1
|
Nenadić I, Mosebach J, Schmitt S, Meller T, Stein F, Brosch K, Ringwald K, Pfarr JK, Meinert S, Lemke H, Waltemate L, Thiel K, Opel N, Repple J, Grotegerd D, Steinsträter O, Sommer J, Hahn T, Jansen A, Dannlowski U, Krug A, Kircher T. Fronto-Thalamic Structural Connectivity Associated With Schizotypy, a Psychosis Risk Phenotype, in Nonclinical Subjects. Schizophr Bull 2025; 51:S137-S148. [PMID: 40037831 DOI: 10.1093/schbul/sbad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizotypy is a risk phenotype for the psychosis spectrum and pilot studies suggest a biological continuum underlying this phenotype across health and disease. It is unclear whether this biological continuum might include brain structural associations in networks altered in schizophrenia spectrum disorders, such as the fronto-thalamo-striatal system or nodes of the default mode network, such as the precuneus. STUDY DESIGN In this study, we analyze a large multi-center cohort of 673 nonclinical subjects phenotyped for schizotypal traits (using the Schizotypal Personality Questionnaire-Brief version) using tract-based spatial statistics of diffusion tensor imaging data, as well as voxel-based morphometry (VBM) analysis of regional brain volumes and gyrification analysis of early neurodevelopmental markers of cortical folding on T1-weighted MRI. STUDY RESULTS We identify significant (P < .05 family-wise error corrected) associations of schizotypy with major fiber tract fractional anisotropy: positive (cognitive-perceptual) schizotypy correlated negatively with the left anterior thalamic radiation (a principal thalamo-frontal projection), left uncinate fasciculus and cingulum, while negative (interpersonal) schizotypy correlated positively with left anterior thalamic radiation, cingulum, and the anterior corpus callosum, and disorganized schizotypy correlated negatively with right cingulum, and superior and inferior longitudinal fasciculi. VBM analyses showed a negative correlation of gray matter with negative schizotypy in the left cerebellum, while gyrification in the inferior parietal cortex correlated positively with negative (interpersonal) schizotypy. CONCLUSIONS These findings pave the way for a neural network conceptualization of schizotypy as a psychosis proneness trait across the general population, showing associations with fronto-subcortical and frontotemporal systems as structural substrates of this risk phenotype.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Johannes Mosebach
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Core-Facility BrainImaging, School of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
2
|
Salisbury DF, Seebold D, Longenecker JM, Coffman BA, Yeh FC. White matter tracts differentially associated with auditory hallucinations in first-episode psychosis: A correlational tractography diffusion spectrum imaging study. Schizophr Res 2024; 265:4-13. [PMID: 37321880 PMCID: PMC10719419 DOI: 10.1016/j.schres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Auditory hallucinations (AH) are a debilitating symptom in psychosis, impacting cognition and real world functioning. Recent thought conceptualizes AH as a consequence of long-range brain communication dysfunction, or circuitopathy, within the auditory sensory/perceptual, language, and cognitive control systems. Recently we showed in first-episode psychosis (FEP) that, despite overall intact white matter integrity in the cortical-cortical and cortical-subcortical language tracts and the callosal tracts connecting auditory cortices, the severity of AH correlated inversely with white matter integrity. However, that hypothesis-driven isolation of specific tracts likely missed important white matter concomitants of AH. In this report, we used a whole-brain data-driven dimensional approach using correlational tractography to associate AH severity with white matter integrity in a sample of 175 individuals. Diffusion Spectrum Imaging (DSI) was used to image diffusion distribution. Quantitative Anisotropy (QA) in three tracts was greater with increased AH severity (FDR < 0.001) and QA in three tracts was lower with increased AH severity (FDR < 0.01). White matter tracts showing associations between QA and AH were generally associated with frontal-parietal-temporal connectivity (tracts with known relevance for cognitive control and the language system), in the cingulum bundle, and in prefrontal inter-hemispheric connectivity. The results of this whole brain data-driven analysis suggest that subtle white matter alterations connecting frontal, parietal, and temporal lobes in the service of sensory-perceptual, language/semantic, and cognitive control processes impact the expression of auditory hallucination in FEP. Disentangling the distributed neural circuits involved in AH should help to develop novel interventions, such as non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia M Longenecker
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; VISN 4 Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang-Chen Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Jameei H, Rakesh D, Zalesky A, Cairns MJ, Reay WR, Wray NR, Di Biase MA. Linking Polygenic Risk of Schizophrenia to Variation in Magnetic Resonance Imaging Brain Measures: A Comprehensive Systematic Review. Schizophr Bull 2024; 50:32-46. [PMID: 37354489 PMCID: PMC10754175 DOI: 10.1093/schbul/sbad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is highly heritable, with a polygenic effect of many genes conferring risk. Evidence on whether cumulative risk also predicts alterations in brain morphology and function is inconsistent. This systematic review examined evidence for schizophrenia polygenic risk score (sczPRS) associations with commonly used magnetic resonance imaging (MRI) measures. We expected consistent evidence to emerge for significant sczPRS associations with variation in structure and function, specifically in frontal, temporal, and insula cortices that are commonly implicated in schizophrenia pathophysiology. STUDY DESIGN In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, and PsycINFO for peer-reviewed studies published between January 2013 and March 2022. Studies were screened against predetermined criteria and National Institutes of Health (NIH) quality assessment tools. STUDY RESULTS In total, 57 studies of T1-weighted structural, diffusion, and functional MRI were included (age range = 9-80 years, Nrange = 64-76 644). We observed moderate, albeit preliminary, evidence for higher sczPRS predicting global reductions in cortical thickness and widespread variation in functional connectivity, and to a lesser extent, region-specific reductions in frontal and temporal volume and thickness. Conversely, sczPRS does not predict whole-brain surface area or gray/white matter volume. Limited evidence emerged for sczPRS associations with diffusion tensor measures of white matter microstructure in a large community sample and smaller cohorts of children and young adults. These findings were broadly consistent across community and clinical populations. CONCLUSIONS Our review supports the hypothesis that schizophrenia is a disorder of disrupted within and between-region brain connectivity, and points to specific whole-brain and regional MRI metrics that may provide useful intermediate phenotypes.
Collapse
Affiliation(s)
- Hadis Jameei
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Messaritaki E, Foley S, Barawi K, Ettinger U, Jones DK. Increased structural connectivity in high schizotypy. Netw Neurosci 2023; 7:213-233. [PMID: 37334008 PMCID: PMC10270715 DOI: 10.1162/netn_a_00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 09/23/2023] Open
Abstract
The link between brain structural connectivity and schizotypy was explored in two healthy participant cohorts, collected at two different neuroimaging centres, comprising 140 and 115 participants, respectively. The participants completed the Schizotypal Personality Questionnaire (SPQ), through which their schizotypy scores were calculated. Diffusion-MRI data were used to perform tractography and to generate the structural brain networks of the participants. The edges of the networks were weighted with the inverse radial diffusivity. Graph theoretical metrics of the default mode, sensorimotor, visual, and auditory subnetworks were derived and their correlation coefficients with the schizotypy scores were calculated. To the best of our knowledge, this is the first time that graph theoretical measures of structural brain networks are investigated in relation to schizotypy. A positive correlation was found between the schizotypy score and the mean node degree and mean clustering coefficient of the sensorimotor and the default mode subnetworks. The nodes driving these correlations were the right postcentral gyrus, the left paracentral lobule, the right superior frontal gyrus, the left parahippocampal gyrus, and the bilateral precuneus, that is, nodes that exhibit compromised functional connectivity in schizophrenia. Implications for schizophrenia and schizotypy are discussed.
