1
|
Jensen KM, Turner JA, Uddin LQ, Calhoun VD, Iraji A. Addressing Inconsistency in Functional Neuroimaging: A Replicable Data-Driven Multi-Scale Functional Atlas for Canonical Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612129. [PMID: 39314443 PMCID: PMC11419112 DOI: 10.1101/2024.09.09.612129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The advent of multiple neuroimaging methodologies has greatly aided in the conceptualization of large-scale functional brain networks in the field of cognitive neuroscience. However, there is inconsistency across studies in both nomenclature and the functional entities being described. There is a need for a unifying framework that standardizes terminology across studies while also bringing analyses and results into the same reference space. Here we present a whole-brain atlas of canonical functional brain networks derived from more than 100,000 resting-state fMRI datasets. These data-driven functional networks are highly replicable across datasets and capture information from multiple spatial scales. We have organized, labeled, and described the networks with terms familiar to the fields of cognitive and affective neuroscience in order to optimize their utility in future neuroimaging analyses and enhance the accessibility of new findings. The benefits of this atlas are not limited to future template-based or reference-guided analyses, but also extend to other data-driven neuroimaging approaches across modalities, such as those using blind independent component analysis (ICA). Future studies utilizing this atlas will contribute to greater harmonization and standardization in functional neuroimaging research.
Collapse
Affiliation(s)
- Kyle M. Jensen
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | | | - Lucina Q. Uddin
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Vince D. Calhoun
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
2
|
Atkinson-Clement C, Alkhawashki M, Gatica M, Ross J, Kaiser M. Dynamic changes in human brain connectivity following ultrasound neuromodulation. Sci Rep 2024; 14:30025. [PMID: 39627315 PMCID: PMC11614892 DOI: 10.1038/s41598-024-81102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Non-invasive neuromodulation represents a major opportunity for brain interventions, and transcranial focused ultrasound (FUS) is one of the most promising approaches. However, some challenges prevent the community from fully understanding its outcomes. We aimed to address one of them and unravel the temporal dynamics of FUS effects in humans. Twenty-two healthy volunteers participated in the study. Eleven received FUS in the right inferior frontal cortex while the other 11 were stimulated in the right thalamus. Using a temporal dynamic approach, we compared resting-state fMRI seed-based functional connectivity obtained before and after FUS. We also assessed behavioural changes as measured with a task of reactive motor inhibition. Our findings reveal that the effects of FUS are predominantly time-constrained and spatially distributed in brain regions functionally connected with the directly stimulated area. In addition, mediation analysis highlighted that FUS applied in the right inferior cortex was associated with behavioural alterations which was directly explained by the applied acoustic pressure and the brain functional connectivity change we observed. Our study underscored that the biological effects of FUS are indicative of behavioural changes observed more than an hour following stimulation and are directly related to the applied acoustic pressure.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| | | | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Leucht S, van Os J, Jäger M, Davis JM. Prioritization of Psychopathological Symptoms and Clinical Characterization in Psychiatric Diagnoses: A Narrative Review. JAMA Psychiatry 2024; 81:1149-1158. [PMID: 39259534 DOI: 10.1001/jamapsychiatry.2024.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Importance Psychiatry mainly deals with conditions that are mediated by brain function but are not directly attributable to specific brain abnormalities. Given the lack of concrete biological markers, such as laboratory tests or imaging results, the development of diagnostic systems is difficult. Observations This narrative review evaluated 9 diagnostic approaches. The validity of the DSM and the International Classification of Disorders (ICD) is limited. The Research Domain Criteria is a research framework, not a diagnostic system. The clinical utility of the quantitatively derived, dimensional Hierarchical Taxonomy of Psychopathology is questionable. The Psychodynamic Diagnostic Manual Version 2 follows psychoanalytic theory and focuses on personality. Unlike the personality assessments in ICD-11 or DSM-5's alternative model, based on pathological extremes of the big 5 traits (extraversion, agreeableness, openness, conscientiousness, and neuroticism), it lacks foundation in empirical evidence. Network analytic approaches are intriguing, but their complexity makes them difficult to implement. Staging would be easier if individually predictive biological markers were available. The problem with all these new approaches is that they abstract patient experiences into higher-order constructs, potentially obscuring individual symptoms so much that they no longer reflect patients' actual problems. Conclusions and Relevance ICD and DSM diagnoses can be questioned, but the reality of psychopathological symptoms, such as hallucinations, depression, anxiety, compulsions, and the suffering stemming from them, cannot. Therefore, it may be advisable to primarily describe patients according to the psychopathological symptoms they present, and any resulting personal syndromes, embedded in a framework of contextual clinical characterization including personality assessment and staging. The DSM and ICD are necessary for reimbursement, but they should be simplified and merged. A primarily psychopathological symptoms-based, clinical characterization approach would be multidimensional and clinically useful, because it would lead to problem-oriented treatment and support transdiagnostic research. It should be based on a universally used instrument to assess psychopathology and structured clinical characterization.
