1
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
2
|
Kang Z, Wu Y, Ding Y, Zhang Y, Cai X, Yang H, Wei J. Investigation of the efficacy of Dengzhan Shengmai capsule against heart failure with preserved ejection fraction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118419. [PMID: 38838924 DOI: 10.1016/j.jep.2024.118419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heart failure with preserved ejection fraction (HFpEF) has emerged as a condition with high incidence and mortality rates in recent years. Dengzhan Shengmai capsule (DZSMC) is a Chinese patent medicine based on the classic recipe "Shengmai powder". The relevant Chinese medicine ratio of Erigeron breviscapus (Vaniot) Hand.-Mazz., Panax ginseng C.A.Mey., Schisandra chinensis (Turcz.) Baill., and Ophiopogon japonicus (Thunb.) Ker Gawl. Is 30 : 6: 6 : 11. Traditional Chinese medicine (TCM) is being increasingly explored as a safe and effective treatment modality for HFpEF. Clinical studies have shown that DZSMCs can effectively treat heart failure, however, the mechanism of action of DZSMCs in the treatment of HFpEF are still not clear. AIM OF THE STUDY To investigate the efficacy and underlying mechanisms of Dengzhan Shengmai capsule (DZSMC), in the treatment of HFpEF by focusing on its ability to treat microvascular inflammation. MATERIALS AND METHODS First, the efficacy of DZSMCs against HFpEF was predicted by network pharmacology. After 3 days of adaptive feeding in SPF-grade polypropylene cages, the mice in the Model group, DZSMC group, and Captopli group underwent single kidney resection, and micropumps were implanted in their backs for continuous infusion of aldosterone at a rate of 0.3 μg/h for 4 weeks. Moreover, the mice were given DZSMCs or Captopli via oral gavage for four weeks. Overall, cardiac function was evaluated in mice, and cardiac ultrasound and blood biochemical indices were evaluated in HFpEF mice. RESULTS DZSMCs can ameliorate myocardial hypertrophy and cardiomyocyte damage caused by excessive myocardial stress, ultimately mitigating long-term cardiac impairment; it aids in the restoration of myocardial fibre proliferation and enhances mitochondrial morphology and function. In a murine model of ventricular hypertrophy and left ventricular dysfunction, which are indicative of cardiac insufficiency, the administration of DZSMCs resulted in notable improvements. Echocardiographic and overall assessments of cardiac function revealed a reduction in cardiac dysfunction and ventricular hypertrophy post-DZSMC intervention. Moreover, intervention with DZSMCs led to a reduction in the serum levels of several markers associated with chronic systemic inflammation, such as sST2, IL1RL1, CRP, and IL-6. Simultaneously, the levels of indicators of microvascular inflammation, including VCAM and E-SELECTIN, also decreased following DZSMC intervention. These findings suggest the potential multifaceted impact of DZSMCs in alleviating cardiac abnormalities, mitigating systemic inflammation, and reducing microvascular inflammatory markers, highlighting their promising therapeutic role in managing myocardial health. CONCLUSIONS These results provide novel evidence that DZSMCs improve HFpEF by regulating microvascular inflammation.
Collapse
Affiliation(s)
- Ziyi Kang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yue Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yurong Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyang Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Eaton DM, Lee BW, Caporizzo MA, Iyengar A, Chen CY, Uchida K, Marcellin G, Lannay Y, Vite A, Bedi KC, Brady CF, Smolyak JN, Meldrum D, Dominic J, Weingarten N, Patel M, Belec A, Hached K, Atluri P, Van Der Laan S, Prosser BL, Margulies KB. Vasohibin inhibition improves myocardial relaxation in a rat model of heart failure with preserved ejection fraction. Sci Transl Med 2024; 16:eadm8842. [PMID: 39018366 DOI: 10.1126/scitranslmed.adm8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo. Compared with ZSF1 lean and Wistar Kyoto rats, obese rats exhibited increased tubulin detyrosination concomitant with diastolic dysfunction, left atrial enlargement, and cardiac hypertrophy with a preserved left ventricle ejection fraction, consistent with an HFpEF phenotype. Ex vivo myocardial phenotyping assessed cardiomyocyte mechanics and contractility. Vasohibin inhibitor treatment of isolated cardiomyocytes from obese rats resulted in reduced stiffness and faster relaxation. Acute in vivo treatment with vasohibin inhibitor improved diastolic relaxation in ZSF1 obese rats compared with ZSF1 lean and Wistar Kyoto rats. Vasohibin inhibition also improved relaxation in isolated human cardiomyocytes from both failing and nonfailing hearts. Our data suggest the therapeutic potential for vasohibin inhibition to reduce myocardial stiffness and improve relaxation in HFpEF.
Collapse
Affiliation(s)
- Deborah M Eaton
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin W Lee
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew A Caporizzo
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Molecular Physiology and Biophysics, University of Vermont's Larner College of Medicine, Burlington, VT 05405, USA
| | - Amit Iyengar
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Y Chen
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keita Uchida
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Alexia Vite
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire F Brady
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia N Smolyak
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danika Meldrum
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Dominic
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Weingarten
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mrinal Patel
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Belec
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pavan Atluri
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Benjamin L Prosser
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lu Y, Li Y, Xie Y, Bu J, Yuan R, Zhang X. Exploring Sirtuins: New Frontiers in Managing Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:7740. [PMID: 39062982 PMCID: PMC11277469 DOI: 10.3390/ijms25147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
With increasing research, the sirtuin (SIRT) protein family has become increasingly understood. Studies have demonstrated that SIRTs can aid in metabolism and affect various physiological processes, such as atherosclerosis, heart failure (HF), hypertension, type 2 diabetes, and other related disorders. Although the pathogenesis of HF with preserved ejection fraction (HFpEF) has not yet been clarified, SIRTs have a role in its development. Therefore, SIRTs may offer a fresh approach to the diagnosis, treatment, and prevention of HFpEF as a novel therapeutic intervention target.
Collapse
Affiliation(s)
- Ying Lu
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Yixin Xie
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Jiale Bu
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Ruowen Yuan
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| |
Collapse
|
5
|
Li Y, Lou N, Liu X, Zhuang X, Chen S. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction. Biomed Pharmacother 2024; 175:116755. [PMID: 38772155 DOI: 10.1016/j.biopha.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic β-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic β-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.
Collapse
Affiliation(s)
- Yilin Li
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nenngjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
6
|
Waddingham MT, Sequeira V, Kuster DWD, Dal Canto E, Handoko ML, de Man FS, da Silva Gonçalves Bós D, Ottenheijm CA, Shen S, van der Pijl RJ, van der Velden J, Paulus WJ, Eringa EC. Geranylgeranylacetone reduces cardiomyocyte stiffness and attenuates diastolic dysfunction in a rat model of cardiometabolic syndrome. Physiol Rep 2023; 11:e15788. [PMID: 37985159 PMCID: PMC10659935 DOI: 10.14814/phy2.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 11/22/2023] Open
Abstract
Titin-dependent stiffening of cardiomyocytes is a significant contributor to left ventricular (LV) diastolic dysfunction in heart failure with preserved LV ejection fraction (HFpEF). Small heat shock proteins (HSPs), such as HSPB5 and HSPB1, protect titin and administration of HSPB5 in vitro lowers cardiomyocyte stiffness in pressure-overload hypertrophy. In humans, oral treatment with geranylgeranylacetone (GGA) increases myocardial HSP expression, but the functional implications are unknown. Our objective was to investigate whether oral GGA treatment lowers cardiomyocyte stiffness and attenuates LV diastolic dysfunction in a rat model of the cardiometabolic syndrome. Twenty-one-week-old male lean (n = 10) and obese (n = 20) ZSF1 rats were studied, and obese rats were randomized to receive GGA (200 mg/kg/day) or vehicle by oral gavage for 4 weeks. Echocardiography and cardiac catheterization were performed before sacrifice at 25 weeks of age. Titin-based stiffness (Fpassive ) was determined by force measurements in relaxing solution with 100 nM [Ca2+ ] in permeabilized cardiomyocytes at sarcomere lengths (SL) ranging from 1.8 to 2.4 μm. In obese ZSF1 rats, GGA reduced isovolumic relaxation time of the LV without affecting blood pressure, EF or LV weight. In cardiomyocytes, GGA increased myofilament-bound HSPB5 and HSPB1 expression. Vehicle-treated obese rats exhibited higher cardiomyocyte stiffness at all SLs compared to lean rats, while GGA reduced stiffness at SL 2.0 μm. In obese ZSF1 rats, oral GGA treatment improves cardiomyocyte stiffness by increasing myofilament-bound HSPB1 and HSPB5. GGA could represent a potential novel therapy for the early stage of diastolic dysfunction in the cardiometabolic syndrome.
