1
|
Moreno-Jiménez I, Heinig S, Heras U, Maichl DS, Strifler S, Leich E, Blouin S, Fratzl P, Fratzl-Zelman N, Jundt F, Cipitria A. 3D osteocyte lacunar morphometry of human bone biopsies with high resolution microCT: From monoclonal gammopathy to newly diagnosed multiple myeloma. Bone 2024; 189:117236. [PMID: 39151745 DOI: 10.1016/j.bone.2024.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 μm3 range compared to control samples. In the larger lacunae 900-3000 μm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.
Collapse
Affiliation(s)
- Inés Moreno-Jiménez
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany.
| | - Sharen Heinig
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Daniela Simone Maichl
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany.
| | - Amaia Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
2
|
Vahidi G, Boone C, Hoffman F, Heveran C. Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice. Bone 2024; 186:117163. [PMID: 38857854 PMCID: PMC11227388 DOI: 10.1016/j.bone.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Connor Boone
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Fawn Hoffman
- Department of Biomedical Sciences, College of Idaho, Caldwell, ID, USA
| | - Chelsea Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
3
|
Tuladhar A, Shaver JC, McGee WA, Yu K, Dorn J, Horne JL, Alhamad DW, Hagan ML, Cooley MA, Zhong R, Bollag W, Johnson M, Hamrick MW, McGee-Lawrence ME. Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes. Bone 2024; 186:117147. [PMID: 38866124 PMCID: PMC11246118 DOI: 10.1016/j.bone.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCμ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.
Collapse
Affiliation(s)
- Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Joseph C Shaver
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Wesley A McGee
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - J Luke Horne
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Wendy Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States of America; Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at AugustaUniversity, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
4
|
Xu K, Huang RQ, Wen R, Yang Y, Cheng Y, Chang B. The role of Clec11a in bone construction and remodeling. Front Endocrinol (Lausanne) 2024; 15:1429567. [PMID: 39188913 PMCID: PMC11345164 DOI: 10.3389/fendo.2024.1429567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Rui-qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yao Yang
- Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- School of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
6
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
7
|
Jagga S, Hughes A, Manoochehri Arash N, Sorsby M, Brooks DJ, Divieti Pajevic P, Liu ES. NFATc1 Is Required for Vitamin D- and Phosphate-Mediated Regulation of Osteocyte Lacuno-Canalicular Remodeling. Endocrinology 2024; 165:bqae087. [PMID: 39024412 PMCID: PMC11492278 DOI: 10.1210/endocr/bqae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.
Collapse
Affiliation(s)
- Supriya Jagga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ashleigh Hughes
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Niusha Manoochehri Arash
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel J Brooks
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
de Gruchy YA, Faillace KE, Van de Vijver K, Schotsmans EMJ, Seifert J, Bricking A, Nederbragt AJ, Madgwick R. Bone of contention: Intra-element variability in remodelling of human femora based on histomorphometric and isotope analyses. PLoS One 2024; 19:e0305089. [PMID: 38923938 PMCID: PMC11207156 DOI: 10.1371/journal.pone.0305089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The volume of human carbon (δ13C) and nitrogen (δ15N) isotope data produced in archaeological research has increased markedly in recent years. However, knowledge of bone remodelling, its impact on isotope variation, and the temporal resolution of isotope data remains poorly understood. Varied remodelling rates mean different elements (e.g., femur and rib) produce different temporal signals but little research has examined intra-element variability. This study investigates human bone remodelling using osteon population density and the relationship with carbon and nitrogen isotope data at a high resolution, focusing on variation through femoral cross-sections, from periosteal to endosteal surfaces. Results demonstrate considerable differences in isotope values between cross-sectional segments of a single fragment, by up to 1.3‰ for carbon and 1.8‰ for nitrogen, illustrating the need for standardised sampling strategies. Remodelling also varies between bone sections, occurring predominantly within the endosteal portion, followed by the midcortical and periosteal. Therefore, the endosteal portion likely reflects a shorter period of life closer to the time of death, consistent with expectations. By contrast, the periosteal surface provides a longer average, though there were exceptions to this. Results revealed a weak negative correlation between osteon population density and δ15N or δ13C, confirming that remodelling has an effect on isotope values but is not the principal driver. However, a consistent elevation of δ15N and δ13C (0.5‰ average) was found between the endosteal and periosteal regions, which requires further investigation. These findings suggest that, with further research, there is potential for single bone fragments to reconstruct in-life dietary change and mobility, thus reducing destructive sampling.
Collapse
Affiliation(s)
- Yasmine A. de Gruchy
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
| | - Katie E. Faillace
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
| | | | | | - Jerrod Seifert
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
| | - Adelle Bricking
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
- Amgueddfa Cymru–Museum Wales, Cardiff, United Kingdom
| | | | - Richard Madgwick
- School of History, Archaeology and Religion, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Wang D, Cai J, Pei Q, Yan Z, Zhu F, Zhao Z, Liu R, Guo X, Sun T, Liu J, Tian Y, Liu H, Shao X, Huang J, Hao X, Chang Q, Luo Z, Jing D. Gut microbial alterations in arginine metabolism determine bone mechanical adaptation. Cell Metab 2024; 36:1252-1268.e8. [PMID: 38718794 DOI: 10.1016/j.cmet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Although mechanical loading is essential for maintaining bone health and combating osteoporosis, its practical application is limited to a large extent by the high variability in bone mechanoresponsiveness. Here, we found that gut microbial depletion promoted a significant reduction in skeletal adaptation to mechanical loading. Among experimental mice, we observed differences between those with high and low responses to exercise with respect to the gut microbial composition, in which the differential abundance of Lachnospiraceae contributed to the differences in bone mechanoresponsiveness. Microbial production of L-citrulline and its conversion into L-arginine were identified as key regulators of bone mechanoadaptation, and administration of these metabolites enhanced bone mechanoresponsiveness in normal, aged, and ovariectomized mice. Mechanistically, L-arginine-mediated enhancement of bone mechanoadaptation was primarily attributable to the activation of a nitric-oxide-calcium positive feedback loop in osteocytes. This study identifies a promising anti-osteoporotic strategy for maximizing mechanical loading-induced skeletal benefits via the microbiota-metabolite axis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China; Faculty of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Qilin Pei
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhe Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruobing Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Xiangyang Guo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Sun
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Yulan Tian
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Hongbo Liu
- Department of Hematology, Affiliated Hospital of Northwest University Xi'an Third Hospital, Xi'an 710016, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxia Hao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Chang
- Department of Orthopaedics, The 989(th) Hospital of the People's Liberation Army Joint Service Support Force, Luoyang 471031, China.
