1
|
An JX, Wang R, Li AP, Zhang W, Nan Z, Jiang WQ, Zhang SY, Zhang ZJ, Luo XF, Liang HJ, Liu YQ. Prenylated Flavonoids Isolated from the Root of Sophora flavescens as Potent Antifungal Agents against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19618-19628. [PMID: 39193844 DOI: 10.1021/acs.jafc.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Sophora flavescens, a traditional Chinese herb, produces a wide range of secondary metabolites with a broad spectrum of biological activities. In this study, we isolated six isopentenyl flavonoids (1-6) from the roots of S. flavescens and evaluated their activities against phytopathogenic fungi. In vitro activities showed that kurarinone and sophoraflavanone G displayed broad spectrum and superior activities, among which sophoraflavanone G displayed excellent activity against tested fungi, with EC50 values ranging from 4.76 to 13.94 μg/mL. Notably, kurarinone was easily purified and showed potential activity against Rhizoctonia solani, Botrytis cinerea, and Fusarium graminearum with EC50 values of 16.12, 16.55, and 16.99 μg/mL, respectively. Consequently, we initially investigated the mechanism of kurarinone against B. cinerea. It was found that kurarinone disrupted cell wall components, impaired cell membrane integrity, increased cell membrane permeability, and affected cellular energy metabolism, thereby exerting its effect against B. cinerea. Therefore, kurarinone is expected to be a potential candidate for the development of plant fungicides.
Collapse
Affiliation(s)
- Jun-Xia An
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province, Weifang University, Weifang 261061, China
| | - An-Ping Li
- School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Wen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wei-Qi Jiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Xu J, Li J, Wang H, Liu X, Gao Z, Chen J, Han Y. Metabolic and Antioxidant Responses of Different Control Methods to the Interaction of Sorghum sudangrass hybrids- Colletotrichum boninense. Int J Mol Sci 2024; 25:9505. [PMID: 39273450 PMCID: PMC11395580 DOI: 10.3390/ijms25179505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Colletotrichum boninense is the main pathogenic fungus causing leaf spot disease in Sorghum sudangrass hybrids, which seriously impairs its quality and yield. In order to find an efficient and green means of control, this study used the agar disk diffusion method to screen for a fungicide with the strongest inhibitory effect on C. boninense from among several bacteria, fungi, and chemicals. Then, the changes in the plant's antioxidant system and metabolic levels after treatment were used to compare the three means of control. The lowest inhibitory concentration of Zalfexam was 10 mg/mL, at which point C. boninense did not grow, and the inhibition rates of Bacillus velezensis (X7) and Trichoderma harzianum were 33.87-51.85% and 77.86-80.56%, respectively. Superoxide dismutase (SOD) and chitinase were up-regulated 2.43 and 1.24 folds in the Trichoderma harzianum group (M group) and SOD activity was up-regulated 2.2 folds in the Bacillus velezensis group (X7 group) compared to the control group (CK group). SOD, peroxidase (POD), and chitinase activities were elevated in the Zalfexam group (HX group). The differential metabolites in different treatment groups were mainly enriched in amino acid metabolism and production, flavonoid production, and lipid metabolism pathways. Compared with the diseased plants (ZB group), the M, X7, HX, and CK groups were co-enriched in the tryptophan metabolic pathway and glutamate-arginine metabolic pathway, and only the CK group showed a down-regulation of the metabolites in the two common pathways, while the metabolites of the common pathways were up-regulated in the M, X7, and HX groups. In addition, the salicylic acid-jasmonic acid pathway and ascorbic acid-glutathione, which were unique to the M group, played an important role in helping Sorghum sudangrass hybrids to acquire systemic resistance against stress. This study fills the gap in the control of Colletotrichum boninene, which causes leaf spot disease in Sorghum sudangrass hybrids. This paper represents the first reported case of biological control for leaf spot disease in Sorghum sudangrass hybrids and provides a reference for the control of leaf spot disease in Sorghum sudangrass hybrids as well as other crops infected with Colletotrichum boninense.