Collapse
Affiliation(s)
- Mark T. Waddingham
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Cardiac PhysiologyNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Diederik W. D. Kuster
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Elisa Dal Canto
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
- Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Louis Handoko
- Department of Cardiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Frances S. de Man
- Department of Pulmonology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | | | - Coen A. Ottenheijm
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
- Cellular and Molecular MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Shengyi Shen
- Cellular and Molecular MedicineUniversity of ArizonaTucsonArizonaUSA
| | | | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Walter J. Paulus
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Etto C. Eringa
- Department of Physiology, Amsterdam Cardiovascular SciencesAmsterdam University Medical CentersAmsterdamThe Netherlands
| |
Collapse
|
7
|
Gallo G, Forte M, Cotugno M, Marchitti S, Stanzione R, Tocci G, Bianchi F, Palmerio S, Scioli M, Frati G, Sciarretta S, Barbato E, Volpe M, Rubattu S. Polymorphic variants at NDUFC2, encoding a mitochondrial complex I subunit, associate with cardiac hypertrophy in human hypertension. Mol Med 2023; 29:107. [PMID: 37558995 PMCID: PMC10410816 DOI: 10.1186/s10020-023-00701-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND A dysfunction of NADH dehydrogenase, the mitochondrial Complex I (CI), associated with the development of left ventricular hypertrophy (LVH) in previous experimental studies. A deficiency of Ndufc2 (subunit of CI) impairs CI activity causing severe mitochondrial dysfunction. The T allele at NDUFC2/rs11237379 variant associates with reduced gene expression and impaired mitochondrial function. The present study tested the association of both NDUFC2/rs11237379 and NDUFC2/rs641836 variants with LVH in hypertensive patients. In vitro studies explored the impact of reduced Ndufc2 expression in isolated cardiomyocytes. METHODS Two-hundred-forty-six subjects (147 male, 59.7%), with a mean age of 59 ± 15 years, were included for the genetic association analysis. Ndufc2 silencing was performed in both H9c2 and rat primary cardiomyocytes to explore the hypertrophy development and the underlying signaling pathway. RESULTS The TT genotype at NDUFC2/rs11237379 associated with significantly reduced gene expression. Multivariate analysis revealed that patients carrying this genotype showed significant differences for septal thickness (p = 0.07), posterior wall thickness (p = 0.008), RWT (p = 0.021), LV mass/BSA (p = 0.03), compared to subjects carrying either CC or CT genotypes. Patients carrying the A allele at NDUFC2/rs641836 showed significant differences for septal thickness (p = 0.017), posterior wall thickness (p = 0.011), LV mass (p = 0.003), LV mass/BSA (p = 0.002) and LV mass/height2.7(p = 0.010) after adjustment for covariates. In-vitro, the Ndufc2 deficiency-dependent mitochondrial dysfunction caused cardiomyocyte hypertrophy, pointing to SIRT3-AMPK-AKT-MnSOD as a major underlying signaling pathway. CONCLUSIONS We demonstrated for the first time a significant association of NDUFC2 variants with LVH in human hypertension and highlight a key role of Ndufc2 deficiency-dependent CI mitochondrial dysfunction on increased susceptibility to cardiac hypertrophy development.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | | | | | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Silvia Palmerio
- Department of Medicine, University of Verona School of Medicine, Verona University Hospital Trust, Verona, Italy
| | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli (Is), Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli (Is), Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
- IRCCS S. Raffaele, Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy.
- IRCCS Neuromed, Pozzilli (Is), Italy.
| |
Collapse
|
8
|
Mochula AV, Kopeva KV, Maltseva AN, Grakova EV, Gulya M, Smorgon AV, Gusakova A, Zavadovsky KV. The myocardial flow reserve in patients with heart failure with preserved ejection fraction. Heart Vessels 2023; 38:348-360. [PMID: 36045268 DOI: 10.1007/s00380-022-02161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
To evaluate the myocardial flow reserve (MFR) and myocardial blood flow (MBF) parameters in patients with heart failure with preserved ejection fraction (HFpEF) and to assess their relationship with the severity of HF and the levels of soluble ST2 (sST2). A total of 59 consecutive patients (median age of 65.0 (58.0; 69.0) years) with non-obstructive coronary artery disease (CAD) and preserved EF were enrolled. Serum levels biomarkers were measured by enzyme immunoassay. MBF and MFR parameters were evaluated by dynamic CZT-SPECT. All patients were divided into two groups: group 1 comprised patients (n = 41) with HFpEF, and group 2 comprised those (n = 18) without HFpEF. In group 1 global MFR (gMFR) values were lower by 27.8% (p = 0.003) than in group 2. The values of gMFR correlated with NT-proBNP (r = - 0.290) and sST2 (r = -0.331) levels. Based on ROC-analysis, gMFR ≤ 2.27 (AUC = 0.746; p < 0.001) were associated with the presence of HFpEF. In patients with HFpEF (n = 41) the values of gMFR were related to NYHA classes (p < 0.001) and the parameters of diastolic dysfunction (p < 0.001). The values of gMFR ≤ 2.27 may be used for the evaluation of microvascular changes in patients with HFpEF and non-obstructive CAD.
Collapse
Affiliation(s)
- Andrew V Mochula
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation.
| | - Kristina V Kopeva
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Alina N Maltseva
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Elena V Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Marina Gulya
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Andrey V Smorgon
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Anna Gusakova
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| | - Konstantin V Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Center (TNRMC), Russian Academy of Sciences (RAS), 111a, Kievskaya Str., Tomsk, 634012, Russian Federation
| |
Collapse
|
9
|
Kim MY, Pellot I, Bresee C, Nawaz A, Fournier M, Cho JH, Cingolani E. Diet modification reverses diastolic dysfunction in rats with heart failure and preserved ejection fraction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100031. [PMID: 37273847 PMCID: PMC10237345 DOI: 10.1016/j.jmccpl.2023.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dahl Salt-Sensitive (DSS) rats develop heart failure with preserved ejection fraction (HFpEF) when fed a high-salt (8 % NaCl) diet. Hypertension-induced inflammation and subsequent ventricular fibrosis are believed to underlie the development of HFpEF. We investigated the role of diet modification in the progression of HFpEF using male DSS rats, fed either a high-salt diet from7 weeks of age to induce HFpEF, ora normal-salt (0.3% NaCl) diet as controls. After echocardiographic confirmation of diastolic dysfunction at 14-15 weeks of age along with HF manifestations, the HFpEF rats were randomly assigned to either continue a high-salt diet or switch to a normal-salt diet for an additional 4 weeks. HFpEF rats with diet modification showed improved diastolic function (reduced E/E' ratio in echocardiogram), increased functional capacity (increased treadmill exercise distance), and reduced pulmonary congestions (lung/body weight ratio), compared to high-salt-fed HFpEF rats. Systolic blood pressure remained high (~200 mmHg), and ventricular hypertrophy remained unchanged. Ventricular arrhythmia inducibility (100 % inducible) and corrected QT interval (on ECG) did not change in HFpEF rats after diet modification. HFpEF rats with diet modification showed prolonged survival and reduced ventricular fibrosis (Masson's trichrome staining) compared to high-salt-fed HFpEF rats. Hence, the modification of diet (from high-salt to normal-salt diet) reversed HFpEF phenotypes without affecting blood pressure or ventricular hypertrophy.
Collapse
Affiliation(s)
- Myung Yoon Kim
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| | - Isabelle Pellot
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Asma Nawaz
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| | - Mario Fournier
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, United States of America
| |
Collapse
|
10
|
Pugliese NR, Pellicori P, Filidei F, De Biase N, Maffia P, Guzik TJ, Masi S, Taddei S, Cleland JGF. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: implications for future interventions. Cardiovasc Res 2023; 118:3536-3555. [PMID: 36004819 PMCID: PMC9897694 DOI: 10.1093/cvr/cvac133] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Many patients with symptoms and signs of heart failure have a left ventricular ejection fraction ≥50%, termed heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome mainly affecting older people who have many other cardiac and non-cardiac conditions that often cast doubt on the origin of symptoms, such as breathlessness, or signs, such as peripheral oedema, rendering them neither sensitive nor specific to the diagnosis of HFpEF. Currently, management of HFpEF is mainly directed at controlling symptoms and treating comorbid conditions such as hypertension, atrial fibrillation, anaemia, and coronary artery disease. HFpEF is also characterized by a persistent increase in inflammatory biomarkers. Inflammation may be a key driver of the development and progression of HFpEF and many of its associated comorbidities. Detailed characterization of specific inflammatory pathways may provide insights into the pathophysiology of HFpEF and guide its future management. There is growing interest in novel therapies specifically designed to target deregulated inflammation in many therapeutic areas, including cardiovascular disease. However, large-scale clinical trials investigating the effectiveness of anti-inflammatory treatments in HFpEF are still lacking. In this manuscript, we review the role of inflammation in HFpEF and the possible implications for future trials.
