1
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
2
|
Liss KHH, Mousa M, Bucha S, Lutkewitte A, Allegood J, Cowart LA, Finck BN. Dynamic changes in the mouse hepatic lipidome following warm ischemia reperfusion injury. Sci Rep 2024; 14:3584. [PMID: 38351300 PMCID: PMC10864394 DOI: 10.1038/s41598-024-54122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Liver failure secondary to metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common cause for liver transplantation in many parts of the world. Moreover, the prevalence of MASLD not only increases the demand for liver transplantation, but also limits the supply of suitable donor organs because steatosis predisposes grafts to ischemia-reperfusion injury (IRI). There are currently no pharmacological interventions to limit hepatic IRI because the mechanisms by which steatosis leads to increased injury are unclear. To identify potential novel mediators of IRI, we used liquid chromatography and mass spectrometry to assess temporal changes in the hepatic lipidome in steatotic and non-steatotic livers after warm IRI in mice. Our untargeted analyses revealed distinct differences between the steatotic and non-steatotic response to IRI and highlighted dynamic changes in lipid composition with marked changes in glycerophospholipids. These findings enhance our knowledge of the lipidomic changes that occur following IRI and provide a foundation for future mechanistic studies. A better understanding of the mechanisms underlying such changes will lead to novel therapeutic strategies to combat IRI.
Collapse
Affiliation(s)
- Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Mousa
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shria Bucha
- Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Lutkewitte
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian N Finck
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int J Mol Sci 2023; 24:15473. [PMID: 37895151 PMCID: PMC10607514 DOI: 10.3390/ijms242015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease that affects more than a quarter of the global population and whose prevalence is increasing worldwide due to the pandemic of obesity. Obesity, impaired glucose metabolism, high blood pressure and atherogenic dyslipidemia are risk factors for MASLD. Therefore, insulin resistance may be closely associated with the development and progression of MASLD. Hepatic entry of increased fatty acids released from adipose tissue, increase in fatty acid synthesis and reduced fatty acid oxidation in the liver and hepatic overproduction of triglyceride-rich lipoproteins may induce the development of MASLD. Since insulin resistance also induces atherosclerosis, the leading cause for death in MASLD patients is cardiovascular disease. Considering that the development of cardiovascular diseases determines the prognosis of MASLD patients, the therapeutic interventions for MASLD should reduce body weight and improve coronary risk factors, in addition to an improving in liver function. Lifestyle modifications, such as improved diet and increased exercise, and surgical interventions, such as bariatric surgery and intragastric balloons, have shown to improve MASLD by reducing body weight. Sodium glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been shown to improve coronary risk factors and to suppress the occurrence of cardiovascular diseases. Both SGLT2i and GLP-1 have been reported to improve liver enzymes, hepatic steatosis and fibrosis. We recently reported that the selective peroxisome proliferator-activated receptor-alpha (PPARα) modulator pemafibrate improved liver function. PPARα agonists have multiple anti-atherogenic properties. Here, we consider the pathophysiology of MASLD and the mechanisms of action of such drugs and whether such drugs and the combination therapy of such drugs could be the treatments for MASLD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
4
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
5
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
6
|
Jiao J, Kwan SY, Sabotta CM, Tanaka H, Veillon L, Warmoes MO, Lorenzi PL, Wang Y, Wei P, Hawk ET, Almeda JL, McCormick JB, Fisher-Hoch SP, Beretta L. Circulating Fatty Acids Associated with Advanced Liver Fibrosis and Hepatocellular Carcinoma in South Texas Hispanics. Cancer Epidemiol Biomarkers Prev 2021; 30:1643-1651. [PMID: 34155064 PMCID: PMC8419070 DOI: 10.1158/1055-9965.epi-21-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 05/27/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Hispanics in South Texas have high rates of hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Liver fibrosis severity is the strongest predictive factor of NAFLD progression to HCC. We examined the association between free fatty acids (FA) and advanced liver fibrosis or HCC in this population. METHODS We quantified 45 FAs in plasma of 116 subjects of the Cameron County Hispanic Cohort, 15 Hispanics with HCC, and 56 first/second-degree relatives of Hispanics with HCC. Liver fibrosis was assessed by FibroScan. RESULTS Advanced liver fibrosis was significantly associated with low expression of very long chain (VLC) saturated FAs (SFA), odd chain SFAs, and VLC n-3 polyunsaturated FAs [PUFA; AOR; 95% confidence interval (CI), 10.4 (3.7-29.6); P < 0.001; 5.7 (2.2-15.2); P < 0.001; and 3.7 (1.5-9.3); P = 0.005]. VLC n3-PUFAs significantly improved the performance of the noninvasive markers for advanced fibrosis - APRI, FIB-4, and NFS. Plasma concentrations of VLC SFAs and VLC n-3 PUFAs were further reduced in patients with HCC. Low concentrations of these FAs were also observed in relatives of patients with HCC and in subjects with the PNPLA3 rs738409 homozygous genotype. CONCLUSIONS Low plasma concentrations of VLC n-3 PUFAs and VLC SFAs were strongly associated with advanced liver fibrosis and HCC in this population. Genetic factors were associated with low concentrations of these FAs as well. IMPACT These results have implications in identifying those at risk for liver fibrosis progression to HCC and in screening this population for advanced fibrosis. They also prompt the evaluation of VLC n-3 PUFA or VLC SFA supplementation to prevent cirrhosis and HCC.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caroline M Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Honami Tanaka
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucas Veillon
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marc O Warmoes
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose Luis Almeda
- Doctors Hospital at Renaissance and University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | - Joseph B McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas
| | - Susan P Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Liss KH, Ek SE, Lutkewitte AJ, Pietka TA, He M, Skaria P, Tycksen E, Ferguson D, Blanc V, Graham MJ, Hall AM, McGill MR, McCommis KS, Finck BN. Monoacylglycerol Acyltransferase 1 Knockdown Exacerbates Hepatic Ischemia/Reperfusion Injury in Mice With Hepatic Steatosis. Liver Transpl 2021; 27:116-133. [PMID: 32916011 PMCID: PMC7785593 DOI: 10.1002/lt.25886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.
Collapse
Affiliation(s)
- Kim H.H. Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Shelby E. Ek
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Priya Skaria
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Eric Tycksen
- Department of Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Angela M. Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
FABP4 and MMP9 levels identified as predictive factors for poor prognosis in patients with nonalcoholic fatty liver using data mining approaches and gene expression analysis. Sci Rep 2019; 9:19785. [PMID: 31874999 PMCID: PMC6930227 DOI: 10.1038/s41598-019-56235-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver (NAFLD) may progress to nonalcoholic steatohepatitis (NASH) and ultimately to cirrhosis and hepatocellular carcinoma (HCC). Prognostic markers for these conditions are poorly defined. The aim of this study was to identify predictive gene markers for the transition from NAFL to NASH and then to poorer conditions. Gene expression omnibus datasets associated with a prediction analysis algorithm were used to create a matrix composed of control subject (n = 52), healthy obese (n = 51), obese with NAFL (n = 42) and NASH patients (n = 37) and 19,085 genes in order to identify specific genes predictive of the transition from steatosis to NASH and from NASH to cirrhosis and HCC and thus patients at high risk of complications. A validation cohort was used to validate these results. We identified two genes, fatty acid binding protein-4 (FABP4) and matrix metalloproteinase-9 (MMP9), which respectively allowed distinguishing patients at risk of progression from NAFL to NASH and from NASH to cirrhosis and HCC. Thus, NAFL patients expressing high hepatic levels of FABP4 and NASH patients expressing high hepatic levels of MMP9 are likely to experience disease progression. Therefore, using FABP4 and MMP9 as blood markers could help to predict poor outcomes and/or progression of NAFL during clinical trial follow-up.