Collapse
Affiliation(s)
- Jingxuan Xu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Junying Li
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xinhao Liu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Zhen Gao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jie Chen
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
3
|
Çalbaş B, Keobounnam AN, Korban C, Doratan AJ, Jean T, Sharma AY, Wright TA. Protein-polymer bioconjugation, immobilization, and encapsulation: a comparative review towards applicability, functionality, activity, and stability. Biomater Sci 2024; 12:2841-2864. [PMID: 38683585 DOI: 10.1039/d3bm01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.
Collapse
Affiliation(s)
- Berke Çalbaş
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashley N Keobounnam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Christopher Korban
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ainsley Jade Doratan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Tiffany Jean
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aryan Yashvardhan Sharma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Thaiesha A Wright
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Philip B, Behiry SI, Salem MZM, Amer MA, El-Samra IA, Abdelkhalek A, Heflish A. Trichoderma afroharzianum TRI07 metabolites inhibit Alternaria alternata growth and induce tomato defense-related enzymes. Sci Rep 2024; 14:1874. [PMID: 38253713 PMCID: PMC10803357 DOI: 10.1038/s41598-024-52301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Identifying a viable substitute for the limited array of current antifungal agents stands as a crucial objective in modern agriculture. Consequently, extensive worldwide research has been undertaken to unveil eco-friendly and effective agents capable of controlling pathogens resistant to the presently employed fungicides. This study explores the efficacy of Trichoderma isolates in combating tomato leaf spot disease, primarily caused by Alternaria alternata. The identified pathogen, A. alternata Alt3, was isolated and confirmed through the ITS region (OQ888806). Six Trichoderma isolates were assessed for their ability to inhibit Alt3 hyphal growth using dual culture, ethyl acetate extract, and volatile organic compounds (VOCs) techniques. The most promising biocontrol isolate was identified as T. afroharzianum isolate TRI07 based on three markers: ITS region (OQ820171), translation elongation factor alpha 1 gene (OR125580), and RNA polymerase II subunit gene (OR125581). The ethyl acetate extract of TRI07 isolate was subjected to GC-MS analysis, revealing spathulenol, triacetin, and aspartame as the main compounds, with percentages of 28.90, 14.03, and 12.97%, respectively. Analysis of TRI07-VOCs by solid-phase microextraction technique indicated that the most abundant compounds included ethanol, hydroperoxide, 1-methylhexyl, and 1-octen-3-one. When TRI07 interacted with Alt3, 34 compounds were identified, with major components including 1-octen-3-one, ethanol, and hexanedioic acid, bis(2-ethylhexyl) ester. In greenhouse experiment, the treatment of TRI07 48 h before inoculation with A. alternata (A3 treatment) resulted in a reduction in disease severity (16.66%) and incidence (44.44%). Furthermore, A3 treatment led to improved tomato growth performance parameters and increased chlorophyll content. After 21 days post-inoculation, A3 treatment was associated with increased production of antioxidant enzymes (CAT, POD, SOD, and PPO), while infected tomato plants exhibited elevated levels of oxidative stress markers MDA and H2O2. HPLC analysis of tomato leaf extracts from A3 treatment revealed higher levels of phenolic acids such as gallic, chlorogenic, caffeic, syringic, and coumaric acids, as well as flavonoid compounds including catechin, rutin, and vanillin. The novelty lies in bridging the gap between strain-specific attributes and practical application, enhancing the understanding of TRI07's potential for integrated pest management. This study concludes that TRI07 isolate presents potential natural compounds with biological activity, effectively controlling tomato leaf spot disease and promoting tomato plant growth. The findings have practical implications for agriculture, suggesting a sustainable biocontrol strategy that can enhance crop resilience and contribute to integrated pest management practices.