Collapse
Affiliation(s)
- Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kali Barawi
- School of Medicine, Cardiff University, Cardiff, UK
| | | | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Szeszko PR, Gohel S, Vaccaro DH, Chu KW, Tang CY, Goldstein KE, New AS, Siever LJ, McClure M, Perez-Rodriguez MM, Haznedar MM, Byne W, Hazlett EA. Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Res Neuroimaging 2022; 322:111463. [PMID: 35240516 PMCID: PMC9018622 DOI: 10.1016/j.pscychresns.2022.111463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Schizotypal personality disorder (SPD) resembles schizophrenia, but with attenuated brain abnormalities and the absence of psychosis. The thalamus is integral for processing and transmitting information across cortical regions and widely implicated in the neurobiology of schizophrenia. Comparing thalamic connectivity in SPD and schizophrenia could reveal an intermediate schizophrenia-spectrum phenotype to elucidate neurobiological risk and protective factors in psychosis. We used rsfMRI to investigate functional connectivity between the mediodorsal nucleus (MDN) and pulvinar, and their connectivity with frontal and temporal cortical regions, respectively in 43 healthy controls (HCs), and individuals in the schizophrenia-spectrum including 45 psychotropic drug-free individuals with SPD, and 20 individuals with schizophrenia-related disorders [(schizophrenia (n = 10), schizoaffective disorder (n = 8), schizophreniform disorder (n = 1) and psychosis NOS (n = 1)]. Individuals with SPD had greater functional connectivity between the MDN and pulvinar compared to individuals with schizophrenia. Thalamo-frontal (i.e., between the MDN and rostral middle frontal cortex) connectivity was comparable in SPD and HCs; in SPD greater connectivity was associated with less symptom severity. Individuals with schizophrenia had less thalamo-frontal connectivity and thalamo-temporal (i.e., pulvinar to the transverse temporal cortex) connectivity compared with HCs. Thalamo-frontal functional connectivity may be comparable in SPD and HCs, but abnormal in schizophrenia, and that this may be protective against psychosis in SPD.
Collapse
Affiliation(s)
- Philip R Szeszko
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Suril Gohel
- Department of Health Informatics, Rutgers University, Newark, NJ, USA
| | - Daniel H Vaccaro
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kim E Goldstein
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Antonia S New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry J Siever
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychology, Fairfield University, Fairfield, CT, USA
| | | | - M Mehmet Haznedar
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Byne
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Schröder R, Faiola E, Fernanda Urquijo M, Bey K, Meyhöfer I, Steffens M, Kasparbauer AM, Ruef A, Högenauer H, Hurlemann R, Kambeitz J, Philipsen A, Wagner M, Koutsouleris N, Ettinger U. Neural Correlates of Smooth Pursuit Eye Movements in Schizotypy and Recent Onset Psychosis: A Multivariate Pattern Classification Approach. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac034. [PMID: 39144773 PMCID: PMC11206064 DOI: 10.1093/schizbullopen/sgac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Schizotypy refers to a set of personality traits that bear resemblance, at subclinical level, to psychosis. Despite evidence of similarity at multiple levels of analysis, direct comparisons of schizotypy and clinical psychotic disorders are rare. Therefore, we used functional magnetic resonance imaging (fMRI) to examine the neural correlates and task-based functional connectivity (psychophysiological interactions; PPI) of smooth pursuit eye movements (SPEM) in patients with recent onset psychosis (ROP; n = 34), participants with high levels of negative (HNS; n = 46) or positive (HPS; n = 41) schizotypal traits, and low-schizotypy control participants (LS; n = 61) using machine-learning. Despite strong previous evidence that SPEM is a highly reliable marker of psychosis, patients and controls could not be significantly distinguished based on SPEM performance or blood oxygen level dependent (BOLD) signal during SPEM. Classification was, however, significant for the right frontal eye field (FEF) seed region in the PPI analyses but not for seed regions in other key areas of the SPEM network. Applying the right FEF classifier to the schizotypal samples yielded decision scores between the LS and ROP groups, suggesting similarities and dissimilarities of the HNS and HPS samples with the LS and ROP groups. The very small difference between groups is inconsistent with previous studies that showed significant differences between patients with ROP and controls in both SPEM performance and underlying neural mechanisms with large effect sizes. As the current study had sufficient power to detect such differences, other reasons are discussed.
Collapse
Affiliation(s)
- Rebekka Schröder
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Eliana Faiola
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Fernanda Urquijo
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | | | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Hanna Högenauer
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, University of Oldenburg Medical Campus, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
- Department of Psychiatry and Division of Medical Psychology, University HospitalBonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50931, Cologne, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| |
Collapse
|
7
|
Attademo L, Bernardini F, Verdolini N. Neural Correlates of Schizotypal Personality Disorder: a Systematic Review of Neuroimaging and EEG Studies. Curr Med Imaging 2021; 17:1283-1298. [PMID: 33459241 DOI: 10.2174/1573405617666210114142206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Schizotypal personality disorder (SPD) is a cluster A personality disorder affecting 1.0% of general population, characterised by disturbances in cognition and reality testing dimensions, affect regulation, and interpersonal function. SPD shares similar but attenuated phenomenological, genetic, and neurobiological abnormalities with schizophrenia (SCZ) and is described as part of schizophrenia spectrum disorders. OBJECTIVE Aim of this work was to identify the major neural correlates of SPD. METHODS This is a systematic review conducted according to PRISMA statement. The protocol was prospectively registered in PROSPERO - International prospective register of systematic reviews. The review was performed to summarise the most comprehensive and updated evidence on functional neuroimaging and neurophysiology findings obtained through different techniques (DW-MRI, DTI, PET, SPECT, fMRI, MRS, EEG) in individuals with SPD. RESULTS Of the 52 studies included in this review, 9 were on DW-MRI and DTI, 11 were on PET and SPECT, 11 were on fMRI and MRS, and 21 were on EEG. It was complex to synthesise all the functional abnormalities found into a single, unified, pathogenetic pathway, but a common theme emerged: the dysfunction of brain circuits including striatal, frontal, temporal, limbic regions (and their networks) together with a dysregulation along the dopaminergic pathways. CONCLUSION Brain abnormalities in SPD are similar, but less marked, than those found in SCZ. Furthermore, different patterns of functional abnormalities in SPD and SCZ have been found, confirming the previous literature on the 'presence' of possible compensatory factors, protecting individuals with SPD from frank psychosis and providing diagnostic specificity.
Collapse
Affiliation(s)
- Luigi Attademo
- Hospital Psychiatric Service for Diagnosis and Care (S.P.D.C.) of Potenza, Department of Mental Health, ASP Basilicata, Italian National Health Service, Potenza. Italy
| | - Francesco Bernardini
- Hospital Psychiatric Service for Diagnosis and Care (S.P.D.C.) of Pordenone, Department of Mental Health, AsFO Friuli Occidentale, Italian National Health Service, Pordenone. Italy
| | - Norma Verdolini
- Barcelona Bipolar Disorders Program, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st., Barcelona, Catalunya. Spain
| |
Collapse
|
8
|
Pfarr JK, Nenadić I. A multimodal imaging study of brain structural correlates of schizotypy dimensions using the MSS. Psychiatry Res Neuroimaging 2020; 302:111104. [PMID: 32474373 DOI: 10.1016/j.pscychresns.2020.111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 01/23/2023]
Abstract
Schizotypy is a multidimensional construct of subclinical schizophrenia-like behavioural traits and cognition. The recently developed multidimensional schizotypy scale (MSS) provides an improved psychometric assessment of the three main dimensions (positive, negative, and disorganised). We tested the hypothesis that the three dimensions are related to brain structural variation in the precuneus and fronto-thalamo-striatal system in a new non-clinical healthy cohort to support a dimensional model of the psychosis spectrum. We analysed data from 104 subjects with Multidimensional Schizotypy Scale (MSS) phenotyping and 3 Tesla magnetic resonance images using voxel-based morphometry (VBM) applying CAT12 software, and diffusion-tensor imaging (DTI) with TBSS in FSL to test for correlations with MSS scores. MSS subscales and total score were negatively associated with GMV in brain areas including the medial prefrontal cortex, anterior cingulate cortex, and lateral prefrontal and orbital cortex. MSS schizotypy was associated with white matter integrity in anterior thalamic radiation, uncinate fasciculus, and superior longitudinal fasciculus. Our findings provide first direct evidence for an association of schizotypy (as a psychosis risk phenotype) and the fronto-thalamo-striatal system, in both grey and white matter with regionally diverging effects across single dimensions. This provides new evidence arguing for the fronto-striatal system (rather than precuneus) in schizotypy.
