1
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Lundgaard AT, Westergaard D, Röder T, Burgdorf KS, Larsen MH, Schwinn M, Thørner LW, Sørensen E, Nielsen KR, Hjalgrim H, Erikstrup C, Kjerulff BD, Hindhede L, Hansen TF, Nyegaard M, Birney E, Stefansson H, Stefánsson K, Pedersen OBV, Ostrowski SR, Rossing P, Ullum H, Mortensen LH, Vistisen D, Banasik K, Brunak S. Longitudinal metabolite and protein trajectories prior to diabetes mellitus diagnosis in Danish blood donors: a nested case-control study. Diabetologia 2024; 67:2289-2303. [PMID: 39078488 PMCID: PMC11446992 DOI: 10.1007/s00125-024-06231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
AIMS/HYPOTHESIS Metabolic risk factors and plasma biomarkers for diabetes have previously been shown to change prior to a clinical diabetes diagnosis. However, these markers only cover a small subset of molecular biomarkers linked to the disease. In this study, we aimed to profile a more comprehensive set of molecular biomarkers and explore their temporal association with incident diabetes. METHODS We performed a targeted analysis of 54 proteins and 171 metabolites and lipoprotein particles measured in three sequential samples spanning up to 11 years of follow-up in 324 individuals with incident diabetes and 359 individuals without diabetes in the Danish Blood Donor Study (DBDS) matched for sex and birth year distribution. We used linear mixed-effects models to identify temporal changes before a diabetes diagnosis, either for any incident diabetes diagnosis or for type 1 and type 2 diabetes mellitus diagnoses specifically. We further performed linear and non-linear feature selection, adding 28 polygenic risk scores to the biomarker pool. We tested the time-to-event prediction gain of the biomarkers with the highest variable importance, compared with selected clinical covariates and plasma glucose. RESULTS We identified two proteins and 16 metabolites and lipoprotein particles whose levels changed temporally before diabetes diagnosis and for which the estimated marginal means were significant after FDR adjustment. Sixteen of these have not previously been described. Additionally, 75 biomarkers were consistently higher or lower in the years before a diabetes diagnosis. We identified a single temporal biomarker for type 1 diabetes, IL-17A/F, a cytokine that is associated with multiple other autoimmune diseases. Inclusion of 12 biomarkers improved the 10-year prediction of a diabetes diagnosis (i.e. the area under the receiver operating curve increased from 0.79 to 0.84), compared with clinical information and plasma glucose alone. CONCLUSIONS/INTERPRETATION Systemic molecular changes manifest in plasma several years before a diabetes diagnosis. A particular subset of biomarkers shows distinct, time-dependent patterns, offering potential as predictive markers for diabetes onset. Notably, these biomarkers show shared and distinct patterns between type 1 diabetes and type 2 diabetes. After independent replication, our findings may be used to develop new clinical prediction models.
Collapse
Affiliation(s)
- Agnete T Lundgaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- The Recurrent Pregnancy Loss Unit, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
| | - Timo Röder
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer S Burgdorf
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margit H Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lise W Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bertram D Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Lotte Hindhede
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas F Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | | | - Ole B V Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Laust H Mortensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Vistisen
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Aljundi W, Munteanu C, Seitz B, Abdin AD. Short-term outcomes of intravitreal faricimab for refractory neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2024; 262:2867-2874. [PMID: 38607409 DOI: 10.1007/s00417-024-06485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE To assess the short-term outcomes of intravitreal faricimab (IVF) for previously treated refractory neovascular age-related macular degeneration (nAMD) in a real-world setting. METHODS A retrospective monocentric study including 44 eyes treated with an upload of 4 × monthly intravitreal injections (IVI) of faricimab 6 mg/0.05 mL and followed for 4 weeks after last IVI (16 W). Patients were switched to IVF after treatment with at least three other anti-vascular endothelial growth factors (anti-VEGF). Main outcome measures included best-corrected visual acuity (BCVA), central macular thickness (CMT), subfoveal choroidal thickness (SFCT) and retinal fluid distribution. RESULTS 44 eyes of 44 patients with previously treated refractory nAMD (63% males) were included. Mean age was 79 ± 7 years. The total number of previous anti-VEGF before switching to IVF was 32 ± 15 IVIs/eye. BCVA (logMAR) improved significantly from 0.65 ± 0.26 to 0.50 ± 0.23 at 16 W (p < 0.01). CMT (µm) decreased significantly from 422 ± 68 to 362 ± 47 at 16 W (p < 0.01). SFCT did not change significantly at 16 W (p = 0.06). The number of eyes with subretinal fluid (SRF) decreased significantly from 29 (65%) to 13 (29%) at 16 W (p = 0.001). There were no significant changes regarding the distribution of intraretinal fluid or pigment epithelial detachment (p > 0.05). A complete fluid resolution was achieved in 8 eyes (18%). No adverse events were noticed. CONCLUSION In the short term, IVF led to a significant decrease in CMT as well as a significant improvement of BCVA and thus appears to be an effective treatment option for previously treated refractory nAMD without relevant adverse effects.
Collapse
Affiliation(s)
- Wissam Aljundi
- Department of Ophthalmology, Saarland University Medical Center UKS, Kirrberger Street 100, Building 22, 66421, Homburg/Saar, Germany.
| | - Cristian Munteanu
- Department of Ophthalmology, Saarland University Medical Center UKS, Kirrberger Street 100, Building 22, 66421, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Kirrberger Street 100, Building 22, 66421, Homburg/Saar, Germany
| | - Alaa Din Abdin
- Department of Ophthalmology, Saarland University Medical Center UKS, Kirrberger Street 100, Building 22, 66421, Homburg/Saar, Germany
| |
Collapse
|
4
|
Chen-Li G, Martinez-Archer R, Coghi A, Roca JA, Rodriguez FJ, Acaba-Berrocal L, Berrocal MH, Wu L. Beyond VEGF: Angiopoietin-Tie Signaling Pathway in Diabetic Retinopathy. J Clin Med 2024; 13:2778. [PMID: 38792322 PMCID: PMC11122151 DOI: 10.3390/jcm13102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Complications from diabetic retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) constitute leading causes of preventable vision loss in working-age patients. Since vascular endothelial growth factor (VEGF) plays a major role in the pathogenesis of these complications, VEGF inhibitors have been the cornerstone of their treatment. Anti-VEGF monotherapy is an effective but burdensome treatment for DME. However, due to the intensive and burdensome treatment, most patients in routine clinical practice are undertreated, and therefore, their outcomes are compromised. Even in adequately treated patients, persistent DME is reported anywhere from 30% to 60% depending on the drug used. PDR is currently treated by anti-VEGF, panretinal photocoagulation (PRP) or a combination of both. Similarly, a number of eyes, despite these treatments, continue to progress to tractional retinal detachment and vitreous hemorrhage. Clearly there are other molecular pathways other than VEGF involved in the pathogenesis of DME and PDR. One of these pathways is the angiopoietin-Tie signaling pathway. Angiopoietin 1 (Ang1) plays a major role in maintaining vascular quiescence and stability. It acts as a molecular brake against vascular destabilization and inflammation that is usually promoted by angiopoietin 2 (Ang2). Several pathological conditions including chronic hyperglycemia lead to Ang2 upregulation. Recent regulatory approval of the bi-specific antibody, faricimab, may improve long term outcomes in DME. It targets both the Ang/Tie and VEGF pathways. The YOSEMITE and RHINE were multicenter, double-masked, randomized non-inferiority phase 3 clinical trials that compared faricimab to aflibercept in eyes with center-involved DME. At 12 months of follow-up, faricimab demonstrated non-inferior vision gains, improved anatomic outcomes and a potential for extended dosing when compared to aflibercept. The 2-year results of the YOSEMITE and RHINE trials demonstrated that the anatomic and functional results obtained at the 1 year follow-up were maintained. Short term outcomes of previously treated and treatment-naive eyes with DME that were treated with faricimab during routine clinical practice suggest a beneficial effect of faricimab over other agents. Targeting of Ang2 has been reported by several other means including VE-PTP inhibitors, integrin binding peptide and surrobodies.
Collapse
Affiliation(s)
- Genesis Chen-Li
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Rebeca Martinez-Archer
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Andres Coghi
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | | | | | - Luis Acaba-Berrocal
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Gedvilaite G, Duseikaitė M, Dubinskaite G, Kriauciuniene L, Zemaitiene R, Liutkevicienė R. Optic Neuritis: The Influence of Gene Polymorphisms and Serum Levels of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266). J Clin Med 2023; 13:10. [PMID: 38202017 PMCID: PMC10779575 DOI: 10.3390/jcm13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of the study was to evaluate the associations of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) gene polymorphisms and STAT4 serum level in patients with optic neuritis. Eighty-one subjects with optic neuritis (ON) and 158 healthy subjects participated in the study. Genotyping was performed using real-time polymerase chain reaction to obtain data. STAT4 serum level was determined using the ELISA method. Statistical analysis revealed that STAT4 rs7574865 allele G was statistically significantly more frequent in patients with ON and multiple sclerosis (MS) than in the control group (84.38% vs. 65.93%, p = 0.003). STAT4 rs10168266 allele C was statistically significantly more frequent in the ON group with MS than in the control group (89.06% vs. 71.75%, p = 0.003). The haplotypes G-G-A-C and C-T-A-T of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) were associated with an 11.5- and 19.5-fold increased odds of ON occurrence (p = 0.003; p = 0.008, respectively). In optic neuritis without MS occurrence, STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) haplotypes G-G-A-C and C-T-A-T were found to be associated with 32.6- and 9-fold increased odds of ON without MS (p = 0.002, p = 0.016, respectively). The current findings may indicate a risk role of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) G-G-A-C and C-T-A-T haplotypes in the occurrence of optic neuritis.
