1
|
Sima OC, Costachescu M, Stanciu M, Nistor C, Carsote M, Tanasescu D, Popa FL, Valea A. A Real-Life Study in Sequential Therapy for Severe Menopausal Osteoporosis. J Clin Med 2025; 14:627. [PMID: 39860632 PMCID: PMC11766421 DOI: 10.3390/jcm14020627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Teriparatide (TPT) acts against severe primary (postmenopausal) osteoporosis (MOP), and it requires continuation with another anti-resorptive drug to conserve or enhance the effects on fracture risk reduction. Objective: To analyse the sequential pharmacotherapy in MOP who were treated upon a 24-month daily 20 µg TPT protocol (24-mo-TPT) followed by another 12 months of anti-resorptive drugs (12-mo-AR) amid real-life settings. Hypotheses: 1. TPT candidates had a more severe fracture risk profile versus those who did not fulfil the TPT criteria according to the national protocol of TPT initiation; 2. Patients treated with TPT improved their DXA profile after 24 mo; 3. After 1 year of therapy since the last TPT injection, the improved bone profile and fracture risk at the end of the TPT protocol were conserved; 4. The mineral metabolism assays and fracture risk status were similar at TPT initiation between those who finished the 24 mo protocol and those who prematurely stopped it. Methods: This was a longitudinal, retrospective, multicentre study in MOP. The entire cohort (group A) included the TPT group (B) versus the non-TPT group (non-B). Group B included subjects who finished 24-mo-TPT (group P) and early droppers (ED), and then both continued 12-mo-AR. Results: Group B (40.5%) from cohort A (N = 79) vs. non-B had lower T-scores, increased age and years since menopause. A similar profile of demographic features, BTM, and prevalent fractures (73%, respectively, 57%) was found in group P (72%) vs. ED (21.8%). Group P: osteocalcin was statistically significantly higher at 12 mo (+308.39%), respectively, at 24 mo (+171.65%) vs. baseline (p < 0.001 for each), while at 12-mo-AR became similar to baseline (p = 0.615). The cumulative probability of transient hypercalcemia-free follow-up of protocol had the highest value of 0.97 at 6 mo. An incidental fracture (1/32) was confirmed under 24-mo-TPT. BMD had a mean percent increase at the lumbar spine of +8.21% (p < 0.001), of +12.22% (p < 0.001), respectively, of +11.39% (p < 0.001). The pharmacologic sequence for 12-mo-AR included bisphosphonates (24.24% were oral BP) or denosumab (13%). BTM showed a suppression at 12-mo-AR (p < 0.05), while all BMD/T-scores were stationary. No incidental fracture was registered during 12-mo-AR. Conclusions: All research hypotheses were confirmed. This study in high-risk MOP highlighted an effective sequential pharmacotherapy in reducing the fracture risk as pinpointed by BMD/T-score measurements and analysing the incidental fractures profile.
Collapse
Affiliation(s)
- Oana-Claudia Sima
- PhD Doctoral School of “Carol Davila”, University of Medicine and Pharmacy, 010825 Bucharest, Romania;
| | - Mihai Costachescu
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Mihaela Stanciu
- Department of Endocrinology, “Lucian Blaga” University of Sibiu, Victoriei Blvd., 550024 Sibiu, Romania
- Department of Endocrinology, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Claudiu Nistor
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Denisa Tanasescu
- Medical Clinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Florina Ligia Popa
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Ana Valea
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Endocrinology, County Emergency Clinical Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Bhatti P, Ortiz S, Neitzke CC, Lane JM, Gausden EB. Multidisciplinary Approach to a Transverse Periprosthetic Femur Fracture in a Short-Statured Patient: A Case Report. JBJS Case Connect 2025; 15:01709767-202503000-00059. [PMID: 40053675 DOI: 10.2106/jbjs.cc.24.00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
CASE A 43-year-old woman with VACTERL sustained a Vancouver B1 periprosthetic femur fracture (PFF) following right revision total hip arthroplasty with a cemented femoral component. She underwent open reduction and internal fixation (ORIF) with dual plate fixation, and later received abaloparatide and autologous bone grafting with iliac crest aspirate at 10 months post-ORIF. The fracture achieved radiographic union 2 years post-ORIF. CONCLUSION PFFs in patients with metabolic bone disease may require prolonged healing. Use of dual-implant fixation and a multidisciplinary approach to treat underlying metabolic bone disorders can help overcome delayed healing in these cases.
Collapse
Affiliation(s)
- Pravjit Bhatti
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | | | | | | | | |
Collapse
|
3
|
Ramalho D, Rocha GM, Oliveira MJ. The Portuguese state of the art on osteoporosis and fracture risk: an
update on the treatment options. AKTUEL RHEUMATOL 2024; 49:385-394. [DOI: 10.1055/a-2158-0872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractOsteoporosis and fragility fractures are serious public health problems, which
greatly impact individual health and the economy of other health services.
Pharmacological treatment is still one of the main elements of clinical
intervention, combined with non-pharmacological measures, in preventing the
occurrence of fragility fractures. The emergence of promising new
pharmacological options in the treatment of osteoporosis seems to renew
expectations in the prevention of complications and a subsequent reduction in
morbidity and mortality, including symptomatic treatment, improved physical
function and a better quality of life. This review aims to provide updated
information on the pharmacological treatment of osteoporosis in the adult
population. A comprehensive PubMed search was performed to review the current
evidence on osteoporosis treatment. Of the 378 articles identified from the
initial queries, the final review included 80 articles. Currently, the following
pharmacological options are available: antiresorptive (bisphosphonates,
denosumab, postmenopausal hormone replacement therapy and selective oestrogen
receptor modulators), bone-forming agents (essentially, teriparatide and
abaloparatide) and the new dual-action therapy (romosozumab), recently approved
by the US Food and Drug Administration and the European Medicines Agency, but
which is not yet an option in Portugal. Therapeutic selection is essentially
based on assessment of cost-effectiveness, since current evidence does not
suggest any differences between the distinctive classes in reducing the risk of
fractures, but this analysis is limited by the scarcity of comparative
intraclass studies. Notwithstanding, romosozumab, as a dual effect therapy, is
promising in resolving the physiological limitations resulting from the merely
unilateral action of antiresorptive agents and bone-forming agents in the
inseparable relationship between bone formation and resorption. However, its
cardiovascular safety raises some concerns, and this topic is still being
debated. The underdiagnosis and the undertreatment of osteoporosis remain one of
the greatest challenges of the 21st century. Over the years, new drugs have
appeared that have tried to address these problems with a direct impact on the
health of populations, but a long way remains to be come in optimising their
effectiveness, safety and tolerability.
Collapse
Affiliation(s)
- Diogo Ramalho
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| | - Gustavo Melo Rocha
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| | - Maria João Oliveira
- Endocrinology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila
Nova de Gaia, Portugal
| |
Collapse
|
4
|
Jacob G, Shimomura K, Nakamura N. Biologic therapies in stress fractures: Current concepts. J ISAKOS 2024; 9:100256. [PMID: 38631518 DOI: 10.1016/j.jisako.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Stress fractures, a common overuse injury in physically active individuals, present a significant challenge for athletes and military personnel. Patients who sustain stress fractures have demanding training regimes where periods of rest and immobilisation have unacceptable negative consequences on sports goals and finances. Aside from being an overuse injury, there are various contributing risk factors that put certain individuals at risk of a stress fracture. The main two being nutritional deficiencies and hormonal variations, which have significant effects on bone metabolism and turnover. Historically, treatment of stress fractures focused on conservative strategies such as rest and immobilisation. Calcium and vitamin D deficiencies have been closely linked to stress fractures and so over time supplementation has also played a role in treatment. With the introduction of biologics into orthopaedics, newer treatment strategies have been applied to accelerate fracture healing and perhaps improve fracture callus quality. If such therapies can reduce time spent away from sport and activity, it would be ideal for treating stress fractures. This article aims to offer insights into the evolving landscape of stress fracture management. It investigates the pre-clinical evidence and available published clinical applications. Though fracture healing is well understood, the role of biologics for fracture healing is still indeterminate. Available literature for the use of biologic therapies in stress fractures are restricted and most reports have used biologics as a supplement to surgical fixation in subjects in studies that lack control groups. Randomised control trials have been proposed and registered by a few groups, with results awaited. Assessing individuals for risk factors, addressing hormonal imbalances and nutritional deficiencies seems like an effective approach to addressing the burden of stress fractures. We await better designed trials and studies to accurately determine the clinical benefit of adding biologics to the management of these injuries.
