1
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Nieder R, Benbi DK. Potentially toxic elements in the environment - a review of sources, sinks, pathways and mitigation measures. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:561-575. [PMID: 37118984 DOI: 10.1515/reveh-2022-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Pollution of ecosystems with potentially toxic elements (PTEs) has become a global problem with serious consequences for public health. The PTEs are hazardous to humans owing to their longevity, toxicity, and ability to accumulate in the biotic environment. As most PTEs cannot be degraded microbially or chemically, they can persist in soils for a long time. Besides posing a threat to landsphere, they may be transported to surrounding environmental spheres through movement of water, atmospheric circulation, and biological transmission. This can severely affect the ecological equilibrium. Accumulation of PTEs in soils pose serious health hazards to higher organisms leading to various diseases and disorders and significant relationships exist between the occurrence of PTEs and the toxic effects in humans. In natural soils, PTEs accumulate due to weathering of rocks and ores. Furthermore, locally or regionally significant accumulation of PTEs in soils may occur from industrial goods, pesticides and paints, municipal and industrial waste, fertilizer application, mining activities and atmospheric deposition. In response to the growing need to address PTE contamination, remediation methods have been developed employing mechanical, physico-chemical or biological based technologies. In this review, we discuss sources, sinks, pathways and mitigation measures related to natural and anthropogenic PTEs. We focus on As, Cd, Cr, Hg and Pb which are highly toxic and perform no physiological functions in biota. Further, these are the most widely studied PTEs.
Collapse
Affiliation(s)
- Rolf Nieder
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dinesh K Benbi
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
3
|
Kolipakala R, Basu S, Sarkar S, Biju BM, Salazar D, Reddy L, Pradeep P, Yuvapriya MK, Nath S, Gall R, Samprathi AH, Balaji H, Koundinya EAB, Shetye A, Nagarajan D. Fungal Peptidomelanin: A Novel Biopolymer for the Chelation of Heavy Metals. ACS OMEGA 2024; 9:36353-36370. [PMID: 39220543 PMCID: PMC11359623 DOI: 10.1021/acsomega.4c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Melanin is an amorphous, highly heterogeneous polymer found across all kingdoms of life. Although the properties of melanin can greatly vary, most forms are insoluble and strongly absorb light, appearing dark brown to black. Here, we describe a water-soluble form of melanin (peptidomelanin) secreted by the spores of Aspergillus niger (strain: melanoliber) during germination. Peptidomelanin is composed of an insoluble L-DOPA core polymer that is solubilized via short, copolymerized heterogeneous peptide chains forming a "corona" with a mean amino acid length of 2.6 ± 2.3. Based on in vitro experiments, we propose a biochemical copolymerization mechanism involving the hydroxylation of tyrosynylated peptides. Peptidomelanin is capable of chelating heavy metals such as lead, mercury, and uranium (as uranyl) in large quantities. Preliminary data indicates that peptidomelanin may have applications for the remediation of heavy metals in situ, including in agricultural settings.
Collapse
Affiliation(s)
| | - Suranjana Basu
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Senjuti Sarkar
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Beneta Merin Biju
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Daniela Salazar
- Ecology
and Genetics Research Unit, University of
Oulu, Oulu 90014, Finland
| | - Likhit Reddy
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Pushya Pradeep
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Muniraj Krishnaveni Yuvapriya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Shrijita Nath
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Riley Gall
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Anish Hemanth Samprathi
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Biotechnology, Fergusson College (Autonomous), Pune 411004, India
| | - Harshitha Balaji
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Eeshaan A. B. Koundinya
- Department
of Biotechnology, Manipal Institute of Technology,
Manipal University, Manipal 576104, India
| | - Aparna Shetye
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| | - Deepesh Nagarajan
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| |
Collapse
|
4
|
Sychta K, Słomka A, Shariatgorji R, Andrén PE, Samardakiewicz S, Göransson U, Slazak B. The involvement of cyclotides in the heavy metal tolerance of Viola spp. Sci Rep 2024; 14:19306. [PMID: 39164283 PMCID: PMC11336087 DOI: 10.1038/s41598-024-69018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
The Violaceae family is rich in metal-tolerant species and species producing cyclic peptides (cyclotides) that are linked to the resistance to biotic factors. Plants that inhabit areas polluted with heavy metals have developed various mechanisms of tolerance. To test the role of cyclotides in protection against abiotic factors, including heavy metals, cell suspension cultures of Viola species/genotypes (V. lutea ssp. westfalica, V. tricolor, V. arvensis, and V. uliginosa), representing different levels of tolerance to heavy metals (from the most tolerant-MET to the least tolerant populations/species-NMET), were used. The relative abundances of the cyclotides in the control, untreated cell suspensions of all the selected species/genotypes, and cells treated with Zn or Pb (200 µM or 2000 µM) for 24 h or 72 h were determined via MALDI-MS. Transmission electron microscopy with X-ray microanalysis was used to detect putative co-localization of the cyclotides with Zn or Pb in the cells of V. tricolor treated with the highest concentration of heavy metals for 72 h. Cyclotide biosynthesis was dependent on the type of heavy metal and its concentration, time of treatment, plant species, and population type (MET vs. NMET). It was positively correlated with the level of tolerance of particular Viola species. The increased production of cyclotides was observed in the cells of metallophyte species, mostly in Zn-treated cells. The nonmetallophyte-V. uliginosa presented a decrease in the production of cyclotides independent of the dose and duration of the metal treatment. Cyclotides co-localized with Pb more evidently than with Zn, suggesting that cyclotides have heavy metal affinity. V. lutea ssp. westfalica transcriptome mining yielded 100 cyclotide sequences, 16 known and 84 novel named viwe 1-84. These findings support the hypothesis that cyclotides are involved in certain mechanisms of plant tolerance to heavy metals.
Collapse
Affiliation(s)
- Klaudia Sychta
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, P.O. Box 591, 751 24, Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, P.O. Box 591, 751 24, Uppsala, Sweden
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego St, 61-614, Poznań, Poland
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| | - Blazej Slazak
- W. Szafer Institute of Botany of the Polish Academy of Sciences, 46 Lubicz, 31-512, Krakow, Poland
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| |
Collapse
|
5
|
Kautu A, Sharma S, Singh R, Negi SS, Singh N, Swain N, Kumar V, Kumar N, Gupta P, Bhatia D, Joshi KB. Metallopeptide nanoreservoirs for concurrent imaging and detoxification of lead (Pb) from human retinal pigment epithelial (hRPE1) cells. NANOSCALE 2024; 16:14940-14952. [PMID: 39046356 DOI: 10.1039/d4nr02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of C2-symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb2+) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI (λem = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification. Our proof-of-principle experiment, demonstrating actin filament recovery in lead-treated cells, signifies therapeutic potential for intracellular lead aggregation and introduces novel avenues in biotechnological applications within biomaterials science.