Collapse
Affiliation(s)
- Greta Gedvilaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Monika Duseikaitė
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| | - Gabrielė Dubinskaite
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkevicienė
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| |
Collapse
|
6
|
Muns SM, Villegas VM, Flynn HW, Schwartz SG. Update on current pharmacologic therapies for diabetic retinopathy. Expert Opin Pharmacother 2023; 24:1577-1593. [PMID: 37431888 DOI: 10.1080/14656566.2023.2230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Diabetic retinopathy is a major cause of visual loss worldwide. The most important clinical findings include diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR). AREAS COVERED PubMed was used for our literature review. Articles from 1995 to 2023 were included. Pharmacologic treatment of diabetic retinopathy generally involves the use of intravitreal anti-vascular endothelial growth factor (VEGF) therapy for DME and PDR. Corticosteroids remain important second-line therapies for patients with DME. Most emerging therapies focus on newly identified inflammatory mediators and biochemical signaling pathways involved in disease pathogenesis. EXPERT OPINION Emerging anti-VEGF modalities, integrin antagonists, and anti-inflammatory agents have the potential to improve outcomes with reduced treatment burdens.
Collapse
Affiliation(s)
- Sofía M Muns
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
| | - Victor M Villegas
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
8
|
Zhang J, Sharma D, Dinabandhu A, Sanchez J, Applewhite B, Jee K, Deshpande M, Flores-Bellver M, Hu MW, Guo C, Salman S, Hwang Y, Anders NM, Rudek MA, Qian J, Canto-Soler MV, Semenza GL, Montaner S, Sodhi A. Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice. J Clin Invest 2023; 133:e163290. [PMID: 37227777 PMCID: PMC10313368 DOI: 10.1172/jci163290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.
Collapse
Affiliation(s)
- Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Jaron Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brooks Applewhite
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M. Anders
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - M. Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Dieter C, Lemos NE, de Faria Corrêa NR, Assmann TS, Pellenz FM, Canani LH, de Almeida Brondani L, Bauer AC, Crispim D. Polymorphisms in TIE2 and ANGPT-1 genes are associated with protection against diabetic retinopathy in a Brazilian population. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000624. [PMID: 37249455 PMCID: PMC10665047 DOI: 10.20945/2359-3997000000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
Objective The objective of this study was to investigate the association between SNPs in the TIE2 and ANGPT-1 genes and diabetic retinopathy (DR). Subjects and methods This study comprised 603 patients with type 2 diabetes mellitus (T2DM) and DR (cases) and 388 patients with T2DM for more than 10 years and without DR (controls). The TIE2 rs639225 (A/G) and rs638203 (A/G) SNPs and the ANGPT-1 rs4324901 (G/T) and rs2507800 (T/A) SNPs were genotyped by real-time PCR using TaqMan MGB probes. Results The G/G genotype of the rs639225/TIE2, the G/G genotype of the rs638203/ TIE2 and the T allele of the rs4324901/ANGPT-1 SNPs were associated with protection against DR after adjustment for age, glycated hemoglobin, gender, and presence of hypertension (P = 0.042, P = 0.003, and P = 0.028, respectively). No association was found between the rs2507800/ANGPT-1 SNP and DR. Conclusion We demonstrated, for the first time, the association of TIE2 rs638203 and rsrs939225 SNPs and ANGPT-1 rs4324901 SNP with protection against DR in a Brazilian population.
Collapse
Affiliation(s)
- Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
| | | | - Taís Silveira Assmann
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
| | - Felipe Mateus Pellenz
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
| | - Luís Henrique Canani
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
| | | | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Divisão de Nefrologia, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Clínica Médica, Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil,
| |
Collapse
|
10
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Wang Y, Yang X, Li Q, Zhang Y, Chen L, Hong L, Xie Z, Yang S, Deng X, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals the Müller subtypes and inner blood-retinal barrier regulatory network in early diabetic retinopathy. Front Mol Neurosci 2022; 15:1048634. [PMID: 36533134 PMCID: PMC9754943 DOI: 10.3389/fnmol.2022.1048634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2023] Open
Abstract
As the basic pathological changes of diabetic retinopathy (DR), the destruction of the blood-retina barrier (BRB) and vascular leakage have attracted extensive attention. Without timely intervention, BRB damage will eventually lead to serious visual impairment. However, due to the delicate structure and complex function of the BRB, the mechanism underlying damage to the BRB in DR has not been fully clarified. Here, we used single-cell RNA sequencing (RNA-seq) technology to analyze 35,910 cells from the retina of healthy and streptozotocin (STZ)-induced diabetic rats, focusing on the degeneration of the main cells constituting the rat BRB in DR and the new definition of two subpopulations of Müller cells at the cell level, Ctxn3 +Müller and Ctxn3 -Müller cells. We analyzed the characteristics and significant differences between the two groups of Müller cells and emphasized the importance of the Ctxn3 +Müller subgroup in diseases. In endothelial cells, we found possible mechanisms of self-protection and adhesion and recruitment to pericytes. In addition, we constructed a communication network between endothelial cells, pericytes, and Müller subsets and clarified the complex regulatory relationship between cells. In summary, we constructed an atlas of the iBRB in the early stage of DR and elucidate the degeneration of its constituent cells and Müller cells and the regulatory relationship between them, providing a series of potential targets for the early treatment of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Collazos-Alemán JD, Gnecco-González S, Jaramillo-Zarama B, Jiménez-Mora MA, Mendivil CO. The Role of Angiopoietins in Neovascular Diabetes-Related Retinal Diseases. Diabetes Ther 2022; 13:1811-1821. [PMID: 36331711 PMCID: PMC9663771 DOI: 10.1007/s13300-022-01326-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy is a devastating and frequent complication of poorly controlled diabetes, whose pathogenesis is still only partially understood. Advances in basic research over the last two decades have led to the discovery of angiopoietins, proteins that strongly influence the growth and integrity of blood vessels in many vascular beds, with particular importance in the retina. Angiopoietin 1 (Ang1), produced mostly by pericytes and platelets, and angiopoietin 2 (Ang2), produced mainly by endothelial cells, bind to the same receptor (Tie2), but exert opposing effects on target cells. Ang1 maintains the stability of the mature vasculature, while Ang2 promotes vessel wall destabilization and disruption of the connections between endothelial cells and pericytes. Human retinal endothelial cells exposed to Ang2 show reduced membrane expression of the adhesion molecule VE-cadherin, and patients with proliferative diabetic retinopathy or diabetic macular edema have markedly increased vitreal concentrations of Ang2. Faricimab, a bi-specific antibody simultaneously directed against Ang2 and VEGF, has shown promising results in clinical trials among patients with diabetic retinopathy, and other agents targeting the angiopoietin system are currently in development.
Collapse
Affiliation(s)
| | - Sofía Gnecco-González
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia
| | | | - Mario A Jiménez-Mora
- Department of Ophthalmology, Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Carrera 7 No 116-05, Of 413, Bogotá, Colombia.
- Section of Endocrinology, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
13
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
14
|
Wei L, Sun X, Fan C, Li R, Zhou S, Yu H. The pathophysiological mechanisms underlying diabetic retinopathy. Front Cell Dev Biol 2022; 10:963615. [PMID: 36111346 PMCID: PMC9468825 DOI: 10.3389/fcell.2022.963615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus (DM), which can lead to visual impairment and even blindness in severe cases. DR is generally considered to be a microvascular disease but its pathogenesis is still unclear. A large body of evidence shows that the development of DR is not determined by a single factor but rather by multiple related mechanisms that lead to different degrees of retinal damage in DR patients. Therefore, this article briefly reviews the pathophysiological changes in DR, and discusses the occurrence and development of DR resulting from different factors such as oxidative stress, inflammation, neovascularization, neurodegeneration, the neurovascular unit, and gut microbiota, to provide a theoretical reference for the development of new DR treatment strategies.
Collapse
Affiliation(s)
- Lindan Wei
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Xin Sun
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shuanglong Zhou
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Department of Immunology, Zunyi Medical University, Zunyi, China
- *Correspondence: Hongsong Yu,
| |
Collapse
|
15
|
Fursova AZ, Derbeneva AS, Vasilyeva MS, Niculich IF, Tarasov MS, Gamza YA, Chubar NV, Gusarevich OG, Dmitrieva EI, Kozhevnikova OS, Kolosova NG, Elizarova AA. [New findings on pathogenetic mechanisms in the development of age-related macular degeneration]. Vestn Oftalmol 2022; 138:120-130. [PMID: 35488571 DOI: 10.17116/oftalma2022138021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease that occurs due to disfunction and degeneration of retinal pigment epithelium (RPE) and choriocapillaris, as well as death of photoreceptors. The exact pathogenetic mechanism remains uncertain. The aging process is the main and the clearest risk factor of AMD. In the development of this condition, a special role belongs to the secretory phenotype of aging spreading from one cell to another and mediated by the secretion and release of growth factors, cytokines, chemokines, proteases, and other molecules. Another major contributor is oxidative stress caused by violations in the recirculation of vitamin A in the vision cycle and accompanied by accumulation of lipofuscin, which mediates the formation of iron-based oxidants that are toxic for mitochondria. Furthermore, prolonged oxidative stress and constant light exposure induce the development of inflammation in the retina. Accumulation of metabolic products and cellular defects with age can induce an inflammatory reaction that amplifies the damage. The inflammatory processes including innate immune response, activation of microglia and parainflammation that occur locally in the vascular membrane, pigment epithelium and neuroretina are very significant contributors to the age-related changes, their progression, and the development of advanced stages of AMD. Various growth factors play a special role in the development of choroidal neovascularization (CNV). Vascular endothelial growth factor A (VEGF-A) has traditionally been considered the main factor of neoangiogenesis and, consequently, the main therapeutic target, but in recent years various studies have determined the role of other factors - VEGF-B, C, D, PGF, Gal-1, angiopoietins. This article describes the main underlying mechanisms in the development of choroidal neovascularization including retinal aging, impaired metabolic activity, mitochondrial dysfunction, inflammatory reactions and genetic variations, as well as the role of various growth factors.