Collapse
Affiliation(s)
- Stefan Leucht
- Department of Psychiatry and Psychotherapy, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- German Center for Mental Health, CITY, Germany
| | - Jim van Os
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Markus Jäger
- Department of Psychiatry, Psychotherapy and Psychosomatic, District Hospital Kempten, Kempten, Germany
| | - John M Davis
- Psychiatric Institute, University of Illinois at Chicago, Chicago
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
4
|
Chrobak AA, Bielak S, Nowaczek D, Żyrkowska A, Sobczak AM, Fafrowicz M, Bryll A, Marek T, Dudek D, Siwek M. Divergent pattern of functional connectivity within the dorsal attention network differentiates schizophrenia and bipolar disorder patients. Front Psychiatry 2024; 15:1474313. [PMID: 39364382 PMCID: PMC11446793 DOI: 10.3389/fpsyt.2024.1474313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Schizophrenia (SZ) and bipolar disorder (BD) share common clinical features, symptoms, and neurocognitive deficits, which results in common misdiagnosis. Recently, it has been suggested that alterations within brain networks associated with perceptual organization yield potential to distinguish SZ and BD individuals. The aim of our study was to evaluate whether functional connectivity (FC) of the dorsal attention network (DAN) may differentiate both conditions. Methods The study involved 90 participants: 30 remitted SZ patients, 30 euthymic BD patients, and 30 healthy controls (HC). Resting state functional magnetic resonance imaging was used to compare the groups in terms of the FC within the core nodes of the DAN involving frontal eye fields (FEF) and intraparietal sulcus (IPS). Results BD patients presented weaker inter-hemispheric FC between right and left FEF than HC. While SZ did not differ from HC in terms of inter-FEF connectivity, they presented increased inter- and intra-hemispheric FC between FEF and IPS. When compared with BD, SZ patients showed increased FC between right FEF and other nodes of the network (bilateral IPS and left FEF). Conclusion We have shown that altered resting state FC within DAN differentiates BD, SZ, and HC groups. Divergent pattern of FC within DAN, consisting of hypoconnectivity in BD and hyperconnectivity in SZ, might yield a candidate biomarker for differential diagnosis between both conditions. More highly powered studies are needed to confirm these possibilities.
Collapse
Affiliation(s)
| | - Sylwia Bielak
- Department of Adult, Child and Adolescent Psychiatry, University Hospital in Cracow, Kraków, Poland
| | | | - Aleksandra Żyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Amira Bryll
- Chair of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Więcławski W, Bielski K, Jani M, Binder M, Adamczyk P. Dysconnectivity of the cerebellum and somatomotor network correlates with the severity of alogia in chronic schizophrenia. Psychiatry Res Neuroimaging 2024; 345:111883. [PMID: 39241534 DOI: 10.1016/j.pscychresns.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Recent fMRI resting-state findings show aberrant functional connectivity within somatomotor network (SMN) in schizophrenia. Moreover, functional connectivity aberrations of the motor system are often reported to be related to the severity of psychotic symptoms. Thus, it is important to validate those findings and confirm their relationship with psychopathology. Therefore, we decided to take an entirely data-driven approach in our fMRI resting-state study of 30 chronic schizophrenia outpatients and 30 matched control subjects. We used independent component analysis (ICA), dual regression, and seed-based connectivity analysis. We found reduced functional connectivity within SMN in schizophrenia patients compared to controls and SMN hypoconnectivity with the cerebellum in schizophrenia patients. The latter was strongly correlated with the severity of alogia, one of the main psychotic symptoms, i.e. poverty of speech and reduction in spontaneous speech,. Our results are consistent with the recent knowledge about the role of the cerebellum in cognitive functioning and its abnormalities in psychiatric disorders, e.g. schizophrenia. In conclusion, the presented results, for the first time clearly showed the involvement of the cerebellum hypoconnectivity with SMN in the persistence and severity of alogia symptoms in schizophrenia.