Collapse
Affiliation(s)
| | - Pierpaolo Pellicori
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francesco Filidei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples 80138, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University, Collegium Medicum, Krakow 31-008, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - John G F Cleland
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
De Lorenzi AB, Kaplinsky E, Zambrano MR, Chaume LT, Rosas JM. Emerging concepts in heart failure management and treatment: focus on SGLT2 inhibitors in heart failure with preserved ejection fraction. Drugs Context 2023; 12:2022-7-1. [PMID: 36660013 PMCID: PMC9828870 DOI: 10.7573/dic.2022-7-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023] Open
Abstract
The role of sodium-glucose cotransporter 2 inhibitors (SLTG2i), developed initially as glucose-lowering agents, has represented a novelty in patients with heart failure (HF) and reduced ejection fraction (HFrEF) since dapagliflozin (DAPA-HF study) and empagliflozin (EMPEROR-Reduced study) were able to reduce morbidity and mortality in this setting regardless of the presence or absence of diabetes. In previous large clinical trials (EMPA-REG OUTCOME study, CANVAS, DECLARE-TIMI 58), SGLT2i have been shown to attenuate HF progression expressed by reducing the risk of HF hospitalizations in patients with type 2 diabetes mellitus mostly without HF at baseline. This benefit was then corroborated with positive results in HF outcomes (cardiovascular mortality and HF hospitalizations) in patients with HF with preserved ejection fraction (HFpEF) in the EMPEROR-Preserved (empagliflozin) and DELIVER (dapagliflozin) trials. Several biological mechanisms apart from the glycosuria are attributed to these agents in this last context, including anti-inflammatory effects, reduction of fibrosis and apoptosis, improvement of myocardial metabolism, mitochondrial function optimization, and oxidative stress protection. Moreover, SGLT2i can also improve ventricular loading conditions by forcing diuresis and natriuresis, and by enhancing vascular and renal function. In addition, SGLT2i can reduce myocardial passive stiffness (diastolic function) by enforcing the phosphorylation of myofilament modulatory proteins. This article provided an overview of the main pathophysiological characteristics of HFpEF and of the diverse mechanisms of action of SGLT2i in this setting. The supporting clinical evidence of SGLT2i in HFpEF (EMPEROR-Preserved and DELIVER trials) is also reviewed. This article is part of the Emerging concepts in heart failure management and treatment Special Issue: https://www.drugsincontext.com/special_issues/emerging-concepts-in-heart-failure-management-and-treatment.
Collapse
Affiliation(s)
| | - Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Spain
| | | | - Laia Tomás Chaume
- Unitat de Cardiología, Hospital General de Granollers, Barcelona, Spain
| | - Joan Monell Rosas
- Unitat de Cardiología, Hospital General de Granollers, Barcelona, Spain
| |
Collapse
|
12
|
Zhou Y, Zhu Y, Zeng J. Research Update on the Pathophysiological Mechanisms of Heart Failure with Preserved Ejection Fraction. Curr Mol Med 2023; 23:54-62. [PMID: 34844539 DOI: 10.2174/1566524021666211129111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is a serious clinical syndrome, usually occurs at the advanced stage of various cardiovascular diseases, featured by high mortality and rehospitalization rate. According to left ventricular (LV) ejection fraction (LVEF), HF has been categorized as HF with reduced EF (HFrEF; LVEF<40%), HF with mid-range EF (HFmrEF; LVEF 40-49%), and HF with preserved EF (HFpEF; LVEF ≥50%). HFpEF accounts for about 50% of cases of heart failure and has become the dominant form of heart failure. The mortality of HFpEF is similar to that of HFrEF. There are no welldocumented treatment options that can reduce the morbidity and mortality of HFpEF now. Understanding the underlying pathological mechanisms is essential for the development of novel effective therapy options for HFpEF. In recent years, significant research progress has been achieved on the pathophysiological mechanism of HFpEF. This review aimed to update the research progress on the pathophysiological mechanism of HFpEF.
Collapse
Affiliation(s)
- Yuying Zhou
- Center of Cooperative Postgraduate Cultivation in Xiangtan Central Hospital, University of South China Xiangtan 411100, China
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yunlong Zhu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Jianping Zeng
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China
| |
Collapse
|
13
|
Epidemiology, Diagnosis, Pathophysiology, and Initial Approach to Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:397-413. [DOI: 10.1016/j.ccl.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
de Couto G, Mesquita T, Wu X, Rajewski A, Huang F, Akhmerov A, Na N, Wu D, Wang Y, Li L, Tran M, Kilfoil P, Cingolani E, Marbán E. Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2022; 323:H892-H903. [PMID: 36083797 PMCID: PMC9602891 DOI: 10.1152/ajpheart.00287.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is defined by increased left ventricular (LV) stiffness, impaired vascular compliance, and fibrosis. Although systemic inflammation, driven by comorbidities, has been proposed to play a key role, the precise pathogenesis remains elusive. To test the hypothesis that inflammation drives endothelial dysfunction in HFpEF, we used cardiosphere-derived cells (CDCs), which reduce inflammation and fibrosis, improving function, structure, and survival in HFpEF rats. Dahl salt-sensitive rats fed a high-salt diet developed HFpEF, as manifested by diastolic dysfunction, systemic inflammation, and accelerated mortality. Rats were randomly allocated to receive intracoronary infusion of CDCs or vehicle. Two weeks later, inflammation, oxidative stress, and endothelial function were analyzed. Single-cell RNA sequencing of heart tissue was used to assay transcriptomic changes. CDCs improved endothelial-dependent vasodilation while reducing oxidative stress and restoring endothelial nitric oxide synthase (eNOS) expression. RNA sequencing revealed CDC-induced attenuation of pathways underlying endothelial cell leukocyte binding and innate immunity. Exposure of endothelial cells to CDC-secreted extracellular vesicles in vitro reduced VCAM-1 protein expression and attenuated monocyte adhesion and transmigration. Cell therapy with CDCs corrects diastolic dysfunction, reduces oxidative stress, and restores vascular reactivity. These findings lend credence to the hypothesis that inflammatory changes of the vascular endothelium are important, if not central, to HFpEF pathogenesis.NEW & NOTEWORTHY We tested the concept that inflammation of endothelial cells is a major pathogenic factor in HFpEF. CDCs are heart-derived cell products with verified anti-inflammatory therapeutic properties. Infusion of CDCs reduced oxidative stress, restored eNOS abundance, lowered monocyte levels, and rescued the expression of multiple disease-associated genes, thereby restoring vascular reactivity. The salutary effects of CDCs support the hypothesis that inflammation of endothelial cells is a proximate driver of HFpEF.
Collapse
Affiliation(s)
- Geoffrey de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaokang Wu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex Rajewski
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Feng Huang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Na Na
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - My Tran
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Kilfoil
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
15
|
Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res Cardiol 2022; 117:41. [PMID: 36006489 PMCID: PMC9899517 DOI: 10.1007/s00395-022-00952-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
The mechanical environment of the myocardium has a potent effect on cardiomyocyte form and function, yet an understanding of the cardiomyocyte responses to extracellular stiffening remains incomplete. We therefore employed a cell culture substrate with tunable stiffness to define the cardiomyocyte responses to clinically relevant stiffness increments in the absence of cell-cell interactions. When cultured on substrates magnetically actuated to mimic the stiffness of diseased myocardium, isolated rat adult cardiomyocytes exhibited a time-dependent reduction of sarcomere shortening, characterized by slowed contraction and relaxation velocity, and alterations of the calcium transient. Cardiomyocytes cultured on stiff substrates developed increases in viscoelasticity and microtubule detyrosination in association with early increases in the α-tubulin detyrosinating enzyme vasohibin-2 (Vash2). We found that knockdown of Vash2 was sufficient to preserve contractile performance as well as calcium transient properties in the presence of extracellular substrate stiffening. Orthogonal prevention of detyrosination by overexpression of tubulin tyrosine ligase (TTL) was also able to preserve contractility and calcium homeostasis. These data demonstrate that a pathologic increment of extracellular stiffness induces early, cell-autonomous remodeling of adult cardiomyocytes that is dependent on detyrosination of α-tubulin.
Collapse
|
16
|
Tsarova K, Morgan AE, Melendres-Groves L, Ibrahim MM, Ma CL, Pan IZ, Hatton ND, Beck EM, Ferrel MN, Selzman CH, Ingram D, Alamri AK, Ratcliffe MB, Wilson BD, Ryan JJ. Imaging in Pulmonary Vascular Disease-Understanding Right Ventricle-Pulmonary Artery Coupling. Compr Physiol 2022; 12:3705-3730. [PMID: 35950653 DOI: 10.1002/cphy.c210017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of "uncoupling." Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.