Collapse
Affiliation(s)
- A Zh Fursova
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Derbeneva
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M S Vasilyeva
- Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - I F Niculich
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - M S Tarasov
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia.,Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu A Gamza
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - N V Chubar
- Novosibirsk State Medical University, Novosibirsk, Russia.,Novosibirsk State Regional Clinical Hospital, Novosibirsk, Russia
| | - O G Gusarevich
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - E I Dmitrieva
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - O S Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Elizarova
- Novosibirsk State Medical University, Novosibirsk, Russia
| |
Collapse
|
16
|
Cabrera-Becerra SE, Vera-Juárez G, García-Rubio VG, Ocampo-Ortega SA, Blancas-Napoles CM, Aguilera-Mendez A, Romero-Nava R, Huang F, Hong E, Villafaña S. siRNA knockdown of Angiopoietin 2 significantly reduces neovascularization in diabetic rats. J Drug Target 2022; 30:673-686. [PMID: 35289235 DOI: 10.1080/1061186x.2022.2052888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes is a disease that leads to proliferative diabetic retinopathy (PDR), which is associated with an increase of new vessels formation due to an overexpression of angiogenic factors, such as angiopoietin 2 (ANGPT2). The aim of this work was to design a siRNA targeting ANGPT2 to decrease the retinal neovascularization associated with PDR. Adult male Wistar rats weighing 325-375 g were used. Diabetes was induced by a single dose of streptozotocin (STZ, 60 mg/kg i.p.). The siRNAs were designed, synthesized and administered intravitreally at the beginning of diabetes induction (t0), and after 4 weeks of diabetes evolution (t4), subsequently evaluated the retinal neovascularization (junctions and lacunarity) and ANGPT2 expression in the retina by RT-PCR, after 4 weeks of the siRNAs administration. The results showed that the administration of STZ produced significantly increases in blood glucose levels, retinal neovascularization (augmented junctions and lower lacunarity) and ANGPT2 expression, while the administration the ANGPT2-siRNAs at different groups (t0 and t4) reduces the junctions and increases the lacunarity in diabetic rats. Therefore, we conclude that the administration of siRNAs targeting ANGPT2 could be an option to decrease the retinal neovascularization associated with PDR and halt the progression of blindness caused by diabetes.
Collapse
Affiliation(s)
- Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Vera-Juárez
- Laboratorio de neurofarmacología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Vanessa Giselle García-Rubio
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Adrián Ocampo-Ortega
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, México
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México "Federico Gómez", Ciudad de México, México
| | - Enrique Hong
- Departamento de Neurofarmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
17
|
Ferro Desideri L, Traverso CE, Nicolò M. The emerging role of the angiopoietin-Tie pathway as therapeutic target for treating retinal diseases. Expert Opin Ther Targets 2022; 26:145-154. [DOI: 10.1080/14728222.2022.2036121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carlo Enrico Traverso
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Massimo Nicolò
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
- Macula Onlus Foundation, Genoa, Italy
| |
Collapse
|
18
|
Camilleri P, Soldo B, Buch A, Janusz J. Oxidative metabolism of razuprotafib (AKB-9778), a sulfamic acid phosphatase inhibitor, in human microsomes and recombinant human CYP2C8 enzyme. Xenobiotica 2021; 51:1110-1121. [PMID: 34477046 DOI: 10.1080/00498254.2021.1969482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Razuprotafib, a sulphamic acid-containing phosphatase inhibitor, is shown in vivo to undergo enzymatic oxidation and methylation to form a major metabolite in monkey and human excreta with an m/z- value of 633.LC-MS/MS analysis of samples derived from incubations of razuprotafib with human liver microsomes and recombinant CYP2C8 enzyme has elucidated the metabolic pathway for formation of the thiol precursor to the S-methyl metabolite MS633 (m/z- 633).Under in vitro conditions, the major pathway of razuprotafib metabolism involves extensive oxidation of the thiophene and phenyl rings.A single oxidation takes place at one of the phenyl groups. Multiple oxidations occur at the thiophene moiety: initial oxidation results in the formation of a thiolactone followed by a second oxidation giving rise to an S-oxide of the thiolactone, which is further metabolised to the ring-opened form and ultimate formation of a thiol (m/z- 619).An additional mono-oxidation pathway involves epoxidation of the thiophene followed by hydrolysis to a diol.The thiol and diol metabolites are trapped by the addition of a nucleophilic trapping agent, 3-methoxyphenacyl bromide (MPB), giving adducts with m/z- 767.The thiol is a likely precursor to the major in vivo razuprotafib metabolite, MS633.
Collapse
|
19
|
Soldo BL, Camilleri P, Buch A, Janusz J. The in vivo disposition of subcutaneous injected 14C-razuprotafib ( 14C-AKB-9778), a sulphamic acid phosphatase inhibitor, in nonclinical species and human. Xenobiotica 2021; 51:1132-1145. [PMID: 34420473 DOI: 10.1080/00498254.2021.1972358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The disposition of radioactivity following subcutaneous 14C-razuprotafib, a Tie2 activator, was explored in multiple species.The absorption and clearance of razuprotafib and total radioactivity in human plasma are rapid and pharmacokinetics support razuprotafib as primary circulating component. Radioactivity is distributed greater to human plasma than whole blood (B:P = 0.36).In pigmented rats, radioactivity distributes to whole-body tissues rapidly and, within 24 h, is localised to elimination pathway end organs and injection site.Overall recovery of radioactivity across species is >93%, with the majority recovered within 24-48 h, and >80% in faeces.The CYP2C8 enzyme contributes significantly to razuprotafib metabolism.A hydrolysis product of razuprotafib (m/z- 380) is the main component in rat plasma at 2 h (49% peak area radioactivity), while razuprotafib (m/z- 585) is the main component in plasma for dog (58%), monkey (99.3%), and human (100%).Razuprotafib is present in dog, monkey, and human faeces, with the greatest percentage of radioactivity as metabolites. The major metabolite (>25%) in monkey and human, m/z- 633, is an S-methylated oxidised derivative of razuprotafib and is localised in faeces.Overall disposition of 14C-razuprotafib in human is best modelled by monkey over lower order species.
Collapse
|
20
|
Dragoni S, Caridi B, Karatsai E, Burgoyne T, Sarker MH, Turowski P. AMP-activated protein kinase is a key regulator of acute neurovascular permeability. J Cell Sci 2021; 134:jcs253179. [PMID: 33712448 PMCID: PMC8077405 DOI: 10.1242/jcs.253179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability, signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+. Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS, also known as NOS3), which in turn increased VE-cadherin (CDH5) phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinases (hereafter p38) and HSP27 (HSPB1), indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists and agonists, as well as siRNA, the ex vivo retina model constitutes a reliable tool to identify and study regulators and mechanisms of acute neurovascular permeability.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Bruna Caridi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Eleni Karatsai
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mosharraf H. Sarker
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- School of Science, Engineering & Design, Teesside University, Stephenson Street, Middlesbrough TS1 3BA, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
21
|
Justo AFO, Afonso PPL. The role of vascular endothelial protein tyrosine phosphatase on nitric oxide synthase function in diabetes: from molecular biology to the clinic. J Cell Commun Signal 2021; 15:467-471. [PMID: 33683570 DOI: 10.1007/s12079-021-00611-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) and receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) are one of the majors signaling pathways related to endothelial health in diabetes. Several reports have shown that the inhibition of VE-PTP can lead the nitric oxide production, although repeated studies showed that VE-PTP regulated the eNOS exclusive at Ser1177 in indirect-manner. A recent, exciting paper (Siragusa et al. in Cardiovasc Res, 2020. https://doi.org/10.1093/cvr/cvaa213 ), showing that VE-PTP regulates eNOS in a direct-manner, dephosphorylating eNOS at Tyr81 and indirect at Ser1177 and the effects of a VE-PTP inhibitor, AKB-9778, in the blood pressure from diabetic patients.
Collapse
|
22
|
Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, Schlottmann PG, Paris LP, Westenskow PD, Quezada-Ruiz C. THE ANGIOPOIETIN/TIE PATHWAY IN RETINAL VASCULAR DISEASES: A Review. Retina 2021; 41:1-19. [PMID: 33136975 DOI: 10.1097/iae.0000000000003003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To provide a concise overview for ophthalmologists and practicing retina specialists of available clinical evidence of manipulating the angiopoietin/tyrosine kinase with immunoglobulin-like and endothelial growth factor-like domains (Tie) pathway and its potential as a therapeutic target in retinal vascular diseases. METHODS A literature search for articles on the angiopoietin/Tie pathway and molecules targeting this pathway that have reached Phase 2 or 3 trials was undertaken on PubMed, Association for Research in Vision and Ophthalmology meeting abstracts (2014-2019), and ClinicalTrials.gov databases. Additional information on identified pipeline drugs was obtained from publicly available information on company websites. RESULTS The PubMed and Association for Research in Vision and Ophthalmology meeting abstract search yielded 462 results, of which 251 publications not relevant to the scope of the review were excluded. Of the 141 trials related to the angiopoietin/Tie pathway on ClinicalTrials.gov, seven trials focusing on diseases covered in this review were selected. Vision/anatomic outcomes from key clinical trials on molecules targeting the angiopoietin/Tie pathway in patients with retinal vascular diseases are discussed. CONCLUSION Initial clinical evidence suggests a potential benefit of targeting the angiopoietin/Tie pathway and vascular endothelial growth factor-A over anti-vascular endothelial growth factor-A monotherapy alone, in part due to of the synergistic nature of the pathways.