Collapse
Affiliation(s)
- Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Saurabh Singh Negi
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Narendra Singh
- Indian Institute of Technology Kanpur, U.P., 208016, India
| | - Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Vikas Kumar
- Department of Chemistry, Government College Khimlasha, M.P., India
| | - Nikunj Kumar
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Puneet Gupta
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
6
|
Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, Xiao W, Peng L, Zou L, Han J, Li Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int J Mol Sci 2024; 25:6717. [PMID: 38928423 PMCID: PMC11203628 DOI: 10.3390/ijms25126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| |
Collapse
|
7
|
Sánchez S, Baragaño D, Gallego JR, López-Antón MA, Forján R, González A. Valorization of steelmaking slag and coal fly ash as amendments in combination with Betula pubescens for the remediation of a highly As- and Hg-polluted mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172297. [PMID: 38588736 DOI: 10.1016/j.scitotenv.2024.172297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.
Collapse
Affiliation(s)
- S Sánchez
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain; Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - D Baragaño
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| | - J R Gallego
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - M A López-Antón
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - R Forján
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain; Plant Production Area, Department of Biology of Organisms and Systems Biology, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
8
|
Gómez-Gallego T, Molina-Luzón MJ, Conéjéro G, Berthomieu P, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122990. [PMID: 37992950 DOI: 10.1016/j.envpol.2023.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu + efflux protein of the P1B1-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María Jesús Molina-Luzón
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Genevieve Conéjéro
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Pierre Berthomieu
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Nuria Ferrol
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
9
|
Sachu M, Kynshi BL, Syiem MB. Cyanobacterial degradation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D): Its response to the oxidative stress induced by the primary degradation product 2,4-dichlorophenol (2,4-DCP). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109739. [PMID: 37659610 DOI: 10.1016/j.cbpc.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Excessive use of herbicides in agricultural fields has become a major environmental concern due to the negative effects on the ecosystem. Microbial degradation has been well-known as an effective approach for combating such non-natural substances in soil. In the present study, the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a result of metabolic activities of a cyanobacterium Nostoc muscorum Meg 1 was investigated using GC-MS analysis. After seven days of 2,4-D exposure, the main residue obtained was 2,4-dichlorophenol (2,4-DCP) at RT: 8.334 (confirmed using NIST library). The effects of 2,4-DCP were studied in a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field where 2,4-D is commonly used. Exposure to 2,4-DCP at 20, 40, and 80 ppm significantly increased ROS production in the cyanobacterium by 74, 107, and 211 % (p < 0.001). With rising 2,4-DCP concentrations in the surroundings, lipid peroxidation and protein oxidation in the organism correspondingly increased, indicating cellular injury. The mRNA and protein contents, and also the activities of different oxidant neutralizing enzymes such as CAT, SOD, GR, and GPx and the non-enzymatic antioxidants (proline, GSH, thiol and phytochelatin content) were found augmented in 20 ppm 2,4-DCP exposed cultures. However, in the presence of 40 and 80 ppm 2,4-DCP, most enzymatic and non-enzymatic antioxidants were severely compromised. At higher exposures, the organism's attempt to mitigate the oxidants was still visible, as both proline and TSH levels increased. SEM and TEM analysis aided in visualizing the effects of 2,4-DCP on the morphology and ultrastructures of the organism.
Collapse
Affiliation(s)
- Meguovilie Sachu
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | | | - Mayashree B Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
10
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
11
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
12
|
Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco ( Nicotiana nudicaulis Watson) to Zinc and Cadmium. Genes (Basel) 2022; 13:genes13122413. [PMID: 36553680 PMCID: PMC9777932 DOI: 10.3390/genes13122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Metallothionein (MT) is a multifunctional inducible protein in animals, plants, and microorganisms. MT is rich in cysteine residues (10-30%), can combine with metal ions, has a low molecular weight, and plays an essential biological role in various stages of the growth and development of organisms. Due to its strong ability to bind metal ions and scavenge free radicals, metallothionein has been used in medicine, health care, and other areas. Zinc is essential for plant growth, but excessive zinc (Zn) is bound to poison plants, and cadmium (Cd) is a significant environmental pollutant. A high concentration of cadmium can significantly affect the growth and development of plants and even lead to plant death. In this study, the human metallothionein gene HsMT1L under the control of the CaMV 35S constitutive promoter was transformed into tobacco, and the tolerance and accumulation capacity of transgenic tobacco plants to Zn and Cd were explored. The results showed that the high-level expression of HsMT1L in tobacco could significantly enhance the accumulation of Zn2+ and Cd2+ in both the aboveground parts and the roots compared to wild-type tobacco plants and conferred a greater tolerance to Zn and Cd in transgenic tobacco. Subcellular localization showed that HsMT1L was localized to the nucleus and cytoplasm in the tobacco. Our study suggests that HsMT1L can be used for the phytoremediation of soil for heavy metal removal.
Collapse
|
13
|
Effects of Phytochelatin-like Gene on the Resistance and Enrichment of Cd 2+ in Tobacco. Int J Mol Sci 2022; 23:ijms232416167. [PMID: 36555808 PMCID: PMC9784533 DOI: 10.3390/ijms232416167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Phytochelatins (PCs) are class III metallothioneins in plants. They are low molecular-weight polypeptides rich in cysteine residues which can bind to metal ions and affect the physiological metabolism in plants. Unlike other types of metallothioneins, PCs are not the product of gene coding but are synthesized by phytochelatin synthase (PCS) based on glutathione (GSH). The chemical formula of phytochelatin is a mixture of (γ-Glu-Cys)n-Gly (n = 2-11) and is influenced by many factors during synthesis. Phytochelatin-like (PCL) is a gene-encoded peptide (Met-(α-Glu-Cys)11-Gly) designed by our laboratory whose amino acid sequence mimics that of a natural phytochelatin. This study investigated how PCL expression in transgenic plants affects resistance to Cd and Cd accumulation. Under Cd2+ stress, transgenic plants were proven to perform significantly better than the wild-type (WT), regarding morphological traits and antioxidant abilities, but accumulated Cd to higher levels, notably in the roots. Fluorescence microscopy showed that PCL localized in the cytoplasm and nucleus.
Collapse
|
14
|
Greeshma K, Kim HS, Ramanan R. The emerging potential of natural and synthetic algae-based microbiomes for heavy metal removal and recovery from wastewaters. ENVIRONMENTAL RESEARCH 2022; 215:114238. [PMID: 36108721 DOI: 10.1016/j.envres.2022.114238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Heavy Metal (HM) bioremoval by microbes is a successful, environment-friendly technique, particularly at low concentrations of HMs. Studies using algae, bacteria, and fungi reveal promising capabilities in isolation and when used in consortia. Yet, few reviews have emphasized individual and collective HM removal rates and the associated mechanisms in natural or synthetic microbiomes. Besides discussing the limitations of conventional and synthetic biology approaches, this review underscores the utility of indigenous microbial taxon, i.e., algae, fungi, and bacteria, in HM removal with adsorption capacities and their synergistic role in microbiome-led studies. The detoxification mechanisms studied for certain HMs indicate distinctive removal pathways in each taxon which points to an enhanced effect when used as a microbiome. The role and higher efficacies of the designer microbiomes with complementing and mutualistic taxa are also considered, followed by recovery options for a circular bioeconomy. The citation network analysis further validates the multi-metal removal ability of microbiomes and the restricted capabilities of the individual counterparts. In precis, the study reemphasizes increased metal removal efficiencies of inter-taxon microbiomes and the mechanisms for synergistic and improved removal, eventually drawing attention to the benefits of ecological engineering approaches compared to other alternatives.