Collapse
Affiliation(s)
- Julia-Katharina Pfarr
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany.
| |
Collapse
|
9
|
Takayanagi Y, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Reduced Cortical Thickness in Schizophrenia and Schizotypal Disorder. Schizophr Bull 2020; 46:387-394. [PMID: 31167030 PMCID: PMC7406196 DOI: 10.1093/schbul/sbz051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schizotypal disorder is characterized by odd behavior and attenuated forms of schizophrenic features without the manifestation of overt and sustained psychoses. Past studies suggest that schizotypal disorder shares biological and psychological commonalties with schizophrenia. Structural magnetic resonance imaging (MRI) studies have demonstrated both common and distinct regional gray matter changes between schizophrenia and schizotypal disorder. However, no study has compared cortical thickness, which is thought to be a specific indicator of cortical atrophy, between schizophrenia and schizotypal disorder. The subjects consisted of 102 schizophrenia and 46 schizotypal disorder patients who met the International Classification of Diseases, 10th edition criteria and 79 gender- and age-matched healthy controls. Each participant underwent a T1-weighted 3-D MRI scan using a 1.5-Tesla scanner. Cortical thickness was estimated using FreeSurfer. Consistent with previous studies, schizophrenia patients exhibited wide-spread cortical thinning predominantly in the frontal and temporal regions as compared with healthy subjects. Patients with schizotypal disorder had a significantly reduced cortical thickness in the left fusiform and parahippocampal gyri, right medial superior frontal gyrus, right inferior frontal gyrus, and right medial orbitofrontal cortex as compared with healthy controls. Schizophrenia patients had thinner cortices in the left precentral and paracentral gyri than those with schizotypal disorder. Common cortical thinning patterns observed in schizophrenia and schizotypal disorder patients may be associated with vulnerability to psychosis. Our results also suggest that distinct cortical changes in schizophrenia and schizotypal disorder may be associated with the differences in the manifestation of clinical symptoms among these disorders.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan,To whom correspondence should be addressed; tel: +81-76-434-7323, fax: +81-76-434-5030, e-mail:
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| |
Collapse
|
10
|
Takahashi T, Kido M, Sasabayashi D, Nakamura M, Furuichi A, Takayanagi Y, Noguchi K, Suzuki M. Gray Matter Changes in the Insular Cortex During the Course of the Schizophrenia Spectrum. Front Psychiatry 2020; 11:659. [PMID: 32754066 PMCID: PMC7366364 DOI: 10.3389/fpsyt.2020.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Progressive gray matter reductions in the insular cortex have been reported in the early phases of schizophrenia (Sz); however, the trajectory of these reductions during the course of the illness currently remains unclear. Furthermore, it has not yet been established whether patients with schizotypal (SzTypal) features exhibit progressive changes in the insular cortex. This follow-up magnetic resonance imaging study examined volume changes in the short and long insular cortices (mean inter-scan interval = 2.6 years) of 23 first-episode (FE) and 17 chronic patients with Sz, 14 with SzTypal disorder, and 21 healthy controls. Baseline comparisons revealed smaller insular cortex volumes bilaterally in Sz patients (particularly in the chronic group) than in SzTypal patients and healthy controls. FESz patients showed significantly larger gray matter reductions in the insular cortex over time (left: -3.4%/year; right: -2.9%/year) than those in healthy controls (-0.1%/year for both hemispheres) without the effect of subregion or antipsychotic medication, whereas chronic Sz (left: -1.5%/year; right: -1.6%/year) and SzTypal (left: 0.5%/year; right: -0.6%/year) patients did not. Active atrophy of the right insular cortex during FE correlated with fewer improvements in positive symptoms in the Sz groups, while mild atrophy of the left insular cortex during the chronic phase was associated with the severity of negative symptoms in the follow-up period. The present results support dynamic volumetric changes in the insular cortex being specific to overt Sz among the spectrum disorders examined and their degree and role in symptomatology appear to differ across the illness stages.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Shafritz KM, Ikuta T, Greene A, Robinson DG, Gallego J, Lencz T, DeRosse P, Kingsley PB, Szeszko PR. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response. Brain Imaging Behav 2019; 13:541-553. [PMID: 29744804 DOI: 10.1007/s11682-018-9876-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.
Collapse
Affiliation(s)
- Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA. .,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, Oxford, MS, USA
| | - Allison Greene
- Department of Psychology, Hofstra University, Hempstead, NY, USA
| | - Delbert G Robinson
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Juan Gallego
- Weill Cornell Medical College, New York, NY, USA.,New York-Presbyterian Hospital/Westchester Division, White Plains, NY, USA
| | - Todd Lencz
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Pamela DeRosse
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Peter B Kingsley
- Department of Radiology, North Shore University Hospital, Manhasset, NY, USA
| | - Philip R Szeszko
- James J. Peters VA Medical Center, Mental Illness Research Education Clinical Center, Bronx, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Qi S, Gao Q, Shen J, Teng Y, Xie X, Sun Y, Wu J. Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder. Front Comput Neurosci 2018; 12:64. [PMID: 30123120 PMCID: PMC6085977 DOI: 10.3389/fncom.2018.00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 01/16/2023] Open
Abstract
The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize these networks by applying the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted from the group independent component analysis (ICA). Specifically, seven networks, including the default model network (DMN), dorsal attention network (DAN), control executive network (CEN), salience network, sensorimotor network, visual network and limbic network, are identified. After the power spectral density (PSD) analysis, the amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low frequency fluctuation (fALFF) is determined in three bands: <0.1 Hz; slow-5; and slow-4. Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven networks can be divided into three categories: the advanced cognitive networks, primary sensorimotor networks and limbic networks, and their fALFF successively decreases in both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN, DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in both bands have been observed for SPD group. The results of ALFF are consistent with those of fALFF. The proposed MFBA method may help distinguish networks or oscillators in the human brain, reveal subtle alternations of networks through locating their dominant frequency band, and present potential to interpret the neuropathology disruptions.
Collapse
Affiliation(s)
- Shouliang Qi
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Qingjun Gao
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yueyang Teng
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Xuan Xie
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
13
|
Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci 2018; 72:556-571. [PMID: 29717522 DOI: 10.1111/pcn.12670] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
To date, a large number of magnetic resonance imaging (MRI) studies have been conducted in schizophrenia, which generally demonstrate gray matter reduction, predominantly in the frontal and temporo-limbic regions, as well as gross brain abnormalities (e.g., a deviated sulcogyral pattern). Although the causes as well as timing and course of these findings remain elusive, these morphologic changes (especially gross brain abnormalities and medial temporal lobe atrophy) are likely present at illness onset, possibly reflecting early neurodevelopmental abnormalities. In addition, longitudinal MRI studies suggest that patients with schizophrenia and related psychoses also have progressive gray matter reduction during the transition period from prodrome to overt psychosis, as well as initial periods after psychosis onset, while such changes may become almost stable in the chronic stage. These active brain changes during the early phases seem to be relevant to the development of clinical symptoms in a region-specific manner (e.g., superior temporal gyrus atrophy and positive psychotic symptoms), but may be at least partly ameliorated by antipsychotic medication. Recently, increasing evidence from MRI findings in individuals at risk for developing psychosis has suggested that those who subsequently develop psychosis have baseline brain changes, which could be at least partly predictive of later transition into psychosis. In this article, we selectively review previous MRI findings during the course of psychosis and also refer to the possible clinical applicability of these neuroimaging research findings, especially in the diagnosis of schizophrenia and early intervention for psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
14
|
Chan CC, Szeszko PR, Wong E, Tang CY, Kelliher C, Penner JD, Perez-Rodriguez MM, Rosell DR, McClure M, Roussos P, New AS, Siever LJ, Hazlett EA. Frontal and temporal cortical volume, white matter tract integrity, and hemispheric asymmetry in schizotypal personality disorder. Schizophr Res 2018; 197:226-232. [PMID: 29454512 PMCID: PMC8043048 DOI: 10.1016/j.schres.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Abnormalities in temporal and frontal cortical volume, white matter tract integrity, and hemispheric asymmetry have been implicated in schizophrenia-spectrum disorders. Schizotypal personality disorder can provide insight into vulnerability and protective factors in these disorders without the confounds associated with chronic psychosis. However, multimodal imaging and asymmetry studies in SPD are sparse. Thirty-seven individuals with SPD and 29 healthy controls (HC) received clinical interviews and 3T magnetic resonance T1-weighted and diffusion tensor imaging scans. Mixed ANOVAs were performed on gray matter volumes of the lateral temporal regions involved in auditory and language processing and dorsolateral prefrontal cortex involved in executive functioning, as well as fractional anisotropy (FA) of prominent white matter tracts that connect frontal and temporal lobes. In the temporal lobe regions, there were no group differences in volume, but SPD had reduced right>left middle temporal gyrus volume asymmetry compared to HC and lacked the right>left asymmetry in the inferior temporal gyrus volume seen in HC. In the frontal regions, there were no differences between groups on volume or asymmetry. In the white matter tracts, SPD had reduced FA in the left sagittal stratum and superior longitudinal fasciculus, and increased right>left asymmetry in sagittal stratum FA compared to HC. In the SPD group, lower left superior longitudinal fasciculus FA was associated with greater severity of disorganization symptoms. Findings suggest that abnormities in structure and asymmetry of temporal regions and frontotemporal white matter tract integrity are implicated in SPD pathology.