Collapse
Affiliation(s)
| | - Rishi P Singh
- Department of Ophthalmology, Center for Ophthalmic Bioinformatics, Cleveland Clinic, Cleveland, Ohio
| | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Anat Loewenstein
- Department of Ophthalmology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Carlos Quezada-Ruiz
- Genentech, Inc., South San Francisco, California; and
- Retina y Vitreo, Clínica de Ojos Garza Viejo, San Pedro Garza Garcia, Mexico
| |
Collapse
|
23
|
Pang B, Ni Q, Di S, Du LJ, Qin YL, Li QW, Li M, Tong XL. Luo Tong Formula Alleviates Diabetic Retinopathy in Rats Through Micro-200b Target. Front Pharmacol 2020; 11:551766. [PMID: 33324202 PMCID: PMC7723456 DOI: 10.3389/fphar.2020.551766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy (DR) is a serious complication of diabetes (DM). Luo Tong formula (LTF) exerts protective effects against DR in rats, but its underlying mechanism remains unknown. Methods: Sprague-Dawley rats injected with streptozotocin (STZ) were used as an experimental diabetes model. LTF or calcium dobesilate (CaD) was administered to diabetic rats via gastric gavage. After the 12 weeks of treatment, blood and tissue samples were collected to determine serum glucose and retinal structure. Blood samples were collected for blood glucose and hemorheology analysis. Gene or protein expression levels were evaluated by immunohistochemistry, western blotting and/or quantitative real-time polymerase chain reaction (PCR). Results: DM rats exhibits significantly increased blood retinal-barrier (BRB) breakdown and VEGF/VEGFR expression in the retina, and decreased miR-200b and tight junction ZO-1/Occludin/ Claudin-5 genes expression, as well as Ang-1/Tie-2 expressions in the retina compared to normal control group. LTF treatment significantly moderated histological abnormalities in diabetic rats, independent of blood glucose level; improved some hemorrheological parameters; decreased the expressions of VEGF/VEGFR and BRB breakdown, significantly increased PEDF and tight junction proteins ZO-1/Occludin, as well as increased retinal miR-200b expression compared to non-treatment diabetic rats. Moreover, LTF prevented the reduction in Ang-1/Tie-2 expression. Conclusions: LTF treatment ameliorated DR through its repair vascular and attenuate vascular leakage. A mechanism involving miR-200b may contribute to benefit effects.
Collapse
Affiliation(s)
- Bing Pang
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Di
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Juan Du
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Li Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wei Li
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Li G, Nottebaum AF, Brigell M, Navarro ID, Ipe U, Mishra S, Gomez-Caraballo M, Schmitt H, Soldo B, Pakola S, Withers B, Peters KG, Vestweber D, Stamer WD. A Small Molecule Inhibitor of VE-PTP Activates Tie2 in Schlemm's Canal Increasing Outflow Facility and Reducing Intraocular Pressure. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 33315051 PMCID: PMC7735951 DOI: 10.1167/iovs.61.14.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) activation in Schlemm's canal (SC) endothelium is required for the maintenance of IOP, making the angiopoietin/Tie2 pathway a target for new and potentially disease modifying glaucoma therapies. The goal of the present study was to examine the effects of a Tie2 activator, AKB-9778, on IOP and outflow function. Methods AKB-9778 effects on IOP was evaluated in humans, rabbits, and mice. Localization studies of vascular endothelial protein tyrosine phosphatase (VE-PTP), the target of AKB-9778 and a negative regulator of Tie2, were performed in human and mouse eyes. Mechanistic studies were carried out in mice, monitoring AKB-9778 effects on outflow facility, Tie2 phosphorylation, and filtration area of SC. Results AKB-9778 lowered IOP in patients treated subcutaneously for diabetic eye disease. In addition to efficacious, dose-dependent IOP lowering in rabbit eyes, topical ocular AKB-9778 increased Tie2 activation in SC endothelium, reduced IOP, and increased outflow facility in mouse eyes. VE-PTP was localized to SC endothelial cells in human and mouse eyes. Mechanistically, AKB-9778 increased the filtration area of SC for aqueous humor efflux in both wild type and in Tie2+/- mice. Conclusions This is the first report of IOP lowering in humans with a Tie2 activator and functional demonstration of its action in remodeling SC to increase outflow facility and lower IOP in fully developed mice. Based on these studies, a phase II clinical trial is in progress to advance topical ocular AKB-9778 as a first in class, Tie2 activator for treatment for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | | | | | - Iris D. Navarro
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Ute Ipe
- Max Planck Institute of Molecular Biomedicine, Muenster, Germany
| | - Sarthak Mishra
- Max Planck Institute of Molecular Biomedicine, Muenster, Germany
| | - Maria Gomez-Caraballo
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Heather Schmitt
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Brandi Soldo
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Steve Pakola
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Barbara Withers
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Kevin G. Peters
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | | | - W. Daniel Stamer
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
25
|
Targeting Angiopoietin in Retinal Vascular Diseases: A Literature Review and Summary of Clinical Trials Involving Faricimab. Cells 2020; 9:cells9081869. [PMID: 32785136 PMCID: PMC7464130 DOI: 10.3390/cells9081869] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the latest findings in the literature of Angiopoietin-2 (Ang-2), Tyrosine-protein kinase receptor (Tie-2) complex, and faricimab along with their involvement for the treatment of retinal vascular diseases in various clinical trials. In ischemic diseases, such as diabetic retinopathy, Ang-2 is upregulated, deactivating Tie-2, resulting in vascular leakage, pericyte loss, and inflammation. Recombinant Angiopeotin-1 (Ang-1), Ang-2-blocking molecules, and inhibitors of vascular endothelial protein tyrosine phosphatase (VE-PTP) decrease inflammation-associated vascular leakage, showing therapeutic effects in diabetes, atherosclerosis, and ocular neovascular diseases. In addition, novel studies show that angiopoietin-like proteins may play an important role in cellular metabolism leading to retinal vascular diseases. Current therapeutic focus combines Ang-Tie targeted drugs with other anti-angiogenic or immune therapies. Clinical studies have identified faricimab, a novel bispecific antibody designed for intravitreal use, to simultaneously bind and neutralize Ang-2 and VEGF-A for treatment of diabetic eye disease. By targeting both Ang-2 and vascular endothelial growth factor-A (VEGF-A), faricimab displays an improved and sustained efficacy over longer treatment intervals, delivering superior vision outcomes for patients with diabetic macular edema and reducing the treatment burden for patients with neovascular age-related macular degeneration and diabetic macular edema. Phase 2 results have produced promising outcomes with regard to efficacy and durability. Faricimab is currently being evaluated in global Phase 3 studies.
Collapse
|
26
|
Striglia E, Caccioppo A, Castellino N, Reibaldi M, Porta M. Emerging drugs for the treatment of diabetic retinopathy. Expert Opin Emerg Drugs 2020; 25:261-271. [PMID: 32715794 DOI: 10.1080/14728214.2020.1801631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is one of the main pathological features of the diabetes mellitus spectrum. It is estimated that in 2020 about 4 million people worldwide suffered from blindness or visual impairment caused by DR. Many patients cannot access treatment, mostly because of high costs, while others discontinue it prematurely due to the high number of intravitreal administrations required, or the occurrence of ocular complications, or discomfort in quality of life. AREAS COVERED The aims of this paper are to summarize the current understanding of the pathogenesis and treatment of diabetic retinopathy, focus on the most promising new approaches to treatment that are being evaluated in clinical trials, and outline the potential financial impact of new drugs in future markets. EXPERT OPINION Slow-release systems with steroids, anti-VEGF or sunitinib are promising. Oral imatinib would avoid the ocular complications of intravitreal drugs. Brolucizumab and abicipar pegol may be superior to aflibercept and ranibizumab with the advantage of less frequent administrations. Faricimab, active on Tie-2 receptors, is being evaluated in two phase 3 clinical trials. Further knowledge of the efficacy and safety of these drugs is necessary before their final approval for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Elio Striglia
- Department of Medical Sciences, University of Turin , Turin, Italy
| | - Andrea Caccioppo
- Department of Medical Sciences, University of Turin , Turin, Italy
| | | | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin , Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin , Turin, Italy
| |
Collapse
|
27
|
Sadiq MA, Halim MS, Hassan M, Onghanseng N, Karaca I, Agarwal A, Afridi R, Sepah YJ, Do DV, Nguyen QD. RETRACTED ARTICLE: Pharmacological agents in development for diabetic macular edema. Int J Retina Vitreous 2020; 6:29. [DOI: 10.1186/s40942-020-00234-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
|
28
|
Shaw LT, Mackin A, Shah R, Jain S, Jain P, Nayak R, Hariprasad SM. Risuteganib-a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs 2020; 29:547-554. [PMID: 32349559 DOI: 10.1080/13543784.2020.1763953] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-exudative (dry) age-related macular degeneration (AMD) and diabetic macular edema (DME) are leading causes of vision loss worldwide. Besides age-related eye disease study (AREDS) vitamin supplements, there are no efficacious pharmaceutical interventions for dry AMD available. While numerous pharmacologics are available to treat diabetic macular edema (DME), many patients respond suboptimally to existing therapies. Risuteganib is a novel anti-integrin peptide that targets the multiple integrin heterodimers involved in the pathophysiology of dry AMD and DME. Inhibiting these selected integrin heterodimers may benefit patients with these conditions. AREAS COVERED This article offers a brief overview of current pharmaceuticals available for dry AMD and DME. The proposed role of integrins in AMD and DME is reviewed and later, risuteganib, a novel anti-integrin peptide is introduced. The data from initial Phase 1 and Phase 2 risuteganib clinical trials are discussed in the latter part of the paper. EXPERT OPINION While there are currently limited treatment options for dry AMD, more data are needed before we can truly evaluate the benefits of adopting risuteganib into the clinic. Conversely, several effective treatment options exist for DME; hence, risuteganib must show that it can add to these results, especially in those with refractory disease, before retina specialists adopt risuteganib into their treatment regimens.
