1-dependent SMAD3 signaling pathway significantly blocks the development of AV calcification in Kl–/– mice. This information is useful in understanding the signaling mechanisms involved in CAVD.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Aniket Bhattacharya
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mengistu G. Gebere
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - John Johnson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Zeeshan A. Ayub
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | | | - Mohamad Azhar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- William Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
- *Correspondence: Mohamad Azhar,
| |
Collapse
|
16
|
Jiang DT, Tuo L, Bai X, Bing WD, Qu QX, Zhao X, Song GM, Bi YW, Sun WY. Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha. Stem Cell Res Ther 2022; 13:316. [PMID: 35842683 PMCID: PMC9288720 DOI: 10.1186/s13287-022-03011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is associated with oxidative stress and affects the survival and homing of transplanted mesenchymal stem cells (MSCs) as well as cytokine secretion by the MSCs, thereby altering their therapeutic potential. In this study, we preconditioned the MSCs with prostaglandin E1 (PGE1) and performed in vitro and in vivo cell experiments to evaluate the therapeutic effects of MSCs in rats with PAH. Methods We studied the relationship between PGE1 and vascular endothelial growth factor (VEGF) secretion, B-cell lymphoma 2 (Bcl-2) expression, and C-X-C chemokine receptor 4 (CXCR4) expression in MSCs and MSC apoptosis as well as migration through the hypoxia-inducible factor (HIF) pathway in vitro. The experimental rats were randomly divided into five groups: (I) control group, (II) monocrotaline (MCT) group, (III) MCT + non-preconditioned (Non-PC) MSC group, (IV) MCT + PGE1-preconditioned (PGE1-PC) MSC group, and (V) MCT+PGE1+YC-1-PCMSC group. We studied methane dicarboxylic aldehyde (MDA) levels, MSC homing to rat lungs, mean pulmonary artery pressure, pulmonary artery systolic pressure, right ventricular hypertrophy index, wall thickness index (%WT), and relative wall area index (%WA) of rat pulmonary arterioles. Results Preconditioning with PGE1 increased the protein levels of HIF-1 alpha (HIF-1α) in MSCs, which can reduce MSC apoptosis and increase the protein levels of CXCR4, MSC migration, and vascular endothelial growth factor secretion. Upon injection with PGE1-PCMSCs, the pulmonary artery systolic pressure, mean pulmonary artery pressure, right ventricular hypertrophy index, %WT, and %WA decreased in rats with PAH. PGE1-PCMSCs exhibited better therapeutic effects than non-PCMSCs. Interestingly, lificiguat (YC-1), an inhibitor of the HIF pathway, blocked the effects of PGE1 preconditioning. Conclusions Our findings indicate that PGE1 modulates the properties of MSCs by regulating the HIF pathway, providing insights into the mechanism by which PGE1 preconditioning can be used to improve the therapeutic potential of MSCs in PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03011-x.
Collapse
Affiliation(s)
- De-Tian Jiang
- Department of Cardiovascular Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Lei Tuo
- Department of Cardiovascular Surgery, Weifang Yidu Central Hospital, Qingzhou, Weifang, 262500, Shandong, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Wei-Dong Bing
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Qing-Xi Qu
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Guang-Min Song
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China
| | - Yan-Wen Bi
- Department of Cardiovascular Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250062, Shandong, China.
| | - Wen-Yu Sun
- Department of Cardiovascular Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
17
|
Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, Perez MDM, Kostareva A, Stensløkken KO, Sullivan GJ, Rutkovskiy A, Vaage J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol 2022; 13:835825. [PMID: 35721220 PMCID: PMC9203042 DOI: 10.3389/fphar.2022.835825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Aortic valve stenosis secondary to aortic valve calcification is the most common valve disease in the Western world. Calcification is a result of pathological proliferation and osteogenic differentiation of resident valve interstitial cells. To develop non-surgical treatments, the molecular and cellular mechanisms of pathological calcification must be revealed. In the current overview, we present methods for evaluation of calcification in different ex vivo, in vitro and in vivo situations including imaging in patients. The latter include echocardiography, scanning with computed tomography and magnetic resonance imaging. Particular emphasis is on translational studies of calcific aortic valve stenosis with a special focus on cell culture using human primary cell cultures. Such models are widely used and suitable for screening of drugs against calcification. Animal models are presented, but there is no animal model that faithfully mimics human calcific aortic valve disease. A model of experimentally induced calcification in whole porcine aortic valve leaflets ex vivo is also included. Finally, miscellaneous methods and aspects of aortic valve calcification, such as, for instance, biomarkers are presented.
Collapse
Affiliation(s)
- Maria Bogdanova
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arsenii Zabirnyk
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Daria Semenova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Woman and Children Health, Karolinska Institute, Stockholm, Sweden
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Liu Q, Yu Y, Xi R, Li J, Lai R, Wang T, Fan Y, Zhang Z, Xu H, Ju J. Association Between Lipoprotein(a) and Calcific Aortic Valve Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:877140. [PMID: 35548407 PMCID: PMC9082602 DOI: 10.3389/fcvm.2022.877140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background Preliminary studies indicated that enhanced plasma levels of lipoprotein(a) [lp(a)] might link with the risk of calcific aortic valve disease (CAVD), but the clinical association between them remained inconclusive. This systematic review and meta-analysis were aimed to determine this association. Methods We comprehensively searched PubMed, Embase, Web of Science, and Scopus databases for studies reporting the incidence of CAVD and their plasma lp(a) concentrations. Pooled risk ratio (RR) and 95% confidence interval (95% CI) were calculated to evaluate the effect of lp(a) on CAVD using the random-effects model. Subgroup analyses by study types, countries, and the level of adjustment were also conducted. Funnel plots, Egger's test and Begg's test were conducted to evaluate the publication bias. Results Eight eligible studies with 52,931 participants were included in this systematic review and meta-analysis. Of these, four were cohort studies and four were case-control studies. Five studies were rated as high quality, three as moderate quality. The pooled results showed that plasma lp(a) levels ≥50 mg/dL were associated with a 1.76-fold increased risk of CAVD (RR, 1.76; 95% CI, 1.47–2.11), but lp(a) levels ≥30 mg/dL were not observed to be significantly related with CAVD (RR, 1.28; 95% CI, 0.98–1.68). We performed subgroup analyses by study type, the RRs of cohort studies revealed lp(a) levels ≥50 mg/dL and lp(a) levels ≥30 mg/dL have positive association with CAVD (RR, 1.70; 95% CI, 1.39–2.07; RR 1.38; 95% CI, 1.19–1.61). Conclusion High plasma lp(a) levels (≥50 mg/dL) are significantly associated with increased risk of CAVD.