Collapse
Affiliation(s)
- Chi C. Chan
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Corresponding author at: Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-41G, Bronx, NY 10468, USA, (C.C. Chan)
| | - Philip R. Szeszko
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edmund Wong
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y. Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caitlin Kelliher
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin D. Penner
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel R. Rosell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia S. New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry J. Siever
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin A. Hazlett
- VISN 2 Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Værnes TG, Røssberg JI, Møller P. Anomalous Self-Experiences: Markers of Schizophrenia Vulnerability or Symptoms of Depersonalization Disorder? A Phenomenological Investigation of Two Cases. Psychopathology 2018; 51:198-209. [PMID: 29730662 DOI: 10.1159/000488462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Basic self-disturbance (BSD) is proposed to constitute the clinical core of schizophrenia spectrum disorders, including prodromal states and schizotypy. Anomalous self-experiences (ASEs) are suggested as phenotypic variants of BSD, representing markers of schizophrenia vulnerability. However, ASEs are not restricted to the schizophrenia spectrum, but may also occur in non-psychotic states like depersonalization disorder (DPD). It is unclear to what extent the prevalence and nature of ASEs are differing between the two conditions. The main aim of this paper is to assess and compare ASEs in both conditions, based on literature and two illustrating cases. This might expand the understanding of these phenomena, and strengthen the basis for clinical differentiation. METHODS One patient with schizotypal personality disorder (SPD) and one with DPD were selected from an ongoing clinical high-risk (CHR) for psychosis study. ASEs were assessed with the Examination of Anomalous Self-Experience (EASE) and analyzed according to the two central dimensions of BSD: diminished self-affection and hyperreflexivity, as well as according to prototypical aspects of depersonalization. The cases were also analyzed and compared with respect to chronology, other symptomatology, and psychopathological pathways. RESULTS Both cases revealed ASEs reflecting the central dimensions of BSD as well as prototypical aspects of depersonalization. Only the SPD case however, linked ASEs to psychotic-like ideas of external influence and control. The symptoms had an insidious early childhood onset with no obvious triggers in the SPD case, and an abrupt adolescence onset triggered by second-time cannabis use and panic anxiety in the DPD case. CONCLUSIONS The similarities and differences in ASEs, symptomatology and developmental pathways of the two cases might be accounted for by an updated model of self-disorders. The model proposes that schizophrenia manifests as a result of a combination of early "primary"-onset ASEs, reflecting dis-turbances in early neurodevelopment, and later occurring, "secondary" ASEs of a more defensive-protective character. In line with this, the DPD case may be characterized only by secondary ASEs and thus better protected against psychotic decompensation than the SPD case, tentatively affected by a combination of primary and secondary ASEs.
Collapse
Affiliation(s)
- Tor Gunnar Værnes
- Early Intervention in Psychosis Advisory Unit for South East Norway, TIPS Sør-Øst, Oslo University Hospital, Oslo, Norway.,NORMENT KG Jebsen Center for Psychosis Research, University of Oslo, Oslo, Norway
| | - Jan Ivar Røssberg
- Division of Psychiatric Treatment Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul Møller
- Division of Mental Health and Addiction, Department of Mental Health Research and Development, Vestre Viken Hospital Trust, Asker, Norway
| |
Collapse
|
16
|
Evans DW, Michael AM, Ularević M, Lusk LG, Buirkle JM, Moore GJ. Neural substrates of a schizotypal spectrum in typically-developing children: Further evidence of a normal-pathological continuum. Behav Brain Res 2016; 315:141-6. [DOI: 10.1016/j.bbr.2016.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
|
17
|
Zouraraki C, Tsaousis I, Karamaouna P, Karagiannopoulou L, Roussos P, Bitsios P, Giakoumaki SG. Associations of differential schizotypal dimensions with executive working memory: A moderated-mediation analysis. Compr Psychiatry 2016; 71:39-48. [PMID: 27621208 DOI: 10.1016/j.comppsych.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Increased schizotypal traits are observed in a percentage of the general population and in the schizophrenia-spectrum and have been associated with impairments in working memory. In this study we examined the effects of four schizotypal dimensions [Negative (NegS), Paranoid (ParS), Cognitive-Perceptual (CPS), Disorganized (DiS)] on executive working memory (EWM), as mediated by set-shifting, planning and control inhibition. We also examined whether these associations are moderated by family-history of psychosis. METHODS Our sample consisted of 110 unaffected first-degree relatives of schizophrenia-spectrum patients and 120 control individuals. Schizotypy was assessed with the Schizotypal Personality Questionnaire. Participants were also tested with the Letter-Number Sequencing, Wisconsin Card Sorting, Stroop Color-Word and Stockings of Cambridge tasks. The effects of set-shifting, control inhibition and planning on the relationship between schizotypy and EWM were examined with mediation analyses. Moderated-mediation analyses examined potential moderating effects of group membership (unaffected relative/community participant). RESULTS All mediators were significant in the relationship between NegS and EWM. The effects of ParS were mediated only by set-shifting and planning. Planning and control inhibition were the only significant mediators on the effects of CPS and DiS on EWM, respectively. The moderated-mediation analyses revealed that these findings apply only in the community group. CONCLUSIONS We found that the effects of different schizotypal dimensions on EWM are mediated by other cognitive processes in individuals without personal/family history of psychosis. This is probably due to either more severe impairments in the cognitive processes of the relatives or restrictions in our sample and study-design.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Department of Psychology, University of Crete, Rethymno, 74100, Crete, Greece
| | - Ioannis Tsaousis
- Department of Psychology, University of Crete, Rethymno, 74100, Crete, Greece
| | - Penny Karamaouna
- Department of Psychology, University of Crete, Rethymno, 74100, Crete, Greece
| | | | - Panos Roussos
- Department of Psychiatry, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, 71003, Crete, Greece
| | - Stella G Giakoumaki
- Department of Psychology, University of Crete, Rethymno, 74100, Crete, Greece.
| |
Collapse
|
18
|
A Correlative Classification Study of Schizophrenic Patients with Results of Clinical Evaluation and Structural Magnetic Resonance Images. Behav Neurol 2016; 2016:7849526. [PMID: 27843197 PMCID: PMC5098109 DOI: 10.1155/2016/7849526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 01/31/2023] Open
Abstract
Patients with schizophrenia suffer from symptoms such as hallucination and delusion. There are currently a number of publications that discuss the treatment, diagnosis, prognosis, and damage in schizophrenia. This study utilized joint independent component analysis to process the images of GMV and WMV and incorporated the Wisconsin card sorting test (WCST) and the positive and negative syndrome scale (PANSS) to examine the correlation of obtained brain characteristics. We also used PANSS score to classify schizophrenic patients into acute and subacute cases, to analyze the brain structure differences. Finally, we used brain structure images and the error rate of the WCST as eigenvalues in support vector machine learning and classification. The results of this study showed that the frontal and temporal lobes of a normal brain are more apparent than those of a schizophrenia brain. The highest level of classification recognition reached 91.575%, indicating that the WCST error rate and characteristic changes in brain structure volume can be used to effectively distinguish schizophrenia and normal brains. Similarly, this result confirmed that the WCST and brain structure volume are correlated with the differences between schizophrenia and normal participants.