Collapse
Affiliation(s)
- Lincoln T Shaw
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| | - Anna Mackin
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| | | | - Siona Jain
- Phillips Exeter Academy , Exeter, NH, USA
| | | | - Ravi Nayak
- University of Chicago , Chicago, IL, USA
| | - Seenu M Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| |
Collapse
|
29
|
Gál Z, Gézsi A, Molnár V, Nagy A, Kiss A, Sultész M, Csoma Z, Tamási L, Gálffy G, Bálint BL, Póliska S, Szalai C. Investigation of the Possible Role of Tie2 Pathway and TEK Gene in Asthma and Allergic Conjunctivitis. Front Genet 2020; 11:128. [PMID: 32180797 PMCID: PMC7057532 DOI: 10.3389/fgene.2020.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Tie2, coded by the TEK gene, is a tyrosine kinase receptor and plays a central role in vascular stability. It was suggested that variations in the TEK gene might influence the susceptibility to asthma and allergic conjunctivitis. The aim of this study was to further investigate these suggestions, involving different populations and to study the Tie2 related pathway on a mouse model of asthma. The discovery, stage I cohort involved 306 patients with moderate and severe allergic rhinitis, the stage II study consisted of four cohorts, namely, adult and pediatric asthmatics and corresponding controls. Altogether, there were 1,258 unrelated individuals in these cohorts, out of which 63.9% were children and 36.1% were adults. In stage I, 112 SNPs were screened in the TEK gene of the patients in order to search for associations with asthma and allergic conjunctivitis. The top associated SNPs were selected for association studies on the replication cohorts. The rs3824410 SNP was nominally associated with a reduced risk of asthma in the stage I cohort and with severe asthma within the asthmatic population (p=0.009; OR=0.48) in the replication cohort. In the stage I study, 5 SNPs were selected in conjunctivitis. Due to the low number of adult patients with conjunctivitis, only children were involved in stage II. Within the asthmatic children, the rs622232 SNP was associated with conjunctivitis in boys in the dominant model (p=0.004; OR=4.76), while the rs7034505 showed association to conjunctivitis in girls (p=0.012; OR=2.42). In the lung of a mouse model of asthma, expression changes of 10 Tie2 pathway-related genes were evaluated at three points in time. Eighty percent of the selected genes showed significant changes in their expressions at least at one time point during the process, leading from sensitization to allergic airway inflammation. The expressions of both the Tek gene and its ligands showed a reduced level at all time points. In conclusion, our results provide additional proof that the Tie2 pathway, the TEK gene and its variations might have a role in asthma and allergic conjunctivitis. The gene and its associated pathways can be potential therapeutic targets in both diseases.
Collapse
Affiliation(s)
- Zsófia Gál
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Adrienne Nagy
- Department of Allergology, Heim Pál Children's Hospital, Budapest, Hungary
| | - András Kiss
- Department of Urology, Heim Pál Children's Hospital, Budapest, Hungary
| | - Monika Sultész
- Department of Ear, Nose and Throat, Heim Pál Children's Hospital, Budapest, Hungary
| | - Zsuzsanna Csoma
- Outpatient Care for Allergy and Asthma, National Korányi Institute of TB and Pulmonology, Budapest, Hungary
| | - Lilla Tamási
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Gabriella Gálffy
- Adult Inpatient Care, Pulmonology Hospital Törökbálint, Törökbálint, Hungary
| | - Bálint L Bálint
- Department of Biochemistry & Molecular Biology, Genomic Medicine & Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry & Molecular Biology, Genomic Medicine & Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Department of Research and Development, Heim Pál Children's Hospital, Budapest, Hungary
| |
Collapse
|
30
|
Yu X, Ye F. Role of Angiopoietins in Development of Cancer and Neoplasia Associated with Viral Infection. Cells 2020; 9:cells9020457. [PMID: 32085414 PMCID: PMC7072744 DOI: 10.3390/cells9020457] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover, through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.
Collapse
Affiliation(s)
- Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| | - Fengchun Ye
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| |
Collapse
|
31
|
Bhatwadekar AD, Kansara VS, Ciulla TA. Investigational plasma kallikrein inhibitors for the treatment of diabetic macular edema: an expert assessment. Expert Opin Investig Drugs 2020; 29:237-244. [PMID: 31985300 DOI: 10.1080/13543784.2020.1723078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Plasma kallikrein is a mediator of vascular leakage and inflammation. Activation of plasma kallikrein can induce features of diabetic macular edema (DME) in preclinical models. Human vitreous shows elevated plasma kallikrein levels in patients with DME. Because of the incomplete response of some patients to anti-VEGF agents, and the treatment burden associated with frequent dosing, there is still considerable need for VEGF-independent targeted pathways.Areas covered: This review covers the role of plasma kallikrein in the pathogenesis of DME and the therapeutic potential of plasma kallikrein inhibitors. It discusses early clinical studies of plasma kallikrein pathway modulation for DME, which have been associated with some improvement in visual acuity but with limited improvement in macular edema. This review also highlights KVD001, which is furthest along the development pathway, THR-149, which has recently completed a phase 1 study, and oral agents under development.Expert opinion: Plasma kallikrein inhibitors have a potential role in the treatment of DME, with mixed functional/anatomic results in early clinical trials. Given the large unmet need in DME treatment, further studies are warranted.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | | | - Thomas A Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA.,Clearside Biomedical, Inc., Alpharetta, GA, USA.,Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
32
|
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2020; 176:1248-1264. [PMID: 30849371 DOI: 10.1016/j.cell.2019.01.021] [Citation(s) in RCA: 1474] [Impact Index Per Article: 368.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
The discovery of vascular endothelial-derived growth factor (VEGF) has revolutionized our understanding of vasculogenesis and angiogenesis during development and physiological homeostasis. Over a short span of two decades, our understanding of the molecular mechanisms by which VEGF coordinates neurovascular homeostasis has become more sophisticated. The central role of VEGF in the pathogenesis of diverse cancers and blinding eye diseases has also become evident. Elucidation of the molecular regulation of VEGF and the transformative development of multiple therapeutic pathways targeting VEGF directly or indirectly is a powerful case study of how fundamental research can guide innovation and translation. It is also an elegant example of how agnostic discovery and can transform our understanding of human disease. This review will highlight critical nodal points in VEGF biology, including recent developments in immunotherapy for cancer and multitarget approaches in neovascular eye disease.
Collapse
Affiliation(s)
- Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | - Napoleone Ferrara
- Department of Pathology, University of California, San Diego, CA, USA; Department of Ophthalmology, University of California, San Diego, CA, USA; The Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
33
|
Shao J, Fan G, Yin X, Gu Y, Wang X, Xin Y, Yao Y. A novel transthyretin/STAT4/miR-223-3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy. Mol Cell Endocrinol 2019; 498:110541. [PMID: 31415795 DOI: 10.1016/j.mce.2019.110541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs without protein-coding functions that negatively regulate target genes and play important roles in physiological and pathological processes. The aim of this work was to reveal a novel miRNA/gene pathway in diabetic retinopathy (DR). A microarray was used to screen miRNAs in samples from nondiabetic controls and patients with DR, and miR-223-3p was screened as a potential candidate. Quantitative real-time PCR (qRT-PCR) revealed that the level of miR-223-3p was frequently overexpressed in DR samples and human retinal endothelial cells (hRECs) in hyperglycemia, but it was decreased in hyperglycemia after the addition of transthyretin (TTR). In addition, according to cell proliferation, tube formation, and wound healing assays, the downregulation of miR-223-3p suppressed cell migration and proliferation, whereas miR-223-3p upregulation showed the opposite effects. Furthermore, luciferase assays identified F-box and WD repeat domain-containing 7 (FBXW7) as a target mRNA of miR-223-3p. High glucose conditions facilitated the recruitment of signal transducer and activator of transcription 4 (STAT4) and promoted the transcription of miR-223-3p. In hRECs, in a hyperglycemic environment, TTR inhibited STAT4 expression, downregulated the level of miR-223-3p, and finally promoted FBXW7 expression. This study found a novel mechanism whereby TTR might affect neovascularization through a newly identified STAT4/miR-223-3p/FBXW7 cascade in DR.
Collapse
Affiliation(s)
- Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China
| | - Guangming Fan
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Xiaowen Yin
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China
| | - Yu Gu
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Xiaolu Wang
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi Institute of Translational Medicine, Wuxi, 214023, Jiangsu, PR China
| | - Yu Xin
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China.
| |
Collapse
|
34
|
Spencer BG, Estevez JJ, Liu E, Craig JE, Finnie JW. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology 2019; 28:697-709. [PMID: 31612299 DOI: 10.1007/s10787-019-00647-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus, and a common cause of vision impairment and blindness in these patients, yet many aspects of its pathogenesis remain unresolved. Furthermore, current treatments are not effective in all patients, are only indicated in advanced disease, and are associated with significant adverse effects. This review describes the microvascular features of DR, and how pericyte depletion and low-grade chronic inflammation contribute to the pathogenesis of this common ophthalmic disorder. Existing, novel and investigational pharmacological strategies aimed at modulating the inflammatory component of DR and ameliorating pericyte loss to potentially improve clinical outcomes for patients with diabetic retinopathy, are discussed.