Collapse
Affiliation(s)
| | | | - Martin Jani
- Institute of Psychology, Jagiellonian University, Krakow, Poland; Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Marek Binder
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
6
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2024:sbae148. [PMID: 39209793 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
He H, Long J, Song X, Li Q, Niu L, Peng L, Wei X, Zhang R. A connectome-wide association study of altered functional connectivity in schizophrenia based on resting-state fMRI. Schizophr Res 2024; 270:202-211. [PMID: 38924938 DOI: 10.1016/j.schres.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Aberrant resting-state functional connectivity is a neuropathological feature of schizophrenia (SCZ). Prior investigations into functional connectivity abnormalities have primarily employed seed-based connectivity analysis, necessitating predefined seed locations. To address this limitation, a data-driven multivariate method known as connectome-wide association study (CWAS) has been proposed for exploring whole-brain functional connectivity. METHODS We conducted a CWAS analysis involving 46 patients with SCZ and 40 age- and sex-matched healthy controls. Multivariate distance matrix regression (MDMR) was utilized to identify key nodes in the brain. Subsequently, we conducted a follow-up seed-based connectivity analysis to elucidate specific connectivity patterns between regions of interest (ROIs). Additionally, we explored the spatial correlation between changes in functional connectivity and underlying molecular architectures by examining correlations between neurotransmitter/transporter distribution densities and functional connectivity. RESULTS MDMR revealed the right medial frontal gyrus and the left calcarine sulcus as two key nodes. Follow-up analysis unveiled hypoconnectivity between the right medial frontal superior gyrus and the right fusiform gyrus, as well as hypoconnectivity between the left calcarine sulcus and the right lingual gyrus in SCZ. Notably, a significant association between functional connectivity strength and positive symptom severity was identified. Furthermore, altered functional connectivity patterns suggested potential dysfunctions in the dopamine, serotonin, and gamma-aminobutyric acid systems. CONCLUSIONS This study elucidated reduced functional connectivity both within and between the medial frontal regions and the occipital cortex in patients with SCZ. Moreover, it indicated potential alterations in molecular architecture, thereby expanding current knowledge regarding neurobiological changes associated with SCZ.
Collapse
Affiliation(s)
- Huawei He
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PRC, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for PsychiatricDisorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, PR China.