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China; Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Fu YF, Guo YX, Xia SH, Zhou TT, Zhao YC, Jia ZH, Zhang Y. Eldecalcitol protected osteocytes against ferroptosis of D-gal-induced senescent MLO-Y4 cells and ovariectomized mice. Exp Gerontol 2024; 189:112408. [PMID: 38521178 DOI: 10.1016/j.exger.2024.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Active vitamin D analog eldecalcitol is clinically applied in treatment of postmenopausal osteoporosis. This study aims to determine the role of eldecalcitol in the protection of osteocytes from senescence and the associated ferroptosis. METHODS The MLO-Y4 osteocytes were exposed to D-gal inducing senescence. The ovariectomized (OVX) mice treated with D-gal using as an aging inducer were intraperitoneally injected with eldecalcitol. The multiplexed confocal imaging, fluorescence in situ hybridization and transmission electron microscopy were applied in assessing osteocytic properties. Immunochemical staining and immunoblotting were carried out to detect abundance and expression of molecules. RESULTS The ablation of vitamin D receptor led to a reduction in amounts of osteocytes, a loss of dendrites, an increase in mRNA expression of SASP factors and in protein expression of senescent factors, as well as changes in mRNA expression of ferroptosis-related genes (PTGS2 & RGS4). Eldecalcitol reversed senescent phenotypes of MLO-Y4 cells shown by improving cell morphology and density, decreasing β-gal-positive cell accumulation, and down-regulating protein expression (P16, P21 & P53). Eldecalcitol reduced intracellular ROS and MDA productions, elevated JC-1 aggregates, and up-regulated expression of Nrf2 and GPX4. Eldecalcitol exhibited osteopreserve effects in D-gal-induced aging OVX mice. The confocal imaging displayed its improvement on osteocytic network organization. Eldecalcitol decreased the numbers of senescent osteocytes at tibial diaphysis by SADS assay and attenuated mRNA expression of SASP factors as well as down-regulated protein expression of senescence-related factors and restored levels of ferroptotic biomarkers in osteocytes-enriched bone fraction. It reduced 4-HNE staining area, stimulated Nrf2-positive staining, and promoted nuclear translocation of Nrf2 in osteocytes of mice as well as inhibited and promoted protein expression of 4-HNE and Nrf2, respectively, in osteocytes-enriched bone fraction. CONCLUSIONS The present study revealed the ameliorative effects of eldecalcitol on senescence and the associated ferroptosis of osteocytes, contributing to its preservation against osteoporosis of D-gal-induced senescent ovariectomized mice.
Collapse
Affiliation(s)
- Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Yi-Xun Guo
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Shi-Hui Xia
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Ting-Ting Zhou
- Experimental Research Center, Cangzhou Hospital of Integrated TCM-WM, Cangzhou 061001, China
| | - Yun-Chao Zhao
- Experimental Research Center, Cangzhou Hospital of Integrated TCM-WM, Cangzhou 061001, China
| | - Zhen-Hua Jia
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
11
|
Hering RN, von Kroge S, Delsmann J, Simon A, Ondruschka B, Püschel K, Schmidt FN, Rolvien T. Pronounced cortical porosity and sex-specific patterns of increased bone and osteocyte lacunar mineralization characterize the human distal fibula with aging. Bone 2024; 182:117068. [PMID: 38458304 DOI: 10.1016/j.bone.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The high occurrence of distal fibula fractures among older women suggests a potential link to impaired bone health. Here we used a multiscale imaging approach to investigate the microarchitecture, mineralization, and biomechanics of the human distal fibula in relation to age and sex. Micro-computed tomography was performed to analyze the local volumetric bone mineral density and various microarchitectural parameters of the trabecular and the cortical compartment. Bone mineral density distribution and osteocyte lacunar parameters were quantified using quantitative backscattered electron imaging in periosteal, endocortical, and trabecular regions. Additionally, cortical hardness and Young's modulus were assessed by nanoindentation. While cortical porosity strongly increased with age independent of sex, trabecular microarchitecture remained stable. Notably, nearly half of the specimens showed non-bony hypermineralized tissue located at the periosteum, similar to that previously detected in the femoral neck, with no consistent association with advanced age. Independent of this finding, cortical and trabecular mineralization, i.e., mean calcium content, as well as endocortical tissue hardness increased with age in males but not females. Importantly, we also observed mineralized osteocyte lacunae that increased with age specifically in females. In conclusion, our results indicate that skeletal aging of the distal fibula is signified not only by pronounced cortical porosity but also by an increase in mineralized osteocyte lacunae in females. These findings may provide an explanation for the increased occurrence of ankle fractures in older women.
Collapse
Affiliation(s)
- Robin-Nicolas Hering
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Gehre C, Qiu W, Klaus Jäger P, Wang X, Marques FC, Nelson BJ, Müller R, Qin XH. Guiding bone cell network formation in 3D via photosensitized two-photon ablation. Acta Biomater 2024; 174:141-152. [PMID: 38061678 DOI: 10.1016/j.actbio.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
A long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels. A water-soluble two-photon photosensitizer (P2CK) was added to soft GelMA hydrogels to enhance the ablation efficiency. Remarkably, adding 0.5 mM P2CK reduced the energy dosage threshold five-fold compared to untreated controls, enabling more cell-compatible ablation. By employing low-energy ablation (100 J/cm2) with a grid pattern of 1 µm wide and 30 µm deep microchannels, we induced dendritic outgrowth in human mesenchymal stem cells (hMSC). After 7 days, the cells successfully utilized the microchannels and formed a 3D network. Our findings reveal that cellular viability after low-energy ablation was comparable to unablated controls, whereas high-energy ablation (500 J/cm2) resulted in 42 % cell death. Low-energy grid ablation significantly promoted network formation and >40 µm long protrusion outgrowth. While the broad-spectrum matrix metalloproteinase inhibitor (GM6001) reduced cell spreading by inhibiting matrix degradation, cells invaded the microchannel grid with long protrusions. Collectively, these results emphasize the potential of photosensitized two-photon hydrogel ablation as a high-precision tool for laser-guided biofabrication of 3D cellular networks in vitro. STATEMENT OF SIGNIFICANCE: The inaccessible nature of osteocyte networks in bones renders fundamental research on skeletal biology a major challenge. This limit is partly due to the lack of high-resolution tools that can manipulate the pericellular environment in 3D cultures in vitro. To create bone-like cellular networks, we employ a two-photon laser in combination with a two-photon sensitizer to erode microchannels with low laser dosages into GelMA hydrogels. By providing a grid of microchannels, the cells self-organized into a 3D interconnected network within days. Laser-guided formation of 3D networks from single cells at micron-scale resolution is demonstrated for the first time. In future, we envisage in vitro generation of bone cell networks with user-dictated morphologies for both fundamental and translational bone research.
Collapse
Affiliation(s)
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | | | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | | | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
13
|
Watkins LE, Goyal A, Gatti AA, Kogan F. Imaging of joint response to exercise with MRI and PET. Skeletal Radiol 2023; 52:2159-2183. [PMID: 36646851 PMCID: PMC10350475 DOI: 10.1007/s00256-022-04271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
Imaging of the joint in response to loading stress may provide additional measures of joint structure and function beyond conventional, static imaging studies. Exercise such as running, stair climbing, and squatting allows evaluation of the joint response to larger loading forces than during weight bearing. Quantitative MRI (qMRI) may assess properties of cartilage and meniscus hydration and organization in vivo that have been investigated to assess the functional response of these tissues to physiological stress. [18F]sodium fluoride ([18F]NaF) interrogates areas of newly mineralizing bone and provides an opportunity to study bone physiology, including perfusion and mineralization rate, as a measure of joint loading stress. In this review article, methods utilizing quantitative MRI, PET, and hybrid PET-MRI systems for assessment of the joint response to loading from exercise in vivo are examined. Both methodology and results of various studies performed are outlined and discussed. Lastly, the technical considerations, challenges, and future opportunities for these approaches are addressed.