Collapse
Affiliation(s)
- George Jacob
- Department of Orthopaedic Surgery, Lakeshore Hospital, Cochin, India
| | - Kazunori Shimomura
- Department of Rehabilitation, Kansai University of Welfare Sciences, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan; Global Centre for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Raad M, Kim AH, Durand WM, Kebaish KM. Low bone mineral density: a primer for the spine surgeon. Spine Deform 2024; 12:1511-1520. [PMID: 39060777 DOI: 10.1007/s43390-024-00913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 07/28/2024]
Abstract
Within spinal surgery, low bone mineral density is associated with several postoperative complications, such as proximal junctional kyphosis, pseudoarthrosis, and screw loosening. Although modalities such as CT and MRI can be utilized to assess bone quality, DEXA scans, the "Gold Standard" for diagnosing osteoporosis, is not routinely included in preoperative workup. With an increasing prevalence of osteoporosis in an aging population, it is critical for spine surgeons to understand the importance of evaluating bone mineral density preoperatively to optimize postoperative outcomes. The purpose of this state-of-the-art review is to provide surgeons a summary of the evaluation, treatment, and implications of low bone mineral density in patients who are candidates for spine surgery.
Collapse
Affiliation(s)
- Micheal Raad
- Department of Orthopaedic Surgery, The Johns Hopkins University, 601 N Caroline St. 5th Floor, Baltimore, MD, 21205, USA
| | - Andrew H Kim
- Department of Orthopaedic Surgery, The Johns Hopkins University, 601 N Caroline St. 5th Floor, Baltimore, MD, 21205, USA
| | - Wesley M Durand
- Department of Orthopaedic Surgery, The Johns Hopkins University, 601 N Caroline St. 5th Floor, Baltimore, MD, 21205, USA
| | - Khaled M Kebaish
- Department of Orthopaedic Surgery, The Johns Hopkins University, 601 N Caroline St. 5th Floor, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Shariff JRR, Swe KM, Binkley N, Whyte MP, Pabich SK. Skeletal fluorosis: an uncommon cause, yet a rescue treatment? Osteoporos Int 2024; 35:1859-1863. [PMID: 38847810 DOI: 10.1007/s00198-024-07137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Skeletal fluorosis (SF) results from chronic exposure to fluoride (F-) causing excessive aberrantly mineralized brittle bone tissue, fractures, and exostoses. There is no established treatment other than avoiding the source of F-. Still, excess F- can persist in bone for decades after exposure ceases. CASE PRESENTATION A 50-year-old woman presented with multiple, recurrent, low AQ2 trauma fractures yet high radiologic bone mineral density. Serum F- was elevated, and osteomalacia was documented by non-decalcified transiliac biopsy. She reported intermittently "huffing" a keyboard cleaner containing F- (difluoroethane) for years. Following cessation of her F- exposure, we evaluated the administration of the parathyroid hormone analog, abaloparatide, hoping to increase bone remodeling and diminish her skeletal F- burden. CONCLUSION Due to the prolonged half-life of F- in bone, SF can cause fracturing long after F- exposure stops. Anabolic therapy approved for osteoporosis, such as abaloparatide, may induce mineralized bone turnover to replace the poorly mineralized osteomalacic bone characteristic of SF and thereby diminish fracture risk. Following abaloparatide treatment for our patient, there was a decrease in bone density as well as a reduction in F- levels.
Collapse
Affiliation(s)
| | | | - Neil Binkley
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael P Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samatha K Pabich
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
7
|
Zhang R, Mu X, Liu D, Chen C, Meng B, Qu Y, Liu J, Wang R, Li C, Mao X, Wang Q, Zhang Q. Apoptotic vesicles rescue impaired mesenchymal stem cells and their therapeutic capacity for osteoporosis by restoring miR-145a-5p deficiency. J Nanobiotechnology 2024; 22:580. [PMID: 39304875 PMCID: PMC11414301 DOI: 10.1186/s12951-024-02829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Apoptotic vesicles (apoVs) play a vital role in various physiological and pathological conditions. However, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs). Here, we proved that systemic infusion of MSCs derived from wild-type (WT) mice rather than from ovariectomized (OVX) mice effectively improved the osteopenia phenotype and rescued the impaired recipient MSCs in osteoporotic mice. Meanwhile, apoVs derived from WT MSCs (WT apoVs) instead of OVX apoVs efficiently restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-β/Smad 2/3-Wnt/β-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. The differential expression of miR-145a-5p is responsible for the distinct efficacy between the two types of apoVs. Overall, our findings unveil the remarkable potential of apoVs, as a novel nongenetic engineering approach, in rescuing the biological function and therapeutic capability of MSCs derived from patients. This discovery offers a new avenue for exploring apoVs-based stem cell engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Xiaodan Mu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dawei Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics, Peking University School & Hospital of Stomatology, Beijing, 100081, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lab of Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Runci Wang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chuanjie Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China
| | - Xueli Mao
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
8
|
Liu J, Wang B, Chen H, Yu X, Cao X, Zhang H. Osteoclast-derived exosomes influence osteoblast differentiation in osteoporosis progression via the lncRNA AW011738/ miR-24-2-5p/ TREM1 axis. Biomed Pharmacother 2024; 178:117231. [PMID: 39094542 DOI: 10.1016/j.biopha.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
AIMS To investigate the molecular mechanism of osteoclast-derived exosomes in osteoporosis. MAIN METHODS RANKL induced osteoclast model was screened for significantly differentially expressed lncRNAs and mRNAs by whole RNA sequencing. Exosomes were characterized using electron microscopy, western blotting and nanosight. Overexpression or knockdown of AW011738 was performed to explore its function. The degree of osteoporosis in an osteoporosis model was assessed by mirco-CT. The osteoclast model, osteoblast differentiation ability and the molecular mechanism of lncRNA AW011738/miR-24-2-5p/TREM1 axis in osteoporosis were assessed by dual luciferase reporter gene assay, Western blotting (WB), immunofluorescence and ALP staining. Bioinformatics was used to predict interactions of key osteoporosis-related genes with miRNAs, transcription factors, and potential drugs after upregulation of AW011738. To predict the protein-protein interaction (PPI) network associated with key genes, GO and KEGG analyses were performed on the key genes. The ssGSVA was used to predict changes in the immune microenvironment. KEY FINDINGS Osteoclast-derived exosomes containing lncRNA AW011738 decreased the osteogenesis-related markers and accelerated bone loss in OVX mice. Osteoclast (si-AW011738)-derived exosomes showed a significant increase in biomarkers of osteoblast differentiation in vitro compared to the si-NC group. As analyzed by mirco-CT, tail vein injected si-AW011738 OVX mice were less osteoporotic than the control group. AW011738 inhibited osteoblast differentiation by regulating TREM1 expression through microRNA. Meanwhile, overexpression of miR-24-2-5p inhibited TREM1 expression to promote osteoblast differentiation. SIGNIFICANCE Osteoclast-derived exosomes containing lncRNA AW011738 inhibit osteogenesis in MC3T3-E1 cells through the lncRNA AW011738/miR-24-2-5p/TREM1 axis and exacerbate osteoporosis in OVX mice.
Collapse
Affiliation(s)
- Jingcheng Liu
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Binyu Wang
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Hongtao Chen
- Department Of Orthopedics, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Xiao Yu
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Hongxiu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Zhang R, Mu X, Liu D, Chen C, Meng B, Qu Y, Liu J, Wang R, Li C, Mao X, Wang Q, Zhang Q. Apoptotic vesicles rescue impaired mesenchymal stem cells and their therapeutic capacity for osteoporosis by restoring miR-145a-5p deficiency. RESEARCH SQUARE 2024:rs.3.rs-4416138. [PMID: 38883762 PMCID: PMC11177995 DOI: 10.21203/rs.3.rs-4416138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Apoptotic vesicles (apoVs) play a vital role in various pathological conditions; however, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs) and regulating tissue homeostasis. Here, we proved that systemic infusion of bone marrow MSCs derived from wild-type (WT) mice effectively improved the osteopenia phenotype and hyperimmune state in ovariectomized (OVX) mice. Importantly, the WT MSCs rescued the impairment of OVX MSCs both in vivo and in vitro, whereas OVX MSCs did not show the same efficacy. Interestingly, treatment with apoVs derived from WT MSCs (WT apoVs) restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. This effect was not observed with OVX MSCs-derived apoVs (OVX apoVs) treatment. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-β/Smad 2/3-Wnt/β-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. Conversely, treatment with OVX apoVs did not produce significant effects due to their limited expression of miR-145a-5p. Overall, our findings unveil the remarkable potential of apoVs in rescuing the biological function and therapeutic capability of MSCs derived from individuals with diseases. This discovery offers a new avenue for exploring apoVs-based MSC engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.