Collapse
Affiliation(s)
- Bassant Philip
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mostafa A Amer
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ibrahim A El-Samra
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Egypt
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
5
|
Anwaar S, Jabeen N, Ahmad KS, Shafique S, Irum S, Ismail H, Khan SU, Tahir A, Mehmood N, Gleason ML. Cloning of maize chitinase 1 gene and its expression in genetically transformed rice to confer resistance against rice blast caused by Pyricularia oryzae. PLoS One 2024; 19:e0291939. [PMID: 38227608 PMCID: PMC10791007 DOI: 10.1371/journal.pone.0291939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/05/2023] [Indexed: 01/18/2024] Open
Abstract
Fungal pathogens are one of the major reasons for biotic stress on rice (Oryza sativa L.), causing severe productivity losses every year. Breeding for host resistance is a mainstay of rice disease management, but conventional development of commercial resistant varieties is often slow. In contrast, the development of disease resistance by targeted genome manipulation has the potential to deliver resistant varieties more rapidly. The present study reports the first cloning of a synthetic maize chitinase 1 gene and its insertion in rice cv. (Basmati 385) via Agrobacterium-mediated transformation to confer resistance to the rice blast pathogen, Pyricularia oryzae. Several factors for transformation were optimized; we found that 4-week-old calli and an infection time of 15 minutes with Agrobacterium before colonization on co-cultivation media were the best-suited conditions. Moreover, 300 μM of acetosyringone in co-cultivation media for two days was exceptional in achieving the highest callus transformation frequency. Transgenic lines were analyzed using molecular and functional techniques. Successful integration of the gene into rice lines was confirmed by polymerase chain reaction with primer sets specific to chitinase and hpt genes. Furthermore, real-time PCR analysis of transformants indicated a strong association between transgene expression and elevated levels of resistance to rice blast. Functional validation of the integrated gene was performed by a detached leaf bioassay, which validated the efficacy of chitinase-mediated resistance in all transgenic Basmati 385 plants with variable levels of enhanced resistance against the P. oryzae. We concluded that overexpression of the maize chitinase 1 gene in Basmati 385 improved resistance against the pathogen. These findings will add new options to resistant germplasm resources for disease resistance breeding. The maize chitinase 1 gene demonstrated potential for genetic improvement of rice varieties against biotic stresses in future transformation programs.
Collapse
Affiliation(s)
- Sadaf Anwaar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Nyla Jabeen
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Saima Shafique
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Samra Irum
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Siffat Ullah Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ateeq Tahir
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasir Mehmood
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
6
|
Yang X, Cao K, Ren X, Cao G, Xun W, Qin J, Zhou X, Jin L. Field Control Effect and Initial Mechanism: A Study of Isobavachalcone against Blister Blight Disease. Int J Mol Sci 2023; 24:10225. [PMID: 37373374 DOI: 10.3390/ijms241210225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), β-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species' richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease.
Collapse
Affiliation(s)
- Xiuju Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Kunqian Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaoli Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guangyun Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weizhi Xun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiayong Qin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zhang Y, Xiao J, Yang K, Wang Y, Tian Y, Liang Z. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt. PLoS One 2022; 17:e0272702. [PMID: 35947630 PMCID: PMC9365129 DOI: 10.1371/journal.pone.0272702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Watermelon (Citrullus lanatus) is one of the most popular fruit crops. However, Fusarium wilt (FW) is a serious soil-borne disease caused by Fusarium oxysporum f. sp. niveum (FON) that severely limits the development of the watermelon industry. Trichoderma spp. is an important plant anti-pathogen biocontrol agent. The results of our previous study indicated that Trichoderma asperellum M45a (T. asperellum M45a) could control FW by enhancing the relative abundance of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of watermelon. However, there are few studies on its mechanism in the pathogen resistance of watermelon. Therefore, transcriptome sequencing of T. asperellum M45a-treated watermelon roots combined with metabolome sequencing of the rhizosphere soil was performed with greenhouse pot experiments. The results demonstrated that T. asperellum M45a could stably colonize roots and significantly increase the resistance-related enzymatic activities (e.g., lignin, cinnamic acid, peroxidase and peroxidase) of watermelon. Moreover, the expression of defense-related genes such as MYB and PAL in watermelon roots significantly improved with the inoculation of T. asperellum M45a. In addition, KEGG pathway analysis showed that a large number of differentially expressed genes were significantly enriched in phenylpropane metabolic pathways, which may be related to lignin and cinnamic acid synthesis, thus further inducing the immune response to resist FON. Furthermore, metabolic analysis indicated that four differential metabolic pathways were enriched in M45a-treated soil, including six upregulated compounds and one down-regulated compound. Among them, galactinol and urea were significantly positively correlated with Trichoderma. Hence, this study provides insight into the biocontrol mechanism of T. asperellum M45a to resist soil-borne diseases, which can guide its industrial application.