Collapse
Affiliation(s)
- Qiyu Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruixi Xi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Fan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jianqing Ju
| |
Collapse
|
19
|
Luo J, Wang S, Liu X, Zheng Q, Wang Z, Huang Y, Shi J. Galectin-3 promotes calcification of human aortic valve interstitial cells via the NF-kappa B signaling pathway. Cardiovasc Diagn Ther 2022; 12:196-207. [PMID: 35433352 PMCID: PMC9011093 DOI: 10.21037/cdt-21-506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/30/2022] [Indexed: 09/19/2023]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is an active pathobiological process that takes place at the cellular and molecular levels. It involves fibrosis and calcification of aortic valve leaflets, which eventually contributes to heart failure. Galectin-3 (Gal-3), a β-galactoside-binding lectin, is involved in myocardial fibrosis and remodeling. Our study aimed to explore how Gal-3 promoted the osteogenic differentiation of human aortic valve interstitial cells (hVICs) along with elucidating the underlying molecular mechanisms. METHODS To determine the Gal-3 expression in this study, we included the blood samples and aortic valves (AVs) from patients with CAVD (n=20) and normal controls (n=20). The hVICs were stimulated by Osteogenic medium (OM) and were treated with or without recombinant human Gal-3. Calcified transformation of hVICs was assessed by Alizarin Red S staining and osteogenic gene/protein expression. RNA-sequencing was performed for all different treatments to investigate differentially expressed genes (DEGs) along with exploring the enriched pathways for potential molecular targets of Gal-3. The targets were further detected using Western blotting and immunofluorescence staining. RESULTS Gal-3 levels were found to be significantly increased in CAVD patients. Treatment of valve interstitial cells (VICs) with Gal-3 led to a marked increase in Runx2 and ALP-mRNA/protein expression levels as well as calcification. Gene expression profiles of hVICs cultured with or without Gal-3 revealed 79 upregulated genes and 82 down-regulated genes, which were highly enriched in TNF and NF-κB signaling pathways. Furthermore, Gal-3 could activate the phosphorylation of IκBα and interfere with the translocation of p65 into the cell nucleus of hVICs. However, inhibition of this pathway can suppress the osteogenic differentiation by Gal-3. CONCLUSIONS Gal-3 acts as a positive regulator of osteogenic differentiation by activating the NF-κB signaling pathway in hVICs. Our findings provide novel mechanistic insights into the critical role of Gal-3 in the CAVD progression.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Anesthesiology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Mendoza M, Chen MH, Huang P, Mahler GJ. Shear and endothelial induced late-stage calcific aortic valve disease-on-a-chip develops calcium phosphate mineralizations. LAB ON A CHIP 2022; 22:1374-1385. [PMID: 35234762 DOI: 10.1039/d1lc00931a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Calcific aortic valve disease (CAVD) is an active pathobiological process leading to severe aortic stenosis, where the only treatment is valve replacement. Late-stage CAVD is characterized by calcification, disorganization of collagen, and deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa. We developed a three-dimensional microfluidic device of the aortic valve fibrosa to study the effects of shear stress (1 or 20 dyne per cm2), CS (1 or 20 mg mL-1), and endothelial cell presence on calcification. CAVD chips consisted of a collagen I hydrogel, where porcine aortic valve interstitial cells were embedded within and porcine aortic valve endothelial cells were seeded on top of the matrix for up to 21 days. Here, we show that this CAVD-on-a-chip is the first to develop human-like calcified nodules varying in calcium phosphate mineralization maturity resulting from high shear and endothelial cells, specifically di- and octa-calcium phosphates. Long-term co-culture microfluidic studies confirmed cell viability and calcium phosphate formations throughout 21 days. Given that CAVD has no targeted therapies, the creation of a physiologically relevant test-bed of the aortic valve could lead to advances in preclinical studies.
Collapse
Affiliation(s)
- Melissa Mendoza
- Department of Biomedical Engineering, Binghamton University, P.O Box 6000, Binghamton, NY, 13902, USA.
| | - Mei-Hsiu Chen
- Department of Mathematical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, P.O Box 6000, Binghamton, NY, 13902, USA.
| |
Collapse
|
21
|
Development of a bi-layered cryogenic electrospun polylactic acid scaffold to study calcific aortic valve disease in a 3D co-culture model. Acta Biomater 2022; 140:364-378. [PMID: 34839029 DOI: 10.1016/j.actbio.2021.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
Calcified aortic valve disease (CAVD) is the most prevalent valve disease in the elderly. Targeted pharmacological therapies are limited since the underlying mechanisms of CAVD are not well understood. Appropriate 3D in vitro models could potentially improve our knowledge of the disease. Here, we developed a 3D in vitro aortic heart valve model that resembles the morphology of the valvular extracellular matrix and mimics the mechanical and physiological behavior of the native aortic valve fibrosa and spongiosa. We employed cryogenic electrospinning to engineer a bi-layered cryogenic electrospun scaffold (BCES) with defined morphologies that allowed valvular endothelial cell (VEC) adherence and valvular interstitial cell (VIC) ingrowth into the scaffold. Using a self-designed cell culture insert allowed us to establish the valvular co-culture simultaneously by seeding VICs on one side and VECs on the other side of the electrospun scaffold. Proof-of-principle calcification studies were successfully performed using an established osteogenic culture protocol and the here designed 3D in vitro aortic heart valve model. STATEMENT OF SIGNIFICANCE: Three-dimensional (3D) electrospun scaffolds are widely used for soft tissue engineering since they mimic the morphology of the native extracellular matrix. Several studies have shown that cells behave more naturally on 3D materials than on the commonly used stiff two-dimensional (2D) cell culture substrates, which have no biological properties. As appropriate 3D models for the study of aortic valve diseases are limited, we developed a novel bi-layered 3D in vitro test system by using the versatile technique of cryogenic electrospinning in combination with the influence of different solvents to mimic the morphology, mechanical, and cellular distribution of a native aortic heart valve leaflet. This 3D in vitro model can be used to study valve biology and heart valve-impacting diseases such as calcification to elucidate therapeutic targets.