Collapse
|
19
|
Via E, Orfila C, Pedreño C, Rovira A, Menchón JM, Cardoner N, Palao DJ, Soriano-Mas C, Obiols JE. Structural alterations of the pyramidal pathway in schizoid and schizotypal cluster A personality disorders. Int J Psychophysiol 2016; 110:163-170. [PMID: 27535345 DOI: 10.1016/j.ijpsycho.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/21/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022]
Abstract
AIM Schizoid (ScPD) and Schizotypal (SPD) personality disorders are rare and severe disorders. They are associated with high liability to schizophrenia and present an attenuated form of its negative symptoms, which are considered a putative endophenotype for schizophrenia. The trans-diagnostic study of negative symptoms in non-psychotic populations such as ScPD/SPD might provide useful markers of a negative-symptom domain; however, little is known about their neurobiological substrates. The aim of the study was to investigate differences in gray and white matter volumes in subjects with ScPD/SPD compared to a group of healthy controls. METHODS Structural magnetic resonance images were obtained from 20 never-psychotic subjects with ScPD/SPD and 28 healthy controls. Resulting values from clusters of differences were correlated in patients with relevant clinical variables (O-LIFE scale). RESULTS ScPD/SPD presented greater bilateral white matter volume compared to healthy controls in the superior part of the corona radiata, close to motor/premotor regions, which correlated with the O-LIFE subtest of cognitive disorganization. No differences were found in regional gray matter or global gray/white matter volumes. CONCLUSION Greater volumes in motor pathways might relate to cognitive symptoms and motor alterations commonly present in schizophrenia-related disorders. Given the established link between motor signs and psychosis, structural alterations in motor pathways are suggested as a putative biomarker of a negative-symptom domain in psychosis subject to further testing.
Collapse
Affiliation(s)
- Esther Via
- Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; Mental Health, Parc Taulí Sabadell-CIBERSAM, University Hospital, Sabadell, Barcelona, Spain
| | - Carles Orfila
- Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Carla Pedreño
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Spain
| | - Antoni Rovira
- UDIAT Diagnostic Center, Corporació Sanitària Parc Taulí, Sabadell, Spain
| | - José M Menchón
- Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Narcís Cardoner
- Mental Health, Parc Taulí Sabadell-CIBERSAM, University Hospital, Sabadell, Barcelona, Spain; UDIAT Diagnostic Center, Corporació Sanitària Parc Taulí, Sabadell, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Diego J Palao
- Mental Health, Parc Taulí Sabadell-CIBERSAM, University Hospital, Sabadell, Barcelona, Spain
| | - Carles Soriano-Mas
- Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| | - Jordi E Obiols
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
20
|
Wei Y, Zhang T, Chow A, Tang Y, Xu L, Dai Y, Liu X, Su T, Pan X, Cui Y, Li Z, Jiang K, Xiao Z, Tang Y, Wang J. Co-morbidity of personality disorder in schizophrenia among psychiatric outpatients in China: data from epidemiologic survey in a clinical population. BMC Psychiatry 2016; 16:224. [PMID: 27391323 PMCID: PMC4939030 DOI: 10.1186/s12888-016-0920-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The reported rates of personality disorder (PD) in subjects with schizophrenia (SZ) are quite varied across different countries, and less is known about the heterogeneity of PD among subjects with SZ. We examined the co-morbidity of PD among patients who are in the stable phase of SZ. METHOD 850 subjects were randomly sampled from patients diagnosed with SZ in psychiatric and psycho-counseling clinics at Shanghai Mental Health Center. Co-morbidity of PDs was assessed through preliminary screening and patients were administered several modules of the SCID-II. Evidence of heterogeneity was evaluated by comparing patients diagnosed with SZ with those who presented with either affective disorder or neurosis (ADN). RESULTS 204 outpatients (24.0 %) in the stable phase of SZ met criteria for at least one type of DSM-IV PD. There was a higher prevalence of Cluster-A (odd and eccentric PD) and C (anxious and panic PD) PDs in SZ (around 12.0 %). The most prevalent PD was the paranoid subtype (7.65 %). Subjects with SZ were significantly more likely to have schizotypal PD (4.4 % vs. 2.1 %, p = 0.003) and paranoid PD (7.6 % vs. 5.4 %, p = 0.034), but much less likely to have borderline, obsessive-compulsive, depressive, narcissistic and histrionic PD. CONCLUSIONS These findings suggest that DSM-IV PD is common in patients with SZ than in the general population. Patterns of co-morbidity with PDs in SZ are different from ADN.
Collapse
Affiliation(s)
- YanYan Wei
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China ,Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - Annabelle Chow
- Department of Psychological Medicine, Changi General Hospital, Singapore, Singapore
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - YunFei Dai
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - XiaoHua Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - Tong Su
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Xiao Pan
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yi Cui
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - ZiQiang Li
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - KaiDa Jiang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - ZePing Xiao
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030 People’s Republic of China
| | - YunXiang Tang
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, 600 South Wanping Road, Shanghai, 200030, People's Republic of China. .,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Karagiannopoulou L, Karamaouna P, Zouraraki C, Roussos P, Bitsios P, Giakoumaki SG. Cognitive profiles of schizotypal dimensions in a community cohort: Common properties of differential manifestations. J Clin Exp Neuropsychol 2016; 38:1050-63. [DOI: 10.1080/13803395.2016.1188890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Liu K, Zhang T, Zhang Q, Sun Y, Wu J, Lei Y, Chu WCW, Mok VCT, Wang D, Shi L. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study. Front Psychol 2016; 7:809. [PMID: 27303358 PMCID: PMC4884735 DOI: 10.3389/fpsyg.2016.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong Hong Kong, China
| | - Teng Zhang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong Hong Kong, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University Dalian, China
| | - Yi Lei
- Department of Radiology, The Second People's Hospital of Shenzhen Shenzhen, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China; Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China; Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China; Research Center for Medical Image Computing, The Chinese University of Hong KongHong Kong, China
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China; Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
23
|
Nishikawa Y, Takahashi T, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Sasabayashi D, Noguchi K, Suzuki M. Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum. Eur Arch Psychiatry Clin Neurosci 2016; 266:15-23. [PMID: 25757375 DOI: 10.1007/s00406-015-0587-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Morphological changes in the orbitofrontal cortex (OFC), such as an altered sulcogyral pattern of the 'H-shaped' orbital sulcus and a shallow olfactory sulcus, have been demonstrated in schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unclear whether patients with schizotypal features exhibit similar OFC changes. This magnetic resonance imaging study examined the OFC sulcogyral pattern (Types I, II, III, and IV) and olfactory sulcus morphology in 102 patients with schizophrenia, 47 patients with schizotypal disorder, and 84 healthy controls. The OFC sulcogyral pattern distribution between the groups was significantly different on the right hemisphere, with the schizophrenia patients showing a decrease in Type I (vs controls and schizotypal patients) and an increase in Type III (vs controls) expression. However, the schizotypal patients and controls did not differ in the OFC pattern. There were significant group differences in the olfactory sulcus depth bilaterally (schizophrenia patients < schizotypal patients < controls). Our findings suggest that schizotypal disorder, a milder form of schizophrenia spectrum disorders, partly shares the OFC changes (i.e., altered depth of the olfactory sulcus) with schizophrenia, possibly reflecting a common disease vulnerability. However, altered distribution of the OFC pattern specific to schizophrenia may at least partly reflect neurodevelopmental pathology related to a greater susceptibility to overt psychosis.