Collapse
Affiliation(s)
| | - Ananya Goyal
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Anthony A Gatti
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Ng CA, Gandham A, Mesinovic J, Owen PJ, Ebeling PR, Scott D. Effects of Moderate- to High-Impact Exercise Training on Bone Structure Across the Lifespan: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Bone Miner Res 2023; 38:1612-1634. [PMID: 37555459 DOI: 10.1002/jbmr.4899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Moderate- to high-impact exercise improves bone mineral density (BMD) across the lifespan, but its effects on bone structure, which predicts fracture independent of areal BMD, are unclear. This systematic review and meta-analysis investigated effects of impact exercise on volumetric BMD (vBMD) and bone structure. Four databases (PubMed, Embase, SPORTDiscus, Web of Science) were searched up to March 2022 for randomized controlled trials (RCTs) investigating the effects of impact exercise, with ground reaction forces equal to or greater than running, compared with sham or habitual activity, on bone vBMD and structure. Bone variables were measured by quantitative computed tomography or magnetic resonance imaging at the tibia, radius, lumbar spine, and femur. Percentage changes in bone variables were compared among groups using mean differences (MD) and 95% confidence intervals (CI) calculated via random effects meta-analyses. Subgroup analyses were performed in children/adolescents (<18 years), adults (18-50 years), postmenopausal women, and older men. Twenty-eight RCTs (n = 2985) were included. Across all studies, impact exercise improved trabecular vBMD at the distal tibia (MD = 0.54% [95% CI 0.17, 0.90%]), total vBMD at the proximal femur (3.11% [1.07, 5.14%]), and cortical thickness at the mid/proximal radius (1.78% [0.21, 3.36%]). There was no effect on vBMD and bone structure at the distal radius, femoral shaft, or lumbar spine across all studies or in any subgroup. In adults, impact exercise decreased mid/proximal tibia cortical vBMD (-0.20% [-0.24, -0.15%]). In postmenopausal women, impact exercise improved distal tibia trabecular vBMD (0.79% [0.32, 1.25%]). There was no effect on bone parameters in children/adolescents in overall analyses, and there were insufficient studies in older men to perform meta-analyses. Impact exercise may have beneficial effects on bone structure and vBMD at various skeletal sites, but additional high-quality RCTs in different age and sex subgroups are needed to identify optimal exercise protocols for improving bone health across the lifespan. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carrie-Anne Ng
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - Anoohya Gandham
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Patrick J Owen
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
15
|
Zanner S, Goff E, Ghatan S, Wölfel EM, Ejersted C, Kuhn G, Müller R, Frost M. Microvascular Disease Associates with Larger Osteocyte Lacunae in Cortical Bone in Type 2 Diabetes Mellitus. JBMR Plus 2023; 7:e10832. [PMID: 38025042 PMCID: PMC10652180 DOI: 10.1002/jbm4.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Clinical studies indicate that microvascular disease (MVD) affects bone microstructure and decreases bone strength in type 2 diabetes mellitus (T2D). Osteocytes are housed in small voids within the bone matrix and lacunae and act as sensors of mechanical forces in bone. These cells regulate osteoclastic bone resorption and osteoblastic bone formation as well as osteocytic perilacunar remodeling. We hypothesized that MVD changes morphometric osteocyte lacunar parameters in individuals with T2D. We collected iliac crest bone biopsies from 35 individuals (10 female, 25 male) with T2D with MVD (15%) or without MVD (21%) with a median age of 67 years (interquartile range [IQR] 62-72 years). The participants were included based on c-peptide levels >700 pmol L-1, absence of anti-GAD65 antibodies, and glycated hemoglobin (HbA1c) levels between 40 and 82 mmol mol-1 or 5.8% and 9.7%, respectively. We assessed osteocyte lacunar morphometric parameters in trabecular and cortical bone regions using micro-computed tomography (micro-CT) at a nominal resolution of 1.2 μm voxel size. The cortical osteocyte lacunar volume (Lc.V) was 7.7% larger (p = 0.05) and more spherical (Lc.Sr, p < 0.01) in the T2D + MVD group. Using linear regression, we found that lacunar density (Lc.N/BV) in trabecular but not cortical bone was associated with HbA1c (p < 0.05, R 2 = 0.067) independently of MVD. Furthermore, Lc.V was larger and Lc.Sr higher in the center than in the periphery of the trabecular and cortical bone regions (p < 0.05). In conclusion, these data imply that MVD may impair skeletal integrity, possibly contributing to increased skeletal fragility in T2D complicated by MVD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sebastian Zanner
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
| | - Elliott Goff
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Samuel Ghatan
- Department of Internal MedicineErasmus MC University—Medical Center RotterdamRotterdamThe Netherlands
| | - Eva Maria Wölfel
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
| | | | - Gisela Kuhn
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Ralph Müller
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Morten Frost
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
- Steno Diabetes Centre OdenseOUHOdenseDenmark
| |
Collapse
|
16
|
Ahmed F, Minamizaki T, Aubin JE, Damayanti MA, Yoshiko Y. Large scale analysis of osteocyte lacunae in klotho hypomorphic mice using high-resolution micro-computed tomography. Ann Anat 2023; 250:152142. [PMID: 37572763 DOI: 10.1016/j.aanat.2023.152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.
Collapse
Affiliation(s)
- Faisal Ahmed
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Merry Annisa Damayanti
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
17
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
18
|
Guo Y, Zhao H, Wang F, Xu H, Liu X, Hu T, Wu D. Telomere length as a marker of changes in body composition and fractures-an analysis of data from the NHANES 2001-2002. Front Immunol 2023; 14:1181544. [PMID: 37744360 PMCID: PMC10514483 DOI: 10.3389/fimmu.2023.1181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose There has been an association between changes in body composition, fracture incidence, and age in previous studies. Telomere length (TL) has been proposed as a biomarker of aging. However, the relationship between body composition, fractures, and TL has rarely been studied. Therefore, this study aimed to investigate the correlation between TL and body composition and fractures.Patients and methods: 20950 participants from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) were included in the final analysis. In NHANES, body compositions were measured with DXA, and TL was determined with quantitative PCR. Correlation analysis of TL and body composition was conducted using multivariate weighted linear regression and logistic regression models. Results The results showed that TL positively correlated with bone mineral density (BMD) and bone mineral content (BMC) in most body parts. However, BMD and BMC were negatively connected with TL in the upper limbs and skull. Fat content was negatively associated with TL, while muscle content was positively linked to TL. In addition, TL's trend analysis results were consistent with the regression model when transformed from a continuous to a classified variable. An increase in TL was associated with a higher incidence of wrist fractures, while a decrease in spine fractures. The above correlation also has a certain degree of sex specificity. Conclusion Our study indicate that TL is associated with body composition as well as fractures, but further research is needed to confirm these contrasting associations in the skull, upper limbs, and wrists.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Ji C, Zhang L, Wang Y, Lin B, Bai X, Yun S, He B. The influence of different shaped osteocyte lacunae on microcrack initiation and propagation. Clin Biomech (Bristol, Avon) 2023; 108:106072. [PMID: 37611387 DOI: 10.1016/j.clinbiomech.2023.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The morphology of osteocyte lacunae varies in bones of different ages and bone pathologies. Osteocyte lacunae can cause stress concentration and initiate microcracks. However, the influence of changes in osteocyte lacunar shape on microcrack is unknown. Therefore, the aim of this study was to determine the effects of osteocyte lacunae with different shapes on microcrack initiation and propagation. METHODS Osteon models containing osteocyte lacunae with different shapes were established. The progressive damage analysis method, based on computer simulations, was used to study the evolution of microdamage within the osteon, including the processes of intralaminar and interlaminar microdamage. FINDINGS Models with larger DoE values can effectively delay or prevent the formation of linear microcracks, which ensures high fracture toughness of cortical bone. It is subjected to stronger mechanical stimulation, making it more sensitive to loads. Models with smaller DoE values increase the load threshold for microdamage generation and reduces its impact on bone mechanical performance, making it less susceptible to microdamage than models with larger DoE values. INTERPRETATION These findings enhance the limited knowledge of the influence of the lacunar shape on microdamage and contribute to a better understanding of bone biomechanics.