Collapse
|
22
|
Xiong T, Han S, Pu L, Zhang TC, Zhan X, Fu T, Dai YH, Li YX. Bioinformatics and Machine Learning Methods to Identify FN1 as a Novel Biomarker of Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:832591. [PMID: 35295271 PMCID: PMC8918776 DOI: 10.3389/fcvm.2022.832591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
AimThe purpose of this study was to identify potential diagnostic markers for aortic valve calcification (AVC) and to investigate the function of immune cell infiltration in this disease.MethodsThe AVC data sets were obtained from the Gene Expression Omnibus. The identification of differentially expressed genes (DEGs) and the performance of functional correlation analysis were carried out using the R software. To explore hub genes related to AVC, a protein–protein interaction network was created. Diagnostic markers for AVC were then screened and verified using the least absolute shrinkage and selection operator, logistic regression, support vector machine-recursive feature elimination algorithms, and hub genes. The infiltration of immune cells into AVC tissues was evaluated using CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Finally, the Connectivity Map database was used to forecast the candidate small molecule drugs that might be used as prospective medications to treat AVC.ResultsA total of 337 DEGs were screened. The DEGs that were discovered were mostly related with atherosclerosis and arteriosclerotic cardiovascular disease, according to the analyses. Gene sets involved in the chemokine signaling pathway and cytokine–cytokine receptor interaction were differently active in AVC compared with control. As the diagnostic marker for AVC, fibronectin 1 (FN1) (area the curve = 0.958) was discovered. Immune cell infiltration analysis revealed that the AVC process may be mediated by naïve B cells, memory B cells, plasma cells, activated natural killer cells, monocytes, and macrophages M0. Additionally, FN1 expression was associated with memory B cells, M0 macrophages, activated mast cells, resting mast cells, monocytes, and activated natural killer cells. AVC may be reversed with the use of yohimbic acid, the most promising small molecule discovered so far.ConclusionFN1 can be used as a diagnostic marker for AVC. It has been shown that immune cell infiltration is important in the onset and progression of AVC, which may benefit in the improvement of AVC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Xiong
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shen Han
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Lei Pu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Tian-Chen Zhang
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Xu Zhan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Fu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ying-Hai Dai
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ya-Xiong Li
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- *Correspondence: Ya-Xiong Li ;
| |
Collapse
|
23
|
Skenteris NT, Seime T, Witasp A, Karlöf E, Wasilewski GB, Heuschkel MA, Jaminon AM, Oduor L, Dzhanaev R, Kronqvist M, Lengquist M, Peeters FE, Söderberg M, Hultgren R, Roy J, Maegdefessel L, Arnardottir H, Bengtsson E, Goncalves I, Quertermous T, Goettsch C, Stenvinkel P, Schurgers LJ, Matic L. Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification. Clin Transl Med 2022; 12:e682. [PMID: 35184400 PMCID: PMC8858609 DOI: 10.1002/ctm2.682] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context. METHODS AND RESULTS In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE-/- mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFβ1, phosphate and β-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues. CONCLUSION We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA+ regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.
Collapse
Affiliation(s)
- Nikolaos T. Skenteris
- Cardiovascular Medicine UnitDepartment of MedicineKarolinska InstituteStockholmSweden
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
| | - Till Seime
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Anna Witasp
- Division of Renal MedicineDepartment of Clinical SciencesIntervention and TechnologyKarolinska InstituteStockholmSweden
| | - Eva Karlöf
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Grzegorz B. Wasilewski
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
- Nattopharma ASA, OsloNorway
| | - Marina A. Heuschkel
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
- Department of Internal Medicine I‐CardiologyMedical FacultyRWTH Aachen University, Aachen, Germany
| | - Armand M.G. Jaminon
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
| | - Loureen Oduor
- Department of Clinical Sciences Malmö and CardiologySkåne University HospitalLund UniversityLundSweden
| | - Robert Dzhanaev
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
- Biointerface GroupHelmholtz Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany
| | - Malin Kronqvist
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Mariette Lengquist
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Frederique E.C.M. Peeters
- Department of Cardiology and CARIMSchool for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtNetherlands
| | - Magnus Söderberg
- CardiovascularRenal and Metabolism SafetyClinical Pharmacology and Safety SciencesR&D, AstraZenecaGothenburgSweden
| | - Rebecka Hultgren
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Joy Roy
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| | - Lars Maegdefessel
- Cardiovascular Medicine UnitDepartment of MedicineKarolinska InstituteStockholmSweden
- Klinikum rechts der IsarDepartment for Vascular and Endovascular SurgeryTechnical University MunichMunichGermany
| | - Hildur Arnardottir
- Cardiovascular Medicine UnitDepartment of MedicineKarolinska InstituteStockholmSweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö and CardiologySkåne University HospitalLund UniversityLundSweden
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö and CardiologySkåne University HospitalLund UniversityLundSweden
| | - Thomas Quertermous
- Department of Cardiovascular Medicine, University of StanfordStanfordCaliforniaUSA
| | - Claudia Goettsch
- Department of Internal Medicine I‐CardiologyMedical FacultyRWTH Aachen University, Aachen, Germany
| | - Peter Stenvinkel
- Division of Renal MedicineDepartment of Clinical SciencesIntervention and TechnologyKarolinska InstituteStockholmSweden
| | - Leon J. Schurgers
- Department of Biochemistry and CARIMSchool for Cardiovascular DiseasesMaastricht UniversityMaastrichtNetherlands
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
| | - Ljubica Matic
- Division of Vascular SurgeryDepartment of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
| |
Collapse
|
24
|
Exploring potential genes and pathways related to calcific aortic valve disease. Gene 2022; 808:145987. [PMID: 34600049 DOI: 10.1016/j.gene.2021.145987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Calcific aortic valve disease (CAVD) is currently the most prevalent valvular disease. However, the pathological mechanism of CAVD has not yet been fully elucidated, and no drugs can delay or halt the progression of CAVD. This study aimed to screen for potential biomarkers and pathways of CAVD through bioinformatics analysis. The identification of differentially expressed genes (DEGs) between calcific aortic valves and the control group was performed based on four microarray datasets: GSE12644, GSE51472, GSE77287 and GSE83453. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted. Furthermore, the protein-protein interaction network, and microRNA-target interaction was performed, and hub genes were obtained by using twelve cytoHubba algorithms. As a result, 327 DEGs were identified, including 206 up-regulated and 121 down-regulated genes. KEGG analysis showed that these DEGs were mainly enriched in the PI3K-AKT signaling pathway, ECM-receptor interaction, cytokine-cytokine receptor interaction, and chemokine signaling pathway etc. Moreover, we identified 19 hub genes: CXCL8, CXCL12, CSF1R, HCK, PLEK, CCL5, TLR8, VCAM1, CCR1, CCR7, FPR1, TYROBP, CX3CR1, KIT, PPBP, SPP1, SYK, TLR7, and VWF. And multiple potential miRNAs, including miR-141, miR-34a, miR-155, and miR-486, were identified. And western blot was performed to validate the expression level of hub genes. In conclusion, this study identified several promising biomarkers and pathways for CAVD, which may provide novel molecular markers for diagnosis and targeted therapy.