Collapse
Affiliation(s)
| | | | - Dawei Liu
- Peking University School & Hospital of Stomatology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li P, Zhou J, Wang T, Li J, Wu W. Capsiate ameliorates secondary hyperparathyroidism by improving insulin sensitivity and inhibiting angiogenesis. J Cell Mol Med 2024; 28:e18202. [PMID: 38591872 PMCID: PMC11003359 DOI: 10.1111/jcmm.18202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Secondary hyperparathyroidism has a significant impact on the overall well-being of the body. Capsiates, known for their antioxidant and metabolic properties, have emerged as a promising alternative treatment for secondary hyperparathyroidism. This study aims to evaluate the effects and mechanisms of capsiates in the treatment of secondary hyperparathyroidism. To achieve our research objectives, we conducted a study on patients' serum and examined changes in metabolic markers using serum metabolomics. We induced secondary hyperparathyroidism in rat through dietary intervention and divided them into four groups. The first group, referred to as the Parathyroid Hormone (PTH) group, received a low-calcium and high-phosphate diet (0.2% calcium, 1.2% phosphorus). The second group served as the control group, receiving a standard phosphate and calcium diet (0.6% calcium, 0.6% phosphorus). The third group, called the capsiates group, consisted of rat from the control group treated with capsiates (intraperitoneal injection of 2 mg/kg capsiates for 2 weeks after 2 weeks of dietary intervention). The fourth group was the capsiates-treated PTH group. Subsequently, we conducted ribose nucleic acid (RNA) sequencing on parathyroid gland cells and evaluated serum thyroxine levels, oxidative stress, expression of proteins associated with vascular neogenesis, measurement of SOD, GSH and 3-nitrotyrosine, micro-CT and histological staining. The serum metabolomic data revealed a significant decrease in capsiate levels in the secondary hyperparathyroidism group. Administration of capsiates to PTH rat resulted in increased calcium levels compared to the PTH group. Additionally, the PTH + Capsiates group showed significantly lower levels of PTH and phosphate compared to the PTH group. The PTH group exhibited a notable increase in the quantity and size of mitochondria compared to the control group. Following capsiates administration to the PTH group, there was a significant reduction in the number of mitochondria and length of microvilli, but an increase in the size of mitochondria compared to the PTH group. Sequencing analysis revealed that vascular endothelial growth factor (VEGF) and Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) play crucial roles in this process. Vascular-related variables and downstream signalling were significantly elevated in hyperthyroidism and were alleviated with capsaicin treatment. Finally, combining capsiates with the PTH group improved bone mineral density, Tb.N, BV.TV, Cs.Th, Tt.Ar, OPG, Ob.TV and Oc.TV, as well as the mineral apposition rate, but significantly decreased Tb.Sp and Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) compared to the PTH group. The findings suggest that capsiates can improve secondary hyperparathyroidism and ameliorated osteoporosis outcomes by inhibiting angiogenesis and reducing oxidative stress.
Collapse
Affiliation(s)
- Peiting Li
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Jianda Zhou
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Tianyin Wang
- Transplantation CenterThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Jun Li
- Department of Breast Thyroid SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Wei Wu
- Department of Breast Thyroid SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
12
|
Li C, Pan H, Liu W, Jin G, Liu W, Liang C, Jiang X. Discovery of novel serum biomarkers for diagnosing and predicting postmenopausal osteoporosis patients by 4D-label free protein omics. J Orthop Res 2023; 41:2713-2720. [PMID: 37203779 DOI: 10.1002/jor.25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
We aimed to identify protein biomarkers that could rapidly and accurately diagnose osteoporosis patients (OPs) using a highly sensitive proteomic immunoassay. Four-dimensional (4D) label-free proteomics analysis was performed to determine the differentially expressed proteins in serum collected from 10 postmenopausal osteoporosis patients and 6 non-osteoporosis patients. The ELISA method was used to select the predicted proteins for verification. Serum was taken from 36 postmenopausal osteoporosis patients and 36 healthy individuals from normal postmenopausal women. Receiver operating characteristic (ROC) curves were used to determine the diagnostic potential of this method. We validated the expression of these six proteins using ELISA. The CDH1, IGFBP2, and VWF of osteoporosis patients were significantly higher than those of the normal group. PNP was significantly lower than that in the normal group. And using ROC curve calculation, serum CDH1 had a cut-off of 3.78 ng/mL with a sensitivity of 84.4%, and PNP had a cut-off of 944.32 ng/mL with 88.9% sensitivity. These outcomes suggest that serum-level CHD1 and PNP have the potential power as effective indicators for the diagnosis of PMOP. Our results suggest that CHD1 and PNP might be associated with the pathogenesis of OP and would be helpful in diagnosing OP. Therefore, CHD1 and PNP may act as potential key markers in OP.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
- Department of Laboratory Medicine, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Xicheng District, Beijing, China
| | - Haizhou Pan
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Guohong Jin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Wuzheng Liu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Cuiying Liang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
- Department of Laboratory Medicine, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Xicheng District, Beijing, China
| | - Xieyuan Jiang
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The 4th Medical College of Peking University, Beijing, China
| |
Collapse
|
13
|
Zhao H, Zhu L, Fan L, Yang J, Hou J, Zhang G, Wang C, Pan J. Association of nocturnal sleep duration and sleep midpoint with osteoporosis risk in rural adults: a large-scale cross-sectional study. Sleep Breath 2023; 27:2191-2198. [PMID: 37009967 DOI: 10.1007/s11325-023-02818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Evidence has suggested the linkage between sleep habits and several metabolic diseases, but the association of sleep factors with bone health remains unclear, especially in regions with low economic levels. Thus, this study aimed to investigate the relationship of nocturnal sleep duration and sleep midpoint with the osteoporosis risk in a rural population. METHOD Eligible subjects were derived from the Henan Rural Cohort Study. The Pittsburgh Sleep Quality Index was applied to collect sleep information including sleep initiating time and wake-up time. The bone mineral density of the calcaneus was measured by the ultrasonic bone density apparatus. Multivariable logistic regression models and restricted cubic splines were utilized to evaluate the odds ratio (OR) and 95% confidence intervals (95% CI). RESULTS For 8033 participants, 1636 subjects suffered from osteoporosis. Compared with the reference group (7 ~ h group), the ORs and 95% CI of osteoporosis associated with duration of nocturnal sleep were 1.32 (1.10, 1.56), 1.59 (1.25, 2.01), and 1.82 (1.25, 2.65) in the 8 ~ h, 9 ~ h, and ≥ 10 h group, respectively. Additionally, the adjusted ORs and 95% CI were 1.20 (1.01, 1.44) in the early sleep midpoint group and 1.09 (0.92, 1.29) in the intermediate sleep midpoint, compared with the late. Furthermore, there was a joint effect of long duration of nocturnal sleep and the early sleep midpoint on osteoporosis. CONCLUSION Long duration of nocturnal sleep and early sleep midpoint were independently and jointly associated with higher risk of osteoporosis in rural areas. TRIAL REGISTRATION The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Hongfei Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Linghui Zhu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Lin Fan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jing Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Gongyuan Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Jun Pan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential Effects of PTH (1-34), PTHrP (1-36), and Abaloparatide on the Murine Osteoblast Transcriptome. J Endocr Soc 2023; 8:bvad156. [PMID: 38155918 PMCID: PMC10753291 DOI: 10.1210/jendso/bvad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/30/2023] Open
Abstract
Teriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed similarities in Wnt signaling, cAMP-mediated signaling, ossification, but differences in morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, and cytokine receptor/binding activity in molecular functions. The peptides increased Vdr, Cited1, and Pde10a messenger RNAs (mRNAs) in a pattern similar to Rankl, that is, PTH (1-34) greater than ABL greater than PTHrP (1-36). mRNA abundance of other genes, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epn3, Tcf7, Crem, Fzd5, Ppp2r2a, and Dvl3, showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, small interfering RNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH (1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by salt-inducible kinases (SIKs) and CREB-regulated transcriptional coactivators (CRTCs), while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to compare the global effects of these peptides on the osteoblast transcriptome or to analyze the roles of the SIKs and CRTCs.
Collapse
Affiliation(s)
- Michael J Mosca
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Zhiming He
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Florante R Ricarte
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
15
|
Chen R, Dong H, Raval D, Maridas D, Baroi S, Chen K, Hu D, Berry SR, Baron R, Greenblatt MB, Gori F. Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc Natl Acad Sci U S A 2023; 120:e2312677120. [PMID: 37931101 PMCID: PMC10655581 DOI: 10.1073/pnas.2312677120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA02115
| | - Dhairya Raval
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - David Maridas
- Department of Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA02115
| | - Sudipta Baroi
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Kun Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shawn R. Berry
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA02114
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Research Division, Hospital for Special Surgery, New York, NY10021
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| |
Collapse
|
16
|
Lv Z, Zhang J, Liang S, Zhou C, Hu D, Brooks DJ, Bouxsein ML, Lanske B, Kostenuik P, Gori F, Baron R. Comparative study in estrogen-depleted mice identifies skeletal and osteocyte transcriptomic responses to abaloparatide and teriparatide. JCI Insight 2023; 8:e161932. [PMID: 37870958 PMCID: PMC10619488 DOI: 10.1172/jci.insight.161932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2023] [Indexed: 10/25/2023] Open
Abstract
Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 μg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.