Collapse
Affiliation(s)
- Yi Zhang
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiling Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Ke Yang
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yuqin Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail: (YT); (ZL)
| | - Zhihuai Liang
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
- * E-mail: (YT); (ZL)
| |
Collapse
|
8
|
Rajput M, Kumar M, Pareek N. Myco-chitinases as versatile biocatalysts for translation of coastal residual resources to eco-competent chito-bioactives. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Akram F, Jabbar Z, Aqeel A, Haq IU, Tariq S, Malik K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol Biotechnol 2022; 64:1055-1075. [PMID: 35397055 DOI: 10.1007/s12033-022-00486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Shahbaz Tariq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum. Fungal Genet Biol 2021; 158:103650. [PMID: 34923123 DOI: 10.1016/j.fgb.2021.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB) is a disease that affects wheat crops worldwide and is caused by Fusarium graminearum. Effective and safe strategies for the prevention and treatment of the disease are very limited. Phomopsis liquidambaris, a universal endophyte, can colonize wheat. Two engineered strains, Phomopsis liquidambaris OE-Chi and IN-Chi, were constructed by transformation with a plasmid and integration of a chitinase into the genome, respectively. The OE-Chi and IN-Chi strains could inhibit the expansion of Fusarium sp. in plate confrontation assays in vitro. Colonization of the OE-Chi strain in wheat showed better effects than colonization of the IN-Chi strain and alleviated the inhibition of wheat growth caused by F. graminearum. The shoot length, root length and fresh weight of infected wheat increased by 164.9%, 115.4%, and 190.7%, respectively, when the plants were inoculated with the OE-Chi strain. The peroxidase (POD) activity in the wheat root increased by 38.0%, and it was maintained at a high level in the shoot, which suggested that the OE-Chi strain could enhance the resistance of wheat to F. graminearum. The root and shoot superoxide dismutase (SOD) activities were decreased by 11.8% and 19.0%, respectively, which may be helpful for colonization by the OE-Chi strain. These results suggested that the Phomopsis liquidambaris OE-Chi strain may be a potential endophyte in the biocontrol of FHB.
Collapse
|
11
|
Success of microbial genes based transgenic crops: Bt and beyond Bt. Mol Biol Rep 2021; 48:8111-8122. [PMID: 34716867 DOI: 10.1007/s11033-021-06760-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022]
Abstract
Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.