Collapse
Affiliation(s)
- Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala, 671 316, India
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala, 671 316, India; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Helaoui S, Boughattas I, El Kribi-Boukhris S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M. Assessing the effects of nickel on, e.g., Medicago sativa L. nodules using multidisciplinary approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77386-77400. [PMID: 35672641 DOI: 10.1007/s11356-022-21311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Industrial wastes and fertilizers can introduce excessive levels of nickel (Ni) into the environment, potentially causing threats to plants, animals, as well as human beings. However, the number of studies on the effects of Ni toxicity on nodules is fairly limited. To address this issue, the effects of increasing Ni concentration on alfalfa nodules were assessed at chemical, biochemical, and transcriptomic levels. For this purpose, plants were grown in soils supplied with Ni (control, 0 mg/kg; C1, 50 mg/kg; C2, 150 mg/kg; C3, 250 mg/kg; and C4, 500 mg/kg) for 90 days. Ni loads in leaves, roots, and nodules were monitored after the exposure period. A set of biochemical biomarkers of oxidative stress was determined in nodules including antioxidants and metal homeostasis as well as lipid peroxidation. Gene expression levels of the main targets involved in oxidative stress and metal homeostasis were assessed. Our data indicated a high concentration of Ni in leaves, roots, and nodules where values reached 25.64 ± 3.04 mg/kg, 83.23 ± 5.16 mg/kg, and 125.71 ± 4.53 mg/kg in dry weight, respectively. Moreover, a significant increase in nodule biomass was observed in plants exposed to C4 in comparison to control treatment and percentage increased by 63%. Then, lipid peroxidation increased with a rate of 95% in nodules exposed to C4. Enzymatic activities were enhanced remarkably, suggesting the occurrence of oxidative stress, with increased superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX). Our results showed also a significant upregulation of SOD, GR and APX genes in nodules. Nodule homoglutathione (HGSH) levels increased with the different Ni concentrations, with a remarkable decrease of glutathione S-transferase (GST) activity and glutathione (GSH) content for the highest Ni concentration with 43% and 52% reduction, respectively. The phytochelatin (PC) and metallothionein (MT) concentrations increased in nodules, which implied the triggering of a cellular protection mechanism for coping with Ni toxicity. The results suggested that Ni promotes a drastic oxidative stress in alfalfa nodules, yet the expression of MT and PC to reduce Ni toxicity could be used as Ni stress bioindicators. Our findings provide new insights into the central role of alfalfa nodules in limiting the harmful effects of soil pollution. Therefore, nodules co-expressing antioxidant enzymes may have high phytoremediation potential.
Collapse
Affiliation(s)
- Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia.
| | - Sameh El Kribi-Boukhris
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Vanessa Alphonse
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Alexandre Livet
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Noureddine Bousserrhine
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
- Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
16
|
Lai X, Yang X, Rao S, Zhu Z, Cong X, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:913-919. [PMID: 35583793 DOI: 10.1111/plb.13435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a metalloid mineral nutrient for human and animal health. Plants are the main foodstuff source of the Se intake of humans. For plants, the addition of an appropriate amount of Se could promotes growth and development, and improves the tolerance to environmental stress, especially stress from some of heavy metals (HM) stress, such as cadmium (Cd) and mercury (Hg). This paper mainly reviews and summarizes the physiological mechanism of Se in enhancing HM stress tolerance in plants. The antagonistic effect of Se on HM is a comprehensive effect that includes many physiological mechanisms. Se can promote the removal of excessive reactive oxygen species and reduce the oxidative damage of plant cells under HM elements stress. Se participates in the regulation of the transportation and distribution of HM ions in plants, and alleviates the damage caused by of HM stress. Moreover, Se combine with HM elements to form Se-HM complexes and promote the production of phytochelatins (PCs), thereby reducing the accumulation of HM ions in plants. Overall, Se plays an important role in plant response to HM stress, but current studies mainly focus on physiological mechanism, and further in-depth study on the molecular mechanism is essential to confirm the participation of Se in plant response to environmental stress. This review helps to comprehensively understand the physiological mechanism of Se in plant tolerance against to HM stress of plants, and provides important theoretical support for the practical application of Se in environmental remediation and agricultural development.
Collapse
Affiliation(s)
- X Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - X Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Z Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - X Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, China
| | - J Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - W Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Y Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - F Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
The Response of Thiols to Cadmium Stress in Spinach ( Spinacia Oleracea L.). TOXICS 2022; 10:toxics10080429. [PMID: 36006108 PMCID: PMC9415539 DOI: 10.3390/toxics10080429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study is to examine the thiol species for the high cadmium (Cd) tolerance of spinach and provide information for the improvement of soil utilization. The spinach was cultured in aqueous solution with concentrations of Cd ranging from 1 to 9 mg/L. The time responses of glutathione (GSH) and phytochelatins (PCs, PC2-PC4) in the tissues of spinach were monitored via HPLC−MS/MS, and the concentrations of Cd in the roots, shoots and leaves were detected by ICP−OES. Data were analyzed via one-way ANOVA and Spearman correlation to assess the relationships among the types of thiols and the changes between types of thiols and Cd. As Cd stress increased, Cd concentrations in tissues also increased. The total thiol contents responded to Cd stresses with correlations r ranging from 0.394 (root), 0.520 (shoot) to 0.771 (leaf) (p < 0.01). GSH and PC3 were dominant on most of the days under Cd stress. The correlation r between improvements in GSH and increments of Cd concentration in roots was −0.808 (p < 0.01), and r between changes in PC3 and changes in Cd concentrations in leaves was −0.503 (p < 0.01). No correlation can be found between GSH and the subtypes of PCs in shoots, but strong positive correlations within the subtypes of PCs. Thiols can be produced in different tissues of spinach, while the shoots are only a transport tissue for GSH.
Collapse
|
18
|
Díaz S, Aguilera Á, de Figueras CG, de Francisco P, Olsson S, Puente-Sánchez F, González-Pastor JE. Heterologous Expression of the Phytochelatin Synthase CaPCS2 from Chlamydomonas acidophila and Its Effect on Different Stress Factors in Escherichia coli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137692. [PMID: 35805349 PMCID: PMC9265389 DOI: 10.3390/ijerph19137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Phytochelatins (PCs) are cysteine-rich small peptides, enzymatically synthesized from reduced glutathione (GSH) by cytosolic enzyme phytochelatin synthase (PCS). The open reading frame (ORF) of the phytochelatin synthase CaPCS2 gene from the microalgae Chlamydomonas acidophila was heterologously expressed in Escherichia coli strain DH5α, to analyze its role in protection against various abiotic agents that cause cellular stress. The transformed E. coli strain showed increased tolerance to exposure to different heavy metals (HMs) and arsenic (As), as well as to acidic pH and exposure to UVB, salt, or perchlorate. In addition to metal detoxification activity, new functions have also been reported for PCS and PCs. According to the results obtained in this work, the heterologous expression of CaPCS2 in E. coli provides protection against oxidative stress produced by metals and exposure to different ROS-inducing agents. However, the function of this PCS is not related to HM bioaccumulation.