Collapse
Affiliation(s)
- Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Liang Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300072, PR China
| | - Bin Lin
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Xinlei Bai
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Shiyue Yun
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bingnan He
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
20
|
Wang Y, Ren L, Xu L, Wang J, Zhai J, Zhu G. Radiation Induces Bone Microenvironment Disruption by Activating the STING-TBK1 Pathway. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1316. [PMID: 37512126 PMCID: PMC10386124 DOI: 10.3390/medicina59071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.
Collapse
Affiliation(s)
- Yuyang Wang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200051, China
| | - Li Ren
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Linshan Xu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Jianping Wang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Jianglong Zhai
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| |
Collapse
|
21
|
Loisay L, Komla-Ebri D, Morice A, Heuzé Y, Viaut C, de La Seiglière A, Kaci N, Chan D, Lamouroux A, Baujat G, Bassett JD, Williams GR, Legeai-Mallet L. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice. JCI Insight 2023; 8:e168796. [PMID: 37345656 PMCID: PMC10371252 DOI: 10.1172/jci.insight.168796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Hypochondroplasia (HCH) is a mild dwarfism caused by missense mutations in fibroblast growth factor receptor 3 (FGFR3), with the majority of cases resulting from a heterozygous p.Asn540Lys gain-of-function mutation. Here, we report the generation and characterization of the first mouse model (Fgfr3Asn534Lys/+) of HCH to our knowledge. Fgfr3Asn534Lys/+ mice exhibited progressive dwarfism and impairment of the synchondroses of the cranial base, resulting in defective formation of the foramen magnum. The appendicular and axial skeletons were both severely affected and we demonstrated an important role of FGFR3 in regulation of cortical and trabecular bone structure. Trabecular bone mineral density (BMD) of long bones and vertebral bodies was decreased, but cortical BMD increased with age in both tibiae and femurs. These results demonstrate that bones in Fgfr3Asn534Lys/+ mice, due to FGFR3 activation, exhibit some characteristics of osteoporosis. The present findings emphasize the detrimental effect of gain-of-function mutations in the Fgfr3 gene on long bone modeling during both developmental and aging processes, with potential implications for the management of elderly patients with hypochondroplasia and osteoporosis.
Collapse
Affiliation(s)
- Léa Loisay
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, CNRS, MC, Université de Bordeaux, Pessac, France
| | - Camille Viaut
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Nabil Kaci
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Audrey Lamouroux
- Department of Medical Genetics, CHU Arnaud De Villeneuve, Montpellier, France
| | - Geneviève Baujat
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
- Department of Medical Genetics, French Reference Center for Skeletal Dysplasia, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Laurence Legeai-Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| |
Collapse
|
22
|
Levi R, Garoli F, Battaglia M, Rizzo DAA, Mollura M, Savini G, Riva M, Tomei M, Ortolina A, Fornari M, Rohatgi S, Angelotti G, Savevski V, Mazziotti G, Barbieri R, Grimaldi M, Politi LS. CT-based radiomics can identify physiological modifications of bone structure related to subjects' age and sex. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01641-6. [PMID: 37147473 DOI: 10.1007/s11547-023-01641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. MATERIALS AND METHODS We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions. RESULTS The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). CONCLUSION Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
Collapse
Affiliation(s)
- Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Federico Garoli
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Massimiliano Battaglia
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Dario A A Rizzo
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Maximilliano Mollura
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giovanni Savini
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Massimo Tomei
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Alessandro Ortolina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Maurizio Fornari
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Saurabh Rohatgi
- Department of Neuroradiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Giovanni Angelotti
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Metabolic Bone Diseases and Osteoporosis Section, Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Riccardo Barbieri
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Marco Grimaldi
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy.
| |
Collapse
|
23
|
Insights into the Molecular and Hormonal Regulation of Complications of X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hypophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy), all of which lead to decreased quality of life. Many molecular and murine studies have detailed the role of mineral ions and hormones in regulating complications of XLH, including how they modulate growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral matrix resorption and canalicular organization, and enthesopathy development. While these studies have provided insight into the molecular underpinnings of these skeletal processes, current therapies available for XLH do not fully prevent or treat these complications. Therefore, further investigations are needed to determine the molecular pathophysiology underlying the complications of XLH.
Collapse
|
24
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
25
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
26
|
Schröder G, Denkert K, Hiepe L, Schulze M, Martin H, Andresen JR, Andresen R, Büttner A, Schober HC. Histomorphometric analysis of osteocyte density and trabecular structure of 92 vertebral bodies of different ages and genders. Ann Anat 2023; 246:152022. [PMID: 36403851 DOI: 10.1016/j.aanat.2022.152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Knowledge of the histomorphometric structure of the vertebral body and factors influencing the structure is essential for a fundamental understanding of osteoporosis and osteoporotic fractures. The present study is focused on osteocyte density - a parameter seldom investigated so far - and trabecular width as well as bone area over tissue area in human vertebral bodies. METHODS Ninety-two vertebral body specimens (C5, C6, Th8, Th12, L1, L2) from 12 males and seven females were studied (Ethics Application Number A 2017-0072). The prepared vertebral specimens were extracted from the ventral aspect with a Jamshidi needle®. The punches were decalcified and subsequently H&E stained. Using the Fiji/Image J program (version 1.53 f, Wayne Resband, National Institute of Mental Health, USA), osteocyte numbers were counted per calcified bone surface, and the trabecular width and bone area of trabecular bone were measured. The collected data were analyzed using the statistical software package SPSS, version 23.0 (SPSS Inc., Chicago, USA). Pearson's correlation coefficient was used for correlation analyses. Multiple linear regression analyses were also performed. RESULTS Osteocyte density did not differ significantly in comparisons based on gender and age (≤65 years; ≥66 years). Men had wider trabeculae (p < 0.001) and a higher bone area over tissue area (BA/TA, %) (p = 0.025) than women. Individuals over 65 years of age had thinner trabeculae (p < 0.001) and a smaller BA/TA (%) (p < 0.001) than younger individuals. Multiple linear regression analyses were performed to determine the influence of 'gender' and 'age' on trabecular width and bone area over tissue area. The R² was 0.388 for trabecular width and 0.227 for BA/TA (%). Per year of life, trabecular width decreases by 0.368 µm (β < 0.001) and BA/TA (%) by 0.001% (β = 0.001). Men have on average 8.2 µm wider trabeculae than women (β = 0.035). A negative correlation (r = -0.275) was observed between trabecular width and osteocyte density. The wider the trabeculae, the fewer osteocytes per mm² (p = 0.008). CONCLUSIONS Surprisingly, we found no difference in osteocyte density with reference to age or gender. However, we did register significant age- and gender-related differences in bone area over tissue area and trabecular thickness. The age-related differences were more pronounced, implying that age-dependent loss of bone structure may be more important than differences between genders.