Collapse
Affiliation(s)
- Katsiaryna Tsarova
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley E Morgan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Lana Melendres-Groves
- Division of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Majd M Ibrahim
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irene Z Pan
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA
| | - Nathan D Hatton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Emily M Beck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Meganne N Ferrel
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Dominique Ingram
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ayedh K Alamri
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Brent D Wilson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
18
|
Szulcek R, Johnson CN, Pearson JT, Sequeira V. Editorial: Bridging Techniques: Basic Science of Molecules, Cellular Systems, and Whole-Organ Physiology. Front Physiol 2022; 13:879396. [PMID: 35399270 PMCID: PMC8987352 DOI: 10.3389/fphys.2022.879396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert Szulcek
- Laboratory of in Vitro Modeling Systems of Pulmonary and Thrombotic Diseases, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Heart Center Berlin, Berlin, Germany
| | | | - James Todd Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
- *Correspondence: Vasco Sequeira
| |
Collapse
|
19
|
MacNamara JP, Koshti V, Dias KA, Howden E, Hearon CM, Cheng I, Hynan LS, Levine BD, Sarma S. The impact of cardiac loading on a novel metric of left ventricular diastolic function in healthy middle-aged adults: Systolic-diastolic coupling. Physiol Rep 2021; 9:e15129. [PMID: 34873864 PMCID: PMC8649710 DOI: 10.14814/phy2.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
AIMS Left ventricular (LV) restoring forces are primed by ventricular deformation during systole and contribute to cardiac relaxation and early diastolic suction. Systolic-diastolic coupling, the relationship between systolic contraction and diastolic recoil, is a novel marker of restoring forces, but the effect of left atrial pressure (LAP) is unknown. We tested preliminary methods of systolic-diastolic coupling comparing mitral annular velocities versus excursion distances and hypothesized a recoil/contraction distance ratio would remain unaffected across varying LAP, providing a surrogate for quantifying LV restoring forces. METHODS AND RESULTS Healthy subjects (n = 61, age 52 ± 5 years) underwent manipulation of LAP with lower body negative pressure (LBNP) and rapid normal saline (NS) infusion. Pulmonary capillary wedge pressure (PCWP; pulmonary artery catheter) and tissue Doppler imaging of the mitral annulus were measured. Two models of systolic-diastolic coupling--early diastolic excursion (EDexc )/systolic contraction (Sexc ) distances and e'/systolic (s') velocities were compared. Velocity (e'/s') coupling ratios varied significantly (mean e'/s', slope = 0.022, p < 0.001) in relationship with PCWP (5-20 mmHg). Excursion (EDexc /Sexc ) coupling ratio did not vary in relationship with PCWP (EDexc /Sexc : slope = -0.001, p = 0.19). CONCLUSIONS Systolic-diastolic coupling using mitral annular distance ratios to standardize early diastolic recoil to systolic contraction was not significantly impacted by LAP, in contrast to coupling ratios using velocities. The pressure invariance of annular distance coupling ratios suggests this metric quantifies the efficiency of LV restoring forces by isolating systolic contributions to early diastolic restoring forces independent from changes in LAP.
Collapse
Affiliation(s)
- James P. MacNamara
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Vivek Koshti
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Katrin A. Dias
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Erin Howden
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Christopher M. Hearon
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - I‐Jou Cheng
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- Tri‐Service General HospitalNational Defense Medical CenterTaipei CityTaiwan
| | - Linda S. Hynan
- Departments of Population & Data Sciences and PsychiatryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Satyam Sarma
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian HospitalDallasTexasUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
20
|
Comparison of the histology and stiffness of ventricles in Anura of different habitats. J Biol Phys 2021; 47:287-300. [PMID: 34515919 DOI: 10.1007/s10867-021-09579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Vertebrate hearts have undergone marked morphological and structural changes to adapt to different environments and lifestyles as part of the evolutionary process. Amphibians were the first vertebrates to migrate to land. Transition from aquatic to terrestrial environments required the ability to circulate blood against the force of gravity. In this study, we investigated the passive mechanical properties and histology of the ventricles of three species of Anura (frogs and toads) from different habitats, Xenopus laevis (aquatic), Pelophylax nigromaculatus (semiaquatic), and Bufo japonicus formosus (terrestrial). Pressure-loading tests demonstrated stiffer ventricles of P. nigromaculatus and B. j. formosus compared X. laevis ventricles. Histological analysis revealed a remarkable difference in the structure of cardiac tissue: thickening of the compact myocardium layer of P. nigromaculatus and B. j. formosus and enrichment of the collagen fibers of B. j. formosus. The amount of collagen fibers differed among the species, as quantitatively confirmed by second-harmonic generation light microscopy. No significant difference was observed in cardiomyocytes isolated from each animal, and the sarcomere length was almost the same. The results indicate that the ventricles of Anura stiffen during adaptation to life on land.
Collapse
|
21
|
Kovács ZZA, Szűcs G, Freiwan M, Kovács MG, Márványkövi FM, Dinh H, Siska A, Farkas K, Kovács F, Kriston A, Horváth P, Kővári B, Cserni BG, Cserni G, Földesi I, Csont T, Sárközy M. Comparison of the antiremodeling effects of losartan and mirabegron in a rat model of uremic cardiomyopathy. Sci Rep 2021; 11:17495. [PMID: 34471171 PMCID: PMC8410807 DOI: 10.1038/s41598-021-96815-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic cardiomyopathy is characterized by diastolic dysfunction (DD), left ventricular hypertrophy (LVH), and fibrosis. Angiotensin-II plays a major role in the development of uremic cardiomyopathy via nitro-oxidative and inflammatory mechanisms. In heart failure, the beta-3 adrenergic receptor (β3-AR) is up-regulated and coupled to endothelial nitric oxide synthase (eNOS)-mediated pathways, exerting antiremodeling effects. We aimed to compare the antiremodeling effects of the angiotensin-II receptor blocker losartan and the β3-AR agonist mirabegron in uremic cardiomyopathy. Chronic kidney disease (CKD) was induced by 5/6th nephrectomy in male Wistar rats. Five weeks later, rats were randomized into four groups: (1) sham-operated, (2) CKD, (3) losartan-treated (10 mg/kg/day) CKD, and (4) mirabegron-treated (10 mg/kg/day) CKD groups. At week 13, echocardiographic, histologic, laboratory, qRT-PCR, and Western blot measurements proved the development of uremic cardiomyopathy with DD, LVH, fibrosis, inflammation, and reduced eNOS levels, which were significantly ameliorated by losartan. However, mirabegron showed a tendency to decrease DD and fibrosis; but eNOS expression remained reduced. In uremic cardiomyopathy, β3-AR, sarcoplasmic reticulum ATPase (SERCA), and phospholamban levels did not change irrespective of treatments. Mirabegron reduced the angiotensin-II receptor 1 expression in uremic cardiomyopathy that might explain its mild antiremodeling effects despite the unchanged expression of the β3-AR.
Collapse
Affiliation(s)
- Zsuzsanna Z A Kovács
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Gergő Szűcs
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Marah Freiwan
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Mónika G Kovács
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Fanni M Márványkövi
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Hoa Dinh
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Katalin Farkas
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, Szeged, 6726, Hungary
- Single-Cell Technologies Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Bálint Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged, 6720, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
| | - Tamás Csont
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| | - Márta Sárközy
- MEDICS Research Group, Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
22
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
23
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
24
|
Lin Y, Fu S, Yao Y, Li Y, Zhao Y, Luo L. Heart failure with preserved ejection fraction based on aging and comorbidities. J Transl Med 2021; 19:291. [PMID: 34229717 PMCID: PMC8259336 DOI: 10.1186/s12967-021-02935-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a leading cause of hospitalizations and mortality when diagnosed at the age of ≥ 65 years. HFpEF represents multifactorial and multisystemic syndrome and has different pathophysiology and phenotypes. Its diagnosis is difficult to be established based on left ventricular ejection fraction and may benefit from individually tailored approaches, underlying age-related changes and frequent comorbidities. Compared with the rapid development in the treatment of heart failure with reduced ejection fraction, HFpEF presents a great challenge and needs to be addressed considering the failure of HF drugs to improve its outcomes. Further extensive studies on the relationships between HFpEF, aging, and comorbidities in carefully phenotyped HFpEF subgroups may help understand the biology, diagnosis, and treatment of HFpEF. The current review summarized the diagnostic and therapeutic development of HFpEF based on the complex relationships between aging, comorbidities, and HFpEF.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572013, China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572013, China.
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Yao Yao
- Centre for the Study of Ageing and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27708, USA
- Centre for Healthy Ageing and Development Studies, National School of Development, Peking University, Beijing, 100871, China
| | - Yulong Li
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572013, China.
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
25
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Wintrich J, Kindermann I, Ukena C, Selejan S, Werner C, Maack C, Laufs U, Tschöpe C, Anker SD, Lam CSP, Voors AA, Böhm M. Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clin Res Cardiol 2020; 109:1079-1098. [PMID: 32236720 PMCID: PMC7449942 DOI: 10.1007/s00392-020-01633-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
In contrast to the wealth of proven therapies for heart failure with reduced ejection fraction (HFrEF), therapeutic efforts in the past have failed to improve outcomes in heart failure with preserved ejection fraction (HFpEF). Moreover, to this day, diagnosis of HFpEF remains controversial. However, there is growing appreciation that HFpEF represents a heterogeneous syndrome with various phenotypes and comorbidities which are hardly to differentiate solely by LVEF and might benefit from individually tailored approaches. These hypotheses are supported by the recently presented PARAGON-HF trial. Although treatment with LCZ696 did not result in a significantly lower rate of total hospitalizations for heart failure and death from cardiovascular causes among HFpEF patients, subanalyses suggest beneficial effects in female patients and those with an LVEF between 45 and 57%. In the future, prospective randomized trials should focus on dedicated, well-defined subgroups based on various information such as clinical characteristics, biomarker levels, and imaging modalities. These could clarify the role of LCZ696 in selected individuals. Furthermore, sodium-glucose cotransporter-2 inhibitors have just proven efficient in HFrEF patients and are currently also studied in large prospective clinical trials enrolling HFpEF patients. In addition, several novel disease-modifying drugs that pursue different strategies such as targeting cardiac inflammation and fibrosis have delivered preliminary optimistic results and are subject of further research. Moreover, innovative device therapies may enhance management of HFpEF, but need prospective adequately powered clinical trials to confirm safety and efficacy regarding clinical outcomes. This review highlights the past, present, and future therapeutic approaches in HFpEF.