Collapse
Affiliation(s)
- Zhengtao Lv
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jiaming Zhang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shuang Liang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chenhe Zhou
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Daniel J. Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| | | | | | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Zeng L, Gu R, Li W, Shao Y, Zhu Y, Xie Z, Liu H, Zhou Y. Ataluren prevented bone loss induced by ovariectomy and aging in mice through the BMP-SMAD signaling pathway. Biomed Pharmacother 2023; 166:115332. [PMID: 37597324 DOI: 10.1016/j.biopha.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023] Open
Abstract
Both estrogen deficiency and aging may lead to osteoporosis. Developing novel drugs for treating osteoporosis is a popular research direction. We screened several potential therapeutic agents through a new deep learning-based efficacy prediction system (DLEPS) using transcriptional profiles for osteoporosis. DLEPS screening led to a potential novel drug examinee, ataluren, for treating osteoporosis. Ataluren significantly reversed bone loss in ovariectomized mice. Next, ataluren significantly increased human bone marrow-derived mesenchymal stem cell (hBMMSC) osteogenic differentiation without cytotoxicity, indicated by the high expression index of osteogenic differentiation genes (OCN , BGLAP, ALP, COL1A, BMP2, RUNX2). Mechanistically, ataluren exerted its function through the BMP-SMAD pathway. Furthermore, it activated SMAD phosphorylation but osteogenic differentiation was attenuated by BMP2-SMAD inhibitors or small interfering RNA of BMP2. Finally, ataluren significantly reversed bone loss in aged mice. In summary, our findings suggest that the DLEPS-screened ataluren may be a therapeutic agent against osteoporosis by aiding hBMMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Lijun Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, 38 Xueyuan Lu, Haidian District, Beijing 100191, China.
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, China.
| |
Collapse
|
18
|
Jarrell L. Osteoporosis management in primary care. Nurse Pract 2023; 48:11-20. [PMID: 37643140 DOI: 10.1097/01.npr.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Osteoporosis is the most prevalent bone disease in the US. Once diagnosed, osteoporosis requires ongoing management; therefore, primary care providers are vital in managing both primary and secondary fracture prevention. Safe, efficacious, and economical medications are available, but osteoporosis remains underdiagnosed and undertreated. Bisphosphonates, selective estrogen receptor modulators (raloxifene), conjugated estrogens/bazedoxifene, estrogen therapy/hormone therapy, parathyroid hormone analogues, RANK ligand inhibitors (denosumab), sclerostin inhibitors (romosozumab), and calcitonin are all drugs or drug classes commonly used to treat osteoporosis that are discussed in this article.
Collapse
Affiliation(s)
- Lynda Jarrell
- Lynda Jarrell is a clinical assistant professor at University of Texas at Arlington in Fort Worth, Tex
| |
Collapse
|
19
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential effects of PTH (1-34), PTHrP (1-36) and abaloparatide on the murine osteoblast transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523646. [PMID: 37645806 PMCID: PMC10461920 DOI: 10.1101/2023.01.11.523646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed differences in Wnt signaling, cAMP-mediated signaling, bone mineralization, morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, cytokine receptor/binding activity and many other actions in molecular functions. The 3 peptides increased Vdr, Cited1 and Pde10a mRNAs in a pattern similar to Rankl , i.e., PTH(1-34) > ABL > PTHrP(1-36). mRNA abundance of other genes based on gene/pathway analyses, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epha3, Tcf7, Crem, Fzd5, Pp2r2a , and Dvl3 showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, siRNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH(1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by SIKs and CRTCs, while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to examine the global effects of these peptides on the osteoblast transcriptome. Further delineation of which signaling events are attributable to PTH(1-34), PTHrP(1-36) or ABL exclusively and which are shared among all 3 will help improve our understanding of the effects these peptides have on the osteoblast and lead to the refinement of PTH-derived treatments for osteoporosis.
Collapse
|
20
|
van Wijnen AJ, Dashti P. Next-Generation Bone Stimulation: Doubling Down on Bone Anabolics: Commentary on an article by Monica Florio, PhD, et al.: "Dual Inhibition of the Wnt Inhibitors DKK1 and Sclerostin Promotes Fracture Healing and Increases the Density and Strength of Uninjured Bone. An Experimental Study in Nonhuman Primates". J Bone Joint Surg Am 2023; 105:e38. [PMID: 37530724 DOI: 10.2106/jbjs.23.00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Affiliation(s)
| | - Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Rios C, Maldonado G, Vargas S, González J, Vera C, Zuñiga A, Martínez J, Castillo M, Jervis R, Ventura R, Guevara S, Torres G, Uguña F, Messina OD, Neyro JL, Fernández D, Guerrero R, Moreno M. First Ecuadorian statement consensus for the evaluation and treatment of osteoporosis. Arch Osteoporos 2023; 18:81. [PMID: 37316765 DOI: 10.1007/s11657-023-01263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Osteoporosis management has become more relevant as the life expectancy increases. In Ecuador, approximately 19% of adults over 65 years of age have been diagnosed with osteoporosis. There is no national consensus for the management and prevention of the disease being this proposal the first Ecuadorian consensus. INTRODUCTION In Ecuador, it is estimated that around 19% of adults over 65 years of age have osteoporosis. Due to the increase in life expectancy in the world population, the evaluation and management of osteoporosis has become more relevant. Currently, there is no national consensus for the management and prevention of the disease. The Ecuadorian Society of Rheumatology presented the project for the elaboration of the first Ecuadorian consensus for the management and prevention of osteoporosis. METHODS A panel of experts in multiple areas and extensive experience was invited to participate. The consensus was carried out using the Delphi method. Six working dimensions were created: definition and epidemiology of osteoporosis, fracture risk prediction tools, non-pharmacological treatment, pharmacological treatment, calcium and vitamin D, and glucocorticoid-induced osteoporosis. RESULTS The first round was held in December 2021, followed by the second round in February 2022 and the third round in March 2022. The data was shared with the specialists at the end of each round. After three rounds of work, a consensus was reached for the management and prevention of osteoporosis. CONCLUSION This is the first Ecuadorian consensus for the management and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Carlos Rios
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | | | - Sara Vargas
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | - José González
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | - Claudia Vera
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | - Andrés Zuñiga
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | - José Martínez
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | | | - Raúl Jervis
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | - Rosa Ventura
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| | | | | | | | | | - José Luis Neyro
- Obstetrics and Gynecology Department, Cruces University Hospital, Vasco Country University EHU-UPV, Baracaldo Bizkaia, Spain
| | - Daniel Fernández
- Rheumatology Department, San Ignacio University Hospital, Bogota, Colombia
| | | | - Mario Moreno
- Ecuadorian Society of Rheumatology, Guayaquil, Ecuador
| |
Collapse
|
22
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
23
|
Cistanche Deserticola for Regulation of Bone Metabolism: Therapeutic Potential and Molecular Mechanisms on Postmenopausal Osteoporosis. Chin J Integr Med 2023; 29:74-80. [PMID: 35930138 DOI: 10.1007/s11655-022-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a generalized disease of bone that leads to a loss of bone density and bone mass, destruction of bone microstructure, increased brittleness and therefore fracture. At present, the main treatment of Western medicine is drug therapy such as bisphosphonates, calcitriol, vitamin D, etc. However, long-term use of these drugs may bring some adverse reactions. Chinese herbal medicine Cistanche deserticola could regulate bone metabolism by promoting osteoblast activity and inhibiting osteoclast activity with low toxicity and adverse reactions. Therefore, Cistanche deserticola has attracted increasing attention for its efficacy in the prevention and treatment of osteoporosis in recent years. Here we present a literature review of the molecular pathways involved in osteoporosis and the effects of Cistanche deserticola on bone metabolism. Our objective is to clarify the mechanism of Cistanche deserticola in the treatment of osteoporosis.