Collapse
Affiliation(s)
- Guido Schröder
- Clinic of Orthopedics and Trauma Surgery, Warnow Clinic, Buetzow, Germany.
| | - Kira Denkert
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Laura Hiepe
- Institute for Anatomy, Medical University of Rostock, Rostock, Germany
| | - Marko Schulze
- Institute for Anatomy and Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Heiner Martin
- Institute for Biomedical Engineering, Medical University of Rostock, Rostock, Germany
| | | | - Reimer Andresen
- Institute of Diagnostic and Interventional Radiology / Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck and Hamburg, Heide, Germany
| | - Andreas Büttner
- Institute of Legal Medicine, Medical University of Rostock, Rostock, Germany
| | - Hans-Christof Schober
- Department of Internal Medicine IV, Municipal Hospital Suedstadt Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| |
Collapse
|
27
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
28
|
Nguyen-Khac V, Bonnet-Lebrun A, Skalli W, Adamsbaum C, Linglart A, Wicart P. Changes in adipose bone marrow and bone morphology in X-linked hypophosphatemic rickets. Orthop Traumatol Surg Res 2022; 109:103529. [PMID: 36565743 DOI: 10.1016/j.otsr.2022.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION X-linked hypophosphatemic (XLH) rickets causes significant bone deformities in the lower limbs resulting from a bone mineralization defect. According to Frost's Mechanostat theory, compensatory modeling of the bones takes place during increased mechanical loads. In addition, mechanical stimuli modulate the differentiation of mesenchymal stem cells; common precursors to bone marrow adipocytes and osteoblasts. HYPOTHESIS Bone deformities of the lower limbs lead to increased femoral bone mass and decreased fatty infiltration of the bone marrow (FIBM) in children with XLH rickets compared to a control group. PATIENTS AND METHODS Eleven children (10.3years [6-17]) with XLH rickets and 22 healthy children (10.2years [5-15.5]) underwent lower limb Magnetic Resonance Imaging. A calculation of FIBM was performed at the mid-femur, as well as a calculation of the total bone cross-sectional area (CSA), the cortical CSA, the anteroposterior and mediolateral axes of the femur, bone marrow and the thickness of the femoral cortices. RESULTS Total bone CSA, total cortical CSA and bone marrow CSA were higher in the XLH group than in the control group (p<0.05). The mid-lateral diameters of the femur and bone marrow were more elongated than those of the control group (p<0.001). Only the anterior cortex was thinned in the XLH group (p=0.001), while there was no difference with the control group for the posterior, medial and lateral cortices. The total percentage of FIBM was 72.81% [±3.95] and 77.4% [±5.52] for the XLH and control groups respectively (p<0.001). DISCUSSION The increase in bone mass in the XLH population reflects an adaptation of bone tissue to the bone deformities present in this pathology. The decrease in FIBM indicates a lower risk of osteoporosis in the XLH population and may constitute a new monitoring parameter in this pathology. LEVEL OF STUDY III; Case-control study.
Collapse
Affiliation(s)
| | - Aurore Bonnet-Lebrun
- ENSAM, Institut de Biomécanique Humaine G.-Charpark, 151, Boulevard de l'Hôpital, 75013 Paris, France
| | - Wafa Skalli
- ENSAM, Institut de Biomécanique Humaine G.-Charpark, 151, Boulevard de l'Hôpital, 75013 Paris, France
| | - Catherine Adamsbaum
- Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Agnès Linglart
- Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Wicart
- Hospital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvre, 75015 Paris, France
| |
Collapse
|
29
|
Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Front Endocrinol (Lausanne) 2022; 13:1029475. [PMID: 36568096 PMCID: PMC9768366 DOI: 10.3389/fendo.2022.1029475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, characterized by bone mineral density reduction, bone mass loss, increased bone fragility, and propensity to fractures, is a common disease in older individuals and one of the most serious health problems worldwide. The imbalance between osteoblasts and osteoclasts results in the predominance of bone resorption and decreased bone formation. In recent years, it has been found that regular and proper exercise not only helps prevent the occurrence of osteoporosis but also adds benefits to osteoporosis therapy; accordingly, bone homeostasis is closely associated with mechanical stress and the intricate crosstalk between osteoblasts and osteoclasts. In this review, we summarize the mechanisms of exercise on osteoporosis and provide new proposals for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Traumatic Orthopedics, the First Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Lin CY, Song X, Seaman K, You L. Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation. Curr Osteoporos Rep 2022; 20:478-492. [PMID: 36149593 DOI: 10.1007/s11914-022-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant cell type in bone. These unique cells act primarily as mechanosensors and play crucial roles in the functional adaptation of bone tissue. This review aims to summarize the recent microfluidic studies on mechanically stimulated osteocytes in regulating other cell types. RECENT FINDINGS Microfluidics is a powerful technology that has been widely employed in recent years. With the advantages of microfluidic platforms, researchers can mimic multicellular environments and integrate dynamic systems to study osteocyte regulation under mechanical stimulation. Microfluidic platforms have been developed to investigate mechanically stimulated osteocytes in the direct regulation of multiple cell types, including osteoclasts, osteoblasts, and cancer cells, and in the indirect regulation of cancer cells via endothelial cells. Overall, these microfluidic studies foster the development of treatment approaches targeting osteocytes under mechanical stimulation.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
32
|
Loureirin B downregulates osteoclast differentiation of bone marrow macrophages by targeting the MAPK signaling pathway. Sci Rep 2022; 12:14382. [PMID: 35999378 PMCID: PMC9399088 DOI: 10.1038/s41598-022-18287-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Excessive absorption of osteoclasts will break the balance between osteoclasts and osteoblasts, leading to bone loss, decreased bone density, and increased bone fragility. We have shown that Loureirin B (LrB) can inhibit osteoclasts. In this study, we demonstrated the targeting-inhibitory mechanism of LrB acting on osteoclast precursor. Using SPR, HPLC and MALDI-TOF-MS to capture and analyze the target protein of Loureirin B in bone marrow macrophages (BMMs), we used this method to detect all target proteins that LrB acts on BMMs, and analyzed the distribution and enrichment rate of the target protein by DAVID enrichment analysis. Ledock molecular docking was used to detect the binding of LrB. We used Western Blot for verification. The target proteins of LrB acting on BMMs were Serpine1, Atp6ap1, Dvl1, Rhd, Fzd2, MAPK1, MAP2K2, MAPK3 and so on. MAPK1, MAP2K2 and MAPK3 were the most relevant. LrB treatment attenuated the expression of phosphorylated JNK and p38 kinases of the MAPK signaling pathway. Our research further confirmed that LrB affects the MAPK signaling pathway in BMMs, thereby inhibiting the differentiation of BMMs into osteoclasts. This discovery can confirm the mechanism by which LrB acts on BMMs.