Collapse
Affiliation(s)
- Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C. José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Correspondence:
| | - Ángeles Aguilera
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Carolina G. de Figueras
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Patricia de Francisco
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, Forest Research Centre (INIA, CSIC), Carretera de La Coruña, km 7.5, 28040 Madrid, Spain;
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 756 51 Uppsala, Sweden;
| | - José Eduardo González-Pastor
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| |
Collapse
|
19
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
20
|
Gómez-Gallego T, Valderas A, van Tuinen D, Ferrol N. Impact of arbuscular mycorrhiza on maize P 1B-ATPases gene expression and ionome in copper-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113390. [PMID: 35278990 DOI: 10.1016/j.ecoenv.2022.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, symbionts of most land plants, increase plant fitness in metal contaminated soils. To further understand the mechanisms of metal tolerance in the AM symbiosis, the expression patterns of the maize Heavy Metal ATPase (HMA) family members and the ionomes of non-mycorrhizal and mycorrhizal plants grown under different Cu supplies were examined. Expression of ZmHMA5a and ZmHMA5b, whose encoded proteins were predicted to be localized at the plasma membrane, was up-regulated by Cu in non-mycorrhizal roots and to a lower extent in mycorrhizal roots. Gene expression of the tonoplast ZmHMA3a and ZmHMA4 isoforms was up-regulated by Cu-toxicity in shoots and roots of mycorrhizal plants. AM mitigates the changes induced by Cu toxicity on the maize ionome, specially at the highest Cu soil concentration. Altogether these data suggest that in Cu-contaminated soils, AM increases expression of the HMA genes putatively encoding proteins involved in Cu detoxification and balances mineral nutrient uptake improving the nutritional status of the maize plants.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Diederik van Tuinen
- INRAE/AgroSup/Université de Bourgogne UMR1347 Agroécologie, ERL CNRS, 6300 Dijon, France
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
21
|
Yang L, Li N, Kang Y, Liu J, Wang Y, Sun H, Ao T, Chen W. Selenium alleviates toxicity in Amaranthus hypochondriacus by modulating the synthesis of thiol compounds and the subcellular distribution of cadmium. CHEMOSPHERE 2022; 291:133108. [PMID: 34856233 DOI: 10.1016/j.chemosphere.2021.133108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
As a beneficial element, Selenium (Se) reduces toxic cadmium (Cd) absorption in many crops, but the effects of Se on Cd hyperaccumulator plants are unclear. This study examined the effects of Se on Amaranthus hypochondriacus (K472). The results showed that Se increased antioxidant enzyme activities, reduced Cd concentrations and toxicity, restored cell viability, and enhanced photosynthesis; these effects increased the biomass of roots, stems, and leaves by 59.87%, 53.85%, 44.19%, respectively, and these values exceeded the biomass of roots and stems in untreated control plants by 56.69% and 15.37%, respectively. Moreover, Se promoted PC synthesis, stably chelated Cd in the form of PC3 and PC4 and transported PC-Cd to vacuoles. Furthermore, Se protected organelles and reduced Cd migration by increasing Cd levels in cell walls and vacuoles. Interestingly, although the Cd content in K472 was decreased, Se maintained the total extracted Cd concentrations and its remediation efficiency by improving biomass and increased tolerance to Cd by approximately 5 times. The experimental results provide novel insights and methods for mitigating toxicity, promoting growth, and broadening the engineering application scope of K472; these results also provide a theoretical basis for further application of Se in soil with high Cd concentrations.
Collapse
Affiliation(s)
- Li Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jiaxin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Menéndez AB, Ruiz OA. Stress-regulated elements in Lotus spp., as a possible starting point to understand signalling networks and stress adaptation in legumes. PeerJ 2021; 9:e12110. [PMID: 34909267 PMCID: PMC8641479 DOI: 10.7717/peerj.12110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
Abstract
Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.
Collapse
Affiliation(s)
- Ana B Menéndez
- Departamento de Biodiversidad y Biología Experimental. Facultad de Ciencias Exactas y Naturales., Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Overseas, Argentina.,Instituto de Micología y Botánica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Overseas, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
24
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
26
|
Krayem M, Khatib SE, Hassan Y, Deluchat V, Labrousse P. In search for potential biomarkers of copper stress in aquatic plants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105952. [PMID: 34488000 DOI: 10.1016/j.aquatox.2021.105952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Over the last few decades, the use of pesticides and discharge of industrial and domestic wastewater on water surfaces have increased. Especially, Copper (Cu) pollution in aquatic ecosystems could constitute a major health problem, not only for flora and fauna but also for humans. To cope with this challenge, environmental monitoring studies have sought to find Cu-specific biomarkers in terrestrial and aquatic flora and/or fauna. This review discusses the toxic effects caused by Cu on the growth and development of plants, with a special focus on aquatic plants. While copper is considered as an essential metal involved in vital mechanisms for plants, when in excess it becomes toxic and causes alterations on biomarkers: biochemical (oxidative stress, pigment content, phytochelatins, polyamines), physiological (photosynthesis, respiration, osmotic potential), and morphological. In addition, Cu has a detrimental effect on DNA and hormonal balance. An overview of Cu toxicity and detoxification in plants is provided, along with information regarding Cu bioaccumulation and transport. Awareness of the potential use of these reactions as specific biomarkers for copper contamination has indeed become essential.
Collapse
Affiliation(s)
- Maha Krayem
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon; Université de Limoges, PEIRENE EA 7500, Limoges, France
| | - S El Khatib
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | - Yara Hassan
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | | | | |
Collapse
|
27
|
Mostofa MG, Rahman MM, Nguyen KH, Li W, Watanabe Y, Tran CD, Zhang M, Itouga M, Fujita M, Tran LSP. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125589. [PMID: 34088170 DOI: 10.1016/j.jhazmat.2021.125589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 05/23/2023]
Abstract
We explored genetic evidence for strigolactones' role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (Na2AsO4) revealed differential growth inhibition [WT (11.28%) vs. d10 (19.76%) and d17 (18.03%)], biomass reduction [(WT (33.65%) vs. d10 (74.86%) and d17 (60.65%)] and membrane damage (WT < d10 and d17) at 250 μM Na2AsO4. Microscopic and biochemical analyses showed that roots of WT accumulated lower levels of arsenic and oxidative stress indicators like reactive oxygen species and malondialdehyde than those of strigolactone-deficient mutants. qRT-PCR data indicated lower expression levels of genes (OsPT1, OsPT2, OsPT4 and OsPT8) encoding phosphate-transporters in WT roots than mutant roots, explaining the decreased arsenate and phosphate uptake by WT roots. Increased levels of glutathione and OsPCS1 and OsABCC1 transcripts indicated an efficient vacuolar-sequestration of arsenic in WT roots. Furthermore, higher activities (transcript levels) of SOD (OsCuZnSOD1 and OsCuZnSOD2), APX (OsAPX1 and OsAPX2) and CAT (OsCATA) corresponded to lower oxidative damage in WT roots compared with strigolactone-mutant roots. Collectively, these results highlight that strigolactones are involved in arsenic-stress mitigation by regulating arsenate-uptake, glutathione-biosynthesis, vacuolar-sequestration of arsenic and antioxidant defense responses in rice roots.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Ha noi 100000, Vietnam.