| |
Collapse
|
8
|
Sun H, Liu N, Qiu C, Tao B, Yang C, Tang B, Li H, Zhan K, Cai C, Zhang W, Lui S. Applications of MRI in Schizophrenia: Current Progress in Establishing Clinical Utility. J Magn Reson Imaging 2024. [PMID: 38946400 DOI: 10.1002/jmri.29470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia is a severe mental illness that significantly impacts the lives of affected individuals and with increasing mortality rates. Early detection and intervention are crucial for improving outcomes but the lack of validated biomarkers poses great challenges in such efforts. The use of magnetic resonance imaging (MRI) in schizophrenia enables the investigation of the disorder's etiological and neuropathological substrates in vivo. After decades of research, promising findings of MRI have been shown to aid in screening high-risk individuals and predicting illness onset, and predicting symptoms and treatment outcomes of schizophrenia. The integration of machine learning and deep learning techniques makes it possible to develop intelligent diagnostic and prognostic tools with extracted or selected imaging features. In this review, we aimed to provide an overview of current progress and prospects in establishing clinical utility of MRI in schizophrenia. We first provided an overview of MRI findings of brain abnormalities that might underpin the symptoms or treatment response process in schizophrenia patients. Then, we summarized the ongoing efforts in the computer-aided utility of MRI in schizophrenia and discussed the gap between MRI research findings and real-world applications. Finally, promising pathways to promote clinical translation were provided. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Kongcai Zhan
- Department of Radiology, Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong, China
| | - Chunxian Cai
- Department of Radiology, the Second People's Hospital of Neijiang, Neijiang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
9
|
Secara MT, Oliver LD, Gallucci J, Dickie EW, Foussias G, Gold J, Malhotra AK, Buchanan RW, Voineskos AN, Hawco C. Heterogeneity in functional connectivity: Dimensional predictors of individual variability during rest and task fMRI in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110991. [PMID: 38484928 PMCID: PMC11034852 DOI: 10.1016/j.pnpbp.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Individuals with schizophrenia spectrum disorders (SSD) often demonstrate cognitive impairments, associated with poor functional outcomes. While neurobiological heterogeneity has posed challenges when examining social cognition in SSD, it provides a unique opportunity to explore brain-behavior relationships. The aim of this study was to investigate the relationship between individual variability in functional connectivity during resting state and the performance of a social task and social and non-social cognition in a large sample of controls and individuals diagnosed with SSD. METHODS Neuroimaging and behavioral data were analyzed for 193 individuals with SSD and 155 controls (total n = 348). Individual variability was quantified through mean correlational distance (MCD) of functional connectivity between participants; MCD was defined as a global 'variability score'. Pairwise correlational distance was calculated as 1 - the correlation coefficient between a given pair of participants, and averaging distance from one participant to all other participants provided the mean correlational distance metric. Hierarchical regressions were performed on variability scores derived from resting state and Empathic Accuracy (EA) task functional connectivity data to determine potential predictors (e.g., age, sex, neurocognitive and social cognitive scores) of individual variability. RESULTS Group comparison between SSD and controls showed greater SSD MCD during rest (p = 0.00038), while no diagnostic differences were observed during task (p = 0.063). Hierarchical regression analyses demonstrated the persistence of a significant diagnostic effect during rest (p = 0.008), contrasting with its non-significance during the task (p = 0.50), after social cognition was added to the model. Notably, social cognition exhibited significance in both resting state and task conditions (both p = 0.01). CONCLUSIONS Diagnostic differences were more prevalent during unconstrained resting scans, whereas the task pushed participants into a more common pattern which better emphasized transdiagnostic differences in cognitive abilities. Focusing on variability may provide new opportunities for interventions targeting specific cognitive impairments to improve functional outcomes.
Collapse
Affiliation(s)
- Maria T Secara
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anil K Malhotra
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Alvino FG, Gini S, Minetti A, Pagani M, Sastre-Yagüe D, Barsotti N, De Guzman E, Schleifer C, Stuefer A, Kushan L, Montani C, Galbusera A, Papaleo F, Lombardo MV, Pasqualetti M, Bearden CE, Gozzi A. Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587339. [PMID: 38585897 PMCID: PMC10996624 DOI: 10.1101/2024.03.29.587339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper- to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3β, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.
Collapse
Affiliation(s)
- F G Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - S Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - A Minetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - M Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- IMT School for Advanced Studies, Lucca, Italy
| | - D Sastre-Yagüe
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - N Barsotti
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - E De Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - C Schleifer
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Stuefer
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - L Kushan
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - C Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - A Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - F Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - M V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - M Pasqualetti
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Universita di Pisa (CISUP), Pisa, Italy
| | - C E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California
| | - A Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| |
Collapse
|
11
|
Fu L, Aximu R, Zhao G, Chen Y, Sun Z, Xue H, Wang S, Zhang N, Zhang Z, Lei M, Zhai Y, Xu J, Sun J, Ma J, Liu F. Mapping the landscape: a bibliometric analysis of resting-state fMRI research on schizophrenia over the past 25 years. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:35. [PMID: 38490990 PMCID: PMC10942978 DOI: 10.1038/s41537-024-00456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.
Collapse
Affiliation(s)
- Linhan Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Remilai Aximu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|