Collapse
|
12
|
Transcriptomic Analysis Reveals Candidate Genes Responsive to Sclerotinia scleroterum and Cloning of the Ss-Inducible Chitinase Genes in Morus laevigata. Int J Mol Sci 2020; 21:ijms21218358. [PMID: 33171780 PMCID: PMC7664649 DOI: 10.3390/ijms21218358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Sclerotinia sclerotiorum (Ss) is a devastating fungal pathogen that causes Sclerotinia stem rot in rapeseed (Brassica napus), and is also detrimental to mulberry and many other crops. A wild mulberry germplasm, Morus laevigata, showed high resistance to Ss, but the molecular basis for the resistance is largely unknown. Here, the transcriptome response characteristics of M. laevigata to Ss infection were revealed by RNA-seq. A total of 833 differentially expressed genes (DEGs) were detected after the Ss inoculation in the leaf of M. laevigata. After the GO terms and KEGG pathways enrichment analyses, 42 resistance-related genes were selected as core candidates from the upregulated DEGs. Their expression patterns were detected in the roots, stems, leaves, flowers, and fruits of M. laevigata. Most of them (30/42) were specifically or mainly expressed in flowers, which was consistent with the fact that Ss mainly infects plants through floral organs, and indicated that Ss-resistance genes could be induced by pathogen inoculation on ectopic organs. After the Ss inoculation, these candidate genes were also induced in the two susceptible varieties of mulberry, but the responses of most of them were much slower with lower extents. Based on the expression patterns and functional annotation of the 42 candidate genes, we cloned the full-length gDNA and cDNA sequences of the Ss-inducible chitinase gene set (MlChi family). Phylogenetic tree construction, protein interaction network prediction, and gene expression analysis revealed their special roles in response to Ss infection. In prokaryotic expression, their protein products were all in the form of an inclusion body. Our results will help in the understanding of the molecular basis of Ss-resistance in M. laevigata, and the isolated MlChi genes are candidates for the improvement in plant Ss-resistance via biotechnology.
Collapse
|
13
|
Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiol Res 2020; 242:126596. [PMID: 33007636 DOI: 10.1016/j.micres.2020.126596] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
To better apply the biocontrol agent Trichoderma spp. in Northeast China, collecting and screening more suitable native Trichoderma strains is necessary. In the present study, 10 isolates were obtained from Juglans mandshurica rhizosphere soils in Heilongjiang Province, and were identified as T. asperellum (four isolates), T. harzianum (four), T. hamatum (one), T. atroviride (one). The fastest-growing isolate per species on potato dextrose agar medium were further evaluated in stress tolerance tests (salt, alkali, nutritional stress, and low temperature) and confrontation assays (eight pathogens), which showed that T. asperellum TaspHu1 possessed the best adaptation and biological control ability. Then, Solanum lycopersicum (tomato) seeds were sown and treated with a series of concentrations of TaspHu1 spore suspension, as was unsown soil. Tomato seedlings treated by TaspHu1 had a significantly greater height, stem diameter, soluble protein content and soluble sugar content. Furthermore, their nitrate reductase activity and catalase activity were significantly increased, and these promoting effects depended on the concentration of the spore suspension. Meanwhile, a decrease in chlorophyll content was observed in the tomato seedlings treated with TaspHu1. In addition, strain TaspHu1 enhanced the tomato seedlings' absorption of available nitrogen, but did not influence the soil available nitrogen content. Furthermore, the resistance of tomato seedlings against Alternaria alternata was enhanced by TaspHu1 (smaller, fewer leaf spots), the seedlings' hormone signal transduction genes JAR1, MYC2, NPR1, PR1, and GH3.2 were highly expressed. Thus, TaspHu1 is a promising biocontrol candidate for use in agriculture and forestry.
Collapse
|
14
|
Ferreira FV, Herrmann-Andrade AM, Calabrese CD, Bello F, Vázquez D, Musumeci MA. Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges (Citrus sinensis L. (Osbeck)). J Appl Microbiol 2020; 129:712-727. [PMID: 32249987 DOI: 10.1111/jam.14657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022]
Abstract
AIMS Penicillium digitatum, Alternaria alternata and Colletotrichum gloeosporioides are pathogens responsible for large decays and production losses of citrus. They are commonly controlled by fungicides, whose excessive applications have led to the emergence of resistant P. digitatum strains. Alternative approaches are imperative for sustainable and environmental harmless citrus production, being biological control a promising strategy. The objective was to evaluate the potential of Trichoderma strains native from the rhizosphere of citrus trees to control these pathogens. METHODS AND RESULTS Seven strains were isolated and identified as Trichoderma harzianum, T. guizhouense, T. atroviride and T. koningiopsis through morphological and molecular analyses. Five of them showed effective antagonist performance in vitro against the pathogens. The strain T. harzianum IC-30 was the best biological control agent in vivo, obtaining a reduction of rot percentage around 80% after 3 weeks of infection of oranges with P. digitatum A21 (resistant to pyrimethanil). This strain also showed the highest chitinase and glucanase activities. CONCLUSIONS Trichoderma harzianum IC-30 is an optimal antagonist for the control of green mould spreading and other pathogens in post-harvest citrus fruits. SIGNIFICANCE AND IMPACT OF THE STUDY The strain combined with supplementary practices could lead to sustainable management of citrus fungal diseases, dispensing with synthetic fungicides.