Collapse
|
9
|
Desterke C, Chiappini F. Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: A Canonical Pathway. Int J Mol Sci 2019; 20:ijms20225594. [PMID: 31717414 PMCID: PMC6888337 DOI: 10.3390/ijms20225594] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming a public health problem worldwide. While the number of research studies on NASH progression rises every year, sometime their findings are controversial. To identify the most important and commonly described findings related to NASH progression, we used an original bioinformatics, integrative, text-mining approach that combines PubMed database querying and available gene expression omnibus dataset. We have identified a signature of 25 genes that are commonly found to be dysregulated during steatosis progression to NASH and cancer. These genes are implicated in lipid metabolism, insulin resistance, inflammation, and cancer. They are functionally connected, forming the basis necessary for steatosis progression to NASH and further progression to hepatocellular carcinoma (HCC). We also show that five of the identified genes have genome alterations present in HCC patients. The patients with these genes associated to genome alteration are associated with a poor prognosis. In conclusion, using an integrative literature- and data-mining approach, we have identified and described a canonical pathway underlying progression of NASH. Other parameters (e.g., polymorphisms) can be added to this pathway that also contribute to the progression of the disease to cancer. This work improved our understanding of the molecular basis of NASH progression and will help to develop new therapeutic approaches.
Collapse
Affiliation(s)
| | - Franck Chiappini
- Laboratoire Croissance, Régénération, Réparation et Régénération Tissulaires (CRRET)/ EAC CNRS 7149, Univ Paris-Est Créteil (UPEC), F-94010 Créteil, France
- Correspondence: ; Tel.: +33-(0)1-45177080; Fax: +33-(0)1-45171816
| |
Collapse
|
10
|
Lee DH, Jung YY, Park MH, Jo MR, Han SB, Yoon DY, Roh YS, Hong JT. Peroxiredoxin 6 Confers Protection Against Nonalcoholic Fatty Liver Disease Through Maintaining Mitochondrial Function. Antioxid Redox Signal 2019; 31:387-402. [PMID: 31007045 DOI: 10.1089/ars.2018.7544] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aims: Nonalcoholic fatty liver disease (NAFLD) is accompanied by excessive reactive oxygen species (ROS) production, which has been suggested in several studies to link with mitochondrial function. However, the mechanistic role of ROS-mediated regulation of mitochondrial function in NAFLD has not been elucidated. Since peroxiredoxin 6 (PRDX6) is the only member of the antioxidant PRDX family that translocates to damaged mitochondria, we investigated the PRDX6-mediated antisteatotic mechanism using genetically modified mice and cells. Results: PRDX6 mice were more protective to lipid accumulation, liver injury, and insulin resistance after a high-fat diet. Mechanistically, PRDX6 is required for induction of mitochondrial antioxidant action and beta-oxidation through maintaining mitochondrial integrity and subsequently prevents ROS-induced lipogenesis. Interestingly, oxidative stress-induced Notch signaling was suppressed in PRDX6 mice compared with wild-type mice, and genetic and pharmacological inhibition of Notch signaling improved lipid accumulation. Finally, PRDX knockdown or Notch inhibition reduced induction of mitophagy. PRDX6 antagonizes positive feedback loop between lipid accumulation and ROS production through regulation of mitochondrial function. Innovation: For the first time, we demonstrate that PRDX6 maintains mitochondria integrity under oxidative stress and protects against NAFLD progression by inhibition of Notch signaling. Conclusion: This study describes a novel molecular mechanism underlying the antisteatotic activity of PRDX6, which may be a new therapeutic strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dong Hun Lee
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Yu Yeon Jung
- 2 Department of Dental Hygiene, Gwangyang Health Sciences University, Gwangyang, South Korea
| | - Mi Hee Park
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Mi Ran Jo
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Sang Bae Han
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Do Young Yoon
- 3 Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Yoon Seok Roh
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| | - Jin Tae Hong
- 1 College of Pharmacy and Medical Research Center, Department of Pharmacy Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
11
|
Chen X, Chan H, Zhang L, Liu X, Ho IHT, Zhang X, Ho J, Hu W, Tian Y, Kou S, Chan CS, Yu J, Wong SH, Gin T, Chan MTV, Sun X, Wu WKK. The phytochemical polydatin ameliorates non-alcoholic steatohepatitis by restoring lysosomal function and autophagic flux. J Cell Mol Med 2019; 23:4290-4300. [PMID: 30973211 PMCID: PMC6533566 DOI: 10.1111/jcmm.14320] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Impaired autophagic degradation of intracellular lipids is causally linked to the development of non‐alcoholic steatohepatitis (NASH). Pharmacological agents that can restore hepatic autophagic flux could therefore have therapeutic potentials for this increasingly prevalent disease. Herein, we investigated the effects of polydatin, a natural precursor of resveratrol, in a murine nutritional model of NASH and a cell line model of steatosis. Results showed that oral administration of polydatin protected against hepatic lipid accumulation and alleviated inflammation and hepatocyte damage in db/db mice fed methionine‐choline deficient diet. Polydatin also alleviated palmitic acid‐induced lipid accumulation in cultured hepatocytes. In both models, polydatin restored lysosomal function and autophagic flux that were impaired by NASH or steatosis. Mechanistically, polydatin inhibited mTOR signalling and up‐regulated the expression and activity of TFEB, a known master regulator of lysosomal function. In conclusion, polydatin ameliorated NASH through restoring autophagic flux. The polydatin‐regulated autophagy was associated with inhibition of mTOR pathway and restoration of lysosomal function by TFEB. Our study provided affirmative preclinical evidence to inform future clinical trials for examining the potential anti‐NASH effect of polydatin in humans.
Collapse
Affiliation(s)
- Xiaoting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiang Zhang
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Tian
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shanglong Kou
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chee Sam Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sunny H Wong
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R, Salinas F, Cox J, Uhlenhaut NH, Walther TC, Jungmann R, Zeigerer A, Borner GHH, Mann M. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Dev Cell 2018; 47:205-221.e7. [PMID: 30352176 DOI: 10.1016/j.devcel.2018.09.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023]
Abstract
Lipid metabolism is highly compartmentalized between cellular organelles that dynamically adapt their compositions and interactions in response to metabolic challenges. Here, we investigate how diet-induced hepatic lipid accumulation, observed in non-alcoholic fatty liver disease (NAFLD), affects protein localization, organelle organization, and protein phosphorylation in vivo. We develop a mass spectrometric workflow for protein and phosphopeptide correlation profiling to monitor levels and cellular distributions of ∼6,000 liver proteins and ∼16,000 phosphopeptides during development of steatosis. Several organelle contact site proteins are targeted to lipid droplets (LDs) in steatotic liver, tethering organelles orchestrating lipid metabolism. Proteins of the secretory pathway dramatically redistribute, including the mis-localization of the COPI complex and sequestration of the Golgi apparatus at LDs. This correlates with reduced hepatic protein secretion. Our systematic in vivo analysis of subcellular rearrangements and organelle-specific phosphorylation reveals how nutrient overload leads to organellar reorganization and cellular dysfunction.
Collapse
Affiliation(s)
- Natalie Krahmer
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Bahar Najafi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Florian Schueder
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Martin Steger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Robert Kasper
- Max Planck Institute of Neurobiology, Imaging facility, Martinsried 82152, Germany
| | - Favio Salinas
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nina Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Tobias Christian Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Georg Heinz Helmut Borner
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
13
|
Willmes DM, Kurzbach A, Henke C, Schumann T, Zahn G, Heifetz A, Jordan J, Helfand SL, Birkenfeld AL. The longevity gene INDY ( I 'm N ot D ead Y et) in metabolic control: Potential as pharmacological target. Pharmacol Ther 2018; 185:1-11. [DOI: 10.1016/j.pharmthera.2017.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis. Cell Rep 2018; 19:1794-1806. [PMID: 28564599 DOI: 10.1016/j.celrep.2017.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/31/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.