Collapse
|
24
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
25
|
Sato T, Andrade CDC, Yoon SH, Zhao Y, Greenlee WJ, Weber PC, Viswanathan U, Kulp J, Brooks DJ, Demay MB, Bouxsein ML, Mitlak B, Lanske B, Wein MN. Structure-based design of selective, orally available salt-inducible kinase inhibitors that stimulate bone formation in mice. Proc Natl Acad Sci U S A 2022; 119:e2214396119. [PMID: 36472957 PMCID: PMC9897432 DOI: 10.1073/pnas.2214396119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a major public health problem. Currently, there are no orally available therapies that increase bone formation. Intermittent parathyroid hormone (PTH) stimulates bone formation through a signal transduction pathway that involves inhibition of salt-inducible kinase isoforms 2 and 3 (SIK2 and SIK3). Here, we further validate SIK2/SIK3 as osteoporosis drug targets by demonstrating that ubiquitous deletion of these genes in adult mice increases bone formation without extraskeletal toxicities. Previous efforts to target these kinases to stimulate bone formation have been limited by lack of pharmacologically acceptable, specific, orally available SIK2/SIK3 inhibitors. Here, we used structure-based drug design followed by iterative medicinal chemistry to identify SK-124 as a lead compound that potently inhibits SIK2 and SIK3. SK-124 inhibits SIK2 and SIK3 with single-digit nanomolar potency in vitro and in cell-based target engagement assays and shows acceptable kinome selectivity and oral bioavailability. SK-124 reduces SIK2/SIK3 substrate phosphorylation levels in human and mouse cultured bone cells and regulates gene expression patterns in a PTH-like manner. Once-daily oral SK-124 treatment for 3 wk in mice led to PTH-like effects on mineral metabolism including increased blood levels of calcium and 1,25-vitamin D and suppressed endogenous PTH levels. Furthermore, SK-124 treatment increased bone formation by osteoblasts and boosted trabecular bone mass without evidence of short-term toxicity. Taken together, these findings demonstrate PTH-like effects in bone and mineral metabolism upon in vivo treatment with orally available SIK2/SIK3 inhibitor SK-124.
Collapse
Affiliation(s)
- Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Yingshe Zhao
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Patricia C. Weber
- Harrington Discovery Institute, University Hospitals, Cleveland, OH44106
| | | | | | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | | | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Broad Institute of MIT and Harvard, Cambridge, MA02142
- Harvard Stem Cell Institute, Cambridge, MA02138
| |
Collapse
|
26
|
Kulebyakin K, Tyurin-Kuzmin P, Sozaeva L, Voloshin N, Nikolaev M, Chechekhin V, Vigovskiy M, Sysoeva V, Korchagina E, Naida D, Vorontsova M. Dynamic Balance between PTH1R-Dependent Signal Cascades Determines Its Pro- or Anti-Osteogenic Effects on MSC. Cells 2022; 11:3519. [PMID: 36359914 PMCID: PMC9656268 DOI: 10.3390/cells11213519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) is one of the key regulators of calcium and phosphate metabolism in the body, controlling bone metabolism and ion excretion by the kidneys. At present, attempts to use PTH as a therapeutic agent have been associated with side-effects, the nature of which is not always clear and predictable. In addition, it is known that in vivo impairment of PTH post-receptor signaling is associated with atypical differentiation behavior not only of bone cells, but also of connective tissues, including adipose tissue. In this work, we studied the functional responses of multipotent mesenchymal stromal cells (MSCs) to the action of PTH at the level of single cells. We used MSCs isolated from the periosteum and subcutaneous adipose tissue to compare characteristics of cell responses to PTH. We found that the hormone can activate three key responses via its receptor located on the surface of MSCs: single transients of calcium, calcium oscillations, and hormone-activated smooth increase in intracellular calcium. These types of calcium responses led to principally different cellular responses of MSCs. The cAMP-dependent smooth increase of intracellular calcium was associated with pro-osteogenic action of PTH, whereas phospholipase C dependent calcium oscillations led to a decrease in osteogenic differentiation intensity. Different variants of calcium responses are in dynamic equilibrium. Suppression of one type of response leads to increased activation of another type and, accordingly, to a change in the effect of PTH on cell differentiation.
Collapse
Affiliation(s)
- Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Leila Sozaeva
- Endocrinology Research Center, 115478 Moscow, Russia
| | - Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Nikolaev
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Daria Naida
- Burdenko Main Military Clinical Hospital, 105094 Moscow, Russia
| | - Maria Vorontsova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia
- Endocrinology Research Center, 115478 Moscow, Russia
| |
Collapse
|
27
|
Tanios M, Brickman B, Cage E, Abbas K, Smith C, Atallah M, Baroi S, Lecka-Czernik B. Diabetes and Impaired Fracture Healing: A Narrative Review of Recent Literature. Curr Osteoporos Rep 2022; 20:229-239. [PMID: 35960475 DOI: 10.1007/s11914-022-00740-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Diabetes mellitus is a chronic metabolic disorder commonly encountered in orthopedic patients. Both type 1 and type 2 diabetes mellitus increase fracture risk and impair fracture healing. This review examines complex etiology of impaired fracture healing in diabetes. RECENT FINDINGS Recent findings point to several mechanisms leading to orthopedic complications in diabetes. Hyperglycemia and chronic inflammation lead to increased formation of advanced glycation end products and generation of reactive oxygen species, which in turn contribute to the disruption in osteoblast and osteoclast balance leading to decreased bone formation and heightening the risk of nonunion or delayed union as well as impaired fracture healing. The mechanisms attributing to this imbalance is secondary to an increase in pro-inflammatory mediators leading to premature resorption of callus cartilage and impaired bone formation due to compromised osteoblast differentiation and their apoptosis. Other mechanisms include disruption in the bone's microenvironment supporting different stages of healing process including hematoma and callus formation, and their resolution during bone remodeling phase. Complications of diabetes including peripheral neuropathy and peripheral vascular disease also contribute to the impairment of fracture healing. Certain diabetic drugs may have adverse effects on fracture healing. The pathophysiology of impaired fracture healing in diabetic patients is complex. This review provides an update of the most recent findings on how key mediators of bone healing are affected in diabetes.
Collapse
Affiliation(s)
- Mina Tanios
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Bradley Brickman
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily Cage
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kassem Abbas
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cody Smith
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Marina Atallah
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sudipta Baroi
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beata Lecka-Czernik
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
28
|
Muacevic A, Adler JR. Parathyroid Hormone Secretion and Related Syndromes. Cureus 2022; 14:e30251. [PMID: 36381723 PMCID: PMC9650928 DOI: 10.7759/cureus.30251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
In this article, we will get to know about the parathyroid hormone and the parathyroid gland. Its anatomy, physiology, and pathology will be delved into. There will be a brief discussion about its secretion and also about various clinical syndromes related to it. Parathormone, the parathyroid glands, regulate normal calcium and phosphorus levels in the body. An increase in the secretion of parathormone results in increased calcium uptake from the kidney, intestine, and bones, hence elevating the blood calcium level. A few mechanisms of action of this hormone are increased by the presence of vitamin D. The increase in the secretion of this hormone as compared to the normal levels is termed hyperparathyroidism. Incidence is maximum after 60 years of age. The ratio of females to males is 2:1. There are three types of hyperparathyroidism which will be described in this article. Clinical manifestations of hyperparathyroidism include skeletal disease, renal involvement, GI manifestations, psychiatric diseases, decreased neuro-muscular irritability, decreased deep tendon reflexes, muscular weakness, and atrophy. Assessment for hyperparathyroidism can be done by various diagnostic tests which are described further in this article. Medical/surgical management to cure this is also well-established nowadays. The decrease in the secretion of this hormone as compared to normal levels is termed hypoparathyroidism. Serum calcium levels are very low, serum phosphate levels are very high, and tetany can develop. The incidence is that females are more prone than males. Assessment for acute hypoparathyroidism will show positive Chvostek sign and trousseau sign, hyperactive deep tendon reflexes, and paresthesia. Assessment of chronic hypoparathyroidism will show lethargy, weakness, fatigue, cataracts, brittle nails, dry scaly skin, personality changes, and can even cause permanent brain damage. The normal secretion process of this hormone and diseases when its secretion becomes abnormal and why that happens are briefed in this article.
Collapse
|
29
|
Nursing Effect of Health Monitoring System on Elderly Patients with Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1447388. [PMID: 36158890 PMCID: PMC9499779 DOI: 10.1155/2022/1447388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Health monitoring can provide scientific and reasonable care for elderly users, professionally monitor the health parameters of the human body, and timely understand the user’s own physical condition. By installing sensors with different functions in the rooms where the elderly often move and by installing vital signs sensors on their bodies, the data detected by the sensors are collected and analyzed in real time. Nursing refers to the fact that nursing staff must strictly follow the nursing system and operating procedures in the nursing work, accurately implement the doctor’s orders, implement the nursing plan, and ensure that the patient is physically and mentally safe during treatment and recovery. Osteoporosis is a systemic bone disease in which bone density and bone quality are decreased due to various reasons, and the microstructure of bone is destroyed, resulting in increased bone fragility, which is prone to fractures. Osteoporosis is divided into two main categories: primary and secondary. Primary osteoporosis is divided into postmenopausal osteoporosis (Type I), senile osteoporosis (Type II), and idiopathic osteoporosis (including adolescent forms). This paper aims to study the healthcare effect of health monitoring system on elderly patients with osteoporosis, expecting to use the health monitoring system to provide more scientific care for the elderly and reduce the pain caused by osteoporosis. This paper proposes a study from the users of the elderly health monitoring products and the elderly home health products and analyzes the influencing factors of the usability design of the elderly home health monitoring system. This paper designs the overall framework of the elderly health monitoring system and designs the main components and application functions of the system. The experimental results in this paper show that there are 20 patients with osteoporosis due to lack of light, accounting for 16%. There are 10 patients with osteoporosis due to excessive coffee intake, accounting for 8%. There are 90 people who normally eat eggs, accounting for 75%, and 66 people who eat meat normally, accounting for 55%. According to the data, the health monitoring system can effectively control the diet of patients with osteoporosis.