Collapse
Affiliation(s)
- F V Ferreira
- Centro de Investigaciones y Transferencia de Entre Ríos, CONICET, Concordia, Entre Ríos, Argentina
| | - A M Herrmann-Andrade
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Entre Ríos, Argentina
| | - C D Calabrese
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Entre Ríos, Argentina
| | - F Bello
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Concordia, Concordia, Entre Ríos, Argentina
| | - D Vázquez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Concordia, Concordia, Entre Ríos, Argentina
| | - M A Musumeci
- Centro de Investigaciones y Transferencia de Entre Ríos, CONICET, Concordia, Entre Ríos, Argentina.,Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Entre Ríos, Argentina
| |
Collapse
|
15
|
Paek A, Kim MJ, Park HY, Yoo JG, Jeong SE. Functional expression of recombinant hybrid enzymes composed of bacterial and insect's chitinase domains in E. coli. Enzyme Microb Technol 2020; 136:109492. [PMID: 32331713 DOI: 10.1016/j.enzmictec.2019.109492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
To elucidate the functional alteration of the recombinant hybrid chitinases composed of bacterial and insect's domains, we cloned the constitutional domains from chitinase-encoding cDNAs of a bacterial species, Bacillus thuringiensis (BtChi) and a lepidopteran insect species, Mamestra brassicae (MbChi), respectively, swapped one's leading signal peptide (LSP) - catalytic domain (CD) - linker region (LR) (LCL) with the other's chitin binding domain (ChBD) between the two species, and confirmed and analyzed the functional expression of the recombinant hybrid chitinases and their chitinolytic activities in the transformed E. coli strains. Each of the two recombinant cDNAs, MbChi's LCL connected with BtChi's ChBD (MbLCL-BtChBD) and BtChi's LCL connected with MbChi's ChBD (BtLCL-MbChBD), was successfully introduced and expressed in E. coli BL21 strain. Although both of the two hybrid enzymes were found to be expressed by SDS-PAGE and Western blotting, the effects of the introduced genes on the chitin metabolism appear to be dramatically different between the two transformed E. coli strains. BtLCL-MbChBD remarkably increased not only the cell proliferation rate, extracellular and cellular chitinolytic activity, but also cellular glucosamine and N-acetylglucosamine levels, while MbLCL-BtChBD showed about the same profiles in the three tested subjects as those of the strains transformed with each of the two native chitinases, indicating that a combination of the bacterial CD of TIM barrel structure with characteristic six cysteine residues and insect ChBD2 including a conserved six cysteine-rich region (6C) enhances the attachment of the enzyme molecule to chitin compound by MbChBD, and so increases the catalytic efficiency of bacterial CD.
Collapse
Affiliation(s)
- Aron Paek
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Min Jae Kim
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Hee Yun Park
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Je Geun Yoo
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Seong Eun Jeong
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea.