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Minghui Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China.
| | - Misao Itouga
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Kanagawa 230-0045, Japan; Japan Moss Factory Co., Ltd., WRIP408, 2-3-13, Minami, Wako, Saitama 351-0104, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock 79409, TX, USA.
| |
Collapse
|
28
|
Chen JX, Cao Y, Yan X, Chen Y, Ma LQ. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125647. [PMID: 33740714 DOI: 10.1016/j.jhazmat.2021.125647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Arsenite (AsIII) antiporter ACR3 is crucial for arsenic (As) translocation and sequestration in As-hyperaccumulator Pteris vittata, which has potential for phytoremediation of As-contaminated soils. In this study, two new ACR3 genes PvACR3;2 and PvACR3;3 were cloned from P. vittata and studied in model organism yeast (Saccharomyces cerevisiae) and model plant tobacco (Nicotiana tabacum). Both ACR3s mediated AsIII efflux in yeast, decreasing its As accumulation and enhancing its As tolerance. In addition, PvACR3;2 and PvACR3;3 were expressed in tobacco plant. Localized on the plasma membrane, PvACR3;2 mediated both AsIII translocation to the shoots and AsIII efflux from the roots in tobacco, resulting in 203 - 258% increase in shoot As after exposing to 5 μM AsIII under hydroponics. In comparison, localized to the vacuolar membrane, PvACR3;3 sequestrated AsIII in tobacco root vacuoles, leading to 18 - 20% higher As in the roots and 15 - 36% lower As in the shoots. Further, based on qRT-PCR, both genes were mainly expressed in P. vittata fronds, indicating PvACR3;2 and PvACR3;3 may play roles in AsIII translocation and sequestration in the fronds. This study provides not only new insights into the functions of new ACR3 genes in P. vittata, but also important gene resources for manipulating As accumulation in plants for phytoremediation and food safety.
Collapse
Affiliation(s)
- Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjuan Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
30
|
Shi Y, Liu Y, Li H, Pei H, Xu Y, Ju X. Phytochelatins formation kinetics and Cd-induced growth inhibition in Lolium perenne L. at elevated CO 2 level under Cd stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35751-35763. [PMID: 33675496 DOI: 10.1007/s11356-021-12883-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Elevated CO2 levels may alleviate toxicities induced by environmental stresses in plants, such as heavy metals. To assess this possibility, seedlings of Lolium perenne L. were exposed to different Cd stress and CO2 levels during hydroponic culture. The kinetics of growth, Cd accumulation, and thiol formation were investigated. Elevated CO2 levels increased the growth rate from 30 to 75%, and decreased the Cd accumulation rate from 36 to 42%, leading to a decrease of Cd content in root and shoot. However, an increase in Cd transport from root to shoot was observed at elevated CO2 under Cd stress. The production of phytochelatins (PCs) occurred earlier at elevated CO2 level than at ambient CO2 level after exposure to Cd stress. The mean SH/Cd ratio was relatively higher at elevated CO2 level, but elevated CO2 level significantly decreased thiol contents. The reduction of Cd contents, earlier production of PCs, and relatively higher SH/Cd ratio at the elevated CO2 level alleviated Cd toxicity in root and shoot to some extent, causing significant yield increase of L. perenne after exposure to Cd stress. This study could provide an important data support and theoretical basis in understanding the effects of elevated CO2 on plant growth, heavy metal accumulation, and thiol formation.
Collapse
Affiliation(s)
- Ying Shi
- National Institute of Environmental Health, China CDC, Beijing, 100021, China
| | - Yaqi Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Haopeng Pei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xuehai Ju
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, P.R.C., Beijing, 100125, China.
| |
Collapse
|
31
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
32
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tagwa A. Mohammed
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Christoph M. Meier
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Martina Kalt
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Michal S. Shoshan
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
33
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021; 60:12381-12385. [PMID: 33759306 DOI: 10.1002/anie.202103217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/05/2022]
Abstract
Lead (Pb) is a ubiquitous poisonous metal, affecting the health of vast populations worldwide. Medications to treat Pb poisoning suffer from various limitations and are often toxic owing to insufficient metal selectivity. Here, we report a cyclic tetrapeptide that selectively binds Pb and eradicates its toxic effect on the cellular level, with superior potency than state-of-the-art drugs. The Pb-peptide complex is remarkably strong and was characterized experimentally and computationally. Accompanied by the lack of toxicity and enhanced stability of this peptide, these qualities indicate its merit as a potential remedy for Pb poisoning.