Collapse
|
25
|
Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way. Mol Med 2021; 27:156. [PMID: 34895136 PMCID: PMC8666063 DOI: 10.1186/s10020-021-00416-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. METHODS We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. RESULTS We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. CONCLUSIONS This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.
Collapse
|
26
|
Nordquist EM, Dutta P, Kodigepalli KM, Mattern C, McDermott MR, Trask AJ, LaHaye S, Lindner V, Lincoln J. Tgfβ1-Cthrc1 Signaling Plays an Important Role in the Short-Term Reparative Response to Heart Valve Endothelial Injury. Arterioscler Thromb Vasc Biol 2021; 41:2923-2942. [PMID: 34645278 PMCID: PMC8612994 DOI: 10.1161/atvbaha.121.316450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Aortic valve disease is a common worldwide health burden with limited treatment options. Studies have shown that the valve endothelium is critical for structure-function relationships, and disease is associated with its dysfunction, damage, or injury. Therefore, therapeutic targets to maintain a healthy endothelium or repair damaged endothelial cells could hold promise. In this current study, we utilize a surgical mouse model of heart valve endothelial cell injury to study the short-term response at molecular and cellular levels. The goal is to determine if the native heart valve exhibits a reparative response to injury and identify the mechanisms underlying this process. Approach and Results: Mild aortic valve endothelial injury and abrogated function was evoked by inserting a guidewire down the carotid artery of young (3 months) and aging (16-18 months) wild-type mice. Short-term cellular responses were examined at 6 hours, 48 hours, and 4 weeks following injury, whereas molecular profiles were determined after 48 hours by RNA-sequencing. Within 48 hours following endothelial injury, young wild-type mice restore endothelial barrier function in association with increased cell proliferation, and upregulation of transforming growth factor beta 1 (Tgfβ1) and the glycoprotein, collagen triple helix repeat containing 1 (Cthrc1). Interestingly, this beneficial response to injury was not observed in aging mice with known underlying endothelial dysfunction. CONCLUSIONS Data from this study suggests that the healthy valve has the capacity to respond to mild endothelial injury, which in short term has beneficial effects on restoring endothelial barrier function through acute activation of the Tgfβ1-Cthrc1 signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Emily M. Nordquist
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Carol Mattern
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
27
|
Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021; 21:55-77. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of forward and reverse flow patterns. Calcific aortic valve disease (CAVD) resulting in compromised valve function and increased pressure overload on the ventricle potentially leading to heart failure if untreated, is the most predominant valve disease. CAVD is a multi-factorial disease involving molecular, tissue and mechanical interactions. In this review, we aim at recapitulating the biomechanical loads on the aortic valve, summarizing the current and most recent research in the field in vitro, in-silico, and in vivo, and offering a clinical perspective on current strategies adopted to mitigate or approach CAVD.
Collapse
Affiliation(s)
- Brennan J Vogl
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Nicholas R Niemi
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, USA. .,Center of Biocomputing and Digital Health, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
28
|
Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mech Ageing Dev 2021; 198:111540. [PMID: 34237321 PMCID: PMC8387860 DOI: 10.1016/j.mad.2021.111540] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the cause of death in 40 % of individuals over 65 years old. Ageing is associated with an increased prevalence of atherosclerosis, coronary artery stenosis and subsequent myocardial infarction, thoracic aortic aneurysm, valvular heart disease and heart failure. An accumulation of senescence and increased inflammation, caused by the senescence-associated secretory phenotype, have been implicated in the aetiology and progression of these age-associated diseases. Recently it has been demonstrated that compounds targeting components of anti-apoptotic pathways expressed by senescent cells can preferentially induce senescence cells to apoptosis and have been termed senolytics. In this review, we discuss the evidence demonstrating that senescence contributes to cardiovascular disease, with a particular focus on studies that indicate the promise of senotherapy. Based on these data we suggest novel indications for senolytics as a treatment of cardiovascular diseases which have yet to be studied in the context of senotherapy. Finally, while the potential benefits are encouraging, several complications may result from senolytic treatment. We, therefore, consider these challenges in the context of the cardiovascular system.