Collapse
|
30
|
Yang Y, Feng N, Liang L, Jiang R, Pan Y, Geng N, Fan M, Li X, Guo F. Progranulin, a moderator of estrogen/estrogen receptor α binding, regulates bone homeostasis through PERK/p-eIF2 signaling pathway. J Mol Med (Berl) 2022; 100:1191-1207. [PMID: 35838759 DOI: 10.1007/s00109-022-02233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Under normal conditions, the human body employs the synergistic action of osteoblasts and osteoclasts to maintain a dynamic balance between bone formation and resorption. Bone homeostasis plays a very important role in the process of bone formation. Various bone diseases can occur if bone homeostasis is disrupted. In this study, the serum estrogen levels were significantly increased in the granulin (GRN)-deficient mice and PGRN regulates the binding of estrogen and estrogen receptor α (ERα) and then affects estrogen's ability to regulate bone formation and resorption. In addition, this study also explored the role that PGRN plays in regulating bone homeostasis by affecting the binding of estrogen and estrogen receptors through the protein kinase R-like endoplasmic reticulum kinase/phosphorylation of the eukaryotic initiation factor 2 signaling pathway. In summary, we confirmed the important role of PGRN in regulating the estrogen (E2)/ERα signal in maintaining bone homeostasis. Our findings may provide a new strategy for the treatment of osteoporosis and maintaining bone homeostasis. KEY MESSAGES: PGRN is a molecular regulator of the binding of E2 and ERα signal in maintaining bone homeostasis. PGRN plays in regulating bone homeostasis through the PERK/p-eIF2α signaling pathway. The best therapeutic effect of PGRN in osteoporosis is associated with different concentration of E2.
Collapse
Affiliation(s)
- Yuyou Yang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Naibo Feng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Li Liang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yiming Pan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Nana Geng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Mengtian Fan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
32
|
Daley EJ, Yoon SH, Reyes M, Bruce M, Brooks DJ, Bouxsein M, Potts JT, Kronenberg HM, Wein MN, Lanske B, Jüppner H, Gardella TJ. Actions of Parathyroid Hormone Ligand Analogues in Humanized PTH1R Knockin Mice. Endocrinology 2022; 163:bqac054. [PMID: 35460406 PMCID: PMC9167040 DOI: 10.1210/endocr/bqac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Rodent models are commonly used to evaluate parathyroid hormone (PTH) and PTH-related protein (PTHrP) ligands and analogues for their pharmacologic activities and potential therapeutic utility toward diseases of bone and mineral ion metabolism. Divergence, however, in the amino acid sequences of rodent and human PTH receptors (rat and mouse PTH1Rs are 91% identical to the human PTH1R) can lead to differences in receptor-binding and signaling potencies for such ligands when assessed on rodent vs human PTH1Rs, as shown by cell-based assays in vitro. This introduces an element of uncertainty in the accuracy of rodent models for performing such preclinical evaluations. To overcome this potential uncertainty, we used a homologous recombination-based knockin (KI) approach to generate a mouse (in-host strain C57Bl/6N) in which complementary DNA encoding the human PTH1R replaces a segment (exon 4) of the murine PTH1R gene so that the human and not the mouse PTH1R protein is expressed. Expression is directed by the endogenous mouse promoter and hence occurs in all biologically relevant cells and tissues and at appropriate levels. The resulting homozygous hPTH1R-KI (humanized) mice were healthy over at least 10 generations and showed functional responses to injected PTH analog peptides that are consistent with a fully functional human PTH1R in target bone and kidney cells. The initial evaluation of these mice and their potential utility for predicting behavior of PTH analogues in humans is reported here.
Collapse
Affiliation(s)
- Eileen J Daley
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sung-Hee Yoon
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Monica Reyes
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Michael Bruce
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Daniel J Brooks
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Mary Bouxsein
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - John T Potts
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Henry M Kronenberg
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Marc N Wein
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Beate Lanske
- Radius Health Inc, Boston, Massachusetts 02210, USA
| | - Harald Jüppner
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Thomas J Gardella
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
33
|
Tsai YL, Yen CT, Wang YF. Astrocyte Dysregulation and Calcium Ion Imbalance May Link the Development of Osteoporosis and Alzheimer’s Disease. J Alzheimers Dis 2022; 88:439-445. [DOI: 10.3233/jad-220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The typical symptoms of patients with Alzheimer’s disease (AD) are amyloid-β (Aβ) plaques and tau hyperphosphorylation. However, recent studies show that these symptoms are not the cause of the disease but are generated after the pathogenesis. Compared with other types of dementia, AD has the obvious features of pineal gland calcification and decreased melatonin production. The pineal gland is mainly composed of pinealocytes that release melatonin and astrocytes. Astrocytes function to maintain a balanced concentration of calcium ions, provide nerve cell nutrients, and migrate nutrients in vivo. Calcium ions are among the most important neurotransmitters. Once triggered, a calcium wave can be formed between astrocytes to activate other astrocytes to transmit information. Most calcium is stored in the skeleton. Bone tissue is composed mainly of osteocytes, osteoblasts, and osteoclasts. Of these, osteocyte is a kind of astrocyte which regulates the activity of osteoclasts and osteoblasts. The pineal gland is composed mainly of astrocytes; osteocytes are also a kind of astrocyte. Therefore, we conclude that when astrocytes are gradually disabled, calcium may be lost from the bones, prompting osteoporosis. The calcium ions then released into the blood may accumulate and cause ectopic calcification in the pineal gland, which promotes the occurrence of AD. Finally, this study used aspects of drugs and hormones (bone and calcium metabolism hormones and melatonin) to infer the hypothesis, which proposes that astrocyte dysregulation promotes the long-term imbalance of calcium ions in vivo and leads to osteoporosis and AD.
Collapse
Affiliation(s)
- Yi-Liang Tsai
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chieh-Tsung Yen
- Department of Neurology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yuh-Feng Wang
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Center of Preventive Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Chen R, Baron R, Gori F. Sfrp4 and the Biology of Cortical Bone. Curr Osteoporos Rep 2022; 20:153-161. [PMID: 35182301 PMCID: PMC9098678 DOI: 10.1007/s11914-022-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
35
|
Correlation of Carotid Artery Intima-Media Thickness with Calcium and Phosphorus Metabolism, Parathyroid Hormone, Microinflammatory State, and Cardiovascular Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2786147. [PMID: 35313627 PMCID: PMC8934238 DOI: 10.1155/2022/2786147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/31/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
The internal thickness of the carotid artery is the vertical distance between the intima of the carotid artery and the middle mold. Its normal thickness is less than 1 mm. It can be used to judge the degree of arteriosclerosis. Under normal circumstances, the change of the internal thickness of the carotid artery is caused by cardiovascular disease. The purpose of this article is to study the relationship between the thickness of the carotid artery and the metabolism of calcium and phosphorus, parathyroid hormone, microinflammatory state, and cardiovascular disease. This article uses ultrasound measurement to measure the IMT of ESRD patients and carotid arteries with normal renal function. The analysis includes blood pressure, blood phosphorus, blood calcium, blood creatinine, blood urea nitrogen, blood sugar, glycosylated hemoglobin, blood lipids, parathyroid hormone, and C reaction. The correlation between clinical indicators includes protein and carotid IMT in ESRD patients which can be used in designing a diagnostic plan for patients through correlation research. The results showed that the carotid artery IMT of ESRD nondialysis patients was 13% thicker than that of those with normal renal function, and it was significantly positively correlated with age, blood pressure, blood phosphorus, glycosylated hemoglobin, and C-reactive protein. The correlation ratio with calcium and phosphorus was about 0.1.