Collapse
Affiliation(s)
- Tagwa A Mohammed
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christoph M Meier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Martina Kalt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Michal S Shoshan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
34
|
Fan Y, Jiang T, Chun Z, Wang G, Yang K, Tan X, Zhao J, Pu S, Luo A. Zinc affects the physiology and medicinal components of Dendrobium nobile Lindl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:656-666. [PMID: 33780739 DOI: 10.1016/j.plaphy.2021.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The growth of Dendrobium nobile is often influenced by zinc. Here, D. nobile was regularly sprayed with different concentrations (0, 50, 100, 200, 400, 800, 1000, 2000 μmol L-1) of zinc to study its effect on the growth and biosynthesis of medicinal components. Samples were taken at 0, 7, 14, and 21 days to detect physiological and medicinal components. The results showed that the net photosynthetic rate, transpiration rate, stomatal conductance, and Chl A and Chl B levels of leaves first increased and then decreased as the concentration of zinc increased. At 400 μmol L-1 concentration, these parameters reached their maximum values. Thus, a certain dose of zinc could promote the photosynthesis of D. nobile. There was an obvious increase in the synthesis of superoxide dismutase (SOD), while the content of ascorbate peroxidase and ascorbic acid (AsA) were the highest after treatment with 400 μmol L-1 zinc. Maximum levels of polysaccharides and polyphenols were observed on day 7 and 14, respectively, at a zinc concentration of 400 μmol L-1. These results suggest that exogenous zinc may promote the accumulation of medicinal components in D. nobile. It was also found that polysaccharides could combine well with zinc to form a polysaccharide-zinc chelate and transform inorganic zinc into organic form, which is stored in the form of polysaccharide-Zn and is known to reduce the damage induced by Zn stress.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Jiang
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Gang Wang
- College of Forest, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kaigang Yang
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueyan Tan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Zhao
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangrao Pu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aoxue Luo
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
35
|
Sharma P, Pandey AK, Udayan A, Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124750. [PMID: 33517048 DOI: 10.1016/j.biortech.2021.124750] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
This review illustrated the role of metal-binding proteins (MBPs) and microbial interaction in assisting the phytoremediation of industrial wastewater polluted with heavy metals. MBPs are used to increase the accumulation and tolerance of metals by microorganisms via binding protein synthesis. Microbes have various protection mechanisms to heavy metals stress like compartmentalization, exclusion, complexity rendering, and the synthesis of binding proteins. MBPs include phytochelatins, metallothioneins, Cd-binding peptides (CdBPs), cysteines (gcgcpcgcg) (CP), and histidines (ghhphg)2 (HP). In comparison with other physico-chemical methods, phytoremediation is an eco-friendly and safe method for the society. The present review concentrated on the efficiency of phytoremediation strategies for the use of MBPs and microbe-assisted approaches.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Ashutosh Kumar Pandey
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
36
|
Dennis KK, Liu KH, Uppal K, Go YM, Jones DP. Distribution of phytochelatins, metal-binding compounds, in plant foods: A survey of commonly consumed fruits, vegetables, grains and legumes. Food Chem 2021; 339:128051. [PMID: 32950899 PMCID: PMC8434803 DOI: 10.1016/j.foodchem.2020.128051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 11/18/2022]
Abstract
Phytochelatins (PyCs) are metal-binding compounds produced by plants. PyCs may reduce bioavailability of dietary toxic metals such as cadmium. However, the PyC concentrations in foods are unknown. The objective of this study was to analyze PyC contents in a subset of commonly consumed plant foods. Foods (20) across five groups were analyzed and PyCs quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The impact of factors such as food processing were also explored. PyCs were in all 20 foods. Five PyC types were detected with PyC2-Gly, PyC3-Gly and PyC2-Ala at quantifiable concentrations. PyC2-Gly was found at the highest concentrations and most widely distributed. PyC2-Gly concentrations were highest in fruits and root vegetables. Foods with increased processing tended to have reduced PyC concentrations. This survey of commonly consumed plant foods in the United States demonstrates PyCs are widely distributed and provides a foundation for understanding their concentrations and impact in the human diet.
Collapse
Affiliation(s)
- Kristine K Dennis
- Nutrition and Health Sciences, Laney Graduate School, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Dean P Jones
- Nutrition and Health Sciences, Laney Graduate School, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Ríos Marin JF, Peña Salamanca EJ, Benitez Benitez R. EFECTO DEL pH EN LAS TASAS DE BIOACUMULACIÓN DE METALES PESADOS EN LA MACROALGA Bostrychia calliptera (Rhodomelaceae, Ceramiales). ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n2.84142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Uno de los factores que más influye las características químicas de un metal en solución es el nivel de acidez. El pH por lo tanto, afecta la reactividad del ion y por ende, su interacción con los puntos de unión de la pared celular de la planta. Este estudio evaluó el efecto del pH en la capacidad de bioacumulación de metales pesados en el alga roja Bostrychia calliptera (Rhodophyta, Rhodomelaceae), expuesta a diferentes rangos de pH. Se sometieron talos del alga a diferentes concentraciones de mercurio (Hg) y Plomo (Pb) a concentraciones desde: 0,1 hasta 10 mg l-1, para Hg y desde 0,1 hasta 15 mg l-1 para Pb, durante periodos exposición de 0, 12, 24 y 96 horas para cada ion, bajo diferentes niveles de pH. Las concentraciones de metal fueron determinadas por espectrofotometría de absorción atómica de acuerdo a los métodos estándar APHA. Las mayores tasas de acumulación se encontraron cuando el alga estaba expuesta a pH 7.8 (tanto para Hg como para Pb) el cual es un nivel de pH muy cercano al medido en el área de estudio. La concentración de metal en el alga se incrementó de manera lineal hasta las 48 hrs, tiempo donde se evidenció una mayor eficiencia de acumulación durante el primer intervalo del periodo del bioensayo.
Collapse
|
38
|
Rai KK, Pandey N, Meena RP, Rai SP. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111750. [PMID: 33396075 DOI: 10.1016/j.ecoenv.2020.111750] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/15/2023]
Abstract
Contamination of agricultural land and water by heavy metals due to rapid industrialization and urbanization including various natural processes have become one of the major constraints to crop growth and productivity. Several studies have reported that to counteract heavy metal stress, plants should be able to maneuver various physiological, biochemical and molecular processes to improve their growth and development under heavy metal stress. With the advent of modern biotechnological tools and techniques it is now possible to tailor legume and other plants overexpressing stress-induced genes, transcription factors, proteins, and metabolites that are directly involved in heavy metal stress tolerance. This review provides an in-depth overview of various biotechnological approaches and/or strategies that can be used for enhancing detoxification of the heavy metals by stimulating phytoremediation processes. Synthetic biology tools involved in the engineering of legume and other crop plants against heavy metal stress tolerance are also discussed herewith some pioneering examples where synthetic biology tools that have been used to modify plants for specific traits. Also, CRISPR based genetic engineering of plants, including their role in modulating the expression of several genes/ transcription factors in the improvement of abiotic stress tolerance and phytoremediation ability using knockdown and knockout strategies has also been critically discussed.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India
| | - Ram Prasad Meena
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Computer Science, IIT, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
39
|
Kazdal F, Bahadori F, Celik B, Ertas A, Topcu G. Inhibition of Amyloid β Aggregation Using Optimized Nano-Encapsulated Formulations of Plant Extracts with High Metal Chelator Activities. Curr Pharm Biotechnol 2020; 21:681-701. [DOI: 10.2174/1389201021666191210125851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Background:
The role of Fe+2, Cu+2 and Zn+2 in facilitating aggregation of Amyloid β (Aβ)
and consequently, the progression of Alzheimer's disease (AD) is well established.
Objective:
Development of non-toxic metal chelators is an emerging era in the treatment of AD, in
which complete success has not been fully achieved. The purpose of this study was to determine plant
extracts with high metal chelator and to encapsulate them in nano-micellar systems with the ability to
pass through the Blood Brain Barrier (BBB).
Method:
Extracts of 36 different Anatolian plants were prepared, total phenolic and flavonoid contents
were determined, and the extracts with high content were examined for their Fe+2, Cu+2 and Zn+2
chelating activities. Apolipoprotein E4 (Apo E) decorated nano-formulations of active extracts were
prepared using Poly (Lactide-co-Glycolide) (PLGA) (final product ApoEPLGA) to provide BBB penetrating
property.
Results:
Verbascum flavidum aqueous extract was found as the most active sample, incubation of
which, with Aβ before and after metal-induced aggregation, resulted in successful inhibition of aggregate
formation, while re-solubilization of pre-formed aggregates was not effectively achieved. The
same results were obtained using ApoEPLGA.