| |
Collapse
|
16
|
Yang X, Yang J, Li H, Niu L, Xing G, Zhang Y, Xu W, Zhao Q, Li Q, Dong Y. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean. Transgenic Res 2020; 29:187-198. [PMID: 31970612 DOI: 10.1007/s11248-020-00190-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Pathogenic fungi represent one of the major biotic stresses for soybean production across the world. Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen that is responsible for significant yield losses in soybean. In this study, the chitinase gene CmCH1, from the mycoparasitic fungus Coniothyrium minitans, which infects a range of ascomycetous sclerotia, including S. sclerotiorum and S. minor, was introduced into soybean. Transgenic plants expressing CmCH1 showed higher resistance to S. sclerotiorum infection, with significantly reduced lesion sizes in both detached stem and leaf assays, compared to the non-transformed control. Increased hydrogen peroxide content and activities of defense-responsive enzymes, such as peroxidase, superoxide dismutase, phenylalanine ammonia lyase, and polyphenoloxidase were also observed at the infection sites in the transgenic plants inoculated with S. sclerotiorum. Consistent with the role of chitinases in inducing downstream defense responses by the release of elicitors, several defense-related genes, such as GmNPR2, GmSGT-1, GmRAR1, GmPR1, GmPR3, GmPR12, GmPAL, GmAOS, GmPPO, were also significantly upregulated in the CmCH1-expressing soybean after inoculation. Collectively, our results demonstrate that overexpression of CmCH1 led to increased accumulation of H2O2 and up-regulation of defense-related genes and enzymes, and thus enhanced resistance to S. sclerotiorum infection while showing no detrimental effects on growth and development of soybean plants.
Collapse
Affiliation(s)
- Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wenjing Xu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
17
|
|
18
|
Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019; 20:E5401. [PMID: 31671552 PMCID: PMC6862595 DOI: 10.3390/ijms20215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.
Collapse
Affiliation(s)
- Karine Kappaun
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Anne H S Martinelli
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Leonardo L Fruttero
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Natalia R Moyetta
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Carla D Bonan
- Department of Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 91501-970, RS, Brazil.
| | - Celia R Carlini
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
19
|
Chen SC, Ren JJ, Zhao HJ, Wang XL, Wang TH, Jin SD, Wang ZH, Li CY, Liu AR, Lin XM, Ahammed GJ. Trichoderma harzianum Improves Defense Against Fusarium oxysporum by Regulating ROS and RNS Metabolism, Redox Balance, and Energy Flow in Cucumber Roots. PHYTOPATHOLOGY 2019; 109:972-982. [PMID: 30714883 DOI: 10.1094/phyto-09-18-0342-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant survival in the terrestrial ecosystem is influenced by both beneficial and harmful microbes. Trichoderma spp. are a group of filamentous fungi that promote plant growth and resistance to harmful microbes. Previously, we showed that the genus Trichoderma could effectively suppress Fusarium wilt in cucumber. However, the mechanisms that underlie the effects of the genus Trichoderma on plant defense have not been fully substantiated. Two essential metabolic pathways, such as the ascorbate (AsA)-glutathione (GSH) cycle and the oxidative pentose phosphate pathway (OPPP), have been shown to participate in plant tolerance to biotic stressors; nevertheless, the involvement of these pathways in Trichoderma-induced enhanced defense remains elusive. Here, we show that Trichoderma harzianum could alleviate oxidative and nitrostative stress by minimizing reactive oxygen species (ROS; hydrogen peroxide and superoxide) and reactive nitrogen species (nitric oxide [NO]) accumulation, respectively, under Fusarium oxysporum infection in cucumber roots. The genus Trichoderma enhanced antioxidant potential to counterbalance the overproduced ROS and attenuated the transcript and activity of NO synthase and nitrate reductase. The genus Trichoderma also stimulated S-nitrosylated glutathione reductase activity and reduced S-nitrosothiol and S-nitrosylated glutathione content. Furthermore, the genus Trichoderma enhanced AsA and GSH concentrations and activated their biosynthetic enzymes, γ-GCS and l-galactono-1,4-lactone dehydrogenase. Interestingly, the genus Trichoderma alleviated Fusarium-inhibited activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, enzymes involved in the OPPP. Such positive regulation of the key enzymes indicates the adequate maintenance of the AsA-GSH pathway and the OPPP, which potentially contributed to improve redox balance, energy flow, and defense response. Our study advances the current knowledge of Trichoderma-induced enhanced defense against F. oxysporum in cucumber.