Collapse
|
29
|
Yang R, Tang Y, Chen X, Yang Y. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b. ESC Heart Fail 2021; 8:3935-3946. [PMID: 34165260 PMCID: PMC8497371 DOI: 10.1002/ehf2.13460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Calcific aortic valve disease (CAVD) is frequent in the elderly. Telocytes (TCs) are implicated in intercellular communication by releasing extracellular vesicles (EVs). This study investigated the role of TC-EVs in aortic valve calcification. METHODS AND RESULTS TCs were obtained and identified using enzymolysis method and flow cytometry. EVs were isolated from TCs using differential high-speed centrifugation method and identified using transmission electron microscope, western blot, and qNano analysis. The mouse model of CAVD was established. The changes of aortic valve activity-related indicators were analysed by ultrasound, and the expressions of TC markers CD34 and vimentin in mouse valve tissues were detected using RT-qPCR and western blot. The model mice were injected with TC-derived EVs. The expressions of Runx2, osteocalcin, and caspase-3 were detected using RT-qPCR and western blot. The calcification model of valvular interstitial cells (VICs) was established. TC-EVs were co-cultured with calcified VICs, and calcium deposition was detected using alizarin red S staining. miR-30b expression in calcified valvular tissues and cells was detected after EV treatment. miR-30b expression in TCs was knocked down and then EVs were extracted and co-cultured with calcified VICs. The target of miR-30b was predicted through bioinformatics website and verified using dual-luciferase assay. The levels of Wnt/β-catenin pathway-related proteins were detected. ApoE-/- mice fed with a high-fat diet showed decreased aortic valve orifice area, increased aortic transvalvular pressure difference and velocity, reduced left ventricular ejection fraction, decreased CD34 and vimentin, and increased caspase-3, Runx2, and osteocalcin. The levels of apoptosis- and osteogenesis- related proteins were inhibited after EV treatment. TC-EVs reduced calcium deposition and osteogenic proteins in calcified VICs. EVs could be absorbed by VICs. miR-30b expression was promoted in calcified valvular tissues and cells after EV treatment. Knockdown of miR-30b weakened the inhibitory effects of TC-EVs on calcium deposition and osteogenic proteins. miR-30b targeted Runx2. EV treatment inhibited the Wnt/β-catenin pathway, and knockdown of miR-30b in TCs attenuated the inhibitory effect of TC-EVs on the Wnt/β-catenin pathway. CONCLUSION TC-EVs played a protective role in aortic valve calcification via the miR-30b/Runx2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Yihu Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xiaowen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Wang Y, Fang Y, Lu P, Wu B, Zhou B. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:682298. [PMID: 34239905 PMCID: PMC8259786 DOI: 10.3389/fcvm.2021.682298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/14/2021] [Indexed: 01/05/2023] Open
Abstract
NOTCH intercellular signaling mediates the communications between adjacent cells involved in multiple biological processes essential for tissue morphogenesis and homeostasis. The NOTCH1 mutations are the first identified human genetic variants that cause congenital bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). Genetic variants affecting other genes in the NOTCH signaling pathway may also contribute to the development of BAV and the pathogenesis of CAVD. While CAVD occurs commonly in the elderly population with tri-leaflet aortic valve, patients with BAV have a high risk of developing CAVD at a young age. This observation indicates an important role of NOTCH signaling in the postnatal homeostasis of the aortic valve, in addition to its prenatal functions during aortic valve development. Over the last decade, animal studies, especially with the mouse models, have revealed detailed information in the developmental etiology of congenital aortic valve defects. In this review, we will discuss the molecular and cellular aspects of aortic valve development and examine the embryonic pathogenesis of BAV. We will focus our discussions on the NOTCH signaling during the endocardial-to-mesenchymal transformation (EMT) and the post-EMT remodeling of the aortic valve. We will further examine the involvement of the NOTCH mutations in the postnatal development of CAVD. We will emphasize the deleterious impact of the embryonic valve defects on the homeostatic mechanisms of the adult aortic valve for the purpose of identifying the potential therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bin Zhou
- Departments of Genetics, Pediatrics (Pediatric Genetic Medicine), and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
- The Einstein Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Wang D, Xiong T, Yu W, Liu B, Wang J, Xiao K, She Q. Predicting the Key Genes Involved in Aortic Valve Calcification Through Integrated Bioinformatics Analysis. Front Genet 2021; 12:650213. [PMID: 34046056 PMCID: PMC8144713 DOI: 10.3389/fgene.2021.650213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Valvular heart disease is obtaining growing attention in the cardiovascular field and it is believed that calcific aortic valve disease (CAVD) is the most common valvular heart disease (VHD) in the world. CAVD does not have a fully effective treatment to delay its progression and the specific molecular mechanism of aortic valve calcification remains unclear. Materials and Methods: We obtained the gene expression datasets GSE12644 and GSE51472 from the public comprehensive free database GEO. Then, a series of bioinformatics methods, such as GO and KEGG analysis, STING online tool, Cytoscape software, were used to identify differentially expressed genes in CAVD and healthy controls, construct a PPI network, and then identify key genes. In addition, immune infiltration analysis was used via CIBERSORT to observe the expression of various immune cells in CAVD. Results: A total of 144 differential expression genes were identified in the CAVD samples in comparison with the control samples, including 49 up-regulated genes and 95 down-regulated genes. GO analysis of DEGs were most observably enriched in the immune response, signal transduction, inflammatory response, proteolysis, innate immune response, and apoptotic process. The KEGG analysis revealed that the enrichment of DEGs in CAVD were remarkably observed in the chemokine signaling pathway, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. Chemokines CXCL13, CCL19, CCL8, CXCL8, CXCL16, MMP9, CCL18, CXCL5, VCAM1, and PPBP were identified as the hub genes of CAVD. It was macrophages that accounted for the maximal proportion among these immune cells. The expression of macrophages M0, B cells memory, and Plasma cells were higher in the CAVD valves than in healthy valves, however, the expression of B cells naïve, NK cells activated, and macrophages M2 were lower. Conclusion: We detected that chemokines CXCL13, CXCL8, CXCL16, and CXCL5, and CCL19, CCL8, and CCL18 are the most important markers of aortic valve disease. The regulatory macrophages M0, plasma cells, B cells memory, B cells naïve, NK cells activated, and macrophages M2 are probably related to the occurrence and the advancement of aortic valve stenosis. These identified chemokines and these immune cells may interact with a subtle adjustment relationship in the development of calcification in CAVD.