Collapse
Affiliation(s)
- Jan Wintrich
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany.
| | - Ingrid Kindermann
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christian Ukena
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Simina Selejan
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christian Werner
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie im Department für Innere Medizin, Neurologie und Dermatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
- Berlin-Brandenburg Institute of Health/Center for Regenerative Therapies (BIHCRT), Berlin, Germany
| | - Stefan D Anker
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
- Berlin-Brandenburg Institute of Health/Center for Regenerative Therapies (BIHCRT), Berlin, Germany
| | - Carolyn S P Lam
- National Heart Centre, Singapore and Duke-National University of Singapore, Singapore, Singapore
- University Medical Centre Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Adriaan A Voors
- University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Böhm
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| |
Collapse
|
27
|
Transcriptome Profiling across Five Tissues of Giant Panda. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3852586. [PMID: 32851066 PMCID: PMC7436357 DOI: 10.1155/2020/3852586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 11/18/2022]
Abstract
Gene differential expression studies can serve to explore and understand the laws and characteristics of animal life activities, and the difference in gene expression between different animal tissues has been well demonstrated and studied. However, for the world-famous rare and protected species giant panda (Ailuropoda melanoleuca), only the transcriptome of the blood and spleen has been reported separately. Here, in order to explore the transcriptome differences between the different tissues of the giant panda, transcriptome profiles of the heart, liver, spleen, lung, and kidney from five captive giant pandas were constructed with Illumina HiSeq 2500 platform. The comparative analysis of the intertissue gene expression patterns was carried out based on the generated RNA sequencing datasets. Analyses of Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network were performed according to the identified differentially expressed genes (DEGs). We generated 194.52 GB clean base data from twenty-five sequencing libraries and identified 18,701 genes, including 3492 novel genes. With corrected p value <0.05 and |log2FoldChange| >2, we finally obtained 921, 553, 574, 457, and 638 tissue-specific DEGs in the heart, liver, spleen, lung, and kidney, respectively. In addition, we identified TTN, CAV3, LDB3, TRDN, and ACTN2 in the heart; FGA, AHSG, and SERPINC1 in the liver; CD19, CD79B, and IL21R in the spleen; NKX2-4 and SFTPB in the lung; GC and HRG in the kidney as hub genes in the PPI network. The results of the analyses showed a similar gene expression pattern between the spleen and lung. This study provided for the first time the heart, liver, lung, and kidney's transcriptome resources of the giant panda, and it provided a valuable resource for further genetic research or other potential research.
Collapse
|
28
|
Lachaux M, Soulié M, Hamzaoui M, Bailly A, Nicol L, Rémy‐Jouet I, Renet S, Vendeville C, Gluais‐Dagorn P, Hallakou‐Bozec S, Monteil C, Richard V, Mulder P. Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. Endocrinol Diabetes Metab 2020; 3:e00128. [PMID: 32704553 PMCID: PMC7375119 DOI: 10.1002/edm2.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Imeglimin, a glucose-lowering agent targeting mitochondrial bioenergetics, decreases reactive oxygen species (ROS) overproduction and improves glucose homeostasis. We investigated whether this is associated with protective effects on metabolic syndrome-related left ventricular (LV) and vascular dysfunctions. METHODS We used Zucker fa/fa rats to assess the effects on LV function, LV tissue perfusion, LV oxidative stress and vascular function induced by imeglimin administered orally for 9 or 90 days at a dose of 150 mg/kg twice daily. RESULTS Compared to untreated animals, 9- and 90-day imeglimin treatment decreased LV end-diastolic pressure and LV end-diastolic pressure-volume relation, increased LV tissue perfusion and decreased LV ROS production. Simultaneously, imeglimin restored acetylcholine-mediated coronary relaxation and mesenteric flow-mediated dilation. One hour after imeglimin administration, when glucose plasma levels were not yet modified, imeglimin reduced LV mitochondrial ROS production and improved LV function. Ninety-day imeglimin treatment reduced related LV and kidney fibrosis and improved kidney function. CONCLUSION In a rat model, mimicking Human metabolic syndrome, imeglimin immediately countered metabolic syndrome-related cardiac diastolic and vascular dysfunction by reducing oxidative stress/increased NO bioavailability and improving myocardial perfusion and after 90-day treatment myocardial and kidney structure, effects that are, at least in part, independent from glucose control.
Collapse
Affiliation(s)
| | | | | | - Anaëlle Bailly
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | - Lionel Nicol
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | | | - Sylvanie Renet
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | | | | | | | | | | | - Paul Mulder
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| |
Collapse
|
29
|
Sirtuin 3, Endothelial Metabolic Reprogramming, and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2020; 74:315-323. [PMID: 31425381 DOI: 10.1097/fjc.0000000000000719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidences of heart failure with preserved ejection fraction (HFpEF) are increased in aged populations as well as diabetes and hypertension. Coronary microvascular dysfunction has contributed to the development of HFpEF. Endothelial cells (ECs) depend on glycolysis rather than oxidative phosphorylation for generating adenosine triphosphate to maintain vascular homeostasis. Glycolytic metabolism has a critical role in the process of angiogenesis, because ECs rely on the energy produced predominantly from glycolysis for migration and proliferation. Sirtuin 3 (SIRT3) is found predominantly in mitochondria and its expression declines progressively with aging, diabetes, obesity, and hypertension. Emerging evidence indicates that endothelial SIRT3 regulates a metabolic switch between glycolysis and mitochondrial respiration. SIRT3 deficiency in EC resulted in a significant decrease in glycolysis, whereas, it exhibited higher mitochondrial respiration and more prominent production of reactive oxygen species. SIRT3 deficiency also displayed striking increases in acetylation of p53, EC apoptosis, and senescence. Impairment of SIRT3-mediated EC metabolism may lead to a disruption of EC/pericyte/cardiomyocyte communications and coronary microvascular rarefaction, which promotes cardiomyocyte hypoxia, Titin-based cardiomyocyte stiffness, and myocardial fibrosis, thus leading to a diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolic reprograming, EC/pericyte interactions, coronary microvascular dysfunction, and HFpEF.
Collapse
|
30
|
Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, Sandner P, Papp Z, Reusch PH, Haldenwang P, Falcão-Pires I, Linke WA, Jaquet K, Van Linthout S, Mügge A, Tschöpe C, Hamdani N. Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Front Physiol 2020; 11:345. [PMID: 32523538 PMCID: PMC7261855 DOI: 10.3389/fphys.2020.00345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Aims Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.
Collapse
Affiliation(s)
- Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Kálmán Laki Doctoral School, Debrecen, Hungary
| | - Marcel Sieme
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Abdulatif Alhaj
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Peter Sandner
- Bayer AG, Drug Discovery Cardiology, Wuppertal, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Ines Falcão-Pires
- Department of Surgery and Physiology and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, University of Münster, Münster, Germany
| | - Kornelia Jaquet
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Tschöpe
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Sex-Specific Regulation of miR-29b in the Myocardium Under Pressure Overload is Associated with Differential Molecular, Structural and Functional Remodeling Patterns in Mice and Patients with Aortic Stenosis. Cells 2020; 9:cells9040833. [PMID: 32235655 PMCID: PMC7226763 DOI: 10.3390/cells9040833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Pressure overload in patients with aortic stenosis (AS) induces an adverse remodeling of the left ventricle (LV) in a sex-specific manner. We assessed whether a sex-specific miR-29b dysregulation underlies this sex-biased remodeling pattern, as has been described in liver fibrosis. We studied mice with transverse aortic constriction (TAC) and patients with AS. miR-29b was determined in the LV (mice, patients) and plasma (patients). Expression of remodeling-related markers and histological fibrosis were determined in mouse LV. Echocardiographic morpho-functional parameters were evaluated at baseline and post-TAC in mice, and preoperatively and 1 year after aortic valve replacement (AVR) in patients with AS. In mice, miR-29b LV regulation was opposite in TAC-males (down-regulation) and TAC-females (up-regulation). The subsequent changes in miR-29b targets (collagens and GSK-3β) revealed a remodeling pattern that was more fibrotic in males but more hypertrophic in females. Both systolic and diastolic cardiac functions deteriorated more in TAC-females, thus suggesting a detrimental role of miR-29b in females, but was protective in the LV under pressure overload in males. Clinically, miR-29b in controls and patients with AS reproduced most of the sexually dimorphic features observed in mice. In women with AS, the preoperative plasma expression of miR-29b paralleled the severity of hypertrophy and was a significant negative predictor of reverse remodeling after AVR; therefore, it may have potential value as a prognostic biomarker.