Collapse
|
33
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
34
|
Ardura JA, Martín-Guerrero E, Heredero-Jiménez S, Gortazar AR. Primary cilia and PTH1R interplay in the regulation of osteogenic actions. VITAMINS AND HORMONES 2022; 120:345-370. [PMID: 35953116 DOI: 10.1016/bs.vh.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary cilia are subcellular structures specialized in sensing different stimuli in a diversity of cell types. In bone, the primary cilium is involved in mechanical sensing and transduction of signals that regulate the behavior of mesenchymal osteoprogenitors, osteoblasts and osteocytes. To perform its functions, the primary cilium modulates a plethora of molecules including those stimulated by the parathyroid hormone (PTH) receptor type I (PTH1R), a master regulator of osteogenesis. Binding of the agonists PTH or PTH-related protein (PTHrP) to the PTH1R or direct agonist-independent stimulation of the receptor activate PTH1R signaling pathways. In turn, activation of PTH1R leads to regulation of bone formation and remodeling. Herein, we describe the structure, function and molecular partners of primary cilia in the context of bone, playing special attention to those signaling pathways that are mediated directly or indirectly by PTH1R in association with primary cilia during the process of osteogenesis.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain.
| | - Eduardo Martín-Guerrero
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Sara Heredero-Jiménez
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Arancha R Gortazar
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| |
Collapse
|
35
|
Li MCM, Chow SKH, Wong RMY, Chen B, Cheng JCY, Qin L, Cheung WH. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing. Bone Joint Res 2022; 11:465-476. [PMID: 35787000 PMCID: PMC9350691 DOI: 10.1302/2046-3758.117.bjr-2021-0476.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476.
Collapse
Affiliation(s)
- Meng C M Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K-H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M Y Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jack C Y Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Similarities and Differences in Bone Mineral Density between Multiple Sites in the Same Individual: An Elderly Cadaveric Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6094663. [PMID: 35711524 PMCID: PMC9197619 DOI: 10.1155/2022/6094663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Bone mineral density (BMD) is known to vary based on various factors, and the degree of variation is site-specific. However, few studies have investigated the relationship between bone density at trabecular bone-rich and cortical bone-rich sites in the same individual. In this study, we attempted to measure BMD at multiple sites using whole-body computed tomography images taken immediately after death and to clarify the similarities and differences between skeletal sites. Additionally, we aimed to examine the factors that influence changes in BMD, such as the loading environment, bone microstructure, and the ossification process of each skeletal region. A 3D model containing BMD data of the skull, clavicle, lumbar vertebrae, and femur (neck and diaphysis) was created using computed tomography images taken immediately after the death of 60 individuals (28 men and 32 women, average age: 84.0 years) who consented to participate in the study before death. Arbitrary measurement sites were defined, and bone density was measured at each site. We found that the BMDs of all regions were negatively correlated with age, but this correlation was weaker in the skull than in other regions. The negative correlation was especially pronounced in areas with more trabecular bones in men and in areas with more cortical bones in women. Furthermore, these findings suggest that factors, such as the loading environment, bone microstructure, and the ossification process of the skeletal sites, affect the BMD. Furthermore, our results suggest that it is important to assess the BMD of cortical bone in older women.
Collapse
|
37
|
Rothweiler R, Gross C, Bortel E, Früh S, Gerber J, Boller E, Wüster J, Stricker A, Fretwurst T, Iglhaut G, Nahles S, Schmelzeisen R, Hesse B, Nelson K. Comparison of the 3D-Microstructure Between Alveolar and Iliac Bone for Enhanced Bioinspired Bone Graft Substitutes. Front Bioeng Biotechnol 2022; 10:862395. [PMID: 35782504 PMCID: PMC9248932 DOI: 10.3389/fbioe.2022.862395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In oral- and maxillofacial bone augmentation surgery, non-vascularized grafts from the iliac crest demonstrate better clinical performance than alveolar bone grafts. The underlying mechanisms are not fully understood but are essential for the enhancement of bone regeneration scaffolds. Synchrotron Radiation µ-CT at a pixel size of 2.3 μm was used to characterize the gross morphology and the vascular and osteocyte lacuna porosity of patient-matched iliac crest/alveolar bone samples. The results suggest a difference in the spatial distribution of the vascular pore system. Fluid simulations reveal the permeability tensor to be more homogeneous in the iliac crest, indicating a more unidirectional fluid flow in alveolar bone. The average distance between bone mineral and the closest vessel pore boundary was found to be higher in alveolar bone. At the same time, osteocyte lacunae density is higher in alveolar bone, potentially compensating for the longer average distance between the bone mineral and vessel pores. The present study comprehensively quantified and compared the 3D microarchitecture of intraindividual human alveolar and iliac bone. The identified difference in pore network architecture may allow a bone graft from the iliac crest to exhibit higher regeneration potential due to an increased capacity to connect with the surrounding pore network of the residual bone. The results may contribute to understanding the difference in clinical performance when used as bone grafts and are essential for optimization of future scaffold materials.
Collapse
Affiliation(s)
- Rene Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Gross
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | | | - Elodie Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andres Stricker
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rainer Schmelzeisen
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Berlin, Germany
- European Synchrotron Radiation Facility, Grenoble, France
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- *Correspondence: Bernhard Hesse, ; Katja Nelson,
| |
Collapse
|
38
|
Gorter EA, Reinders CR, Krijnen P, Appelman-Dijkstra NM, Schipper IB. Serum sclerostin levels in osteoporotic fracture patients. Eur J Trauma Emerg Surg 2022; 48:4857-4865. [PMID: 35705746 DOI: 10.1007/s00068-022-02017-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/23/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Sclerostin inhibits bone formation and stimulates bone resorption. Previous studies found a positive association between bone density and serum sclerostin, but literature on sclerostin levels in osteoporotic fracture patients is scarce. The aim of the present study was to compare the serum sclerostin levels in osteoporotic and non-osteoporotic fracture patients and to assess the correlation of the sclerostin levels with bone mineral density and vitamin D status. METHODS In this cross-sectional study, we included patients over 50 years, with an extremity fracture after low-energy trauma treated between 2012 and 2018, with biobank samples and available bone density measurements by Dual X-ray Absorption. Osteoporosis was diagnosed according the World Health Organisation criteria. Vitamin D deficiency was defined as a 25(OH)D concentration < 30 nmol/L. After defrosting biobank samples, serum sclerostin was measured using the human SOST (sclerostin) enzyme-linked immunosorbent assay kit. We prespecified a subgroup analysis including only female patients. RESULTS 179 patients were included of whom 139(78%) were female. In 46 patients (25.7%), osteoporosis was diagnosed. Bone mineral density was positively associated with sclerostin levels (r = 0.17, p = 0.026) and patients with osteoporosis had a significantly lower serum sclerostin compared to non-osteoporotic fracture patients (mean 41.9 pmol/L vs 48.1 pmol/L; p = 0.03). This difference remained significant after correction for potential confounders. Similar results were found in the subgroup of female patients. No association between serum sclerostin and vitamin D deficiency was found. CONCLUSION Osteoporotic fracture patients had lower levels of sclerostin than non-osteoporotic fracture patients. Future research should focus on the use of sclerostin as biomarker for osteoporosis in fracture patients.