Conclusion:
An optimized metal chelator nano-formulation with BBB penetrating ability was prepared
and presented for further in-vivo studies.
Collapse
Affiliation(s)
- Fatma Kazdal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Burak Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih-Istanbul, Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, 21280 Diyarbakır, Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih- Istanbul, Turkey
| |
Collapse
|
40
|
Piña-Olavide R, Paz-Maldonado LMT, Alfaro-De La Torre MC, García-Soto MJ, Ramírez-Rodríguez AE, Rosales-Mendoza S, Bañuelos-Hernández B, García De la-Cruz RF. Increased removal of cadmium by Chlamydomonas reinhardtii modified with a synthetic gene for γ-glutamylcysteine synthetase. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1269-1277. [PMID: 32449363 DOI: 10.1080/15226514.2020.1765138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioremediation with genetically modified microalgae is becoming an alternative to remove metalloids and metals such as cadmium, a contaminant produced in industrial processes and found in domestic waste. Its removal is important in several countries including Mexico, where the San Luis Potosi region has elevated levels of it. We generated a construct with a synthetic gene for γ-glutamylcysteine synthetase and employed it in the chloroplast transformation of Chlamydomonas reinhardtii. In dose-response kinetics with media containing from 1 to 20 mg/L of cadmium, both the transplastomic clone and the wild-type strain grew similarly, but the former removed up to 32% more cadmium. While the growth of both decreased with higher concentrations of cadmium, the transplastomic clone removed 20 ± 9% more than the wild-type strain. Compared to the wild-type strain, in the transplastomic clone the activity of glutathione S-transferase and the intracellular glutathione increased up to 2.1 and 1.9 times, respectively, in media with 2.5 and 10 mg/mL of cadmium. While 20 mg/L of cadmium inhibited the growth of both, the transplastomic clone gradually duplicated. These results confirm the expression of the synthetic gene gshA in the transformed strain as revealed in its increased removal uptake and metabolic response.
Collapse
Affiliation(s)
- René Piña-Olavide
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luz M T Paz-Maldonado
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Mariano J García-Soto
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | | |
Collapse
|
41
|
Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front Microbiol 2020; 11:517. [PMID: 32431671 PMCID: PMC7216689 DOI: 10.3389/fmicb.2020.00517] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Martina Blasio
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | | | | | | | | |
Collapse
|
42
|
Sousa B, Soares C, Oliveira F, Martins M, Branco-Neves S, Barbosa B, Ataíde I, Teixeira J, Azenha M, Azevedo RA, Fidalgo F. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. CHEMOSPHERE 2020; 244:125579. [PMID: 32050351 DOI: 10.1016/j.chemosphere.2019.125579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still compromised by toxic levels of zinc (Zn). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. This study evaluated the potential of 24-epibrassinolide (24-EBL) to boost S. nigrum defence against Zn towards a better growth rate and remediation potential. After 24 days of exposure, the results revealed that Zn-mediated inhibitory effects on biomass and biometry were efficiently mitigated upon application of 24-EBL, without affecting Zn accumulation. The evaluation of oxidative stress markers reported that Zn excess stimulated the accumulation of superoxide anion (O2.-), but reduced hydrogen peroxide (H2O2) levels, while not altering lipid peroxidation (LP). This was accompanied by an up-regulation of the antioxidant system, especially proline, superoxide dismutase (SOD) and ascorbate peroxidase (APX) in both organs, and ascorbate in roots of Zn-exposed plants. Foliar application of 24-EBL, however, induced distinctive effects, lowering proline levels in both organs, as well as APX activity in shoots and SOD in roots, whilst stimulating GSH and total thiols in both organs, as well as SOD and APX activity, in shoots and in roots, respectively. Probably due to a better antioxidant efficiency, levels of O2.- and H2O2 in pre-treated plants remained identical to the control, while LP further decreased in shoots. Overall, our results indicate a protective effect of 24-EBL on S. nigrum response to excess Zn, contributing for a better tolerance and growth rate, without disturbing its phytoremediation potential.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Francisca Oliveira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Simão Branco-Neves
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Beatriz Barbosa
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Inês Ataíde
- Colégio Internato dos Carvalhos (CIC), Rua Moeiro s/n, 4415-133, Pedroso, Portugal
| | - Jorge Teixeira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP. 83, CEP 13418-900, Piracicaba, Brazil
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
43
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
44
|
Yousef EN, Angel LA. Comparison of the pH-dependent formation of His and Cys heptapeptide complexes of nickel(II), copper(II), and zinc(II) as determined by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4489. [PMID: 31881105 DOI: 10.1002/jms.4489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The analog methanobactin (amb) peptide with the sequence ac-His1 -Cys2 -Gly3 -Pro4 -Tyr5 -His6 -Cys7 (amb5A ) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5A binds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C-terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility-mass spectrometry (IM-MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution-phase behavior of the amb peptides as possible and an analysis of how the IM-MS results compare with the expected solution-phase behavior is discussed. The oligopeptides studied here have applications for tag-based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal-protein enzymes such as matrix metalloproteinases.
Collapse
Affiliation(s)
- Enas N Yousef
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| |
Collapse
|
45
|
Combined Effect of Cadmium and Lead on Durum Wheat. Int J Mol Sci 2019; 20:ijms20235891. [PMID: 31771264 PMCID: PMC6929116 DOI: 10.3390/ijms20235891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) and lead (Pb) are two toxic heavy metals (HMs) whose presence in soil is generally low. However, industrial and agricultural activities in recent years have significantly raised their levels, causing progressive accumulations in plant edible tissues, and stimulating research in this field. Studies on toxic metals are commonly focused on a single metal, but toxic metals occur simultaneously. The understanding of the mechanisms of interaction between HMs during uptake is important to design agronomic or genetic strategies to limit contamination of crops. To study the single and combined effect of Cd and Pb on durum wheat, a hydroponic experiment was established to examine the accumulation of the two HMs. Moreover, the molecular mechanisms activated in the roots were investigated paying attention to transcription factors (bHLH family), heavy metal transporters and genes involved in the biosynthesis of metal chelators (nicotianamine and mugineic acid). Cd and Pb are accumulated following different molecular strategies by durum wheat plants, even if the two metals interact with each other influencing their respective uptake and translocation. Finally, we demonstrated that some genes (bHLH 29, YSL2, ZIF1, ZIFL1, ZIFL2, NAS2 and NAAT) were induced in the durum wheat roots only in response to Cd.