Collapse
Affiliation(s)
- Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
24
|
Nenadic I, Lorenz C, Langbein K, Dietzek M, Smesny S, Schönfeld N, Fañanás L, Sauer H, Gaser C. Brain structural correlates of schizotypy and psychosis proneness in a non-clinical healthy volunteer sample. Schizophr Res 2015; 168:37-43. [PMID: 26164819 DOI: 10.1016/j.schres.2015.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/02/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023]
Abstract
Schizotypal traits are phenotypic risk factors for schizophrenia, associated with biological changes across a putative schizophrenia spectrum. In this study, we tested the hypothesis that brain structural changes in key brain areas relevant to this spectrum (esp. medial and lateral prefrontal cortex) would vary across different degrees of schizotypal trait expression and/or phenotypic markers of psychosis proneness in healthy non-clinical volunteers. We analysed high-resolution 3Tesla magnetic resonance images (MRI) of 59 healthy volunteers using voxel-based morphometry (VBM), correlating grey matter values to the positive and negative symptom factors of the schizotypal personality questionnaire (SPQ, German version) and a measure of psychosis proneness (community assessment of psychic experiences, CAPE). We found positive correlations between positive SPQ dimension and bilateral inferior and right superior frontal cortices, and positive CAPE dimension and left inferior frontal cortex, as well as CAPE negative dimension and right supplementary motor area (SMA) and left inferior parietal cortex. However, only the positive correlation of the right precuneus with negative schizotypy scores was significant after FWE correction for multiple comparisons. Our findings confirm an effect of schizotypal traits and psychosis proneness on brain structure in healthy subjects, providing further support to a biological continuum model.
Collapse
Affiliation(s)
- Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany.
| | - Carsten Lorenz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Nils Schönfeld
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Lourdes Fañanás
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany; Department of Neurology, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
25
|
Modenato C, Draganski B. The concept of schizotypy - A computational anatomy perspective. SCHIZOPHRENIA RESEARCH-COGNITION 2015; 2:89-92. [PMID: 29114458 PMCID: PMC5609650 DOI: 10.1016/j.scog.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
Despite major progress in diagnostic accuracy and symptomatic treatment of mental disorders, there is an ongoing debate about their classification aiming to follow current advances in neurobiology. The main goal of this review is to provide a comprehensive summary of the put forward schizotypy concept that follows the needs for objective assessment of schizophrenia-like personality traits in the general population. We focus on major achievements in the field from the perspective of magnetic resonance imaging-based computational anatomy of the brain. Particular interest is devoted to overlapping brain structure findings in schizotypy and schizophrenia to promote a dimensional view on schizophrenia as extension of phenotype traits in the non-clinical general population.
Collapse
Affiliation(s)
- C Modenato
- LREN, University of Lausanne, Dept. of clinical neurosciences, CHUV, Lausanne Switzerland
| | - B Draganski
- LREN, University of Lausanne, Dept. of clinical neurosciences, CHUV, Lausanne Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Deloulme JC, Gory-Fauré S, Mauconduit F, Chauvet S, Jonckheere J, Boulan B, Mire E, Xue J, Jany M, Maucler C, Deparis AA, Montigon O, Daoust A, Barbier EL, Bosc C, Deglon N, Brocard J, Denarier E, Le Brun I, Pernet-Gallay K, Vilgrain I, Robinson PJ, Lahrech H, Mann F, Andrieux A. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nat Commun 2015; 6:7246. [PMID: 26037503 PMCID: PMC4468860 DOI: 10.1038/ncomms8246] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts. Loss of the structural microtubule-associated protein 6 (MAP6) leads to neuronal differentiation defects that are independent of MAP6's microtubule-binding properties. Here the authors establish a functional link between MAP6 and Semaphorin 3E signalling for proper formation of the fornix of the brain.
Collapse
Affiliation(s)
- Jean-Christophe Deloulme
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Sylvie Gory-Fauré
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Franck Mauconduit
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Sophie Chauvet
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Julie Jonckheere
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Benoit Boulan
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Erik Mire
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Wentworthville, New South Wales 2145, Australia
| | - Marion Jany
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Caroline Maucler
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Agathe A Deparis
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Olivier Montigon
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] Centre Hospitalier Universitaire de Grenoble, IRMaGe, 38043 Grenoble, France [4] CNRS, UMS 3552, 38042 Grenoble, France
| | - Alexia Daoust
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Emmanuel L Barbier
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Christophe Bosc
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Nicole Deglon
- 1] Lausanne University Hospital (CHUV), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), 1011 Lausanne, Switzerland [2] Lausanne University Hospital (CHUV), Neuroscience Research Center (CRN), 1011 Lausanne, Switzerland
| | - Jacques Brocard
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Eric Denarier
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| | - Isabelle Le Brun
- 1] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [2] INSERM, U1036, 38054 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| | - Karin Pernet-Gallay
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France
| | - Isabelle Vilgrain
- 1] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [2] INSERM, U1036, 38054 Grenoble, France [3] INSERM, U1036, 38054 Grenoble, France
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Wentworthville, New South Wales 2145, Australia
| | - Hana Lahrech
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, LETI, CLINATEC, MINATEC Campus, F-38054 Grenoble, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Annie Andrieux
- 1] INSERM, U836, F-38000 Grenoble, France [2] Univ. Grenoble Alpes, Grenoble Institut Neurosciences, F-38000 Grenoble, France [3] CEA, iRTSV, F-38000 Grenoble, France
| |
Collapse
|
27
|
DeRosse P, Nitzburg GC, Ikuta T, Peters BD, Malhotra AK, Szeszko PR. Evidence from structural and diffusion tensor imaging for frontotemporal deficits in psychometric schizotypy. Schizophr Bull 2015; 41:104-14. [PMID: 25392520 PMCID: PMC4266309 DOI: 10.1093/schbul/sbu150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies of nonclinical samples exhibiting schizotypal traits have provided support for the existence of a continuous distribution of psychotic symptoms in the general population. Few studies, however, have examined the neural correlates of psychometric schizotypy using structural and diffusion tensor imaging (DTI). METHODS Healthy volunteers between the ages of 18 and 68 were recruited from the community and assessed using the Schizotypal Personality Questionnaire and received structural and DTI exams. Participants with high (N = 67) and low (N = 71) psychometric schizotypy were compared on gray and white matter volume, and cortical thickness in frontal and temporal lobe regions and on fractional anisotropy (FA) within 5 association tracts traversing the frontal and temporal lobes. RESULTS Higher levels of schizotypy were associated with lower overall volumes of gray matter in both the frontal and temporal lobes and lower gray matter thickness in the temporal lobe. Regionally specific effects were evident in both white matter and gray matter volume of the rostral middle frontal cortex and gray matter volume in the pars orbitalis. Moreover, relative to individuals who scored low, those who scored high in schizotypy had lower FA in the inferior fronto-occipital fasciculus as well as greater asymmetry (right > left) in the uncinate fasciculus. CONCLUSIONS These findings are broadly consistent with recent data on the neurobiological correlates of psychometric schizotypy as well as findings in schizotypal personality disorder and schizophrenia and suggest that frontotemporal lobe dysfunction may represent a core component of the psychosis phenotype.
Collapse
Affiliation(s)
- Pamela DeRosse
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY; Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY;
| | - George C. Nitzburg
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS
| | - Bart D. Peters
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY
| | - Anil K. Malhotra
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| | - Philip R. Szeszko
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore–Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| |
Collapse
|
28
|
Lener MS, Wong E, Tang CY, Byne W, Goldstein KE, Blair NJ, Haznedar MM, New AS, Chemerinski E, Chu KW, Rimsky LS, Siever LJ, Koenigsberg HW, Hazlett EA. White matter abnormalities in schizophrenia and schizotypal personality disorder. Schizophr Bull 2015; 41:300-10. [PMID: 24962608 PMCID: PMC4266294 DOI: 10.1093/schbul/sbu093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.