Collapse
|
15
|
Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:19-44. [PMID: 29956204 DOI: 10.1007/978-981-10-8684-7_3] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overnutrition, usually with obesity and genetic predisposition, lead to insulin resistance, which is an invariable accompaniment of nonalcoholic fatty liver disease (NAFLD). The associated metabolic abnormalities, pre- or established diabetes, hypertension and atherogenic dyslipidemia (clustered as metabolic syndrome) tend to be worse for nonalcoholic steatohepatitis (NASH), revealing it as part of a continuum of metabolic pathogenesis. The origins of hepatocellular injury and lobular inflammation which distinguish NASH from simple steatosis have intrigued investigators, but it is now widely accepted that NASH results from liver lipotoxicity. The key issue is not the quantity of liver fat but the type(s) of lipid molecules that accumulate, and how they are "packaged" to avoid subcellular injury. Possible lipotoxic mediators include free (unesterified) cholesterol, saturated free fatty acids, diacylglycerols, lysophosphatidyl-choline, sphingolipids and ceramide. Lipid droplets are intracellular storage organelles for non-structural lipid whose regulation is influenced by genetic polymorphisms, such as PNPLA3. Cells unable to sequester chemically reactive lipid molecules undergo mitochondrial injury, endoplasmic reticulum (ER) stress and autophagy, all processes of interest for NASH pathogenesis. Lipotoxicity kills hepatocytes by apoptosis, a highly regulated, non-inflammatory form of cell death, but also by necrosis, necroptosis and pyroptosis; the latter involve mitochondrial injury, oxidative stress, activation of c-Jun N-terminal kinase (JNK) and release of danger-associated molecular patterns (DAMPs). DAMPs stimulate innate immunity by binding pattern recognition receptors, such as Toll-like receptor 4 (TLR4) and the NOD-like receptor protein 3 (NLRP3) inflammasome, which release a cascade of pro-inflammatory chemokines and cytokines. Thus, lipotoxic hepatocellular injury attracts inflammatory cells, particularly activated macrophages which surround ballooned hepatocytes as crown-like structures. In both experimental and human NASH, livers contain cholesterol crystals which are a second signal for NLRP3 activation; this causes interleukin (IL)-1β and IL18 secretion to attract and activate macrophages and neutrophils. Injured hepatocytes also liberate plasma membrane-derived extracellular vesicles; these have been shown to circulate in NASH and to be pro-inflammatory. The way metabolic dysfunction leads to lipotoxicity, innate immune responses and the resultant pattern of cellular inflammation in the liver are likely also relevant to hepatic fibrogenesis and hepatocarcinogenesis. Pinpointing the key molecules involved pharmacologically should eventually lead to effective pharmacotherapy against NASH.
Collapse
Affiliation(s)
- Geoffrey C Farrell
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia.
| | - Fahrettin Haczeyni
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| | - Shivakumar Chitturi
- Australian National University Medical School, and Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, Australia
| |
Collapse
|
16
|
Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, Samuel D, Duclos-Vallée JC, Touboul D, Bertrand-Michel J, Brunelle A, Guettier C, Le Naour F. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep 2017; 7:46658. [PMID: 28436449 PMCID: PMC5402394 DOI: 10.1038/srep46658] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a condition which can progress to cirrhosis and hepatocellular carcinoma. Markers for NASH diagnosis are still lacking. We performed a comprehensive lipidomic analysis on human liver biopsies including normal liver, nonalcoholic fatty liver and NASH. Random forests-based machine learning approach allowed characterizing a signature of 32 lipids discriminating NASH with 100% sensitivity and specificity. Furthermore, we validated this signature in an independent group of NASH patients. Then, metabolism dysregulations were investigated in both patients and murine models. Alterations of elongase and desaturase activities were observed along the fatty acid synthesis pathway. The decreased activity of the desaturase FADS1 appeared as a bottleneck, leading upstream to an accumulation of fatty acids and downstream to a deficiency of long-chain fatty acids resulting to impaired phospholipid synthesis. In NASH, mass spectrometry imaging on tissue section revealed the spreading into the hepatic parenchyma of selectively accumulated fatty acids. Such lipids constituted a highly toxic mixture to human hepatocytes. In conclusion, this study characterized a specific and sensitive lipid signature of NASH and positioned FADS1 as a significant player in accumulating toxic lipids during NASH progression.
Collapse
Affiliation(s)
- Franck Chiappini
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France
| | - Audrey Coilly
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Hanane Kadar
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Philippe Gual
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Albert Tran
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Christophe Desterke
- Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| | - Didier Samuel
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Jean-Charles Duclos-Vallée
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | | | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital du Kremlin-Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| |
Collapse
|
17
|
Papazyan R, Sun Z, Kim YH, Titchenell PM, Hill DA, Lu W, Damle M, Wan M, Zhang Y, Briggs ER, Rabinowitz JD, Lazar MA. Physiological Suppression of Lipotoxic Liver Damage by Complementary Actions of HDAC3 and SCAP/SREBP. Cell Metab 2016; 24:863-874. [PMID: 27866836 PMCID: PMC5159233 DOI: 10.1016/j.cmet.2016.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Liver fat accumulation precedes non-alcoholic steatohepatitis, an increasing cause of end-stage liver disease. Histone deacetylase 3 (HDAC3) is required for hepatic triglyceride homeostasis, and sterol regulatory element binding protein (SREBP) regulates the lipogenic response to feeding, but the crosstalk between these pathways is unknown. Here we show that inactivation of SREBP by hepatic deletion of SREBP cleavage activating protein (SCAP) abrogates the increase in lipogenesis caused by loss of HDAC3, but fatty acid oxidation remains defective. This combination leads to accumulation of lipid intermediates and to an energy drain that collectively cause oxidative stress, inflammation, liver damage, and, ultimately, synthetic lethality. Remarkably, this phenotype is prevented by ectopic expression of nuclear SREBP1c, revealing a surprising benefit of de novo lipogenesis and triglyceride synthesis in preventing lipotoxicity. These results demonstrate that HDAC3 and SCAP control symbiotic pathways of liver lipid metabolism that are critical for suppression of lipotoxicity.
Collapse
Affiliation(s)
- Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Hoon Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Titchenell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Wan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika R Briggs
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Zera AJ, Clark R, Behmer S. Lipogenesis in a wing-polymorphic cricket: Canalization versus morph-specific plasticity as a function of nutritional heterogeneity. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:118-132. [PMID: 27686035 DOI: 10.1016/j.jinsphys.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP+-isocitrate dehydrogenase (NADP+-IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP+-IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner.
Collapse
Affiliation(s)
- Anthony J Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, United States.
| | - Rebecca Clark
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, United States
| | - Spence Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
19
|
Chiappini F, Desterke C, Bertrand-Michel J, Guettier C, Le Naour F. Hepatic and serum lipid signatures specific to nonalcoholic steatohepatitis in murine models. Sci Rep 2016; 6:31587. [PMID: 27510159 PMCID: PMC4980672 DOI: 10.1038/srep31587] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver (NAFL) is a precursor of nonalcoholic steatohepatitis (NASH), a condition that may progress to cirrhosis and hepatocellular carcinoma. Markers for diagnosis of NASH are still lacking. We have investigated lipid markers using mouse models that developed NAFL when fed with high fat diet (HFD) or NASH when fed using methionine choline deficient diet (MCDD). We have performed a comprehensive lipidomic analysis on liver tissues as well as on sera from mice fed HFD (n = 5), MCDD (n = 5) or normal diet as controls (n = 10). Machine learning approach based on prediction analysis of microarrays followed by random forests allowed identifying 21 lipids out of 149 in the liver and 14 lipids out of 155 in the serum discriminating mice fed MCDD from HFD or controls. In conclusion, the global approach implemented allowed characterizing lipid signatures specific to NASH in both liver and serum from animal models. This opens new avenue for investigating early and non-invasive lipid markers for diagnosis of NASH in human.