Collapse
Affiliation(s)
- Benjamin G Spencer
- TMOU, Flinders Medical Centre, Southern Adelaide Local Health Network, SA Health, Flinders Drive, Bedford Park, SA, 5042, Australia.
| | - Jose J Estevez
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Ebony Liu
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Jamie E Craig
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
Drexler HCA, Vockel M, Polaschegg C, Frye M, Peters K, Vestweber D. Vascular Endothelial Receptor Tyrosine Phosphatase: Identification of Novel Substrates Related to Junctions and a Ternary Complex with EPHB4 and TIE2. Mol Cell Proteomics 2019; 18:2058-2077. [PMID: 31427368 PMCID: PMC6773558 DOI: 10.1074/mcp.ra119.001716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP, PTPRB) is a receptor type phosphatase that is crucial for the regulation of endothelial junctions and blood vessel development. We and others have shown recently that VE-PTP regulates vascular integrity by dephosphorylating substrates that are key players in endothelial junction stability, such as the angiopoietin receptor TIE2, the endothelial adherens junction protein VE-cadherin and the vascular endothelial growth factor receptor VEGFR2. Here, we have systematically searched for novel substrates of VE-PTP in endothelial cells by utilizing two approaches. First, we studied changes in the endothelial phosphoproteome on exposing cells to a highly VE-PTP-specific phosphatase inhibitor followed by affinity isolation and mass-spectrometric analysis of phosphorylated proteins by phosphotyrosine-specific antibodies. Second, we used a substrate trapping mutant of VE-PTP to pull down phosphorylated substrates in combination with SILAC-based quantitative mass spectrometry measurements. We identified a set of substrate candidates of VE-PTP, of which a remarkably large fraction (29%) is related to cell junctions. Several of those were found in both screens and displayed very high connectivity in predicted functional interaction networks. The receptor protein tyrosine kinase EPHB4 was the most prominently phosphorylated protein on VE-PTP inhibition among those VE-PTP targets that were identified by both proteomic approaches. Further analysis revealed that EPHB4 forms a ternary complex with VE-PTP and TIE2 in endothelial cells. VE-PTP controls the phosphorylation of each of these two tyrosine kinase receptors. Despite their simultaneous presence in a ternary complex, stimulating each of the receptors with their own specific ligand did not cross-activate the respective partner receptor. Our systematic approach has led to the identification of novel substrates of VE-PTP, of which many are relevant for the control of cellular junctions further promoting the importance of VE-PTP as a key player of junctional signaling.
Collapse
Affiliation(s)
- Hannes C A Drexler
- Bioanalytical Mass Spectrometry, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany.
| | - Matthias Vockel
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany; Institute of Human Genetics, University Hospital Münster, 48149 Münster, Germany
| | - Christian Polaschegg
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Maike Frye
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | | | - Dietmar Vestweber
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany.
| |
Collapse
|
36
|
Hussain RM, Neiweem AE, Kansara V, Harris A, Ciulla TA. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs 2019; 28:861-869. [PMID: 31513439 DOI: 10.1080/13543784.2019.1667333] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: The Tie-2/Angiopoietin pathway is a therapeutic target for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Activation of Tie-2 receptor via Ang-1 maintains vascular stability to limit exudation. Ang-2, a competitive antagonist to Ang-1, and VE-PTP, an endothelial-specific phosphatase, interfere with the Tie-2-Ang-1 axis, resulting in vascular leakage. Areas covered: Faricimab, a bispecific antibody that inhibits VEGF-A and Ang-2, is in phase 3 trials for nAMD and DME. Nesvacumab is an Ang-2 inhibitor; when coformulated with aflibercept, it failed to show benefit over aflibercept monotherapy in achieving visual gains in phase 2 studies of nAMD and DME. ARP-1536 is an intravitreally administered VE-PTP inhibitor undergoing preclinical studies. AKB-9778 is a subcutaneously administered VE-PTP inhibitor that, when combined with monthly ranibizumab, reduced DME more effectively than ranibizumab monotherapy in a phase 2 study. AKB-9778 monotherapy did not reduce diabetic retinopathy severity score compared to placebo. AXT107, currently in the preclinical phase, promotes conversion of Ang-2 into a Tie-2 agonist and blocks signaling through VEGFR2 and other receptor tyrosine-kinases. Expert opinion: Tie-2/Angiopoietin pathway modulators show promise to reduce treatment burden and improve visual outcomes in nAMD and DME, with potential to treat cases refractory to current treatment modalities.
Collapse
Affiliation(s)
| | - Ashley E Neiweem
- Department of Ophthalmology, Indiana University School of Medicine , Indianapolis , IN , USA
| | | | - Alon Harris
- Department of Ophthalmology, Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Indiana University School of Medicine , Indianapolis , IN , USA.,Clearside Biomedical, Inc , Alpharetta , GA , USA.,Retina Service, Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
37
|
Dubinski D, Hattingen E, Senft C, Seifert V, Peters KG, Reiss Y, Devraj K, Plate KH. Controversial roles for dexamethasone in glioblastoma - Opportunities for novel vascular targeting therapies. J Cereb Blood Flow Metab 2019; 39:1460-1468. [PMID: 31238763 PMCID: PMC6681527 DOI: 10.1177/0271678x19859847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma is a highly aggressive and treatment resistant primary brain tumor. Features of glioblastoma include peritumoral cerebral edema, the major contributor to neurological impairment. Although the current clinical approach to edema management is administration of the synthetic corticoid dexamethasone, increasing evidence indicates numerous adverse effects of dexamethasone on glioblastoma burden at the molecular, cellular and clinical level. The contradictions of dexamethasone for glioblastoma and brain metastasis therapy are discussed in this article. Finally, alternative strategies for cerebrovascular edema therapy with vascular stabilizing, anti-permeability agents that are either approved or in clinical trials for diabetic retinopathy and macula edema, are addressed.
Collapse
Affiliation(s)
- Daniel Dubinski
- 1 Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,2 Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- 3 Department of Neuroradiology, University Hospital, Goethe University, Frankfurt am Main, Germany.,4 Frankfurt Cancer Institute, Frankfurt, Germany
| | - Christian Senft
- 2 Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Volker Seifert
- 2 Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany
| | | | - Yvonne Reiss
- 1 Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,4 Frankfurt Cancer Institute, Frankfurt, Germany.,6 LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt am Main, Germany.,7 German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kavi Devraj
- 1 Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,6 LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt am Main, Germany
| | - Karl H Plate
- 1 Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany.,4 Frankfurt Cancer Institute, Frankfurt, Germany.,6 LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt am Main, Germany.,7 German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
van den Berg BM, Wang G, Boels MGS, Avramut MC, Jansen E, Sol WMPJ, Lebrin F, van Zonneveld AJ, de Koning EJP, Vink H, Gröne HJ, Carmeliet P, van der Vlag J, Rabelink TJ. Glomerular Function and Structural Integrity Depend on Hyaluronan Synthesis by Glomerular Endothelium. J Am Soc Nephrol 2019; 30:1886-1897. [PMID: 31308073 DOI: 10.1681/asn.2019020192] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/20/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A glycocalyx envelope consisting of proteoglycans and adhering proteins covers endothelial cells, both the luminal and abluminal surface. We previously demonstrated that short-term loss of integrity of the luminal glycocalyx layer resulted in perturbed glomerular filtration barrier function. METHODS To explore the role of the glycocalyx layer of the endothelial extracellular matrix in renal function, we generated mice with an endothelium-specific and inducible deletion of hyaluronan synthase 2 (Has2), the enzyme that produces hyaluronan, the main structural component of the endothelial glycocalyx layer. We also investigated the presence of endothelial hyaluronan in human kidney tissue from patients with varying degrees of diabetic nephropathy. RESULTS Endothelial deletion of Has2 in adult mice led to substantial loss of the glycocalyx structure, and analysis of their kidneys and kidney function showed vascular destabilization, characterized by mesangiolysis, capillary ballooning, and albuminuria. This process develops over time into glomerular capillary rarefaction and glomerulosclerosis, recapitulating the phenotype of progressive human diabetic nephropathy. Using a hyaluronan-specific probe, we found loss of glomerular endothelial hyaluronan in association with lesion formation in tissue from patients with diabetic nephropathy. We also demonstrated that loss of hyaluronan, which harbors a specific binding site for angiopoietin and a key regulator of endothelial quiescence and maintenance of EC barrier function results in disturbed angiopoietin 1 Tie2. CONCLUSIONS Endothelial loss of hyaluronan results in disturbed glomerular endothelial stabilization. Glomerular endothelial hyaluronan is a previously unrecognized key component of the extracelluar matrix that is required for glomerular structure and function and lost in diabetic nephropathy.