Collapse
Affiliation(s)
- Marc S. Lener
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edmund Wong
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cheuk Y. Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William Byne
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Kim E. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas J. Blair
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - M. Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Antonia S. New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Eran Chemerinski
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Liza S. Rimsky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Harold W. Koenigsberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Erin A. Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY,*To whom correspondence should be addressed; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, US; tel: 718-584-9000 x3701, fax: 718-364-3576, e-mail:
| |
Collapse
|
29
|
Zhang Q, Shen J, Wu J, Yu X, Lou W, Fan H, Shi L, Wang D. Altered default mode network functional connectivity in schizotypal personality disorder. Schizophr Res 2014; 160:51-6. [PMID: 25458858 DOI: 10.1016/j.schres.2014.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/17/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Tianjin Medical University, Tianjin, China
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Tianjin Medical University, Tianjin, China.
| | - Xiao Yu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wutao Lou
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Hongyu Fan
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Defeng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region; Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
30
|
van Lutterveld R, van den Heuvel MP, Diederen KMJ, de Weijer AD, Begemann MJH, Brouwer RM, Daalman K, Blom JD, Kahn RS, Sommer IE. Cortical thickness in individuals with non-clinical and clinical psychotic symptoms. ACTA ACUST UNITED AC 2014; 137:2664-9. [PMID: 24951640 DOI: 10.1093/brain/awu167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Symptoms that are linked to psychosis are also experienced by individuals who are not in need of care. In the present study, cortical thickness was investigated in these individuals. Fifty individuals with non-clinical auditory verbal hallucinations (most of them also experienced other non-clinical psychotic symptoms), 50 patients with a psychotic disorder and auditory verbal hallucinations, and 50 healthy control subjects underwent structural magnetic resonance imaging. Data were analysed using FreeSurfer. Cortical thickness in the pars orbitalis, paracentral lobule, fusiform gyrus and inferior temporal gyrus was lowest in patients, intermediate in the non-clinical hallucinating group, and highest in control subjects. The patients also showed thinning in widespread additional areas compared to the two other groups, whereas both hallucinating groups showed similar levels of thinning in the insula. Ranking the levels of cortical thickness per brain region across groups revealed that for 88% of brain regions, cortical thickness was lowest in patients, intermediate in the non-clinical hallucinating group, and highest in controls. These findings show that individuals with non-clinical psychotic symptoms show a similar but less pronounced pattern of cortical thinning as patients with a psychotic disorder, which is suggestive of a similar, but milder underlying pathophysiology in this group compared to the psychosis group.
Collapse
Affiliation(s)
- Remko van Lutterveld
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands 3 Centre for Mindfulness, University of Massachusetts School of Medicine, Shrewsbury, 01545, Massachusetts, USA
| | - Martijn P van den Heuvel
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| | - Kelly M J Diederen
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands 4 Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antoin D de Weijer
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands 5 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Marieke J H Begemann
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| | - Rachel M Brouwer
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| | - Kirstin Daalman
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| | - Jan Dirk Blom
- 6 Parnassia Groep, 2553 RJ The Hague, The Netherlands 7 Department of Psychiatry, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - René S Kahn
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| | - Iris E Sommer
- 1 Department of Psychiatry, University Medical Centre, 3584 CX Utrecht, The Netherlands 2 Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
31
|
Mayberg HS. Neuroimaging and psychiatry: the long road from bench to bedside. Hastings Cent Rep 2014; Spec No:S31-6. [PMID: 24634083 DOI: 10.1002/hast.296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Advances in neuroscience have revolutionized our understanding of the central nervous system. Neuroimaging technologies, in particular, have begun to reveal the complex anatomical, physiological, biochemical, genetic, and molecular organizational structure of the organ at the center of that system: the human brain. More recently, neuroimaging technologies have enabled the investigation of normal brain function and are being used to gain important new insights into the mechanisms behind many neuropsychiatric disorders. This research has implications for psychiatric diagnosis, treatment, and risk assessment. However, with some exceptions, neuroimaging is still a research tool, not ready for use in clinical psychiatry.
Collapse
|
32
|
Abstract
OBJECTIVE This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. METHOD We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. RESULTS We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. CONCLUSIONS The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.
Collapse
Affiliation(s)
- Carol P Weingarten
- a Department of Psychiatry and Behavioral Sciences , Duke University , Durham , NC , USA
| | | |
Collapse
|
33
|
Hazlett EA, Lamade RV, Graff FS, McClure MM, Kolaitis JC, Goldstein KE, Siever LJ, Godbold JH, Moshier E. Visual-spatial working memory performance and temporal gray matter volume predict schizotypal personality disorder group membership. Schizophr Res 2014; 152:350-7. [PMID: 24398009 DOI: 10.1016/j.schres.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prior work shows individuals with schizotypal personality disorder (SPD) evince temporal lobe volume abnormalities similar to schizophrenia but sparing of prefrontal cortex, which may mitigate psychosis and the severe neurocognitive impairments observed in schizophrenia. This study examined the extent to which frontal-temporal gray matter volume and neurocognitive performance predict: (1) SPD group membership in a demographically-balanced sample of 51 patients and 37 healthy controls; and (2) symptom severity in SPD. METHODS Dimensional gray-matter volume (left frontal-temporal regions (Brodmann area (BA) 10, 21, 22)) and neurocognitive performance on key memory tasks (California Verbal Learning Test (CVLT), Dot Test, Paced Auditory Serial Addition Test (PASAT)), all salient to schizophrenia-spectrum disorders were examined in a multi-variable model. RESULTS Middle temporal gyrus (BA21) volume and spatial-working memory (Dot Test) performance were significant predictors of SPD group membership likelihood, with poorer working-memory performance indicating increased probability of SPD membership. Combining across regional volumes or cognitive measures resulted in fair-to-good discrimination of group membership, but including neurocognitive and non-collinear regional volume measures together resulted in a receiver-operating-characteristic (ROC) curve with improved diagnostic discrimination. Larger BA10 volume in dorsolateral prefrontal cortex (DLPFC) significantly predicted less symptom severity in SPD. CONCLUSIONS These findings suggest that temporal lobe volume and spatial-working memory performance are promising biological/phenotype markers for likelihood of SPD classification, while greater DLPFC volume may serve as a protective factor.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.
| | - Raina V Lamade
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Fiona S Graff
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Margaret M McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - Jeanine C Kolaitis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Larry J Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Outpatient Psychiatry, James J. Peter Veterans Affairs Medical Center, Psychiatry, Bronx, NY, United States; Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peter Veterans Affairs Medical Center, Bronx, NY, United States
| | - James H Godbold
- Department of Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin Moshier
- Department of Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
34
|
Ettinger U, Meyhöfer I, Steffens M, Wagner M, Koutsouleris N. Genetics, cognition, and neurobiology of schizotypal personality: a review of the overlap with schizophrenia. Front Psychiatry 2014; 5:18. [PMID: 24600411 PMCID: PMC3931123 DOI: 10.3389/fpsyt.2014.00018] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/06/2014] [Indexed: 01/22/2023] Open
Abstract
Schizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble the signs and symptoms of schizophrenia. Here, we review evidence from studies on genetics, cognition, perception, motor and oculomotor control, brain structure, brain function, and psychopharmacology in schizotypy. We specifically focused on identifying areas of overlap between schizotypy and schizophrenia. Evidence was corroborated that significant overlap exists between the two, covering the behavioral brain structural and functional as well molecular levels. In particular, several studies showed that individuals with high levels of schizotypal traits exhibit alterations in neurocognitive task performance and underlying brain function similar to the deficits seen in patients with schizophrenia. Studies of brain structure have shown both volume reductions and increase in schizotypy, pointing to schizophrenia-like deficits as well as possible protective or compensatory mechanisms. Experimental pharmacological studies have shown that high levels of schizotypy are associated with (i) enhanced dopaminergic response in striatum following administration of amphetamine and (ii) improvement of cognitive performance following administration of antipsychotic compounds. Together, this body of work suggests that schizotypy shows overlap with schizophrenia across multiple behavioral and neurobiological domains, suggesting that the study of schizotypal traits may be useful in improving our understanding of the etiology of schizophrenia.