Collapse
Affiliation(s)
- Franck Chiappini
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France
| | - Christophe Desterke
- Univ Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| | | | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP Hôpital du Kremlin-Bicêtre, Service d'Anatomopathologie, Le Kremlin, F-94275, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| |
Collapse
|
20
|
Abstract
Excess and ectopic fat accumulation in obesity is a major risk factor for developing hyperlipidemia, type 2 diabetes and cardiovascular disease. The activation of brown and/or beige adipocytes is a promising target for the treatment of metabolic disorders as the combustion of excess energy by these thermogenic adipocytes may help losing weight and improving plasma parameters including triglyceride, cholesterol and glucose levels. The regulation of heat production by thermogenic adipose tissues is based on a complex crosstalk between the autonomous nervous system, intracellular and secreted factors. This multifaceted alignment regulates thermogenic demands to environmental circumstances in dependence on available energy resources. This review summarizes the current knowledge how thermogenic tissues can be targeted to combat the burden of diseases with a special focus on lipid metabolism and diseases related to lipoprotein metabolism.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
21
|
Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73:1969-87. [PMID: 26894897 PMCID: PMC11108381 DOI: 10.1007/s00018-016-2161-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease and a risk factor for cirrhosis and hepatocellular carcinoma. The pathological features of NASH include steatosis, hepatocyte injury, inflammation, and various degrees of fibrosis. Steatosis reflects disordered lipid metabolism. Insulin resistance and excessive fatty acid influx to the liver are two important contributing factors. Steatosis is also likely associated with lipotoxicity and cellular stresses such as oxidative stress and endoplasmic reticulum stress, which result in hepatocyte injury. Inflammation and fibrosis are frequently triggered by various signals such as proinflammatory cytokines and chemokines, released by injuried hepatocytes and activated Kupffer cells. Although much progress has been made, the pathogenesis of NASH is not fully elucidated. The purpose of this review is to discuss the current understanding of NASH pathogenesis, mainly focusing on factors contributing to steatosis, hepatocyte injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Tavleen Bhatia
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| |
Collapse
|
22
|
Machado MV, Michelotti GA, Pereira de Almeida T, Boursier J, Kruger L, Swiderska-Syn M, Karaca G, Xie G, Guy CD, Bohnic B, Lindblom KR, Johnson E, Kornbluth S, Diehl AM. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 2015; 64:1148-57. [PMID: 25053716 PMCID: PMC4303564 DOI: 10.1136/gutjnl-2014-307362] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Caspase-2 is an initiator caspase involved in multiple apoptotic pathways, particularly in response to specific intracellular stressors (eg, DNA damage, ER stress). We recently reported that caspase-2 was pivotal for the induction of cell death triggered by excessive intracellular accumulation of long-chain fatty acids, a response known as lipoapoptosis. The liver is particularly susceptible to lipid-induced damage, explaining the pandemic status of non-alcoholic fatty liver disease (NAFLD). Progression from NAFLD to non-alcoholic steatohepatitis (NASH) results, in part, from hepatocyte apoptosis and consequential paracrine-mediated fibrogenesis. We evaluated the hypothesis that caspase-2 promotes NASH-related cirrhosis. DESIGN Caspase-2 was localised in liver biopsies from patients with NASH. Its expression was evaluated in different mouse models of NASH, and outcomes of diet-induced NASH were compared in wild-type (WT) and caspase-2-deficient mice. Lipotoxicity was modelled in vitro using hepatocytes derived from WT and caspase-2-deficient mice. RESULTS We showed that caspase-2 is integral to the pathogenesis of NASH-related cirrhosis. Caspase-2 is localised in injured hepatocytes and its expression was markedly upregulated in patients and animal models of NASH. During lipotoxic stress, caspase-2 deficiency reduced apoptosis, inhibited induction of profibrogenic hedgehog target genes in mice and blocked production of hedgehog ligands in cultured hepatocytes. CONCLUSIONS These data point to a critical role for caspase-2 in lipid-induced hepatocyte apoptosis in vivo for the production of apoptosis-associated fibrogenic factors and in the progression of lipid-induced liver fibrosis. This raises the intriguing possibility that caspase-2 may be a promising therapeutic target to prevent progression to NASH.
Collapse
Affiliation(s)
- MV Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - GA Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - T Pereira de Almeida
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - J Boursier
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - L Kruger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - M Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - G Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - CD Guy
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - B Bohnic
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - KR Lindblom
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - E Johnson
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - S Kornbluth
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - AM Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, Martínez-Flórez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Campos S. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 2015; 59:879-93. [PMID: 25712622 DOI: 10.1002/mnfr.201400913] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Flavonoids and related compounds seem to have favorable effects on nonalcoholic fatty liver disease (NAFLD) progression, although the exact mechanisms implicated are poorly understood. In this study, we aimed to investigate the effect of the flanovol quercetin on gene expression deregulation involved in the development of NAFLD, as well as the possible implication of phosphatidylinositol 3-kinase (PI3K)/AKT pathway modulation. METHODS AND RESULTS We used an in vivo model based on methionine- and choline-deficient (MCD) diet-fed mice and an in vitro model consisting of Huh7 cells incubated with MCD medium. MCD-fed mice showed classical pathophysiological characteristics of nonalcoholic steatohepatitis, associated with altered transcriptional regulation of fatty acid uptake- and trafficking-related gene expression, with increased lipoperoxidation. PI3K/AKT pathway was activated by MCD and triggered gene deregulation causing either activation or inhibition of all studied genes as demonstrated through cell incubation with the PI3K-inhibitor LY294002. Treatment with quercetin reduced AKT phosphorylation, and oxidative/nitrosative stress, inflammation and lipid metabolism-related genes displayed a tendency to normalize in both in vivo and in vitro models. CONCLUSION These results place quercetin as a potential therapeutic strategy for preventing NAFLD progression by attenuating gene expression deregulation, at least in part through PI3K/AKT pathway inactivation.
Collapse
|
24
|
Zhang SR, Fan XM. Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:3214-3222. [PMID: 25805927 PMCID: PMC4363750 DOI: 10.3748/wjg.v21.i11.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently considered as the most common liver disease in Western countries, and is rapidly becoming a serious threat to public health worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. The ghrelin-ghrelin O-acyltransferase (GOAT) system has recently been found to play a crucial role in both the development of steatosis and its progression to nonalcoholic steatohepatitis. Ghrelin, the natural ligand of the growth hormone secretagogue receptor, is a 28-amino acid peptide possessing a unique acylation on the serine in position 3 catalyzed by GOAT. The ghrelin-GOAT system is involved in insulin resistance, lipid metabolism dysfunction, and inflammation, all of which play important roles in the pathogenesis of NAFLD. A better understanding of ghrelin-GOAT system biology led to the identification of its potential roles in NAFLD. Molecular targets modulating ghrelin-GOAT levels and the biologic effects are being studied, which provide a new insight into the pathogenesis of NAFLD. This review probes into the possible relationship between the ghrelin-GOAT system and NAFLD, and considers the potential mechanisms by which the ghrelin-GOAT system brings about insulin resistance and other aspects concerning NAFLD.