Collapse
|
32
|
Abstract
Inflammation has long been known to play a role in heart failure (HF). Earlier studies demonstrated that inflammation contributes to the pathogenesis of HF with reduced ejection fraction (HFrEF), and the knowledge about molecules and cell types specifically involved in inflammatory events has been constantly increased ever since. However, conflicting results of several trials with anti-inflammatory treatments led to the conclusions that inflammation does participate in the progression of HFrEF, but more likely it is not the primary event. Conversely, it has been suggested that inflammation drives the development of HF with preserved ejection fraction (HFpEF). Recently the pharmacological blockade of interleukin-1 has been shown to prevent HF hospitalization and mortality in patients with prior myocardial infarction, lending renewed support to the hypothesis that inflammation is a promising therapeutic target in HF. Inflammation has also been proposed to underlie both HF and commonly associated conditions, such as chronic kidney disease or cancer. Within this last paradigm, an emergent role has been ascribed to clonal hematopoiesis of indeterminate potential. Here, we summarize the recent evidence about the role of inflammation in HF, highlighting the similarities and differences in HFrEF vs. HFpEF, and discuss the diagnostic and therapeutic opportunities raised by antinflammatory-based approaches.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas, TX, 75390-8573, USA.
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
33
|
Amigues I, Russo C, Giles JT, Tugcu A, Weinberg R, Bokhari S, Bathon JM. Myocardial Microvascular Dysfunction in Rheumatoid Arthritis Quantitation by 13N-Ammonia Positron Emission Tomography/Computed Tomography. Circ Cardiovasc Imaging 2019; 12:e007495. [PMID: 30636512 PMCID: PMC6361523 DOI: 10.1161/circimaging.117.007495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of this study was to assess the prevalence of myocardial microvascular dysfunction in rheumatoid arthritis (RA) patients without clinical cardiovascular disease and its association with RA characteristics and measures of cardiac structure and function. METHODS Participants with RA underwent rest and vasodilator stress N-13 ammonia positron emission tomography and echocardiography. Global myocardial blood flow was quantified at rest and during peak hyperemia. Myocardial flow reserve (MFR) was calculated as peak stress myocardial blood flow/rest myocardial blood flow. A small number of asymptomatic and symptomatic non-RA controls were also evaluated. RESULTS In RA patients, mean±SD MFR was 2.9±0.8, with 29% having reduced MFR (<2.5). Male sex and higher interleukin-6 were significantly associated with lower MFR, while the use of tumor necrosis factor inhibitors was associated with higher MFR. Lower MFR was associated with higher left ventricle mass index and higher left ventricle volumes but not with ejection fraction or diastolic dysfunction. RA and symptomatic controls had comparable MFR (mean±SD: 2.9±0.8 versus 2.55±0.6; P=0.48). In contrast, MFR was higher in the asymptomatic controls (mean±SD: 3.25±0.7) although not statistically different. CONCLUSIONS Reduced MFR was observed in a third of RA patients without clinical cardiovascular disease and was associated with a measure of inflammation and with higher left ventricle mass and volumes. MFR in RA patients was similar to controls referred for clinical scans (symptomatic controls). Whether reduced MFR contributes to the increased risk for heart failure in RA remains unknown.
Collapse
Affiliation(s)
- Isabelle Amigues
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Cesare Russo
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Current address for Cesare Russo: Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jon T Giles
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Aylin Tugcu
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Current address for Aylin Tugcu: Bristol Myers Squibb, Lawrenceville, NJ
| | - Richard Weinberg
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Nuclear Cardiology Laboratory (R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Sabahat Bokhari
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Nuclear Cardiology Laboratory (R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Joan M Bathon
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| |
Collapse
|
34
|
Rajshankar D, Wang B, Worndl E, Menezes S, Wang Y, McCulloch CA. Focal adhesion kinase regulates tractional collagen remodeling, matrix metalloproteinase expression, and collagen structure, which in turn affects matrix‐induced signaling. J Cell Physiol 2019; 235:3096-3111. [DOI: 10.1002/jcp.29215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Baiyu Wang
- Faculty of Dentistry University of Toronto Toronto Ontario
| | | | - Sara Menezes
- Faculty of Dentistry University of Toronto Toronto Ontario
| | - Yongqiang Wang
- Faculty of Dentistry University of Toronto Toronto Ontario
| | | |
Collapse
|
35
|
Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, Rau C, Warren CM, Klutho PJ, Alex L, Ferreira-Nichols SC, Ivey JR, Thorne PK, McDonald KS, Krenz M, Baines CP, Solaro RJ, Wang Y, Ford DA, Domeier TL, Padilla J, Rector RS, Emter CA. Western Diet-Fed, Aortic-Banded Ossabaw Swine: A Preclinical Model of Cardio-Metabolic Heart Failure. JACC Basic Transl Sci 2019; 4:404-421. [PMID: 31312763 PMCID: PMC6610000 DOI: 10.1016/j.jacbts.2019.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.
Collapse
Key Words
- AB, aortic-banded
- CON, control
- EDPVR, end-diastolic pressure−volume relationship
- EF, ejection fraction
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IL1RL1, interleukin 1 receptor-like 1
- LV, left ventricle
- NF, nuclear factor
- PTX3, pentraxin-3
- WD, Western Diet
- cardio-metabolic disease
- heart failure
- integrative pathophysiology
- preclinical model of cardiovascular disease
Collapse
Affiliation(s)
- T. Dylan Olver
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Jenna C. Edwards
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Thomas J. Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - John L. Jones
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Chen Gao
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christoph Rau
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chad M. Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Paula J. Klutho
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Linda Alex
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | | | - Jan R. Ivey
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Pamela K. Thorne
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Christopher P. Baines
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Yibin Wang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A. Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University- School of Medicine, St. Louis, Missouri
| | - Timothy L. Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
- Department of Child Health, University of Missouri-Columbia, Columbia, Missouri
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Department of Medicine – University of Missouri-Columbia, Columbia, Missouri
- Research Service, Harry S Truman Memorial VA Hospital, University of Missouri-Columbia, Columbia, Missouri
| | - Craig A. Emter
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
36
|
Warbrick I, Rabkin SW. Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes Rev 2019; 20:701-712. [PMID: 30828970 DOI: 10.1111/obr.12828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a common condition with an increased mortality, is strongly associated with obesity and the metabolic syndrome. The latter two conditions are associated with increased epicardial fat that can extend into the heart. This review advances the proposition that hypoxia-inhibitory factor-1α (HIF-1α) maybe a key factor producing HFpEF. HIF-1α, a highly conserved transcription factor that plays a key role in tissue response to hypoxia, is increased in adipose tissue in obesity. Increased HIF-1α expression leads to expression of a potent profibrotic transcriptional programme involving collagen I, III, IV, TIMP, and lysyl oxidase. The net effect is the formation of collagen fibres leading to fibrosis. HIF-1α is also responsible for recruiting M1 macrophages that mediate obesity-associated inflammation, releasing IL-6, MCP-1, TNF-α, and IL-1β with increased expression of thrombospondin, pro α2 (I) collagen, transforming growth factor β, NADPH oxidase, and connective tissue growth factor. These factors can accelerate cardiac fibrosis and impair cardiac diastolic function. Inhibition of HIF-1α expression in adipose tissue of mice fed a high-fat diet suppressed fibrosis and reduces inflammation in adipose tissue. Delineation of the role played by HIF-1α in obesity-associated HFpEF may lead to new potential therapies.
Collapse
Affiliation(s)
- Ian Warbrick
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, Canada
| | - Simon W Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Oláh A, Ruppert M, Orbán TI, Apáti Á, Sarkadi B, Merkely B, Radovits T. Hemodynamic characterization of a transgenic rat strain stably expressing the calcium sensor protein GCaMP2. Am J Physiol Heart Circ Physiol 2019; 316:H1224-H1228. [DOI: 10.1152/ajpheart.00074.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel transgenic rat strain has recently been generated that stably expresses the genetically engineered calcium sensor protein GCaMP2 in different cell types, including cardiomyocytes, to investigate calcium homeostasis. To investigate whether the expression of the GCaMP2 protein itself affects cardiac function, in the present work we aimed at characterizing in vivo hemodynamics in the GCaMP2 transgenic rat strain. GCaMP2 transgenic rats and age-matched Sprague-Dawley control animals were investigated. In vivo hemodynamic characterization was performed by left ventricular (LV) pressure-volume analysis. Postmortem heart weight data showed cardiac hypertrophy in the GCaMP2 group (heart-weight-to-tibial-length ratio: 0.26 ± 0.01 GCaMP2 vs. 0.23 ± 0.01 g/cm Co, P < 0.05). We detected elevated mean arterial pressure and increased total peripheral resistance in transgenic rats. GCaMP2 transgenesis was associated with prolonged contraction and relaxation. LV systolic function was not altered in transgenic rats, as indicated by conventional parameters and load-independent, sensitive indices. We found a marked deterioration of LV active relaxation in GCaMP2 animals (τ: 16.8 ± 0.7 GCaMP2 vs. 12.2 ± 0.3 ms Co, P < 0.001). Our data indicated myocardial hypertrophy, arterial hypertension, and impaired LV active relaxation along with unchanged systolic performance in the heart of transgenic rats expressing the GCaMP2 fluorescent calcium sensor protein. Special caution should be taken when using transgenic models in cardiovascular studies. NEW & NOTEWORTHY Genetically encoded Ca2+-sensors, like GCaMP2, are important tools to reveal molecular mechanisms for Ca2+-sensing. We provided left ventricular hemodynamic characterization of GCaMP2 transgenic rats and found increased afterload, cardiac hypertrophy, and prolonged left ventricular relaxation, along with unaltered systolic function and contractility. Special caution should be taken when using this rodent model in cardiovascular pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás István Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci 2019; 20:ijms20051197. [PMID: 30857271 PMCID: PMC6429211 DOI: 10.3390/ijms20051197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In diabetic patients, cardiomyopathy is an important cause of heart failure, but its pathophysiology has not been completely understood thus far. Myocardial hypertrophy and diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM), while systolic function is affected in the latter stages of the disease. In this article we propose the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway, coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms. Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are emerging as potential treatment options for DCM.