Collapse
Affiliation(s)
- Dinghui Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlong Yu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaihu Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Yu C, Wu D, Zhao C, Wu C. CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. J Bone Miner Metab 2021; 39:360-371. [PMID: 33070258 DOI: 10.1007/s00774-020-01164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Calcified aortic valve disease (CAVD) is characterized by valve thickening and calcification. Osteoblast differentiation is one of the key steps of valve calcification. CircRNAs is involved in osteogenic differentiation of multiple mesenchymal cells. However, the function of circRNA TGFBR2 (TGFBR2) in CAVD remained unclear. We explored the effect and mechanism of TGFBR2 in modulating CAVD. MATERIALS AND METHODS Human aortic valve interstitial cells (VICs) were subjected to osteogenic induction, and transfected with TGFBR2, miR-25-3p mimic and siTWIST1. The relationship between miR-25-3p and GFBR2 was predicted by starBase and confirmed by luciferase reporter and Person's correlation test. The relationship between miR-25-3p and TWIST1 was predicted by TargetScan and confirmed by luciferase reporter assay. The expressions of TGFBR2, miR-25-3p, TWIST1, osteoblast markers (RUNX2 and OPN) were detected by Western blot or/and qRT-PCR. Alkaline phosphatase (ALP) activity and calcium nodule was determined by colorimetric method and Alizarin Red S staining. RESULTS The expression of TGFBR2 was down-regulated and that of miR-25-3p was up-regulated in calcific valves and osteogenic VICs. TGFBR2 was inversely correlated with miR-25-3p expression in calcific valves. TGFBR2 sponged miR-25-3p to regulate TWIST1 expression in osteogenic VICs. During osteogenic differentiation, ALP activity, calcium nodule, the levels of osteoblast markers were increased in VICs. MiR-25-3p overexpression or TWIST1 knockdown reversed the inhibitory effect of TGFBR2 overexpression on ALP activity, calcium nodule, the expressions of RUNX2 and OPN in osteogenic VICs. CONCLUSION The findings indicated that TGFBR2/miR-25-3p/TWIST1 axis regulates osteoblast differentiation in VICs, supporting the fact that TGFBR2 is a miRNA sponge in CAVD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China.
| | - Dannan Wu
- Department of Pharmacy, Hainan General Hospital, Haikou, 570311, Hainan, China
| | - Chong Zhao
- Department of English, School of Foreign Languages, Qiongtai Normal University, Haikou, 571127, Hainan, China
| | - Chaoguang Wu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China
| |
Collapse
|
33
|
Dutta P, Kodigepalli KM, LaHaye S, Thompson JW, Rains S, Nagel C, Thatcher K, Hinton RB, Lincoln J. KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPβ Signaling Pathway. Circ Res 2021; 128:1300-1316. [PMID: 33601919 PMCID: PMC8085092 DOI: 10.1161/circresaha.120.318503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Punashi Dutta
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH, USA
| | - J. Will Thompson
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Sarah Rains
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Duke Proteomics and Metabolomics Shared Resource, Durham, NC, USA
| | - Casey Nagel
- Ocean Ridge Biosciences, Deerfield Beach, Florida, USA
| | - Kaitlyn Thatcher
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Robert B. Hinton
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joy Lincoln
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
34
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
35
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
36
|
Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020; 7:jcdd7040057. [PMID: 33339213 PMCID: PMC7765611 DOI: 10.3390/jcdd7040057] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.
Collapse
|
37
|
Abstract
Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bailey Dye
- Biomedical Sciences Graduate Program at The Ohio State University, Columbus, Ohio 43210, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
38
|
Xu K, Xie S, Huang Y, Zhou T, Liu M, Zhu P, Wang C, Shi J, Li F, Sellke FW, Dong N. Cell-Type Transcriptome Atlas of Human Aortic Valves Reveal Cell Heterogeneity and Endothelial to Mesenchymal Transition Involved in Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol 2020; 40:2910-2921. [PMID: 33086873 DOI: 10.1161/atvbaha.120.314789] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Leaflet thickening, fibrosis, and hardening are early pathological features of calcific aortic valve disease (CAVD). An inadequate understanding of the resident aortic valve cells involved in the pathological process may compromise the development of therapeutic strategies. We aim to construct a pattern of the human aortic valve cell atlas in healthy and CAVD clinical specimens, providing insight into the cellular origins of CAVD and the complex cytopathological differentiation process. Approach and Results: We used unbiased single-cell RNA sequencing for the high-throughput evaluation of cell heterogeneity in 34 632 cells isolated from 6 different human aortic valve leaflets. Cellular experiments, in situ localization, and bulk sequencing were performed to verify the differences between normal, healthy valves and those with CAVD. By comparing healthy and CAVD specimens, we identified 14 cell subtypes, including 3 heterogeneous subpopulations of resident valve interstitial cells, 3 types of immune-derived cells, 2 types of valve endothelial cells, and 6 novel valve-derived stromal cells found particularly in CAVD leaflets. Combining additional verification experiments with single-cell transcriptome profiling provided evidence of endothelial to mesenchymal transition involved in lesion thickening of the aortic valve leaflet. CONCLUSIONS Our findings deconstructed the aortic valve cell atlas and suggested novel functional interactions among resident cell subpopulations. Our findings may provide insight into future targeted therapies to prevent CAVD.
Collapse
Affiliation(s)
- Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Shangbo Xie
- BGI-Tech, BGI-Shenzhen, Guangdong, China (S.X.)
| | - Yuming Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Peng Zhu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China (C.W.)
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI (F.W.S.)
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.X., Y.H., T.Z., M.L., P.Z., J.S., F.L., N.D.)