Collapse
|
25
|
P2X7 receptor as a key player in oxidative stress-driven cell fate in nonalcoholic steatohepatitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:172493. [PMID: 25815106 PMCID: PMC4359843 DOI: 10.1155/2015/172493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Incidences of nonalcoholic fatty liver disease parallels increase in the global obesity epidemic. NAFLD has been shown to be associated with risks of cardiometabolic disorders and kidney disturbances. It is accompanied by insulin and leptin resistance that complicate the diagnosis and treatment of this public health menace. Though significant research is underway for understanding the molecular mechanisms of NAFLD and its subsequent inflammatory and fibrotic manifestations like nonalcoholic steatohepatitis, the role of purinergic receptors has been unclear. It is increasingly being recognized that damage associated molecular patterns like NAD and ATP that are released from injured cells via hepatocellular injury either by oxidative stress or lipotoxicity from steatosis activate the purinergic receptor. Based on evidence from inflammatory responses in the airways and vasculature and autoimmune complications in humans and rodents, it is beyond doubt that hepatocellular inflammation such as that seen in NASH can result from the activation of purinergic receptors. This event can result in the formation of inflammasomes and can be an important pathway for the progression of NASH. The present review evaluates the current knowledge of the role of oxidative stress and its signaling via P2X7 receptors in hepatocellular injury that might contribute to the NASH pathophysiology.
Collapse
|
26
|
Abstract
Accumulation of triacylglycerols within the cytoplasm of hepatocytes to the degree that lipid droplets are visible microscopically is called liver steatosis. Most commonly, it occurs when there is an imbalance between the delivery or synthesis of fatty acids in the liver and their disposal through oxidative pathways or secretion into the blood as a component of triacylglycerols in very low density lipoprotein. This disorder is called nonalcoholic fatty liver disease (NAFLD) in the absence of alcoholic abuse and viral hepatitis, and it is often associated with insulin resistance, obesity and type 2 diabetes. Also, liver steatosis can be induced by many other causes including excessive alcohol consumption, infection with genotype 3 hepatitis C virus and certain medications. Whereas hepatic triacylglycerol accumulation was once considered the ultimate effector of hepatic lipotoxicity, triacylglycerols per se are quite inert and do not induce insulin resistance or cellular injury. Rather, lipotoxic injury in the liver appears to be mediated by the global ongoing fatty acid enrichment in the liver, paralleling the development of insulin resistance. A considerable number of fatty acid metabolites may be responsible for hepatic lipotoxicity and liver injury. Additional key contributors include hepatic cytosolic lipases and the "lipophagy" of lipid droplets, as sources of hepatic fatty acids. The specific origin of the lipids, mainly triacylglycerols, accumulating in liver has been unraveled by recent kinetic studies, and identifying the origin of the accumulated triacylglycerols in the liver of patients with NAFLD may direct the prevention and treatment of this condition.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
27
|
Fisher FM, Chui PC, Nasser IA, Popov Y, Cunniff JC, Lundasen T, Kharitonenkov A, Schuppan D, Flier JS, Maratos-Flier E. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014; 147:1073-83.e6. [PMID: 25083607 PMCID: PMC4570569 DOI: 10.1053/j.gastro.2014.07.044] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis. Circulating levels of fibroblast growth factor (FGF)21 increase in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis; therefore, we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency. METHODS C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on methionine- and choline-deficient (MCD), high-fat, or control diets for 8-16 weeks. Mice were weighed, and serum and liver tissues were collected and analyzed for histology, levels of malondialdehyde and liver enzymes, gene expression, and lipid content. RESULTS The MCD diet increased hepatic levels of FGF21 messenger RNA more than 50-fold and serum levels 16-fold, compared with the control diet. FGF21-KO mice had more severe steatosis, fibrosis, inflammation, and peroxidative damage than wild-type C57BL/6 mice. FGF21-KO mice had reduced hepatic fatty acid activation and β-oxidation, resulting in increased levels of free fatty acid. FGF21-KO mice given continuous subcutaneous infusions of FGF21 for 4 weeks while on an MCD diet had reduced steatosis and peroxidative damage, compared with mice not receiving FGF21. The expression of genes that regulate inflammation and fibrosis were reduced in FGF21-KO mice given FGF21, similar to those of wild-type mice. CONCLUSIONS FGF21 regulates fatty acid activation and oxidation in livers of mice. In the absence of FGF21, accumulation of inactivated fatty acids results in lipotoxic damage and increased steatosis.
Collapse
Affiliation(s)
- Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Patricia C Chui
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Imad A Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yury Popov
- Department of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeremy C Cunniff
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas Lundasen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Detlef Schuppan
- Department of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Institute of Molecular and Translational Medicine, Department of Medicine I, University of Mainz Medical School, Mainz, Germany
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
Liver fat, iron, and combined overload are common manifestations of diffuse liver disease and may cause lipotoxicity and iron toxicity via oxidative hepatocellular injury, leading to progressive fibrosis, cirrhosis, and eventually, liver failure. Intracellular fat and iron cause characteristic changes in the tissue magnetic properties in predictable dose-dependent manners. Using dedicated magnetic resonance pulse sequences and postprocessing algorithms, fat and iron can be objectively quantified on a continuous scale. In this article, we will describe the basic physical principles of magnetic resonance fat and iron quantification and review the imaging techniques of the "past, present, and future." Standardized radiological metrics of fat and iron are introduced for numerical reporting of overload severity, which can be used toward objective diagnosis, grading, and longitudinal disease monitoring. These noninvasive imaging techniques serve an alternative or complimentary role to invasive liver biopsy. Commercial solutions are increasingly available, and liver fat and iron quantitative imaging is now within reach for routine clinical use and may soon become standard of care.
Collapse
Affiliation(s)
- Takeshi Yokoo
- From the *Department of Radiology, †Advanced Imaging Research Center, and ‡Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
29
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
30
|
Pisonero-Vaquero S, García-Mediavilla MV, Jorquera F, Majano PL, Benet M, Jover R, González-Gallego J, Sánchez-Campos S. Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin. J Transl Med 2014; 94:262-74. [PMID: 24492281 DOI: 10.1038/labinvest.2013.156] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
There is experimental evidence that some antioxidant flavonoids show therapeutic potential in the treatment of hepatitis C through inhibition of hepatitis C virus (HCV) replication. We examined the effect of treatment with the flavonols quercetin and kaempferol, the flavanone taxifolin and the flavone apigenin on HCV replication efficiency in an in vitro model. While all flavonoids studied were able to reduce viral replication at very low concentrations (ranging from 0.1 to 5 μM), quercetin appeared to be the most effective inhibitor of HCV replication, showing a marked anti-HCV activity in replicon-containing cells when combined with interferon (IFN)α. The contribution of oxidative/nitrosative stress and lipogenesis modulation to inhibition of HCV replication by quercetin was also examined. As expected, quercetin decreased HCV-induced reactive oxygen and nitrogen species (ROS/RNS) generation and lipoperoxidation in replicating cells. Quercetin also inhibited liver X receptor (LXR)α-induced lipid accumulation in LXRα-overexpressing and replicon-containing Huh7 cells. The mechanism underlying the LXRα-dependent lipogenesis modulatory effect of quercetin in HCV-replicating cells seems to involve phosphatidylinositol 3-kinase (PI3K)/AKT pathway inactivation. Thus, inhibition of the PI3K pathway by LY294002 attenuated LXRα upregulation and HCV replication mediated by lipid accumulation, showing an additive effect when combined with quercetin. Inactivation of the PI3K pathway by quercetin may contribute to the repression of LXRα-dependent lipogenesis and to the inhibition of viral replication induced by the flavonol. Combined, our data suggest that oxidative/nitrosative stress blockage and subsequent modulation of PI3K-LXRα-mediated lipogenesis might contribute to the inhibitory effect of quercetin on HCV replication.