Collapse
Affiliation(s)
- Jovana Nikolajević Starčević
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Pabel S, Wagner S, Bollenberg H, Bengel P, Kovács Á, Schach C, Tirilomis P, Mustroph J, Renner A, Gummert J, Fischer T, Van Linthout S, Tschöpe C, Streckfuss-Bömeke K, Hasenfuss G, Maier LS, Hamdani N, Sossalla S. Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail 2018; 20:1690-1700. [PMID: 30328645 DOI: 10.1002/ejhf.1328] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Empagliflozin, a clinically used oral antidiabetic drug that inhibits the sodium-dependent glucose co-transporter 2, has recently been evaluated for its cardiovascular safety. Surprisingly, empagliflozin reduced mortality and hospitalization for heart failure (HF) compared to placebo. However, the underlying mechanisms remain unclear. Therefore, our study aims to investigate whether empagliflozin may cause direct pleiotropic effects on the myocardium. METHODS AND RESULTS In order to assess possible direct myocardial effects of empagliflozin, we performed contractility experiments with in toto-isolated human systolic end-stage HF ventricular trabeculae. Empagliflozin significantly reduced diastolic tension, whereas systolic force was not changed. These results were confirmed in murine myocardium from diabetic and non-diabetic mice, suggesting independent effects from diabetic conditions. In human HF cardiomyocytes, empagliflozin did not influence calcium transient amplitude or diastolic calcium level. The mechanisms underlying the improved diastolic function were further elucidated by studying myocardial fibres from patients and rats with diastolic HF (HF with preserved ejection fraction, HFpEF). Empagliflozin beneficially reduced myofilament passive stiffness by enhancing phosphorylation levels of myofilament regulatory proteins. Intravenous injection of empagliflozin in anaesthetized HFpEF rats significantly improved diastolic function measured by echocardiography, while systolic contractility was unaffected. CONCLUSION Empagliflozin causes direct pleiotropic effects on the myocardium by improving diastolic stiffness and hence diastolic function. These effects were independent of diabetic conditions. Since pharmacological therapy of diastolic dysfunction and HF is an unmet need, our results provide a rationale for new translational studies and might also contribute to the understanding of the EMPA-REG OUTCOME trial.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.,Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Hannah Bollenberg
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Philipp Bengel
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Árpád Kovács
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Christian Schach
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Petros Tirilomis
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - André Renner
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jan Gummert
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Thomas Fischer
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Sophie Van Linthout
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin, Berlin-Brandenburg Center for Regenerative Therapies and German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin, Berlin-Brandenburg Center for Regenerative Therapies and German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.,Clinic for Cardiology & Pneumology, Georg-August University Goettingen, and German Center for Cardiovascular Research (DZHK), partner site Goettingen, Germany
| |
Collapse
|
40
|
Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 2018; 39:2780-2792. [DOI: 10.1093/eurheartj/ehy301] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Carolyn S P Lam
- National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
- Duke-National University of Singapore Medical School, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| | - Scott D Solomon
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 75 Francis St, Boston, MA, USA
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| |
Collapse
|
41
|
Namdar M, Rager O, Priamo J, Frei A, Noble S, Amzalag G, Ratib O, Nkoulou R. Prognostic value of revascularising viable myocardium in elderly patients with stable coronary artery disease and left ventricular dysfunction: a PET/CT study. Int J Cardiovasc Imaging 2018; 34:1673-1678. [DOI: 10.1007/s10554-018-1380-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
|
42
|
Krittanawong C, Kukin ML. Current Management and Future Directions of Heart Failure With Preserved Ejection Fraction: a Contemporary Review. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:28. [PMID: 29557071 DOI: 10.1007/s11936-018-0623-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a complex and debilitating syndrome, is commonly seen in elderly populations. Exacerbation of HFpEF is among the most common reasons for hospital admission in the USA. The high rate of morbidity and mortality from this condition underscores the fact that HFpEF is heterogeneous, complex, and poorly characterized. Randomized, controlled trials have been very successful at identifying treatments for HF with reduced ejection fraction (HFrEF), but effective treatment options for HFpEF are lacking. Here, we discuss (1) the pathophysiology of HFpEF, (2) a standardized diagnostic and therapeutic approach, (3) a comparison of the management of recent guidelines, and (4) challenges and future directions for HFpEF management. The authors believe that it is important to identify new subtypes of HFpEF to better classify genotypes and phenotypes of HFpEF and to develop novel targeted therapies. It is our hypothesis that big data analytics will shine new light on unique HFpEF phenotypes that better respond to treatment modalities.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Division of Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's Hospital, Mount Sinai Heart, 1000 10th Ave, New York, NY, 10019, USA.
| | - Marrick L Kukin
- Division of Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's Hospital, Mount Sinai Heart, 1000 10th Ave, New York, NY, 10019, USA
| |
Collapse
|
43
|
Affiliation(s)
- Farhan Shahid
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Eduard Shantsila
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Experimental preeclampsia in rats affects vascular gene expression patterns. Sci Rep 2017; 7:14807. [PMID: 29093568 PMCID: PMC5665945 DOI: 10.1038/s41598-017-14926-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023] Open
Abstract
Normal pregnancy requires adaptations of the maternal vasculature. During preeclampsia these adaptations are not well established, which may be related to maternal hypertension and proteinuria. The effects of preeclampsia on the maternal vasculature are not yet fully understood. We aimed to evaluate gene expression in aortas of pregnant rats with experimental preeclampsia using a genome wide microarray. Aortas were isolated from pregnant Wistar outbred rats with low-dose LPS-induced preeclampsia (ExpPE), healthy pregnant (Pr), non-pregnant and low-dose LPS-infused non-pregnant rats. Gene expression was measured by microarray and validated by real-time quantitative PCR. Gene Set Enrichment Analysis was performed to compare the groups. Functional analysis of the aorta was done by isotonic contraction measurements while stimulating aortic rings with potassium chloride. 526 genes were differentially expressed, and positive enrichment of “potassium channels”, “striated muscle contraction”, and “neuronal system” gene sets were found in ExpPE vs. Pr. The potassium chloride-induced contractile response of ExpPE aortic rings was significantly decreased compared to this response in Pr animals. Our data suggest that potassium channels, neuronal system and (striated) muscle contraction in the aorta may play a role in the pathophysiology of experimental preeclampsia. Whether these changes are also present in preeclamptic women needs further investigation.
Collapse
|
45
|
Cheema BS, Sabbah HN, Greene SJ, Gheorghiade M. Protein turnover in the failing heart: an ever-changing landscape. Eur J Heart Fail 2017; 19:1218-1221. [PMID: 28805968 DOI: 10.1002/ejhf.905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Baljash S Cheema
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hani N Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Stephen J Greene
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
46
|
Nagiub M, Filippone S, Durrant D, Das A, Kukreja RC. Long-acting PDE5 inhibitor tadalafil prevents early doxorubicin-induced left ventricle diastolic dysfunction in juvenile mice: potential role of cytoskeletal proteins. Can J Physiol Pharmacol 2017; 95:295-304. [PMID: 28238269 DOI: 10.1139/cjpp-2016-0551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemotherapeutic use of doxorubicin (Dox) is hindered due to the development of irreversible cardiotoxicity. Specifically, childhood cancer survivors are at greater risk of Dox-induced cardiovascular complications. Because of the potent cardioprotective effect of phosphodiesterase 5 (PDE5) inhibitors, we examined the effect of long-acting PDE5 inhibitor tadalafil (Tada) against Dox cardiotoxicity in juvenile mice. C57BL/6J mice (6 weeks old) were treated with Dox (20 mg/kg, i.v.) and (or) Tada (10 mg/kg daily for 14 days, p.o.). Cardiac function was assessed by echocardiography following 5 and 10 weeks after Dox treatment. The expression of cardiac proteins was examined by Western blot analysis. Dox treatment caused diastolic dysfunction in juvenile mice indicated by increasing the E/E' (early diastolic myocardial velocity to early tissue Doppler velocity) ratio as compared with control at both 5 and 10 weeks after Dox treatment. Co-treatment of Tada and Dox preserved left ventricular diastolic function with reduction of E/E'. Dox treatment decreased the expression of SERCA2 and desmin in the left ventricle; however, only desmin loss was prevented with Tada. Also, Dox treatment increased the expression of myosin heavy chain (MHCβ), which was reduced by Tada. We propose that Tada could be a promising new therapy for improving cardiac function in survivors of childhood cancer.