Collapse
Affiliation(s)
- Shuang-Chen Chen
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- 2 Department of Plant Science, Agricultural and Animal Husbandry College, Tibet University, Linzhi 860000, People's Republic of China
| | - Jing-Jing Ren
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Hong-Jiao Zhao
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Xiang-Li Wang
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Tai-Hang Wang
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- 2 Department of Plant Science, Agricultural and Animal Husbandry College, Tibet University, Linzhi 860000, People's Republic of China
| | - Sun-Da Jin
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Zhong-Hong Wang
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- 2 Department of Plant Science, Agricultural and Animal Husbandry College, Tibet University, Linzhi 860000, People's Republic of China
| | - Chong-Yang Li
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Ai-Rong Liu
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Xiao-Min Lin
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Golam Jalal Ahammed
- 1 College of Forestry, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| |
Collapse
|
20
|
Yang X, Yang J, Wang Y, He H, Niu L, Guo D, Xing G, Zhao Q, Zhong X, Sui L, Li Q, Dong Y. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Transgenic Res 2019; 28:103-114. [PMID: 30478526 DOI: 10.1007/s11248-018-0106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71-82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67-82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.
Collapse
Affiliation(s)
- Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yisheng Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Li Sui
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
21
|
Singh BN, Dwivedi P, Sarma BK, Singh HB. Trichoderma asperellum T42 induces local defense against Xanthomonas oryzae pv. oryzae under nitrate and ammonium nutrients in tobacco. RSC Adv 2019; 9:39793-39810. [PMID: 35541384 PMCID: PMC9076103 DOI: 10.1039/c9ra06802c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
Abstract
Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3− and 3 mM NH4+ nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4+-fed tobacco plants compared to that fed NO3− nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4+ nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3− and NH4+ nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 μM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients. A hypothetical proposed defense pathway activated during interactions between bacterial pathogen (Xoo) with tobacco plant leaves among treatments.![]()
Collapse
Affiliation(s)
- Bansh Narayan Singh
- Institute of Environment and Sustainable Development
- Banaras Hindu University
- Varanasi 221005
- India
- Department of Plant Physiology
| | - Padmanabh Dwivedi
- Department of Plant Physiology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology
- Institute of Agricultural Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| |
Collapse
|
22
|
Fuochi V, Li Volti G, Camiolo G, Tiralongo F, Giallongo C, Distefano A, Petronio Petronio G, Barbagallo I, Viola M, Furneri PM, Di Rosa M, Avola R, Tibullo D. Antimicrobial and Anti-Proliferative Effects of Skin Mucus Derived from Dasyatis pastinaca (Linnaeus, 1758). Mar Drugs 2017; 15:md15110342. [PMID: 29104260 PMCID: PMC5706032 DOI: 10.3390/md15110342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Resistance to chemotherapy occurs in various diseases (i.e., cancer and infection), and for this reason, both are very difficult to treat. Therefore, novel antimicrobial and chemotherapic drugs are needed for effective antibiotic therapy. The aim of the present study was to assess the antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758). Our results showed that skin mucus exhibited a significant and specific antibacterial activity against Gram-negative bacteria but not against Gram-positive bacteria. Furthermore, we also observed a significant antifungal activity against some strains of Candida spp. Concerning anti-proliferative activity, we showed that fish mucus was specifically toxic for acute leukemia cells (HL60) with an inhibition of proliferation in a dose dependent manner (about 52% at 1000 μg/mL of fish skin mucous, FSM). Moreover, we did not observe effects in healthy cells, in neuroblastoma cells (SH-SY5Y), and multiple myeloma cell lines (MM1, U266). Finally, it exhibited strong expression and activity of chitinase which may be responsible, at least in part, for the aforementioned results.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Giuseppina Camiolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | | | - Cesarina Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Giulio Petronio Petronio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Maria Viola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy.
| |
Collapse
|