Collapse
Affiliation(s)
| | - María V García-Mediavilla
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Jorquera
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | - Pedro L Majano
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Molecular Biology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Marta Benet
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
| | - Ramiro Jover
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain [3] Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Javier González-Gallego
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Sánchez-Campos
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Alam S, Noor-E-Alam SM, Chowdhury ZR, Alam M, Kabir J. Nonalcoholic steatohepatitis in nonalcoholic fatty liver disease patients of Bangladesh. World J Hepatol 2013; 5:281-287. [PMID: 23717739 PMCID: PMC3664286 DOI: 10.4254/wjh.v5.i5.281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the prevalence and risk factors for nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD) patients.
METHODS: We have included 493 patients with sonographic evidence of a fatty change, and 177 of these individuals were evaluated and confirmed after liver biopsy. The exclusion criteria consisted of significant alcohol abuse (< 20 g daily), evidence of hepatitis B and C, evidence of drug-induced fatty liver disease and other specific liver diseases such as hemochromatosis, Wilson’s disease or autoimmune liver disease. The patients were assessed for metabolic syndrome, and biochemical, anthropometric and histopathological evaluations were carried out. The degree of disease activity in the NAFLD patients was evaluated using the NAFLD Activity Score. The data were analyzed by SPSS, version 16.0.
RESULTS: Females predominated among the study participants (250, 57.0%), and the mean age was 40.8 ± 10.2 years. The numbers of overweight, obese I and obese II patients were 58 (13.2%), 237 (53.9%) and 93 (21.2%), respectively. However, there were 422 (96.2%) centrally obese patients. NASH was absent in 10 (5.6%) cases, borderline in 92 (52.6%) cases and present in 75 (42.4%) cases. The presence of diabetes could significantly (P = 0.001) differentiate NASH from simple steatosis. The following parameters did not influence the development of NASH: age, sex, basal metabolic index, waist circumference, serum high-density lipoprotein, triglyceride, insulin resistance index, hypertension and metabolic syndrome. The serum gamma-glutamyl transpeptidase (GGT) level was significantly higher (P = 0.05, 51.7 ± 32.8 and 40.4 ± 22.6 U/L) in the NASH patients, with a sensitivity of 45% and a specificity of only 68%. The serum alanine aminotransferase and aspartate aminotransferase levels were not able to predict NASH.
CONCLUSION: Females were the predominant sufferers of NAFLD in Bangladesh. The prevalence of NASH was high. Diabetes was found to be the main culprit in developing NASH. GGT was the only biochemical marker of NASH. We recommend liver biopsy in NAFLD patients who have diabetes and elevated GGT.
Collapse
|
32
|
Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013; 5:1544-60. [PMID: 23666091 PMCID: PMC3708335 DOI: 10.3390/nu5051544] [Citation(s) in RCA: 576] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease is marked by hepatic fat accumulation not due to alcohol abuse. Several studies have demonstrated that NAFLD is associated with insulin resistance leading to a resistance in the antilipolytic effect of insulin in the adipose tissue with an increase of free fatty acids (FFAs). The increase of FFAs induces mitochondrial dysfunction and development of lipotoxicity. Moreover, in subjects with NAFLD, ectopic fat also accumulates as cardiac and pancreatic fat. In this review we analyzed the mechanisms that relate NAFLD with metabolic syndrome and dyslipidemia and its association with the development and progression of cardiovascular disease.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology National Research Council, Pisa 56100, Italy; E-Mails: (M.G.); (M.M.); (E.B.)
| | - Mariangela Morelli
- Institute of Clinical Physiology National Research Council, Pisa 56100, Italy; E-Mails: (M.G.); (M.M.); (E.B.)
| | - Emma Buzzigoli
- Institute of Clinical Physiology National Research Council, Pisa 56100, Italy; E-Mails: (M.G.); (M.M.); (E.B.)
| | - Ralph A. DeFronzo
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX 78229, USA; E-Mail:
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, San Giovanni Battista Hospital, University of Turin, Turin 10126, Italy; E-Mail:
| | - Amalia Gastaldelli
- Institute of Clinical Physiology National Research Council, Pisa 56100, Italy; E-Mails: (M.G.); (M.M.); (E.B.)
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX 78229, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-050-315-2680/79; Fax: +39-050-315-2166
| |
Collapse
|
33
|
Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocr Rev 2013; 34:84-129. [PMID: 23238855 DOI: 10.1210/er.2012-1009] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent data increasingly support a complex interplay between the metabolic condition diabetes mellitus and the pathologically defined nonalcoholic fatty liver disease (NAFLD). NAFLD predicts the development of type 2 diabetes and vice versa, and each condition may serve as a progression factor for the other. Although the association of diabetes and NAFLD is likely to be partly the result of a "common soil," it is also probable that diabetes interacts with NAFLD through specific pathogenic mechanisms. In particular, through interrelated metabolic pathways currently only partly understood, diabetes appears to accelerate the progression of NAFLD to nonalcoholic steatohepatitis, defined by the presence of necroinflammation, with varying degrees of liver fibrosis. In the research setting, obstacles that have made the identification of clinically significant NAFLD, and particularly nonalcoholic steatohepatitis, difficult are being addressed with the use of new imaging techniques combined with risk algorithms derived from peripheral blood profiling. These techniques are likely to be used in the diabetes population in the near future. This review examines the pathogenic links between NAFLD and diabetes by exploring the epidemiological evidence in humans and also through newer animal models. Emerging technology to help screen noninvasively for differing pathological forms of NAFLD and the potential role of preventive and therapeutic approaches for NAFLD in the setting of diabetes are also examined.
Collapse
Affiliation(s)
- K H Williams
- Sydney Medical School and the Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
34
|
Musselman LP, Fink JL, Ramachandran PV, Patterson BW, Okunade AL, Maier E, Brent MR, Turk J, Baranski TJ. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J Biol Chem 2013; 288:8028-8042. [PMID: 23355467 DOI: 10.1074/jbc.m112.371047] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Drosophila fat body is a liver- and adipose-like tissue that stores fat and serves as a detoxifying and immune responsive organ. We have previously shown that a high sugar diet leads to elevated hemolymph glucose and systemic insulin resistance in developing larvae and adults. Here, we used stable isotope tracer feeding to demonstrate that rearing larvae on high sugar diets impaired the synthesis of esterified fatty acids from dietary glucose. Fat body lipid profiling revealed changes in both carbon chain length and degree of unsaturation of fatty acid substituents, particularly in stored triglycerides. We tested the role of the fat body in larval tolerance of caloric excess. Our experiments demonstrated that lipogenesis was necessary for animals to tolerate high sugar feeding as tissue-specific loss of orthologs of carbohydrate response element-binding protein or stearoyl-CoA desaturase 1 resulted in lethality on high sugar diets. By contrast, increasing the fat content of the fat body by knockdown of king-tubby was associated with reduced hyperglycemia and improved growth and tolerance of high sugar diets. Our work supports a critical role for the fat body and the Drosophila carbohydrate response element-binding protein ortholog in metabolic homeostasis in Drosophila.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jill L Fink
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Prasanna Venkatesh Ramachandran
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bruce W Patterson
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Adewole L Okunade
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ezekiel Maier
- Department of Computer Science and Center for Genome Sciences and Systems Biology, Washington University, St. Louis, Missouri 63130
| | - Michael R Brent
- Department of Computer Science and Center for Genome Sciences and Systems Biology, Washington University, St. Louis, Missouri 63130
| | - John Turk
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
35
|
Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122:2176-94. [PMID: 22546860 DOI: 10.1172/jci41636] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/15/2012] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
Collapse
|
36
|
Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 2012; 6:149-71. [PMID: 22570745 PMCID: PMC3343154 DOI: 10.5009/gnl.2012.6.2.149] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022] Open
Abstract
While non-alcoholic fatty liver disease (NAFLD) is highly prevalent (15% to 45%) in modern societies, only 10% to 25% of cases develop hepatic fibrosis leading to cirrhosis, end-stage liver disease or hepatocellular carcinoma. Apart from pre-existing fibrosis, the strongest predictor of fibrotic progression in NAFLD is steatohepatitis or non-alcoholic steatohepatitis (NASH). The critical features other than steatosis are hepatocellular degeneration (ballooning, Mallory hyaline) and mixed inflammatory cell infiltration. While much is understood about the relationship of steatosis to metabolic factors (over-nutrition, insulin resistance, hyperglycemia, metabolic syndrome, hypoadiponectinemia), less is known about inflammatory recruitment, despite its importance for the perpetuation of liver injury and fibrogenesis. In this review, we present evidence that liver inflammation has prognostic significance in NAFLD. We then consider the origins and components of liver inflammation in NASH. Hepatocytes injured by toxic lipid molecules (lipotoxicity) play a central role in the recruitment of innate immunity involving Toll-like receptors (TLRs), Kupffer cells (KCs), lymphocytes and neutrophils and possibly inflammasome. The key pro-inflammatory signaling pathways in NASH are nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK). The downstream effectors include adhesion molecules, chemokines, cytokines and the activation of cell death pathways leading to apoptosis. The upstream activators of NF-κB and JNK are more contentious and may depend on the experimental model used. TLRs are strong contenders. It remains possible that inflammation in NASH originates outside the liver and in the gut microbiota that prime KC/TLR responses, inflamed adipose tissue and circulating inflammatory cells. We briefly review these mechanistic considerations and project their implications for the effective treatment of NASH.