Collapse
Affiliation(s)
- Erwin A Gorter
- Departments of Trauma Surgery, Leiden University Medical Center, postzone K6-R, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Casper R Reinders
- Departments of Trauma Surgery, Leiden University Medical Center, postzone K6-R, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieta Krijnen
- Departments of Trauma Surgery, Leiden University Medical Center, postzone K6-R, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Inger B Schipper
- Departments of Trauma Surgery, Leiden University Medical Center, postzone K6-R, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
39
|
Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3935803. [PMID: 35677099 PMCID: PMC9170394 DOI: 10.1155/2022/3935803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
This study was conducted to better understand the specific behavior of the intraosseous fluid flow. We calculated the number and distribution of bone canaliculi around the osteocytes based on the varying shapes of osteocytes. We then used these calculated parameters and other bone microstructure data to estimate the anisotropy permeability of the lacunar-canalicular network. Poroelastic finite element models of the osteon were established, and the influence of the osteocyte shape on the fluid flow properties of osteons under an axial displacement load was analyzed. Two types of boundary conditions (BC) that might occur in physiological environments were considered on the cement line of the osteon. BC1 allows free fluid passage from the outer elastic restraint boundary, and BC2 is impermeable and allows no free fluid passage from outer displacement constrained boundary. They both have the same inner boundary conditions that allow fluid to pass through. Changes in the osteocyte shape altered the maximum value of pressure gradient (PG), pore pressure (PP), fluid velocity (FV), and fluid shear stress (FSS) relative to the reference model (spherical osteocytes). The maximum PG, PP, FV, and FSS in BC2 were nearly 100% larger than those in BC1, respectively. It is found that the BC1 was closer to the real physiological environment. The fluid flow along different directions in the elongated osteocyte model was more evident than that in other models, which may have been due to the large difference in permeability along different directions. Changes in osteocyte shape significantly affect the degrees of anisotropy of fluid flow and porous media of the osteon. The model presented in this study can accurately quantify fluid flow in the lacunar-canalicular network.
Collapse
|
40
|
Wang H, Du T, Li R, Main RP, Yang H. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte. Bone 2022; 158:116367. [PMID: 35181573 DOI: 10.1016/j.bone.2022.116367] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The osteocyte lacunar-canalicular system (LCS) serves as a mechanotransductive core where external loading applied to the skeleton is transduced into mechanical signals (e.g., fluid shear) that can be sensed by mechanosensors (osteocytes). The fluid velocity and shear stress within the LCS are affected by various loading parameters. However, the interactive effect of distinct loading parameters on the velocity and shear stress in the LCS remains unclear. To address this issue, we developed a multiscale modeling approach, combining a poroelastic finite element (FE) model with a single osteocytic LCS unit model to calculate the flow velocity and shear stress within the LCS. Next, a sensitivity analysis was performed to investigate individual and interactive effects of strain magnitude, strain rate, number of cycles, and intervening short rests between loading cycles on the velocity and shear stress around the osteocyte. Lastly, we developed a relatively simple regression model to predict those outcomes. Our results demonstrated that the strain magnitude or rate alone were the main factors affecting the velocity and shear stress; however, the combination of these two was not directly additive, and addition of a short rest between cycles could enhance the combination of these two related factors. These results show highly interactive effects of distinct loading parameters on fluid velocity and shear stress in the LCS. Specifically, our results suggest that an enhanced fluid dynamics environment in the LCS can be achieved with a brief number of load cycles combined with short rest insertion and high strain magnitude and rate.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
41
|
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev 2022; 77:101608. [PMID: 35283289 DOI: 10.1016/j.arr.2022.101608] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Osteocytes play a critical role in maintaining bone homeostasis and in regulating skeletal response to hormones and mechanical loading. Substantial evidence have demonstrated that osteocytes and their lacunae exhibit morphological changes in aged bone, indicating the underlying involvement of osteocytes in bone aging. Notably, recent studies have deciphered aged osteocytes to have characteristics such as impaired mechanosensitivity, accumulated cellular senescence, dysfunctional perilacunar/canalicular remodeling, and degenerated lacuna-canalicular network. However, detailed molecular mechanisms of osteocytes remain unclear. Nonetheless, osteocyte transcriptomes analyzed via advanced RNA sequencing (RNA-seq) techniques have identified several bone aging-related genes and signaling pathways, such as Wnt, Bmp/TGF, and Jak-STAT. Moreover, inflammation, immune dysfunction, energy shortage, and impaired hormone responses possibly affect osteocytes in age-related bone deterioration. In this review, we summarize the hallmarks of aging bone and osteocytes and discuss osteocytic mechanisms in age-related bone loss and impaired bone quality. Furthermore, we provide insights into the challenges faced and their possible solutions when investigating osteocyte transcriptomes. We also highlight that single-cell RNA-seq can decode transcriptomic messages in aged osteocytes; therefore, this technique can promote novel single cell-based investigations in osteocytes once a well-established standardized protocol specific for osteocytes is developed. Interestingly, improved understanding of osteocytic mechanisms have helped identify promising targets and effective therapies for aging-related osteoporosis and fragile fractures.
Collapse
|
42
|
Kaya S, Schurman CA, Dole NS, Evans DS, Alliston T. Prioritization of Genes Relevant to Bone Fragility Through the Unbiased Integration of Aging Mouse Bone Transcriptomics and Human GWAS Analyses. J Bone Miner Res 2022; 37:804-817. [PMID: 35094432 PMCID: PMC9018503 DOI: 10.1002/jbmr.4516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Identifying new genetic determinants of bone mineral density (BMD) and fracture promises to yield improved diagnostics and therapies for bone fragility. However, prioritizing candidate genes from genome-wide screens can be challenging. To overcome this challenge, we prioritized mouse genes that are differentially expressed in aging mouse bone based on whether their human homolog is associated with human BMD and/or fracture. Unbiased RNA-seq analysis of young and old male C57BL/6 mouse cortical bone identified 1499, 1685, and 5525 differentially expressed genes (DEGs) in 1, 2, and 2.5-year-old bone, relative to 2-month-old bone, respectively. Gene-based scores for heel ultrasound bone mineral density (eBMD) and fracture were estimated using published genome-wide association studies (GWAS) results of these traits in the UK Biobank. Enrichment analysis showed that mouse bone DEG sets for all three age groups, relative to young bone, are significantly enriched for eBMD, but only the oldest two DEG sets are enriched for fracture. Using gene-based scores, this approach prioritizes among thousands of DEGs by a factor of 5- to 100-fold, yielding 10 and 21 genes significantly associated with fracture in the two oldest groups of mouse DEGs. Though these genes were not the most differentially expressed, they included Sost, Lrp5, and others with well-established functions in bone. Several others have, as yet, unknown roles in the skeleton. Therefore, this study accelerates identification of new genetic determinants of bone fragility by prioritizing a clinically relevant and experimentally tractable number of candidate genes for functional analysis. Finally, we provide a website (www.mouse2human.org) to enable other researchers to easily apply our strategy. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| | - Neha S. Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| |
Collapse
|
43
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
44
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
45
|
von Kroge S, Stürznickel J, Bechler U, Stockhausen KE, Eissele J, Hubert J, Amling M, Beil FT, Busse B, Rolvien T. Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density. Acta Biomater 2022; 141:233-243. [PMID: 34999261 DOI: 10.1016/j.actbio.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Skeletal adaptation is substantially influenced by mechanical loads. Osteocytes and their lacuno-canalicular network have been identified as a key player in load sensation and bone quality regulation. In the femoral neck, one of the most common fracture sites, a complex loading pattern with lower habitual loading in the superolateral neck and higher compressive stresses in the inferomedial neck is present. Variations in the femoral neck-shaft angle (NSA), i.e., coxa vara or coxa valga, provide the opportunity to examine the influence of loading patterns on bone quality. We obtained femoral neck specimens of 28 osteoarthritic human subjects with coxa vara, coxa norma and coxa valga during total hip arthroplasty. Bone mineral density (BMD) was assessed preoperatively by dual energy X-ray absorptiometry (DXA). Cortical and trabecular microstructure and three-dimensional osteocyte lacunar characteristics were assessed in the superolateral and inferomedial neck using ex vivo high resolution micro-computed tomography. Additionally, BMD distribution and osteocyte lacunar characteristics were analyzed by quantitative backscattered electron imaging (qBEI). All groups presented thicker inferomedial than superolateral cortices. Furthermore, the superolateral site exhibited a lower osteocyte lacunar density along with lower lacunar sphericity than the inferomedial site, independent of NSA. Importantly, BMD and corresponding T-scores correlated with microstructural parameters at the inferomedial but not superolateral neck. In conclusion, we provide micromorphological evidence for fracture vulnerability of the superolateral neck, which is independent of NSA and BMD. The presented bone qualitative data provide an explanation why DXA may be insufficient to predict a substantial proportion of femoral neck fractures. STATEMENT OF SIGNIFICANCE: The femoral neck, one of the most common fracture sites, is subject to a complex loading pattern. Site-specific differences (i.e., superolateral vs. inferomedial) in bone quality influence fracture risk, but it is unclear how this relates to hip geometry and bone mineral density (BMD) measurements in vivo. Here, we examine femoral neck specimens using a variety of high-resolution imaging techniques and demonstrate impaired bone quality in the superolateral compared to the inferomedial neck. Specifically, we found impaired cortical and trabecular microarchitecture, mineralization, and osteocyte properties, regardless of neck-shaft angle. Since BMD correlated with bone quality of the inferomedial but not the superolateral neck, our results illustrate why bone densitometry may not predict a substantial proportion of femoral neck fractures.