| |
Collapse
|
39
|
Jenke A, Kistner J, Saradar S, Chekhoeva A, Yazdanyar M, Bergmann AK, Rötepohl MV, Lichtenberg A, Akhyari P. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model. Am J Physiol Heart Circ Physiol 2020; 319:H1123-H1141. [PMID: 32986963 DOI: 10.1152/ajpheart.00651.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by valvular fibrosis and calcification and driven by differentiating valvular interstitial cells (VICs). Expression data from patient biopsies suggest that transforming growth factor (TGF)-β1 is implicated in CAVD pathogenesis. However, CAVD models using isolated VICs failed to deliver clear evidence on the role of TGF-β1. Thus, employing cultures of aortic valve leaflets, we investigated effects of TGF-β1 in a tissue-based three-dimensional (3-D) CAVD model. We found that TGF-β1 induced phosphorylation of Mothers against decapentaplegic homolog (SMAD) 3 and expression of SMAD7, indicating effective downstream signal transduction in valvular tissue. Thus, TGF-β1 increased VIC contents of rough endoplasmic reticulum, Golgi, and secretory vesicles as well as tissue levels of RNA and protein. In addition, TGF-β1 raised expression of proliferation marker cyclin D1, attenuated VIC apoptosis, and upregulated VIC density. Moreover, TGF-β1 intensified myofibroblastic VIC differentiation as evidenced by increased α-smooth muscle actin and collagen type I along with diminished vimentin expression. In contrast, TGF-β1 attenuated phosphorylation of SMAD1/5/8 and upregulation of β-catenin while inhibiting osteoblastic VIC differentiation as revealed by downregulation of osteocalcin expression, alkaline phosphatase activity, and extracellular matrix incorporation of hydroxyapatite. Collectively, these effects resulted in blocking of valvular tissue calcification and associated disintegration of collagen fibers. Instead, TGF-β1 induced development of fibrosis. Overall, in a tissue-based 3-D CAVD model, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of VICs, thus triggering dominant fibrosis. Simultaneously, by inhibiting SMAD1/5/8 activation and canonical Wnt/β-catenin signaling, TGF-β1 attenuates osteoblastic VIC differentiation, thus blocking valvular tissue calcification. These findings question a general phase-independent CAVD-promoting role of TGF-β1.NEW & NOTEWORTHY Employing aortic valve leaflets as a tissue-based three-dimensional disease model, our study investigates the role of transforming growth factor (TGF)-β1 in calcific aortic valve disease pathogenesis. We find that, by activating Mothers against decapentaplegic homolog 3, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of valvular interstitial cells, thus triggering dominant fibrosis. Simultaneously, by inhibiting activation of Mothers against decapentaplegic homolog 1/5/8 and canonical Wnt/β-catenin signaling, TGF-β1 attenuates apoptosis and osteoblastic differentiation of valvular interstitial cells, thus blocking valvular tissue calcification. These findings question a general phase-independent calcific aortic valve disease-promoting role of TGF-β1.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Kistner
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Saradar
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Agunda Chekhoeva
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie Vera Rötepohl
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. VASCULAR BIOLOGY 2020; 2:R59-R71. [PMID: 32923975 PMCID: PMC7439923 DOI: 10.1530/vb-19-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Joshua D Hutcheson
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
41
|
Fu B, Zhang Y, Chen Q, Guo Z, Jiang N. Antibody microarray analysis of serum inflammatory cytokines in patients with calcific aortic valve disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:761. [PMID: 32647686 PMCID: PMC7333163 DOI: 10.21037/atm-20-4463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Calcific aortic valve disease (CAVD) is a slowly progressive pathologic process associated with significant morbidity and mortality, CAVD is the most common valve heart disease in the elderly and a leading cause of aortic valve stenosis. Multiple steps characterize the process: inflammation, cell apoptosis, lipid deposition, renin-angiotensin system activation, extracellular matrix remodeling, and bone formation. This paper focuses on detecting and analyzing the expression of serum inflammatory factors in CAVD by antibody microarray techniques. Methods In this study, a total of 258 patients were included at Tianjin Chest Hospital between January 2017 and December 2018, subjects were divided into three groups: control, coronary artery disease (CAD), and CAVD. Blood samples were collected, and adipokine/cytokine/chemokine serum profiles were measured by antibody arrays. Results These data suggest that B-Lymphocyte Chemoattractant (BLC), Interleukin (IL)-12p40, monokine inducible by γ interferon (MIG), and Macrophage inflammatory protein (MIP)-1delta were significantly increased in CAVD compared to control or CAD. Furthermore, Real-time quantified PCR, Western blot assay, and Flow cytometer detection showed that these four cytokines/chemokines were from peripheral blood mononuclear cells. Conclusions These findings suggest that BLC, IL-12p40, MIG, and MIP-1delta can be used as a marker to assess CAVD, which could have significant clinical implications.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Yuhui Zhang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Qingliang Chen
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
42
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
43
|
Balistreri CR. To the research of treatments for the typical calcific disease of old aortic valve in the omics era: Is the miR-195 a therapeutic signature via targetable p38-MAPK/VWF axis in bicuspid aortic valve? Int J Cardiol 2020; 309:108-109. [PMID: 32204937 DOI: 10.1016/j.ijcard.2020.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| |
Collapse
|
44
|
Yang L, Wu D, Li M, Zhu X, Tian Y, Chen Z, Li M, Zhang H, Liang D. Upregulation of microRNA-195 ameliorates calcific aortic valve disease by inhibiting VWF via suppression of the p38-MAPK signaling pathway. Int J Cardiol 2020; 309:101-107. [DOI: 10.1016/j.ijcard.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023]
|
45
|
Oba E, Aung NY, Ohe R, Sadahiro M, Yamakawa M. The distribution of macrophage subtypes and their relationship to bone morphogenetic protein 2 in calcified aortic valve stenosis. Am J Transl Res 2020; 12:1728-1740. [PMID: 32509172 PMCID: PMC7270035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Activation of the osteogenic signaling cascade (OSC) is thought to be involved in aortic valve stenosis. The aim of this study was to clarify the distribution of macrophage (M) subtypes in the calcified aortic valve and to clarify the relationship between osteoblast-like cells (OLC) and OSC activation. Thirty-six cases of calcified aortic valve were set as the calcification group, and six autopsy cases of aortic valve without pathological calcification comprised the noncalcification group. Aortic valve tissues were used in histological studies including single and double immunostaining to identify M subtypes, bone morphogenetic protein 2 (BMP2) and osteopontin, reverse transcription polymerase chain reaction (RT-PCR) for CD206, heme oxygenase-1 (HO-1), and BMP2 mRNAs and in situ RT-PCR for BMP2 mRNA. Ms positive for CD68, CD163, CD206, and HO-1 were significantly higher in the calcification group than in the noncalcification group (P < 0.01). Comparison of the positive cells in each section of the calcification group showed that cells of all M subtypes were found around calcifications. Osteopontin+ cells were also observed around calcifications. CD163+/CD206+ M2 and CD163+/HO-1+ Mox were significantly higher in the sponge layer in both groups. In double immunofluorescence, CD206+ and a portion of HO-1+ Ms expressed BMP2, and in RT-PCR, CD206 or HO-1 mRNA was expressed in cases in which BMP2 was expressed. In in situ RT-PCR, expression of BMP2 mRNA was observed around calcifications. This work clarifies the distribution of M subtypes in calcified aortic valves. In addition, the results suggest that CD206+ M2 and HO-1+ Mox, which express BMP2 in calcified aortic valves, are OLC candidates.