Collapse
Affiliation(s)
- Geoffrey C. Farrell
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Australian National University Medical School, Garran, Australia
| | - Derrick van Rooyen
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Australian National University Medical School, Garran, Australia
| | - Lay Gan
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Australian National University Medical School, Garran, Australia
| | - Shivrakumar Chitturi
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Australian National University Medical School, Garran, Australia
| |
Collapse
|
37
|
Plasma free myristic acid proportion is a predictor of nonalcoholic steatohepatitis. Dig Dis Sci 2011; 56:3045-52. [PMID: 21516322 DOI: 10.1007/s10620-011-1712-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/05/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS Serum free fatty acid (FFA) composition and abnormal fatty acid metabolism have been implicated in the pathogenesis of nonalcoholic steatohepatitis (NASH). Therefore, we determined if the serum FFA composition can provide accurate diagnosis of NASH. METHODS We compared fasting serum FFA compositions in 20 patients with simple steatosis to those in 77 patients with NASH, including 65 patients with early-stage NASH. RESULTS By univariate analysis, the proportions of serum free myristic acid (P = 0.002) and palmitoleic acid (P = 0.033) and the stearoyl CoA desaturase (SCD)-1 index (P = 0.047) were significantly elevated in NASH patients in comparison to patients with simple steatosis. Only the serum free myristic acid proportion was significantly elevated in the early-stage NASH group in comparison to the simple steatosis group (P = 0.003). Multiple logistic regression analysis demonstrated that the serum free myristic acid proportion was significantly elevated in all patients with NASH (P = 0.011) and the subset of patients with early-stage NASH (P = 0.012) in comparison to those with simple steatosis. The area under the curve (AUC) for the serum free myristic acid proportion was 0.734 to detect NASH and 0.719 to detect early-stage NASH in comparison to simple steatosis. CONCLUSIONS Serum free myristic acid proportion could be a useful independent predictor to differentiate NASH from simple steatosis.
Collapse
|
38
|
Abstract
The rationale for specific pharmacologic therapy in nonalcoholic steatohepatitis (NASH) is determined by the potential for disease progression and the difficulties, in many patients, of successfully implementing diet and lifestyle changes over the long term. Owing to their ability to correct insulin resistance, insulin-sensitizing agents are attractive candidates for the treatment of NASH. In this review we provide an insight into the mechanism of action, therapeutic efficacy and safety issues regarding the use of glitazones in NASH.
Collapse
Affiliation(s)
- Raluca Pais
- Université Pierre et Marie Curie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| | - Ioana Moraru
- Université Pierre et Marie Curie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| | - Vlad Ratziu
- Université Pierre et Marie Curie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
39
|
Ratziu V, Pienar L. Pharmacological therapy for non-alcoholic steatohepatitis: How efficient are thiazolidinediones? Hepatol Res 2011; 41:687-95. [PMID: 21711428 DOI: 10.1111/j.1872-034x.2011.00825.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although diet and lifestyle changes are the first-line therapy in patients with non-alcoholic steatohepatitis (NASH), few patients are able to successfully implement these measures over the long run while others have an advanced disease requiring specific pharmacological therapy. Because insulin resistance is the underlying condition favoring the occurrence of NASH, insulin sensitizers have been tested in this condition although available trials are heterogenous in terms of choice of the drug, dosage, length of therapy and patient profile. Overall, thiazolidinediones reduce aminotransferase levels and induce a strong anti-steatogenic response. Most studies have shown an improvement in inflammation and liver cell injury while none have convincingly demonstrated an effect on fibrosis regression. The optimal duration of therapy is unknown as prolonged therapy does not seem to induce additional histological benefit. Although some tolerance issues and safety concerns, in particular cardiovascular, have been raised, thiazolidinediones are the class of drugs with the largest body of evidence in the treatment of NASH so far and can be successfully used in some patients with this disease.
Collapse
Affiliation(s)
- Vlad Ratziu
- Université Pierre et Marie Curie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| | | |
Collapse
|
40
|
Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011; 54:133-44. [PMID: 21488066 PMCID: PMC4158408 DOI: 10.1002/hep.24341] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The pathogenesis of nonalcoholic steatohepatitis (NASH) and inflammasome activation involves sequential hits. The inflammasome, which cleaves pro-interleukin-1β (pro-IL-1β) into secreted IL-1β, is induced by endogenous and exogenous danger signals. Lipopolysaccharide (LPS), a toll-like receptor 4 ligand, plays a role in NASH and also activates the inflammasome. In this study, we hypothesized that the inflammasome is activated in NASH by multiple hits involving endogenous and exogenous danger signals. Using mouse models of methionine choline-deficient (MCD) diet-induced NASH and high-fat diet-induced NASH, we found up-regulation of the inflammasome [including NACHT, LRR, and PYD domains-containing protein 3 (NALP3; cryopyrin), apoptosis-associated speck-like CARD-domain containing protein, pannexin-1, and pro-caspase-1] at the messenger RNA (mRNA) level increased caspase-1 activity, and mature IL-1β protein levels in mice with steatohepatitis in comparison with control livers. There was no inflammasome activation in mice with only steatosis. The MCD diet sensitized mice to LPS-induced increases in NALP3, pannexin-1, IL-1β mRNA, and mature IL-1β protein levels in the liver. We demonstrate for the first time that inflammasome activation occurs in isolated hepatocytes in steatohepatitis. Our novel data show that the saturated fatty acid (FA) palmitic acid (PA) activates the inflammasome and induces sensitization to LPS-induced IL-1β release in hepatocytes. Furthermore, PA triggers the release of danger signals from hepatocytes in a caspase-dependent manner. These hepatocyte-derived danger signals, in turn, activate inflammasome, IL-1β, and tumor necrosis factor α release in liver mononuclear cells. CONCLUSION Our novel findings indicate that saturated FAs represent an endogenous danger in the form of a first hit, up-regulate the inflammasome in NASH, and induce sensitization to a second hit with LPS for IL-β release in hepatocytes. Furthermore, hepatocytes exposed to saturated FAs release danger signals that trigger inflammasome activation in immune cells. Thus, hepatocytes play a key role in orchestrating tissue responses to danger signals in NASH.