Collapse
Affiliation(s)
- Bernard M van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Gangqi Wang
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Margien G S Boels
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - M Cristina Avramut
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Jansen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy M P J Sol
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Franck Lebrin
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Anton Jan van Zonneveld
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| | - Eelco J P de Koning
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Vink
- Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, The German Cancer Research Center, Heidelberg, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, Vesalius Research Center, Vascular Institute Belgium, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vascular Institute Belgium, Leuven, Belgium; and
| | - Johan van der Vlag
- Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ton J Rabelink
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, and
| |
Collapse
|
39
|
Rosen RB, Andrade Romo JS, Krawitz BD, Mo S, Fawzi AA, Linderman RE, Carroll J, Pinhas A, Chui TY. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed Using Optical Coherence Tomography Angiography Perfused Capillary Density. Am J Ophthalmol 2019; 203:103-115. [PMID: 30689991 DOI: 10.1016/j.ajo.2019.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare perfused capillary density (PCD) in diabetic patients and healthy controls using optical coherence tomography angiography (OCTA). METHODS Forty controls, 36 diabetic subjects without clinical retinopathy (NoDR), 38 with nonproliferative retinopathy (NPDR), and 38 with proliferative retinopathy (PDR) were imaged using spectral-domain optical coherence tomography. A 3 × 3-mm full-thickness parafoveal OCTA scan was obtained from each participant. Following manual delineation of the foveal avascular zone (FAZ), FAZ area, perimeter, and acircularity index were determined. Seven consecutive equidistant 200-μm-wide annular segments were drawn at increasing eccentricities from the FAZ margin. Annular PCD (%) was defined as perfused capillary area divided by the corresponding annulus area after subtraction of noncapillary blood vessel areas. Nonparametric Kruskal-Wallis testing with Bonferroni correction was performed in pairwise comparisons of group PCD values. RESULTS The NoDR group demonstrated consistently higher PCD compared to the control group in all 7 annuli, reaching statistical significance (36.6% ± 3.30% vs 33.6% ± 3.98%, P = .034) at the innermost annulus (FAZ margin to 200 μm out). The NPDR and PDR groups demonstrated progressively decreasing PCD. Differences in FAZ metrics between the NoDR and control groups did not reach statistical significance. CONCLUSIONS Relative to healthy controls, increased PCD values in the NoDR group likely represent an autoregulatory response to increased metabolic demand, while the decrease in PCD that follows in NPDR and PDR results largely from an incremental loss of capillary segments. These findings, consistent with previous studies, demonstrate the potential of OCTA as a clinical tool for earlier objective detection of preclinical diabetic retinopathy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
40
|
Activated protein C induces suppression and regression of choroidal neovascularization- A murine model. Exp Eye Res 2019; 186:107695. [PMID: 31201804 DOI: 10.1016/j.exer.2019.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
Activated protein C (APC) exerts diverse cell signaling pathways which results in multiple distinct cytoprotective actions. These include anti-apoptotic and anti-inflammatory activities and stabilization of endothelial and epithelial barriers. We studied the ability of APC to inhibit the leakage and the growth of newly formed as well as pre-existing choroidal neovascularization (CNV) and examined the ability of APC to stabilize the Retinal Pigmented Epithelium (RPE). We explored the contribution of Tie2 receptor to the protective effects of APC. CNV was induced by laser photocoagulation in C57BL/6J mice. APC was injected intravitreally immediately or 7 days after CNV induction. Neovascularization was evaluated on RPE-choroidal flatmounts using FITC-dextran perfusion and CD31 immunofluorescence. CNV leakage was measured by fluorescein angiography (FA). The ability of APC to stabilize the RPE barrier was evaluated in-vitro by dextran permeability and zonula occludens 1 (ZO1) immunostaining. Tie2 blocking was induced in-vivo by intraperitoneal injection of Tie2 kinase inhibitor and in-vitro by incubation with anti Tie2 antibodies. APC treatment dramatically inhibited the generation of newly formed CNV leakage sites and reversed leakage in 85% of the pre-existing CNV leaking sites. In RPE cell culture, APC induced translocation of ZO1 to the cell membrane, accompanied by reduction in permeability of the monolayer. Inhibition of Tie2 significantly decreased APC protective activities in both the mouse model and the RPE cell culture. Our results show that APC treatment significantly inhibits the leakage and growth of newly formed, as well as pre-existing CNV, and its protective activities are partially mediated via the Tie2 receptor. The data suggest that APC should be further investigated as a possible effective treatment for CNV.
Collapse
|
41
|
Liu WS, Wang RR, Sun YZ, Li WY, Li HL, Liu CL, Ma Y, Wang RL. Exploring the effect of inhibitor AKB-9778 on VE-PTP by molecular docking and molecular dynamics simulation. J Cell Biochem 2019; 120:17015-17029. [PMID: 31125141 DOI: 10.1002/jcb.28963] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023]
Abstract
Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.
Collapse
Affiliation(s)
- Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Lian Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
42
|
Michalska-Jakubus M, Cutolo M, Smith V, Krasowska D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated effects on microvascular reactivity. Microvasc Res 2019; 125:103881. [PMID: 31075243 DOI: 10.1016/j.mvr.2019.103881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/03/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND AIM Microangiopathy is a hallmark of systemic sclerosis (SSc). It is a progressive process from an early inflammatory and proangiogenic environment to insufficient microvascular repair with loss of microvessels. The exact underlying mechanisms remain ill-defined. Aim of the study was to investigate whether imbalanced angiopoietins/VEGF serum profile should be related in SSc to the altered microvascular reactivity characterized by aberrant angiogenesis and avascularity. MATERIALS AND METHODS Serum levels of Angiopoietin-1 (Ang1), Angiopoietin-2 (Ang2) and VEGF were measured by ELISA in 47 SSc patients and 27 healthy controls. Microvascular alterations were assessed by nailfold videocapillaroscopy (NVC). RESULTS Serum concentrations of Ang1 were significantly lower [mean (S.D.): 21516.04 (11,441.035) pg/ml], and Ang2 significantly increased [25,89.55 (934.225) pg/ml] in SSc as compared with the control group [Ang1: 28,457.08 (10,431.905) pg/ml; Ang2: 1556.23 (481.255) pg/ml, p < 0.01, respectively], whereas VEGF did not differ significantly. The ratios of Ang1/Ang2 and Ang1/VEGF were significantly lower in SSc patients (8.346 ± 4.523 and 95.17 ± 75.0, respectively) than in healthy subjects (17.612 ± 6.731 p < 0.000001 and 183.11 ± 137.73; p = 0.004]. Formation of giant capillaries with vascular leakage and collapse was associated with significant increase in VEGF and concomitant Ang1 deficiency. Capillary loss was related to significant increase in VEGF with respect to those with preserved capillary number (395.12 ± 256.27 pg/mL vs. 254.80 ± 213.61 pg/mL) whereas elevated Ang2 levels induced more advanced capillary damage as indicated by the presence of the "Late" NVC pattern. CONCLUSIONS We found that serum levels of Ang1, Ang2 and VEGF are differentially expressed in SSc and altered Ang1/Ang2 profile might underlay the aberrant angiogenesis in SSc despite increase in VEGF. For the first time we identified that significant deficiency of Ang1 might be involved in early capillary enlargement, followed by collapse and lack of stable newly-formed vessels in VEGF-enriched environment, whereas Ang2 levels seem to increase later in disease progression and advanced microvascular damage ("Late" NVC pattern).
Collapse
Affiliation(s)
- Małgorzata Michalska-Jakubus
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Vanessa Smith
- Faculty of Internal Medicine, Ghent University, Belgium.
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
43
|
Whitehead M, Osborne A, Widdowson PS, Yu-Wai-Man P, Martin KR. Angiopoietins in Diabetic Retinopathy: Current Understanding and Therapeutic Potential. J Diabetes Res 2019; 2019:5140521. [PMID: 31485452 PMCID: PMC6710771 DOI: 10.1155/2019/5140521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is the commonest cause of blindness in the working-age population of the developed world. The molecular pathophysiology of DR is complex, and a complete spatiotemporal model of the disease is still being elucidated. Recently, a role for angiopoietin (Ang) proteins in the pathophysiology of DR has been proposed by several research groups, and several aspects of Ang signalling are being explored as novel therapeutic strategies. Here, we review the role of the Ang proteins in two important forms of DR, diabetic macular oedema and proliferative diabetic retinopathy. The function of the Ang proteins in regulating blood vessel permeability and neovascularisation is discussed, and we also evaluate recent preclinical and clinical studies highlighting the potential benefits of modulating Ang signalling as a treatment for DR.
Collapse
Affiliation(s)
- Michael Whitehead
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter S. Widdowson
- Camburgh House 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
- Ikarovec Ltd., Canterbury, UK
| | - Patrick Yu-Wai-Man
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Keith R. Martin
- Van Geest Building, West Forvie Site, Addenbrookes Biomedical Campus, Cambridge CB2 0PY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Centre for Eye Research Australia, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Sinclair SH, Schwartz SS. Diabetic Retinopathy-An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Front Endocrinol (Lausanne) 2019; 10:843. [PMID: 31920963 PMCID: PMC6923675 DOI: 10.3389/fendo.2019.00843] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a world-wide epidemic and diabetic retinopathy, a devastating, vision-threatening condition, is one of the most common diabetes-specific complications. Diabetic retinopathy is now recognized to be an inflammatory, neuro-vascular complication with neuronal injury/dysfunction preceding clinical microvascular damage. Importantly, the same pathophysiologic mechanisms that damage the pancreatic β-cell (e.g., inflammation, epigenetic changes, insulin resistance, fuel excess, and abnormal metabolic environment), also lead to cell and tissue damage causing organ dysfunction, elevating the risk of all complications, including diabetic retinopathy. Viewing diabetic retinopathy within the context whereby diabetes and all its complications arise from common pathophysiologic factors allows for the consideration of a wider array of potential ocular as well as systemic treatments for this common and devastating complication. Moreover, it also raises the importance of the need for methods that will provide more timely detection and prediction of the course in order to address early damage to the neurovascular unit prior to the clinical observation of microangiopathy. Currently, treatment success is limited as it is often initiated far too late and after significant neurodegeneration has occurred. This forward-thinking approach of earlier detection and treatment with a wider array of possible therapies broadens the physician's armamentarium and increases the opportunity for prevention and early treatment of diabetic retinopathy with preservation of good vision, as well the prevention of similar destructive processes occurring among other organs.