Collapse
|
36
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Exogenous Parathyroid Hormone Alleviates Intervertebral Disc Degeneration through the Sonic Hedgehog Signalling Pathway Mediated by CREB. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9955677. [PMID: 35265269 PMCID: PMC8898813 DOI: 10.1155/2022/9955677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
As an important hormone that regulates the balance of calcium and phosphorus, parathyroid hormone (PTH) has also been found to have an important function in intervertebral disc degeneration (IVDD). Our aim was to investigate the mechanism by which PTH alleviates IVDD. In this study, the PTH 1 receptor was found to be highly expressed in severely degenerated human nucleus pulposus (NP) cells. We found in the mouse model of IVDD that supplementation with exogenous PTH alleviated the narrowing of the intervertebral space and the degradation of the extracellular matrix (ECM) caused by tail suspension (TS). In addition, inflammation, oxidative stress, and apoptosis levels were significantly increased in the intervertebral disc tissues of TS-induced mice, and the activity of NP cells was decreased. TS also led to the downregulation of Sonic hedgehog (SHH) signalling pathway-related signal molecules in NP cells such as SHH, Smoothened, and GLI1. However, supplementation with exogenous PTH can reverse these changes. In vitro, PTH also promotes the activity of NP cells and the secretion of ECM. However, the antagonist of the SHH signalling pathway can inhibit the therapeutic effect of PTH on NP cells. In addition, a cAMP-response element-binding protein, as an important transcription factor, was found to mediate the promotion of PTH on the SHH signalling pathway. Our results revealed that PTH can alleviate IVDD by inhibiting inflammation, oxidative stress, and apoptosis and improving the activity of NP cells via activating the SHH signalling pathway.
Collapse
|
38
|
Galchenko A, Gapparova K, Sidorova E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit Rev Food Sci Nutr 2021; 63:845-861. [PMID: 34723727 DOI: 10.1080/10408398.2021.1996330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are so many literatures about vegetarians being less prone to chronic, noninfectious diseases, which are, however, the main cause of the decline in quality of life and mortality in developed countries.However, according to various scientific sources, vegetarian and especially vegan diets often contain less saturated fats, protein, calcium, vitamins D and B12, or long-chain ω-3 PUFAs. One of the most common pathology associated with a predominantly plant diet is osteopenia and osteoporosis. An analysis of 13 studies has shown that vegetarians and vegans are at a higher risk of reducing of bone mineral density, thereby increasing the incidence of fractures.At the same time, plant-based diets are usually richer in many other micronutrients important for bone health: vitamins C and K, carotenoids, potassium, magnesium, manganese, copper, or silicon. Moreover, with the deepening of our knowledge about the role of nutrients in the body and the features of the nutritional status of the population, the quality of vegetarian and vegan diets also increases. They are less and less prone to micronutrient deficiencies. Recent studies show that BMD, as well as the risk of osteoporotic fractures, at least in vegetarians, equaled these indicators in omnivores.
Collapse
Affiliation(s)
- Alexey Galchenko
- Department of preventive diet therapy, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation.,Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - K Gapparova
- Department of preventive diet therapy, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - E Sidorova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
39
|
Ishizu H, Arita K, Terkawi MA, Shimizu T, Iwasaki N. Risks vs. benefits of switching therapy in patients with postmenopausal osteoporosis. Expert Rev Endocrinol Metab 2021; 16:217-228. [PMID: 34310233 DOI: 10.1080/17446651.2021.1956902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Introduction: Osteoporosis is characterized by the fragility of bones, leading to fractures and, consequently, the deterioration of functional capacity and quality of life. Postmenopausal women, in particular, are prone to osteoporosis and often require anti-osteoporosis treatment. In the last few decades, various anti-osteoporosis drugs have been approved for clinical use. In an aging society, osteoporosis cannot be treated using a single agent; therefore, switching therapy is an important treatment strategy.Areas covered: This review covers switching therapy in patients with postmenopausal osteoporosis. It's extremely important to understand the characteristics of each drug including; limitations on the duration of use, side effects due to long-term use (such as atypical femur fracture and osteonecrosis of the jaw) or discontinuation (such as rebound phenomenon), compliance, and ability to prevent fractures. We review and summarize the risks and benefits of switching therapy.Expert opinion: When switching therapy, the order of drug administration is important. Routine monitoring should be continued after switching treatments. We recommend first using osteoanabolic agents in postmenopausal women with severe osteoporosis. In addition, identifying predictors of the efficacy and side effects of treatment may help prevent the inappropriate use of drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hotaka Ishizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kosuke Arita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
40
|
Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 2021; 10:e64872. [PMID: 34227467 PMCID: PMC8285109 DOI: 10.7554/elife.64872] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-Dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/β-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), β-catenin, Runx2, Osterix, and osteoprotegerin (OPG) was all significantly up-regulated. Knockdown of β-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation, and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties, and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.
Collapse
Affiliation(s)
- Fan Xue
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Zhenlei Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Yanpei Gu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Jianxin Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Ying Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| |
Collapse
|
41
|
Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol 2021; 192:114669. [PMID: 34224692 DOI: 10.1016/j.bcp.2021.114669] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid peptide hormone that is secreted by the parathyroid gland. It has different administration modes in bone tissue through which it promotes bone formation (intermittent administration) and bone resorption (continuous administration) and has great potential for application in sbone defect repair. PTH regulates bone metabolism by binding to PTH1R. PTH plays an osteogenic role by acting directly on mesenchymal stem cells, cells with an osteoblastic lineage, osteocytes, and T cells. It also participates as an osteoclast by indirectly acting on osteoclast precursor cells and osteoclasts and directly acting on T cells. In these cells, PTH activates the Wnt signaling, cAMP/PKA, cAMP/PKC, and RANKL/RANK/OPG pathways and other signaling pathways. Although PTH(1-34), also known as teriparatide, has been used clinically, it still has some disadvantages. Developing improved PTH-related peptides is a potential solution to teriparatide's shortcomings. The action mechanism of these PTH-related peptides is not exactly the same as that of PTH. Thus, the mechanisms of PTH and PTH-related peptides in bone metabolism were reviewed in this paper.
Collapse
|
42
|
Yu W, Xie CR, Chen FC, Cheng P, Yang L, Pan XY. LGR5 enhances the osteoblastic differentiation of MC3T3-E1 cells through the Wnt/β-catenin pathway. Exp Ther Med 2021; 22:889. [PMID: 34194567 PMCID: PMC8237272 DOI: 10.3892/etm.2021.10321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a Wnt-associated gene that contributes to cell proliferation and self-renewal in various organs. LGR5 is expressed in Ewing sarcoma, and LGR5-overexpressing mesenchymal stem cells promote fracture healing. However, the effects of LGR5 on osteoblastic differentiation remain unclear. The aim of the present study was to explore the function of LGR5 in osteoblastic differentiation. LGR5 was overexpressed or knocked down in the MC3T3-E1 pre-osteoblastic cell line via lentiviral transfection and its function in osteoblastic differentiation was investigated. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), osteocalcin and collagen type I a1 were determined, and ALP and Alizarin red staining were performed. In addition, the effects of LGR5 modulation on β-catenin and the expression of target genes in the Wnt pathway were investigated. The results revealed that the overexpression of LGR5 promoted osteoblastic differentiation. This was associated with enhancement of the stability of β-catenin and its levels in the cell nucleus, which enabled it to activate Wnt signaling. By contrast, the inhibition of LGR5 decreased the osteogenic capacity of MC3T3-E1 cells. These results indicate that LGR5 is a positive regulator of osteoblastic differentiation, whose effects are mediated through the Wnt/β-catenin signaling pathway. This suggests suggesting that the regulation of LGR5/Wnt/β-catenin signaling has potential as a therapy for osteoporosis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chao-Ran Xie
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fan-Cheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200433, P.R. China
| | - Pei Cheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Yun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
43
|
Bone loss in hepatitis B virus-infected patients can be associated with greater osteoclastic activity independently of the retroviral use. Sci Rep 2021; 11:10162. [PMID: 33986322 PMCID: PMC8119499 DOI: 10.1038/s41598-021-89486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Nucleoside/nucleotide analogs such as tenofovir, have been used as long-term therapy for the treatment of hepatitis B and side effects such as the reduction in bone mineral density have been associated with their use. To determine the relationships between bone, hormonal, biochemical, and mineral parameters in patients with hepatitis B treated with nucleoside/nucleotide antiviral. A cross-sectional study was conducted with 81 adult patients with chronic hepatitis B infection. Dual-energy X-ray absorptiometry (DXA) was performed to assess bone mineral density. Biochemical analyses were performed for osteocalcin, deoxypyridinoline, parathyroid hormone, vitamin D, IGF-1, TSH, testosterone, estradiol, FSH, transaminases, urea, creatinine, calcium, serum and urinary phosphorus, magnesium, and FGF-23, body composition was performed by DXA. Participants, both gender, were divided according to the use of antiretrovirals: Group1: 27 inactive virus carriers without medication; Group2: 27 patients using tenofovir; and Group3: 27 patients using lamivudine or entecavir. DXA readings diagnosed osteopenia in the lumbar spine for 7.4% of individuals in Group1, 15% in Group2, and 3.7% in Group3. For all groups, we observed normal values in bone formation markers, osteocalcin levels as well as parathyroid hormone, insulin growth factor 1, and FGF-23. In all groups, we found increased levels of urinary deoxypyridinoline, a bone resorption marker. Increased levels in the bone resorption markers indicated a high resorptive activity of bone tissue. These data suggested high resorption activity of bone tissue in hepatitis B virus-infected patients independent of the use of antiretrovirals.