Collapse
Affiliation(s)
- Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
41
|
Zimmermann A, Zimmermann T, Schattenberg J, Pöttgen S, Lotz J, Rossmann H, Roeddiger R, Biesterfeld S, Geiss HC, Schuchmann M, Galle PR, Weber MM. Alterations in lipid, carbohydrate and iron metabolism in patients with non-alcoholic steatohepatitis (NASH) and metabolic syndrome. Eur J Intern Med 2011; 22:305-10. [PMID: 21570653 DOI: 10.1016/j.ejim.2011.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/17/2010] [Accepted: 01/14/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND NASH (non-alcoholic steatohepatitis) is considered the hepatic manifestation of the metabolic syndrome (MS). We aimed to analyze lipid, carbohydrate, and iron metabolism in NASH. PATIENTS, METHODS 37 patients with MS (17 M/20 F, 51+/-15 years), elevated transaminases; 25 patients had histologically proven NASH (NAS score≥5), 12 patients had toxic background (nonNASH). 37 age, sex, BMI-matched healthy controls. Lipid variables, LDL-subfractions, iron, ferritin, transferrin (T), transferrin saturation (TS), and hepcidin (H) were measured in patients/controls. Oral glucose tolerance tests were performed. RESULTS NASH patients with steatosis gr. 2 and 3 (>33% hepatic fat) had higher sd-LDL (mg/dl) concentrations than patients with steatosis gr. 1 (<33%) (p=0.002), nonNASH patients (p=0.03) and controls (p=0.001). Sd absolute (mg/dl) correlated directly with the steatosis grade only in patients with NASH and steatosis >33% (p=0.04). NASH-patients showed higher insulin, C-peptide and IRI values than nonNASH patients (p=0.034; 0.032; 0.04). H was increased in patients versus controls (p<0.001). H correlated with ferritin in MS-patients (p=0.01), correlated directly with sd-LDL (mg/dl) (p=0.017) and IRI (p<0.001) and indirectly with HDL (p=0.05) in NASH. No associations between hepatic inflammation/iron content on liver biopsy and variables of lipid metabolism were found but hepcidin correlated with hepatic inflammation in all patients and with NAS scores in NASH. CONCLUSIONS NASH-patients show insulin resistance and increased sd-LDL subfractions, suggesting an atherogenic profile. The correlation of H with sd-LDL and IRI, without relation to hepatic iron content suggests a putative link between inflammation, carbohydrate and lipid metabolism in NASH.
Collapse
Affiliation(s)
- Anca Zimmermann
- 1st Medical Clinic, Dept. of Endocrinology and Metabolic Diseases, Johannes Gutenberg University of Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Van Rooyen DM, Farrell GC. SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol 2011; 26:789-92. [PMID: 21488942 DOI: 10.1111/j.1440-1746.2011.06704.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved cell signaling pathway that is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed from increased client protein load or the accumulation of unfolded or malfolded proteins. Once activated, this signaling pathway can either result in the recovery of homeostasis or can activate a cascade of events that ultimately result in cell death. The UPR/endoplasmic reticulum (ER) stress response spectrum and its interplay with other cellular organelles play an important role in the pathogenesis of disease in secretory cells rich in ER, such as hepatocytes. Over the past 2 decades, the contribution of ER stress to various forms of liver diseases has been examined. Robust support for a contributing, as opposed to a secondary role, for ER stress response is seen in the nonalcoholic steatohepatitis, alcoholic liver disease, ischemia/reperfusion injury, and cholestatic models of liver disease. The exact direction of the cause and effect relationship between modes of cell injury and ER stress remains elusive. It is apparent that a complex interplay exists between ER stress response, conditions that promote it, and those that result from it. A vicious cycle in which ER stress promotes inflammation, cell injury, and steatosis and in which steatogenesis, inflammation, and cell injury aggravate ER stress seems to be at play. It is perhaps the nature of such a vicious cycle that is the key pathophysiologic concept. Therapeutic approaches aimed at interrupting the cycle may dampen the stress response and the ensuing injury.
Collapse
Affiliation(s)
- Lily Dara
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA, USA.
| | | | | |
Collapse
|
44
|
Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T, Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C, Sánchez-Campos S. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond) 2011; 120:239-50. [PMID: 20929443 DOI: 10.1042/cs20100387] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is one of the most frequent chronic liver diseases worldwide. The metabolic factors associated with NAFLD are also determinants of liver disease progression in chronic HCV (hepatitis C virus) infection. It has been reported that, besides inducing hepatic fatty acid biosynthesis, LXR (liver X receptor) regulates a set of inflammatory genes. We aimed to evaluate the hepatic expression of LXRα and its lipogenic and inflammatory targets in 43 patients with NAFLD, 44 with chronic HCV infection and in 22 with histologically normal liver. Real-time PCR and Western blot analysis were used to determine hepatic expression levels of LXRα and related lipogenic and inflammatory mediators in the study population. We found that the LXRα gene and its lipogenic targets PPAR-γ (peroxisome-proliferator-activated receptor-γ), SREBP (sterol-regulatory-element-binding protein)-1c, SREBP-2 and FAS (fatty acid synthase) were overexpressed in the liver of NAFLD and HCV patients who had steatosis. Moreover, up-regulation of inflammatory genes, such as TNF (tumour necrosis factor)-α, IL (interleukin)-6, OPN (osteopontin), iNOS (inducible NO synthase), COX (cyclo-oxygenase)-2 and SOCS (suppressors of cytokine signalling)-3, was observed in NAFLD and HCV patients. Interestingly, TNF-α, IL-6 and osteopontin gene expression was lower in patients with steatohepatitis than in those with steatosis. In conclusion, hepatic expression of LXRα and its related lipogenic and inflammatory genes is abnormally increased in NAFLD and HCV patients with steatosis, suggesting a potential role of LXRα in the pathogenesis of hepatic steatosis in these chronic liver diseases.
Collapse
|
45
|
Amacher DE. Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies. Toxicology 2010; 279:10-8. [PMID: 20974209 DOI: 10.1016/j.tox.2010.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/21/2010] [Accepted: 10/18/2010] [Indexed: 12/14/2022]
Abstract
Hepatic steatosis is characterized by the accumulation of lipid droplets in the liver. Although relatively benign, simple steatosis can eventually lead to the development of steatohepatitis, a more serious condition characterized by fibrosis, cirrhosis, and eventual liver failure if the underlying cause is not eliminated. According to the "two hit" theory of steatohepatitis, the initial hit involves fat accumulation in the liver, and a second hit leads to inflammation and subsequent tissue injury. Because some xenobiotics target liver fatty acid metabolism, especially mitochondrial β-oxidation, it is important to avoid potential drug candidates that can contribute to either the initiation of liver steatosis or progression to the more injurious steatohepatitis. The gold standard for the detection of these types of hepatic effects is histopathological examination of liver tissue. In animal studies, these examinations are slow, restricted to a single sampling time, and limited tissue sections. Recent literature suggests that rapid in vitro screening methods can be used early in the drug R&D process to identify compounds with steatotic potential. Further, progress in the identification of potential serum or plasma protein biomarkers for these liver changes may provide additional in vivo tools to the preclinical study toxicologist. This review summarizes recent developments for in vitro screening and in vivo biomarker detection for steatotic drug candidates.
Collapse
Affiliation(s)
- David E Amacher
- Sciadvisor Toxicology Consulting, P.O. Box 254, Hadlyme, CT 06439, USA.
| |
Collapse
|
46
|
|