Collapse
Affiliation(s)
- Eiichi Oba
- Second Department of Surgery, Yamagata University Faculty of MedicineYamagata, Japan
| | - Naing Ye Aung
- Department of Pathological Diagnostics, Yamagata University Faculty of MedicineYamagata, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Yamagata University Faculty of MedicineYamagata, Japan
| | - Mitsuaki Sadahiro
- Second Department of Surgery, Yamagata University Faculty of MedicineYamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of MedicineYamagata, Japan
| |
Collapse
|
46
|
Ma X, Zhao D, Yuan P, Li J, Yun Y, Cui Y, Zhang T, Ma J, Sun L, Ma H, Zhang Y, Zhang H, Zhang W, Huang J, Zou C, Wang Z. Endothelial-to-Mesenchymal Transition in Calcific Aortic Valve Disease. ACTA CARDIOLOGICA SINICA 2020; 36:183-194. [PMID: 32425433 PMCID: PMC7220963 DOI: 10.6515/acs.202005_36(3).20200213a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Calcific aortic valve disease (CAVD) represents a significant threat to cardiovascular health worldwide, and the incidence of this sclerocalcific valve disease has rapidly increased along with a rise in life expectancy. Compelling evidence has suggested that CAVD is an actively and finely regulated pathophysiological process even though it has been referred to as "degenerative" for decades. A striking similarity has been noted in the etiopathogenesis between CAVD and atherosclerosis, a classical proliferative sclerotic vascular disease.1 Nevertheless, pharmaceutical trials that attempted to target inflammation and dyslipidemia have produced disappointing results in CAVD. While senescence is a well-documented risk factor, the sophisticated regulatory networks have not been adequately explored underlying the aberrant calcification and osteogenesis in CAVD. Valvular endothelial cells (VECs), a type of resident effector cells in aortic leaflets, are crucial in maintaining valvular integrity and homeostasis, and dysfunctional VECs are a major contributor to disease initiation and progression. Accumulating evidence suggests that VECs undergo a phenotypic and functional transition to mesenchymal or fibroblast-like cells in CAVD, a process known as the endothelial-to-mesenchymal transition (EndMT) process. The relevance of this transition in CAVD has recently drawn great interest due to its importance in both valve genesis at an embryonic stage and CAVD development at an adult stage. Hence EndMT might be a valuable diagnostic and therapeutic target for disease prevention and treatment. This mini-review summarized the relevant literature that delineates the EndMT process and the underlying regulatory networks involved in CAVD.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- School of Medicine, Shandong University, Jinan, Shandong
| | - Peidong Yuan
- School of Medicine, Shandong University, Jinan, Shandong
| | - Jinzhang Li
- College of Basic Medicine, Capital Medical University, Beijing
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Liangong Sun
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Huibo Ma
- Qingdao University Medical College, Qingdao
| | - Yuman Zhang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Junjie Huang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
47
|
Gunawan F, Gentile A, Gauvrit S, Stainier DYR, Bensimon-Brito A. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. Circ Res 2020; 126:968-984. [PMID: 32070236 DOI: 10.1161/circresaha.119.315992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.
Collapse
Affiliation(s)
- Felix Gunawan
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Alessandra Gentile
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.)
| | - Sébastien Gauvrit
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Didier Y R Stainier
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Anabela Bensimon-Brito
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| |
Collapse
|
48
|
Bensimon-Brito A, Ramkumar S, Boezio GLM, Guenther S, Kuenne C, Helker CSM, Sánchez-Iranzo H, Iloska D, Piesker J, Pullamsetti S, Mercader N, Beis D, Stainier DYR. TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Dev Cell 2019; 52:9-20.e7. [PMID: 31786069 DOI: 10.1016/j.devcel.2019.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Cardiac valve disease can lead to severe cardiac dysfunction and is thus a frequent cause of morbidity and mortality. Its main treatment is valve replacement, which is currently greatly limited by the poor recellularization and tissue formation potential of the implanted valves. As we still lack suitable animal models to identify modulators of these processes, here we used adult zebrafish and found that, upon valve decellularization, they initiate a rapid regenerative program that leads to the formation of new functional valves. After injury, endothelial and kidney marrow-derived cells undergo cell cycle re-entry and differentiate into new extracellular matrix-secreting valve cells. The TGF-β signaling pathway promotes the regenerative process by enhancing progenitor cell proliferation as well as valve cell differentiation. These findings reveal a key role for TGF-β signaling in cardiac valve regeneration and establish the zebrafish as a model to identify and test factors promoting cardiac valve recellularization and growth.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Research Unit, EMBL Heidelberg, Heidelberg 69117, Germany
| | - Dijana Iloska
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Soni Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28049, Spain
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| |
Collapse
|
49
|
Sikura KÉ, Potor L, Szerafin T, Zarjou A, Agarwal A, Arosio P, Poli M, Hendrik Z, Méhes G, Oros M, Posta N, Beke L, Fürtös I, Balla G, Balla J. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler Thromb Vasc Biol 2019; 39:413-431. [PMID: 30700131 PMCID: PMC6393195 DOI: 10.1161/atvbaha.118.312191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.
Collapse
Affiliation(s)
- Katalin Éva Sikura
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Tamás Szerafin
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zoltán Hendrik
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Melinda Oros
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Niké Posta
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Lívia Beke
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Ibolya Fürtös
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| |
Collapse
|
50
|
Zhang B, Miller VM, Miller JD. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front Endocrinol (Lausanne) 2019; 10:622. [PMID: 31620082 PMCID: PMC6763561 DOI: 10.3389/fendo.2019.00622] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Vascular and cardiac valvular calcification was once considered to be a degenerative and end stage product in aging cardiovascular tissues. Over the past two decades, however, a critical mass of data has shown that cardiovascular calcification can be an active and highly regulated process. While the incidence of calcification in the coronary arteries and cardiac valves is higher in men than in age-matched women, a high index of calcification associates with increased morbidity, and mortality in both sexes. Despite the ubiquitous portending of poor outcomes in both sexes, our understanding of mechanisms of calcification under the dramatically different biological contexts of sex and hormonal milieu remains rudimentary. Understanding how the critical context of these variables inform our understanding of mechanisms of calcification-as well as innovative strategies to target it therapeutically-is essential to advancing the fields of both cardiovascular disease and fundamental mechanisms of aging. This review will explore potential sex and sex-steroid differences in the basic biological pathways associated with vascular and cardiac valvular tissue calcification, and potential strategies of pharmacological therapy to reduce or slow these processes.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan D. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Jordan D. Miller
| |
Collapse
|