Collapse
|
44
|
Sain A, Bansal H, Pattabiraman K, Sharma V. Present and future scope of recombinant parathyroid hormone therapy in orthopaedics. J Clin Orthop Trauma 2021; 17:54-58. [PMID: 33717971 PMCID: PMC7920101 DOI: 10.1016/j.jcot.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Parathyroid Hormone (PTH) has a significant role in calcium metabolism. Its intermittent administration has an anabolic effect on bone mineralization. Teriparatide (PTH 1-34), a recombinant form of parathyroid hormone, is useful in the treatment of osteoporosis, fracture healing, non-union, stress fracture, augmentation of implant fixation with bone, and chondroprotection in osteoarthritis. The present review article will elaborate on the potential approved uses of recombinant PTH in orthopedics and its evolving role in the management of fracture osteosynthesis and other common challenging bone pathologies.
Collapse
Affiliation(s)
| | - Hemant Bansal
- Corresponding author. Department of Orthopaedics, JPN Apex Trauma Centre, AIIMS, New Delhi, India.
| | | | | |
Collapse
|
45
|
Shoji MM, Ingall EM, Rozental TD. Upper Extremity Fragility Fractures. J Hand Surg Am 2021; 46:126-132. [PMID: 32863106 DOI: 10.1016/j.jhsa.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 02/02/2023]
Abstract
The population of elderly patients is rapidly increasing in the United States and worldwide, leading to an increased prevalence of osteoporosis and a concurrent rise in fragility fractures. Fragility fractures are defined as fractures involving a low-energy mechanism, such as a fall from a standing height or less, and have been associated with a significant increase in the risk of a future fragility fracture. Distal radius fractures in the elderly often present earlier than hip and vertebral fractures and frequently involve underlying abnormalities in bone mass and microarchitecture. This affords a unique opportunity for upper extremity surgeons to aid in the diagnosis and treatment of osteoporosis and the prevention of secondary fractures. This review aims to outline current recommendations for orthopedic surgeons in the evaluation and treatment of upper extremity fragility fractures.
Collapse
Affiliation(s)
- Monica M Shoji
- Harvard Combined Orthopaedic Residency Program, Harvard Medical School, Boston, MA
| | - Eitan M Ingall
- Harvard Combined Orthopaedic Residency Program, Harvard Medical School, Boston, MA
| | - Tamara D Rozental
- Division of Hand and Upper Extremity Surgery, Department of Orthopedics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
46
|
De Martinis M, Sirufo MM, Ginaldi L. Osteoporosis: Current and Emerging Therapies Targeted to Immunological Checkpoints. Curr Med Chem 2021; 27:6356-6372. [PMID: 31362684 PMCID: PMC8206194 DOI: 10.2174/0929867326666190730113123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a skeletal pathology characterized by compromised bone strength leading to increased risk of fracture, mainly the spine and hip fractures. Osteoporosis affects more than 200 million people worldwide and because of the skeletal fractures it causes, represents a major cause of morbidity, disability and mortality in older people. Recently, the new discoveries of osteoimmunology have clarified many of the pathogenetic mechanisms of osteoporosis, helping to identify new immunological targets for its treatment opening the way for new and effective therapies with biological drugs. Currently, there are basically two monoclonal antibodies for osteoporosis therapy: denosumab and romosozumab. Here, we focus on the modern approach to the osteoporosis management and in particular, on current and developing biologic drugs targeted to new immunological checkpoints, in the landscape of osteoimmunology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
47
|
Binder U, Skerra A. PASylated Thymosin α1: A Long-Acting Immunostimulatory Peptide for Applications in Oncology and Virology. Int J Mol Sci 2020; 22:ijms22010124. [PMID: 33374407 PMCID: PMC7795856 DOI: 10.3390/ijms22010124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Thymosin α1 (Tα1) is an immunostimulatory peptide for the treatment of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and used as an immune enhancer, which also offers prospects in the context of COVID-19 infections and cancer. Manufacturing of this N-terminally acetylated 28-residue peptide is demanding, and its short plasma half-life limits in vivo efficacy and requires frequent dosing. Here, we combined the PASylation technology with enzymatic in situ N-acetylation by RimJ to produce a long-acting version of Tα1 in Escherichia coli at high yield. ESI-MS analysis of the purified fusion protein indicated the expected composition without any signs of proteolysis. SEC analysis revealed a 10-fold expanded hydrodynamic volume resulting from the fusion with a conformationally disordered Pro/Ala/Ser (PAS) polypeptide of 600 residues. This size effect led to a plasma half-life in rats extended by more than a factor 8 compared to the original synthetic peptide due to retarded kidney filtration. Our study provides the basis for therapeutic development of a next generation thymosin α1 with prolonged circulation. Generally, the strategy of producing an N-terminally protected PASylated peptide solves three major problems of peptide drugs: (i) instability in the expression host, (ii) rapid degradation by serum exopeptidases, and (iii) low bioactivity because of fast renal clearance.
Collapse
Affiliation(s)
- Uli Binder
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
- Correspondence: (U.B.); (A.S.)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
- Correspondence: (U.B.); (A.S.)
| |
Collapse
|
48
|
Che M, Gong W, Zhao Y, Liu M. Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med 2020; 26:106. [PMID: 33176682 PMCID: PMC7656763 DOI: 10.1186/s10020-020-00219-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have demonstrated that long non-coding RNAs (LncRNAs) can influence bone cell differentiation and formation. However, it is unclear whether lncRNA HCG18 is involved in osteoporosis (OP). This study was conducted to investigate the regulation of HCG18 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Methods BMSCs were isolated and cultured from mouse pathological models and osteoporosis patients. RT-qPCR was performed to detect the expression of HCG18 and miR-30a-5p in BMSCs. The interaction between HCG18 and miR-30a-5p was analyzed by dual luciferase assay and RNA pulldown assay. The interaction between miR-30a-5p and NOTCH1 3′-UTR was analyzed by dual luciferase assay. RT-qPCR and Western blotting were used to detect the expression of osteogenic genes Runx2, OCN and OPN. Hindlimb-unloaded (HU) mice model was established, and HCG18 was knocked down on bone-formation surfaces by using lentivirus mediated shRNA transfection. Results The expression of HCG18 was increased in BMSCs of OP patients, while the expression of miR-30a-5p was decreased. The expression of HCG18 and miR-30a-5p was negatively correlated in BMSCs. During the differentiation from BMSCs to osteoblasts, the expression of HCG18 was significantly downregulated, and the expression of miR-30a-5p was significantly upregulated. Overexpression of HCG18 was able to reverse the osteogenic-induced upregulation of miR-30a-5p expression, and knockdown of HCG18 further promoted the expression of miR-30a-5p. In addition, miR-30a-5p partially abolished the effect of HCG18 on osteogenic differentiation of BMSCs. NOTCH1 was a target protein of miR-30a-5p, and upregulation of NOTCH1 reversed the effect of miR-30a-5p on osteogenic differentiation of BMSCs. Furthermore, this study found that lentivirus mediated HCG18 knockdown on the bone-formation surfaces of hindlimb-unloaded (HU) mice partially alleviated unloading-induced bone loss Conclusions HCG18 inhibited osteogenic differentiation of BMSCs induced by OP via the miR-30a-5p/NOTCH1 axis. HCG18 can be identified as a regulator of osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Mingxue Che
- Department of Spine Surgery, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Weiquan Gong
- Department of Spine Surgery, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yao Zhao
- Department of Joint Surgery, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mingxi Liu
- Department of Orthopedic Traumatology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
49
|
Stutz C, Batool F, Petit C, Strub M, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. Influence of parathyroid hormone on periodontal healing in animal models: A systematic review. Arch Oral Biol 2020; 120:104932. [PMID: 33113458 DOI: 10.1016/j.archoralbio.2020.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The purpose of this systematic review was to determine the potential interest of parathyroid hormone (PTH) as an adjunct to periodontal treatment based on studies performed in rodents. MATERIALS & METHODS Electronic databases (MEDLINE, Web of Science) were searched up to December 2019. Studies assessing the impact of PTH administration in experimental periodontitis in rodents have been identified. RESULTS Amongst the 247 identified articles, 10 met the inclusion criteria and were included in this systematic review. Experimental periodontitis was mainly induced by ligature placement or surgically with a dental bur. All studies considered bone healing after PTH administration at different frequencies as primary outcome. Results showed that an intermittent administration of PTH promoted bone healing and neovascularization. Nevertheless, a decrease of soft tissue inflammation was also observed. CONCLUSION Intermittent administration of PTH appears to enhance significantly periodontal healing and to promote alveolar bone regeneration. However, due to the risk of side effects, the development of scaffolds allowing its local and time-controlled delivery is of importance.
Collapse
Affiliation(s)
- Céline Stutz
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fareeha Batool
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marion Strub
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
50
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|