Collapse
Affiliation(s)
- Stephen H. Sinclair
- Sinclair Retina Associates, Media, PA, United States
- Main Line Health System, Media, PA, United States
- *Correspondence: Stephen H. Sinclair
| | | |
Collapse
|
45
|
Wang L, Chopp M, Szalad A, Lu X, Lu M, Zhang T, Zhang ZG. Angiopoietin-1/Tie2 signaling pathway contributes to the therapeutic effect of thymosin β4 on diabetic peripheral neuropathy. Neurosci Res 2018; 147:1-8. [PMID: 30326249 DOI: 10.1016/j.neures.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
Angiopoietin-1 (Ang1) and its receptor Tie2 regulate vascular function. Our previous study demonstrated that thymosin beta 4 (Tβ4) ameliorates neurological function of diabetic peripheral neuropathy. Mechanisms underlying the therapeutic effect of Tβ4 on diabetic peripheral neuropathy have not been fully investigated. The present in vivo study investigated whether the Ang1/Tie2 signaling pathway is involved in Tβ4-improved neurovascular remodeling in diabetic peripheral neuropathy. Diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice at age 20 weeks were treated with Tβ4 and neutralizing antibody against mouse Tie2 for 4 consecutive weeks. Neurological functional and neurovascular remodeling were measured. Administration of the neutralizing antibody against Tie2 attenuated the therapeutic effect of Tβ4 on improved diabetic peripheral neuropathy as measured by motor and sensory nerve conduction velocity and thermal hypoesthesia compared to diabetic db/db mice treated with Tβ4 only. Histopathological analysis revealed that the neutralizing antibody against Tie2 abolished Tβ4-increased microvascular density in sciatic nerve and intraepidermal nerve fiber density, which were associated with suppression of Tβ4-upregulated occludin expression and Tβ4-reduced protein levels of nuclear factor-κB (NF-κB) and vascular cell adhesion molecule-1 (VCAM1). Our data provide in vivo evidence that the Ang1/Tie2 pathway contributes to the therapeutic effect of Tβ4 on diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | | | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | - Talan Zhang
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | | |
Collapse
|
46
|
Fodor LE, Gézsi A, Gál Z, Nagy A, Kiss A, Bikov A, Szalai C. Variation in the TEK gene is not associated with asthma but with allergic conjunctivitis. Int J Immunogenet 2018; 45:102-108. [PMID: 29667338 DOI: 10.1111/iji.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
The Tie2 receptor is an important player in angiogenesis. The Tie2 mRNA and protein are abundantly expressed in the lungs and the associated pathway also has an important role in the development and function of the eye. Tie2 is encoded by the TEK gene in humans. Recently, variations in the TEK gene have been found associated with asthma. The objective of the present study was to investigate whether variations in the TEK gene influenced the susceptibility to pediatric asthma and/or associated phenotypes like GINA status, viral- or exercise-induced asthma, allergic asthma, indoor, outdoor, inhalative allergies, IgE and eosonophil levels, allergic rhinitis and allergic conjunctivitis. Three single nucleotide polymorphisms (SNPs, rs3780315, rs581724 and rs7876024) in the TEK gene were genotyped in 1189 unrelated individuals, out of which 435 were asthmatic children and 754 healthy controls. Different types of asthma, allergies and co-morbidities were defined in 320 patients. Among the fully phenotyped 320 asthmatic patients 178 (55.6%) also had allergic rhinitis and 100 (31.3%) had conjunctivitis. Among the rhinitis patients 98 (55.1%) also had conjunctivitis. Two patients had conjunctivitis without rhinitis. The genotyped SNPs showed no association with asthma. However, SNP rs581724 was significantly associated with allergic conjunctivitis in a recessive way (p=0.007; OR=2.3 (1.3-4.4)) within the asthmatic population. The risk remained significant when the whole population (asthmatics and healthy controls) was included in the calculation (p = 0.003; OR = 2.1 (1.3-3.6)). The minor allele of the rs581724 SNP which is associated with the increased risk to conjunctivitis is also associated with reduced Tie2 expression. There was a significant association between SNP rs581724 and the occurrence of allergic conjunctivitis in asthmatic children. If additional studies can confirm the role of the Tie2 pathway in allergic conjunctivitis, it can be a potential novel therapeutic target in the disease.
Collapse
Affiliation(s)
- L E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - A Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Z Gál
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - A Nagy
- Heim Pal Children Hospital, Budapest, Hungary
| | - A Kiss
- Heim Pal Children Hospital, Budapest, Hungary
| | - A Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - C Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heim Pal Children Hospital, Budapest, Hungary
| |
Collapse
|
47
|
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 2018; 135:311-336. [PMID: 29411111 PMCID: PMC6781630 DOI: 10.1007/s00401-018-1815-1] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/β-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB.
Collapse
Affiliation(s)
- Stefan Liebner
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Yvonne Reiss
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl H Plate
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
48
|
Khalaf N, Helmy H, Labib H, Fahmy I, El Hamid MA, Moemen L. Role of Angiopoietins and Tie-2 in Diabetic Retinopathy. Electron Physician 2017; 9:5031-5035. [PMID: 28979738 PMCID: PMC5614288 DOI: 10.19082/5031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the serum levels of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), soluble vascular endothelial tyrosine kinase receptor (Tie-2) and vascular endothelial growth factor (VEGF), in the serum of type 2 diabetic patients having non-proliferative (NPDR) or proliferative diabetic retinopathy (PDR). METHODS One hundred patients with type 2 diabetes mellitus were involved in this cross-sectional study. They were classified into 25 diabetic patients without retinopathy, 35 patients with NPDR and 40 PDR patients. The study was carried out in the outpatients clinic of the Research Institute of Ophthalmology, Giza, Egypt from August 2016 through May 2017. Serum VEGF, Ang-1, Ang-2 and Tie-2 receptor levels were assayed using enzyme linked immunosorbent assay (ELISA). Data were analyzed by SPSS version 20 and Microsoft Excel (Version 10) using ANOVA, Harman's single factor test, and Pearson's Product Moment Correlation. RESULTS The serum levels of Ang-2 and VEGF were significantly elevated in NPDR groups and PDR group compared to diabetics without retinopathy groups (p<0.001). The serum levels of Ang-1 were significantly higher in the NPDR group compared to the diabetics without retinopathy groups (p<0.01), while no significant difference was observed between the PDR and diabetics without retinopathy groups. Ang-1/Ang-2 ratio was the lowest in the PDR group compared to the NPDR and diabetics without retinopathy groups. The serum levels of Tie-2 were not significantly changed among the three studied groups, serum Ang-2 was positively correlated with VEGF and Tie-2 in the PDR and NPDR groups. CONCLUSION The angiopoietin/Tie system and VEGF are essential features in the commencement and development of PDR.
Collapse
Affiliation(s)
- Nervana Khalaf
- Clinical Pathology Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Hazem Helmy
- Ophthalmology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Hany Labib
- Ophthalmology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Iman Fahmy
- Ophthalmology Department, Research Institute of Ophthalmology, Giza, Egypt
| | - Mona Abd El Hamid
- Medical Biochemistry Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Leqaa Moemen
- Medical Biochemistry Unit, Research Institute of Ophthalmology, Giza, Egypt
| |
Collapse
|
49
|
Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep 2017; 7:9049. [PMID: 28831080 PMCID: PMC5567377 DOI: 10.1038/s41598-017-08982-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microvascular endothelial cell heterogeneity and its relationship to hemodynamics remains poorly understood due to a lack of sufficient methods to examine these parameters in vivo at high resolution throughout an angiogenic network. The availability of surrogate markers for functional vascular proteins, such as green fluorescent protein, enables expression in individual cells to be followed over time using confocal microscopy, while photoacoustic microscopy enables dynamic measurement of blood flow across the network with capillary-level resolution. We combined these two non-invasive imaging modalities in order to spatially and temporally analyze biochemical and biomechanical drivers of angiogenesis in murine corneal neovessels. By stimulating corneal angiogenesis with an alkali burn in Tie2-GFP fluorescent-reporter mice, we evaluated how onset of blood flow and surgically-altered blood flow affects Tie2-GFP expression. Our study establishes a novel platform for analyzing heterogeneous blood flow and fluorescent reporter protein expression across a dynamic microvascular network in an adult mammal.
Collapse
|
50
|
High levels of FLT3-ligand in bone marrow and peripheral blood of patients with advanced multiple myeloma. PLoS One 2017; 12:e0181487. [PMID: 28727816 PMCID: PMC5519162 DOI: 10.1371/journal.pone.0181487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/30/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Multiple myeloma (MM) is still incurable due to resistance against various therapies. Thus, the identification of biomarkers predicting progression is urgently needed. Here, we evaluated four biomarkers in bone marrow and peripheral blood of MM patients for their prognostic significance. Materials & methods Bone marrow- and peripheral blood plasma levels of FLT3-L, soluble TIE2, endostatin, and osteoactivin were determined in patients with monoclonal gammopathy of undetermined significance (MGUS, n = 14/n = 4), patients with newly diagnosed MM (NDMM, n = 42/n = 31) and patients with relapsed/refractory MM (RRMM, n = 27/n = 16) by sandwich ELISA. Results Median FLT3-L expression increased from MGUS (58.77 pg/ml in bone marrow; 80.40 pg/ml in peripheral blood) to NDMM (63.15 pg/ml in bone marrow; 85.05 pg/ml in peripheral blood) and was maximal in RRMM (122 pg/ml in bone marrow; 160.47 pg/ml in peripheral blood; NDMM vs. RRMM p<0.001). A cut-off value of FLT3-L >92 pg/ml in bone marrow and >121 pg/ml in peripheral blood was associated with relapse or refractoriness in MM patients. FLT3-L was found to be a high predictive marker for discrimination between NDMM and RRMM as well in bone marrow as in peripheral blood (AUC 0.75 in bone marrow; vs 0.84 in peripheral blood). Conclusion High levels of FLT3-L in bone marrow and peripheral blood of MM patients identify patients with progressive disease and are associated with relapse or refractoriness in MM patients. FLT3-L could be useful as a marker to identify RRMM patients and should be evaluated as target for future therapies.
Collapse
|