Collapse
|
46
|
Chen Y, Hua CY, Chen JX, Rathinasabapathi B, Cao Y, Ma LQ. Expressing Arsenite Antiporter PvACR3;1 in Rice ( Oryza sativa L.) Decreases Inorganic Arsenic Content in Rice Grains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10062-10069. [PMID: 31369709 DOI: 10.1021/acs.est.9b02418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice (Oryza sativa) is a major food crop in the world, feeding half of the world's population. However, rice is efficient in taking up toxic metalloid arsenic (As), adversely impacting human health. Among different As species, inorganic As is more toxic than organic As. Thus, it is important to decrease inorganic As in rice to reduce human exposure from the food chain. The arsenite (AsIII) antiporter gene PvACR3;1 from As-hyperaccumulator Pteris vittata decreases shoot As accumulation when heterologously expressed in plants. In this study, three homozygous transgenic lines (L2, L4, and L7) of T3 generation were obtained after transforming PvACR3;1 into rice. At 5 μM of AsIII, PvACR3;1 transgenic rice accumulated 127%-205% higher As in the roots, with lower As translocation than wild type (WT) plants. In addition, at 20 μM of AsV, the transgenic rice showed similar results, indicating that expressing PvACR3;1 increased As retention in the roots from both AsIII and AsV. Furthermore, PvACR3;1 transgenic rice plants were grown in As-contaminated soils under flooded conditions. PvACR3;1 decreased As accumulations in transgenic rice shoots by 72%-83% without impacting nutrient minerals (Mn, Zn, and Cu). In addition, not only total As in unhusked rice grain of PvACR3;1 transgenic lines were decreased by 28%-39%, but also inorganic As was 26%-46% lower. Taken together, the results showed that expressing PvACR3;1 effectively decreased both total As and inorganic As in rice grain, which is of significance to breed low-As rice for food safety and human health.
Collapse
Affiliation(s)
- Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Chen-Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- Soil and Water Science Department , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
47
|
Nakamura SI, Wongkaew A, Nakai Y, Rai H, Ohkama-Ohtsu N. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:424-434. [PMID: 31128714 DOI: 10.1016/j.plantsci.2018.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 05/28/2023]
Abstract
Glutathione is a tripeptide involved in diverse aspects of plant metabolism. We investigated how the reduced form of glutathione, GSH, applied site-specifically to plants, affects zinc (Zn) distribution and behavior in oilseed rape plants (Brassica napus) cultured hydroponically. Foliar-applied GSH significantly increased the Zn content in shoots and the root-to-shoot Zn translocation ratio; furthermore, this treatment raised the Zn concentration in the cytosol of root cells and substantially enhanced Zn xylem loading. Notably, microarray analysis revealed that the gene encoding pectin methylesterase was upregulated in roots following foliar GSH treatment. We conclude that certain physiological signals triggered in response to foliar-applied GSH were transported via sieve tubes and functioned in root cells, which, in turn, increased Zn availability in roots by releasing Zn from their cell wall. Consequently, root-to-shoot translocation of Zn was activated and Zn accumulation in the shoot was markedly increased.
Collapse
Affiliation(s)
- Shin-Ichi Nakamura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan; Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan.
| | - Arunee Wongkaew
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, 2-1-1 Yanagawa, Aomori-shi, Aomori, 038-0012, Japan
| | - Hiroki Rai
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
48
|
Meng Y, Zhang L, Wang L, Zhou C, Shangguan Y, Yang Y. Antioxidative enzymes activity and thiol metabolism in three leafy vegetables under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:214-224. [PMID: 30772711 DOI: 10.1016/j.ecoenv.2019.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 05/15/2023]
Abstract
The enrichment of Cadmium in vegetables is threatening human health. The study aimed to screen Cd low-enriched leafy vegetables and explore whether antioxidative enzymes and heavy metal chelators are synergistic defensive mechanisms. In this paper, the Cd accumulation and translocation of garland chrysanthemum (Chrysanthemum coronarium L.), spinach (Spinacia oleracea L.), and lettuce (Lactuca sativa L.) were examined by soil pot culture and hydroponic experiments. The responses of oxidative stress markers, antioxidative enzymes activity, and thiol pool (cysteine, γ-glutamylcysteine, glutathione, and phytochelatins) content to Cd stress were assayed. The results showed that Garland chrysanthemum was Cd low-uptake species. The soil Cd safety thresholds for spinach, lettuce, and garland chrysanthemum were 0.41, 0.49, and 9.10 mg kg-1, respectively. The order of root phytochelatins (PCs) concentration was consistent with that of plant tolerance index (TI): garland chrysanthemum > spinach > lettuce. While the order of the ratio of shoot Cd to root Cd (SR ratio) was exactly the opposite of that of TI. In lettuce root, activity of superoxide dismutase, peroxidase, and catalase decreased significantly under Cd stress. Nevertheless those parameters in the roots of spinach and lettuce maintained steady, or even enhanced. In conclusion, the Cd translocation and partition in plant, antioxidative defense, and PCs homeostasis played an important role in the Cd tolerance of vegetables.
Collapse
Affiliation(s)
- Yuan Meng
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Zhang
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linquan Wang
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chunju Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yang Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
49
|
Wang J, Lv Z, Lei Z, Chen Z, Lv B, Yang H, Wang Z, Song Q. Expression and functional analysis of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:19-25. [PMID: 30669070 DOI: 10.1016/j.ecoenv.2019.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Cytochrome P450 enzymes (CYPs), encoded by Halloween genes, mediate the biosynthesis of molting hormone, ecdysteroids, in arthropods. In this report, the effect of heavy metal cadmium (Cd) stress on the expression of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata was analyzed. The results showed the expression levels of genes encoding for Cd transporters including ABC transporters, zinc transporters, calcium channel proteins and calcium binding proteins were inhibited or induced by Cd stress. In addition, the increase in metallothionein (MT) content and glutathione peroxidase (GPX) activity and decrease in total acetylcholine esterase (AChE) activity were also detected. Apparently, these detoxification methods did not completely protect the spider from the cytotoxicity of Cd stress. Increased mortality of P. pseudoannulata was observed when they were under Cd tress. In total 569 CYP genes belonging to 62 CYP subfamilies were obtained from P. pseudoannulata RNA-seq databases. BlaxtX analysis showed that 150, 161, 11, and 40 CYP genes were similar to the genes dib, phm, sad and shd, respectively, which are thought to catalyze the biosynthesis of ecdysteroids. Gene expression analysis suggested that 25 dib encoding genes, 27 phm encoding genes, 2 sad encoding genes, and 6 shd encoding genes were differentially expressed in TS2 vs. S2 comparison (Cd-treated 2nd instar spider vs. 2nd instar spider), respectively. There were 70 dib, 70 phm and 19 shd encoding genes either upregulated or downregulated, while 3 sad encoding genes were upregulated in TS5 vs. S5 (Cd-treated 5nd instar spider vs. 5nd instar spider). Genes related to heme binding and essential for activating the CYPs were also differentially expressed. Expression levels of cuticle related genes were significant differentially expressed, implying the changes in activities of chitin synthases and chitinase. Therefore we assume that unsuccessful molting process may occur on P. pseudoannulata due to influenced ecdysteroids levels, thus increasing mortality of spider.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 China
| | - Ziyan Lei
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhaoyang Chen
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Bo Lv
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
50
|
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo ZB. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. PLANT, CELL & ENVIRONMENT 2019; 42:1087-1103. [PMID: 30375657 DOI: 10.1111/pce.13471] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Heinz Rennenberg
- Institute for Forest Sciences, University of Freiburg, 79110, Freiburg, Germany
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|