Collapse
Affiliation(s)
- Mohamed Nagiub
- a Division of Pediatric Cardiology, Department of Pediatrics at Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Scott Filippone
- b Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David Durrant
- b Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Anindita Das
- b Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rakesh C Kukreja
- b Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article focuses on the recent findings in the diagnosis and treatment of diastolic heart failure (DHF) or heart failure with preserved ejection fraction. RECENT FINDINGS DHF has become the most common form of heart failure in the population. Although diastolic dysfunction still plays a central role, it is now understood that DHF is a very complex clinical entity with heterogeneous pathophysiology and significant contribution from extracardiac comorbidities. Alterations in ventricular-arterial coupling play a significant role in the impaired hemodynamic response to exercise seen in these patients. The absence of diastolic dysfunction at rest does not exclude the diagnosis of DHF. There has been little to no progress made in identifying evidence-based, effective, and specific treatments for patients with DHF. This may be because of the pathophysiological heterogeneity, incomplete understanding of DHF, and heterogeneity of patients included in clinical trials with variable inclusion criteria. SUMMARY The understanding of the phenotypic heterogeneity and multifactorial pathophysiology of DHF may lead to novel therapeutic targets in the future. Currently, the key to the treatment of DHF is aggressive management of contributing factors.
Collapse
|
48
|
Methawasin M, Strom JG, Slater RE, Fernandez V, Saripalli C, Granzier H. Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20 (RBM20) Inhibition Improves Diastolic Function In a Mouse Model of Heart Failure With Preserved Ejection Fraction. Circulation 2016; 134:1085-1099. [PMID: 27630136 DOI: 10.1161/circulationaha.116.023003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Left ventricular (LV) stiffening contributes to heart failure with preserved ejection fraction (HFpEF), a syndrome with no effective treatment options. Increasing the compliance of titin in the heart has become possible recently through inhibition of the splicing factor RNA binding motif-20. Here, we investigated the effects of increasing the compliance of titin in mice with diastolic dysfunction. METHODS Mice in which the RNA recognition motif (RRM) of one of the RNA binding motif-20 alleles was floxed and that expressed the MerCreMer transgene under control of the αMHC promoter (referred to as cRbm20ΔRRM mice) were used. Mice underwent transverse aortic constriction (TAC) surgery and deoxycorticosterone acetate (DOCA) pellet implantation. RRM deletion in adult mice was triggered by injecting raloxifene (cRbm20ΔRRM-raloxifene), with dimethyl sulfoxide (DMSO)-injected mice (cRbm20ΔRRM-DMSO) as the control. Diastolic function was investigated with echocardiography and pressure-volume analysis; passive stiffness was studied in LV muscle strips and isolated cardiac myocytes before and after elimination of titin-based stiffness. Treadmill exercise performance was also studied. Titin isoform expression was evaluated with agarose gels. RESULTS cRbm20ΔRRM-raloxifene mice expressed large titins in the hearts, called supercompliant titin (N2BAsc), which, within 3 weeks after raloxifene injection, made up ≈45% of total titin. TAC/DOCA cRbm20ΔRRM-DMSO mice developed LV hypertrophy and a marked increase in LV chamber stiffness as shown by both pressure-volume analysis and echocardiography. LV chamber stiffness was normalized in TAC/DOCA cRbm20ΔRRM-raloxifene mice that expressed N2BAsc. Passive stiffness measurements on muscle strips isolated from the LV free wall revealed that extracellular matrix stiffness was equally increased in both groups of TAC/DOCA mice (cRbm20ΔRRM-DMSO and cRbm20ΔRRM-raloxifene). However, titin-based muscle stiffness was reduced in the mice that expressed N2BAsc (TAC/DOCAcRbm20ΔRRM-raloxifene). Exercise testing demonstrated significant improvement in exercise tolerance in TAC/DOCA mice that expressed N2BAsc. CONCLUSIONS Inhibition of the RNA binding motif-20-based titin splicing system upregulates compliant titins, which improves diastolic function and exercise tolerance in the TAC/DOCA model. Titin holds promise as a therapeutic target for heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Mei Methawasin
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Joshua G Strom
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Rebecca E Slater
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Vanessa Fernandez
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Chandra Saripalli
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Henk Granzier
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson.
| |
Collapse
|
49
|
Hiebert JB, Shen Q, Thimmesch A, Pierce J. Impaired Myocardial Bioenergetics in HFpEF and the Role of Antioxidants. Open Cardiovasc Med J 2016; 10:158-62. [PMID: 27583040 PMCID: PMC4974825 DOI: 10.2174/1874192401610010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a significant cardiovascular condition for more than 50% of patients with heart failure. Currently, there is no effective treatment to decrease morbidity and mortality rates associated with HFpEF because of its pathophysiological heterogeneity. Recent evidence shows that deficiency in myocardial bioenergetics is one of the key pathophysiological factors contributing to diastolic dysfunction in HFpEF. Another known mechanism for HFpEF is an overproduction of free radicals, specifically reactive oxygen species. To reduce free radical formation, antioxidants are often used. This article is a summative review of the recent relevant literature that addresses cardiac bioenergetics, deficiency in myocardial bioenergetics, and increased reactive oxygen species associated with HFpEF and the promising potential use of antioxidants in managing this condition.
Collapse
Affiliation(s)
| | - Qiuhua Shen
- University of Kansas, School of Nursing, Kansas, USA
| | | | - Janet Pierce
- University of Kansas, School of Nursing, Kansas, USA
| |
Collapse
|
50
|
Fazakas Á, Szelényi Z, Szénási G, Nyírő G, Szabó PM, Patócs A, Tegze N, Fekete BC, Molvarec A, Nagy B, Jakus J, Örsi F, Karádi I, Vereckei A. Genetic predisposition in patients with hypertension and normal ejection fraction to oxidative stress. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2016; 10:124-32. [PMID: 26778769 DOI: 10.1016/j.jash.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
The role of oxidative stress (OXS) due to myocardial nitric oxide synthase (NOS) uncoupling related to oxidative depletion of its cofactor tetrahydrobiopterin (BH4) emerged in the pathogenesis of heart failure with preserved ejection fraction. We determined the prevalence of six single nucleotide polymorphisms (SNPs) of genes encoding enzymes related to OXS, BH4 metabolism, and NOS function in ≥60-year-old 94 patients with hypertension and 18 age-matched controls with normal ejection fraction. Using echocardiography, 56/94 (60%) patients with hypertension had left ventricular (LV) diastolic dysfunction (HTDD+ group) and 38/94 (40%) patients had normal LV diastolic function (HTDD- group). Four SNPs (rs841, rs3783641, rs10483639, and rs807267) of guanosine triphosphate cyclohydrolase-1, the rate-limiting enzyme in BH4 synthesis, one (rs4880) of manganese superoxide dismutase, and one (rs1799983) of endothelial NOS genes were genotyped using real-time polymerase chain reaction method and Taqman probes. Protein carbonylation, BH4, and total biopterin levels were measured from plasma samples. No between-groups difference in minor allele frequency of SNPs was found. We calculated a genetic score indicating risk for OXS based on the minor allele frequencies of the SNPs. A high genetic risk for OXS was significantly associated with HTDD+ even after adjustment for confounding variables (odds ratio [95% confidence interval]:4.79 [1.12-20.54]; P = .035). In both patient groups protein carbonylation (P < .05 for both), plasma BH4 (P < .01 for both) and in the HTDD+ group total biopterin (P < .05) increased versus controls. In conclusion, in patients with hypertension and normal ejection fraction, a potential precursor of heart failure with preserved ejection fraction, a partly genetically determined increased OXS, seems to be associated with the presence of LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ádám Fazakas
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Gábor Nyírő
- MTA-SE Molecular Medicine Research Group, Semmelweis University, Budapest, Hungary
| | - Péter M Szabó
- MTA-SE Molecular Medicine Research Group, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- MTA-SE Lendulet Hereditary Endocrine Tumors Research Group, Semmelweis University, Budapest, Hungary
| | - Narcis Tegze
- Department of Neurology, Kútvölgyi Clinical Group, Semmelweis University, Budapest, Hungary
| | | | - Attila Molvarec
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Judit Jakus
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Örsi
- Department of Applied Biology and Food Science, University of Technology, Budapest, Hungary
| | - István Karádi
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - András Vereckei
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|