Collapse
|
46
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Deshpande R, Shukla S, Kale A, Deshmukh N, Nisal A, Venugopalan P. Silk Fibroin Microparticle Scaffold for Use in Bone Void Filling: Safety and Efficacy Studies. ACS Biomater Sci Eng 2022; 8:1226-1238. [PMID: 35166518 DOI: 10.1021/acsbiomaterials.1c01103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) is a natural biocompatible protein polymer extracted from cocoons of silkworm Bombyx mori. SF can be processed into a variety of different forms and shapes that can be used as scaffolds to support bone regeneration. Three-dimensional (3D) SF scaffolds have shown promise in bone-void-filling applications. In in vitro studies, it has been demonstrated that a microparticle-based SF (M-RSF) scaffold promotes the differentiation of stem cells into an osteoblastic lineage. The expression of differentiation markers was also significantly higher for M-RSF scaffolds as compared to other SF scaffolds and commercial ceramic scaffolds. In this work, we have evaluated the in vitro and in vivo biocompatibility of M-RSF scaffolds as per the ISO 10993 guidelines in a Good Laboratory Practice (GLP)-certified facility. The cytotoxicity, immunogenicity, genotoxicity, systemic toxicity, and implantation studies confirmed that the M-RSF scaffold is biocompatible. Further, the performance of the M-RSF scaffold to support bone formation was evaluated in in vivo bone implantation studies in a rabbit model. Calcium sulfate (CaSO4) scaffolds were chosen as reference material for this study as they are one of the preferred materials for bone-void-filling applications. M-RSF scaffold implantation sites showed a higher number of osteoblast and osteoclast cells as compared to CaSO4 implantation sites indicating active bone remodeling. The number density of osteocytes was double for M-RSF scaffold implantation sites, and these M-RSF scaffold implantation sites were characterized by enhanced collagen deposition, pointing toward a finer quality of the new bone formed. Moreover, the M-RSF scaffold implantation sites had a negligible incidence of secondary fractures as compared to the CaSO4 implantation sites (∼50% sites with secondary fracture), implying a reduction in postsurgical complications. Thus, the study demonstrates that the M-RSF scaffold is nontoxic for bone-void-filling applications and facilitates superior healing of fracture defects as compared to commercial calcium-based bone void fillers.
Collapse
Affiliation(s)
- Rucha Deshpande
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Swati Shukla
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Amod Kale
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Narendra Deshmukh
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Anuya Nisal
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Premnath Venugopalan
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
48
|
Gardinier JD, Chougule A, Zhang C. The mechanotransduction of MLO-Y4 cells is disrupted by the senescence-associated secretory phenotype of neighboring cells. J Cell Physiol 2022; 237:2249-2257. [PMID: 35102547 PMCID: PMC9052359 DOI: 10.1002/jcp.30690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Age-related bone loss is attributed to the accumulation of senescent cells and their increasing production of inflammatory cytokines as part of the senescence-associated secretory phenotype (SASP). In otherwise healthy individuals, osteocytes play a key role in maintaining bone mass through their primary function of responding to skeletal loading. Given that osteocytes' response to loading is known to steadily decline with age, we hypothesized that the increasing presence of senescent cells and their SASP inhibit osteocytes' response to loading. To test this hypothesis, we developed two in vitro models of senescent osteocytes and osteoblasts derived from MLO-Y4 and MC3T3 cell lines, respectively. The senescent phenotype was unique to each cell type based on distinct changes in cell cycle inhibitors and SASP profile. The SASP profile of senescent osteocytes was in part dependent on nuclear factor-κB signaling and presents a new potential mechanism to target the SASP in bone. Nonsenescent MLO-Y4 cells cultured with the SASP of each senescent cell type failed to exhibit changes in gene expression as well as ERK phosphorylation and prostaglandin E2 release. The SASP of senescent osteocytes had the largest effect and neutralizing interleukin-6 (IL-6) as part of the SASP restored osteocytes' response to loading. The loss in mechanotransduction due to IL-6 was attributed to a decrease in P2X7 expression and overall sensitivity to purinergic signaling. Altogether, these findings demonstrate that the SASP of senescent cells have a negative effect on the mechanotransduction of osteocytes and that IL-6 is a key SASP component that contributes to the loss in mechanotransduction.
Collapse
Affiliation(s)
- Joseph D Gardinier
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| | - Amit Chougule
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| | - Chunbin Zhang
- Bone and Joint Center, Henry Ford Health System, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
49
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
50
|
Roghani T, Mehrabi M, Allen D, Rezaeian Z, Katzman W. The association between physical function and hyperkyphosis in older females: Protocol for a systematic review. Int J Prev Med 2022; 13:41. [PMID: 35529509 PMCID: PMC9069149 DOI: 10.4103/ijpvm.ijpvm_642_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Identifying factors that impact physical function in older populations is important for the maintenance of good health with aging. Age-related hyperkyphosis, an excessive curvature in the thoracic spine, affects up to 40% of the older adults and is more common in older females than males. An association of age-related hyperkyphosis with impaired physical function has been reported in numerous studies, however, other studies have reported that a greater magnitude of kyphosis did not associate with impaired physical function. Given the inconsistencies regarding the impact of hyperkyphosis on physical function, the purpose of our study is to perform a systematic review of the existing studies in order to better describe the association between hyperkyphosis and physical function. Prospective and retrospective cohort, case-control, and cross-sectional studies which measure physical function by valid functional tests and questionnaires in older females will be included. We will search Scopus, ISI Web of Science, Cochrane Library, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and PEDro databases. Studies will be searched and then selected by two independent reviewers based on quality assessment tools from the National Heart, Lung, and Blood Institute (NHLBI). A meta-analysis will be conducted if data reported for individual studies allow. Specifically, if two or more individual studies provide measures of central tendency and variability from any of the categories of physical function measures, data will be gathered for meta-analysis. If a meta-analysis is not possible, data will be synthesized and described in a narrative form by size and variability of effect, direction of effect, and association with hyperkyphosis.
Collapse
|