Collapse
Affiliation(s)
- Ulrich Ettinger
- Department of Psychology, University of Bonn , Bonn , Germany
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn , Bonn , Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn , Bonn , Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn , Bonn , Germany
| | | |
Collapse
|
35
|
Vu MAT, Thermenos HW, Terry DP, Wolfe DJ, Voglmaier MM, Niznikiewicz MA, McCarley RW, Seidman LJ, Dickey CC. Working memory in schizotypal personality disorder: fMRI activation and deactivation differences. Schizophr Res 2013; 151:113-23. [PMID: 24161536 DOI: 10.1016/j.schres.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/19/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Schizotypal personality disorder (SPD) is considered a schizophrenia spectrum disorder, sharing with schizophrenia cognitive, neuropsychological, epidemiological, and biological characteristics. Working memory may be one area of shared deficit, although to date, this is only the second study to investigate working memory in SPD using fMRI. METHODS In a block-design fMRI study, fifteen antipsychotic-naïve SPD and sixteen healthy control subjects performed blocks of a 2back visual working memory task and 0back continuous performance task while undergoing whole-brain fMRI at 3T. Whole-brain analyses were performed for the 0back>rest (fixation baseline) and the 2back>0back contrasts (isolating the working memory component from the visual perception and attention component). Parameter estimates were extracted to determine whether observed differences were due to task-induced activation and/or deactivation. RESULTS Activation differences emerged between the two groups, without differences in task performance. In the 0back task, SPD showed decreased task-induced activation of the left postcentral gyrus. In the 2back>0back contrast, HC showed greater task-induced activation of the left posterior cingulate gyrus, superior temporal gyrus, insula, and middle frontal gyrus. These differences were due to SPD subjects' decreased task-induced activation in the left posterior cingulate gyrus, and task-induced deactivation in the remaining regions. CONCLUSIONS These findings suggest that compared to HC subjects, individuals with SPD may achieve comparable working memory performance. However, differences emerge at the level of functional neural activation, attributable to different task-induced activation and deactivation patterns. Such differential recruitment of neural resources may be beneficial, contributing to SPD subjects' ability to perform these tasks comparably to HC subjects.
Collapse
Affiliation(s)
- Mai-Anh T Vu
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fervaha G, Remington G. Neuroimaging findings in schizotypal personality disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:96-107. [PMID: 23220094 DOI: 10.1016/j.pnpbp.2012.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/10/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Schizotypal personality disorder is the prototypical schizophrenia-spectrum condition, sharing similar phenomenological, cognitive, genetic, physiological, neurochemical, neuroanatomical and neurofunctional abnormalities with schizophrenia. Investigations into SPD circumvent many confounds inherent to schizophrenia such as medication and institutionalization. Hence, SPD offers a unique vantage point from which to study schizophrenia-spectrum conditions. METHODS We systematically reviewed the neuroimaging literature in SPD to establish: (1) whether there are concordant findings in SPD and schizophrenia, possibly reflective of core pathology between the two conditions and (2) whether there are discordant findings in SPD and schizophrenia, possibly reflecting protective factors in the former. The findings are synthesized across structural and functional neuroimaging domains. RESULTS A total of 54 studies were identified. Medial temporal lobe structures seem to be compromised in both SPD and schizophrenia. In schizophrenia prefrontal structures are further compromised, whereas in SPD these seem to be larger-than-normal, possibly reflecting a compensatory mechanism. Additional pathology is discussed, including evidence of aberrant subcortical dopaminergic functioning. CONCLUSIONS SPD is a schizophrenia-spectrum condition that shares pathology with schizophrenia, but is distinct in showing unique neural findings. Future studies are needed to confirm and localize regions of common and disparate pathology between SPD and schizophrenia.
Collapse
Affiliation(s)
- Gagan Fervaha
- Schizophrenia Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
37
|
Nelson M, Seal M, Pantelis C, Phillips L. Evidence of a dimensional relationship between schizotypy and schizophrenia: A systematic review. Neurosci Biobehav Rev 2013; 37:317-27. [DOI: 10.1016/j.neubiorev.2013.01.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 01/31/2023]
|
38
|
Dickey CC, Vu MAT, Voglmaier MM, Niznikiewicz MA, McCarley RW, Panych LP. Prosodic abnormalities in schizotypal personality disorder. Schizophr Res 2012; 142:20-30. [PMID: 23068317 PMCID: PMC3502641 DOI: 10.1016/j.schres.2012.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Patients with schizophrenia speak with blunted vocal affect but little is known regarding the prosody of persons with schizotypal personality disorder (SPD). This work examined expressive prosody in SPD, its relationship to brain structure, and outlined a framework for measuring elements of prosody in clinical populations. METHODS Twenty-eight antipsychotic-naïve SPD subjects were matched with 27 healthy comparison (HC) subjects. Subjects read aloud short sentences and responded to probes to record both predetermined and self-generated speech samples. Samples were analyzed acoustically (pause proportion, duration, attack, and pitch variability) and subjectively by raters (amount of pauses, degree of emotion portrayed, and how much they wanted to hear more from the subjects) on paragraph, sentence, word, word-fragment, and syllable levels. Alexithymia and ability to self-monitor behavior were compared between groups. The pars opercularis was manually traced on structural MRI data. RESULTS SPD subjects' speech had significantly more pauses, was slower, had less pitch variability, and expressed less emotion than HC subjects. Pitch variability correlated with socio-economic status achievement. There was no difference between groups in left or right pars opercularis volumes. A statistically significant correlation suggested that smaller left pars opercularis volumes in SPD subjects correlated with more pauses and less emotion. SPD subjects reported more alexithymia and difficulty self-monitoring their behavior compared with controls. In SPD subjects the high alexithymia correlated with raters not wanting to hear more from them and SPD subjects' inability to modulate their social behavior correlated with their having fewer friends. Thus, the SPD subjects exhibited insight. CONCLUSIONS SPD subjects displayed significant prosodic deficits that were measurable in speech samples as brief as a word-fragment. The determinants of these deficits are not known although these may include a dysfunctional pars opercularis. These data add to the nascent literature describing social cognition deficits in SPD.
Collapse
Affiliation(s)
- Chandlee C. Dickey
- VA Boston Healthcare System, Harvard Medical School Psychiatry 116A-7, 940 Belmont St., Brockton, MA 02301,Laboratory of Neuroscience, VA Boston Healthcare System, Harvard Medical School 940 Belmont St., Brockton, MA 02301,Corresponding Author: Chandlee Dickey, M.D. VA Boston Healthcare System, Psychiatry 116A-7, 940 Belmont St., Brockton, MA 02301 Phone: (774) 826-2457 Fax: (774) 826-1859
| | - Mai-Anh T Vu
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School 1249 Boylston St, Boston, MA 02215
| | - Martina M. Voglmaier
- Laboratory of Neuroscience, VA Boston Healthcare System, Harvard Medical School 940 Belmont St., Brockton, MA 02301
| | - Margaret A. Niznikiewicz
- Laboratory of Neuroscience, VA Boston Healthcare System, Harvard Medical School 940 Belmont St., Brockton, MA 02301,Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School 1249 Boylston St, Boston, MA 02215
| | - Robert W. McCarley
- Laboratory of Neuroscience, VA Boston Healthcare System, Harvard Medical School 940 Belmont St., Brockton, MA 02301
| | - Lawrence P. Panych
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School 75 Francis St., Boston, MA 02216
| |
Collapse
|
39
|
Hazlett EA, Collazo T, Zelmanova Y, Entis JJ, Chu KW, Goldstein KE, Roussos P, Haznedar MM, Koenigsberg HW, New AS, Buchsbaum MS, Hershowitz JP, Siever LJ, Byne W. Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and anisotropy. Schizophr Res 2012; 141:119-27. [PMID: 22995934 PMCID: PMC3742803 DOI: 10.1016/j.schres.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
Abstract
Mounting evidence suggests that white matter abnormalities and altered subcortical-cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant's MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC-DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|