1
|
Javanbakht P, Talebinasab A, Asadi-Golshan R, Shabani M, Kashani IR, Mojaverrostami S. Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study. Food Chem Toxicol 2024; 196:115126. [PMID: 39613240 DOI: 10.1016/j.fct.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies. MATERIALS AND METHODS Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis. RESULTS We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC. CONCLUSIONS In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Talebinasab
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Parada-Cruz B, Aztatzi-Aguilar OG, Ramírez-Martínez G, Jacobo-Estrada TL, Cárdenas-González M, Escamilla-Rivera V, Martínez-Olivas MA, Narváez-Morales J, Ávila-Rojas SH, Álvarez-Salas LM, Barbier O. Inflammation- and cancer-related microRNAs in rat renal cortex after subchronic exposure to fluoride. Chem Biol Interact 2023; 379:110519. [PMID: 37121298 DOI: 10.1016/j.cbi.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1β/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF β1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.
Collapse
Affiliation(s)
- Benjamín Parada-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Gustavo Ramírez-Martínez
- Departamento de Toxicología y Medicina Ambiental, Laboratorio de inmunología y genética. Inst. Nac. de Enf. Resp, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, CP 07340, Ciudad de México, CDMX, Mexico.
| | - Mariana Cárdenas-González
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| | - Vicente Escamilla-Rivera
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico; Department of Otolaryngology-Head & Neck Surgery, University of Arizona, Tucson, AZ, 85724, USA.
| | - Martha Adriana Martínez-Olivas
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Sabino Hazael Ávila-Rojas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Luis Marat Álvarez-Salas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
3
|
Sharma P, Verma PK, Sood S, Singh M, Verma D. Impact of Chronic Sodium Fluoride Toxicity on Antioxidant Capacity, Biochemical Parameters, and Histomorphology in Cardiac, Hepatic, and Renal Tissues of Wistar Rats. Biol Trace Elem Res 2023; 201:229-241. [PMID: 35023047 DOI: 10.1007/s12011-022-03113-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
Abstract
The study was designed to determine the fluoride distribution after its oral exposure in drinking water and its associated impact on biochemical, antioxidant markers and histology in the liver, kidney, and heart of male Wistar rats. On 100 ppm exposure, the highest accretion of fluoride occurred in the liver followed by the kidney and heart. Fluoride exposure significantly (p˂0.05) increased the plasma levels of dehydrogenase, aminotransferases, kidney injury molecule-1 (KIM-1), and other plasma renal biomarkers but decreased the levels of total plasma proteins and albumin in a dose-dependent manner. Reduction (p˂0.05) in the activities of antioxidant enzymes viz. acetylcholinesterase, arylesterase, superoxide dismutase, catalase, glutathione peroxidase, and reductase with increased levels of protein and lipid peroxidation was recorded in the liver, kidney, and heart of fluoride-administered rats. Fluoride exposure (100 ppm) induced lipid peroxidation was highest in kidney (4.4 times) followed by liver (2.6 times) and heart (2.5 times) and as compared to their respective control. The percent rise in protein oxidation at 30% was almost equal in the kidney and liver but was 21.5% in the heart as compared to control. The histopathological alterations observed included congestion and hemorrhage along with degeneration and necrosis of parenchymal cells in hepato-renal tissues and myocardium, severity of which varied in a dose-dependent manner. Taken together, fluoride distribution in the liver, heart, and kidney after chronic fluoride intake correlated well with fluoride-induced hepatic and cardio-renal toxicity in a concentration-dependent manner. These results draw attention that chronic fluoride intake pose a significant health risk for human and animal residents of fluoride endemic areas.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, Jammu, Jammu and Kashmir, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, Jammu, Jammu and Kashmir, India.
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Maninder Singh
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Deepika Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, Jammu, Jammu and Kashmir, India
| |
Collapse
|
4
|
Sharma P, Verma PK, Sood S, Singh R, Gupta A, Rastogi A. Distribution of Fluoride in Plasma, Brain, and Bones and Associated Oxidative Damage After Induced Chronic Fluorosis in Wistar Rats. Biol Trace Elem Res 2022; 200:1710-1721. [PMID: 34128210 DOI: 10.1007/s12011-021-02782-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The study was aimed to determine fluoride levels in plasma, brain, and bones of Wistar rats following chronic administration of fluoride at different dose levels and the consequent oxidative damage inflicted in these tissues. Brain histomorphology and bone radiographs were also evaluated to assess the extent of damage in these organs. Eighteen rats were randomly divided into three groups with six animals in each group. Group I served as control and groups II and III received 50 and 100 ppm fluoride in tap water, respectively for 180 days. A dose-dependent rise in the levels of fluoride in plasma, brain, and bones was observed in rats. Significant (P < 0.05) alterations in levels of total thiols, glutathione peroxidase, glutathione reductase, acetylcholinesterase, catalase, superoxide dismutase, lipids, as well as protein peroxidation in blood and brain were observed as compared to control in a dose-dependent manner. Radiological examination of bone revealed thinning of bone cortex with haphazard ossification, reduced bone density, and widening of marrow cavity indicating occurrence of flawed bone remodeling upon chronic fluoride exposure. Improper mineralization in bones of intoxicated rats indirectly reflected reduced bone tensile strength. Moreover, alterations in plasma Ca:P ratio and high levels of fluoride in bone ash indicated that chronic fluoride exposure leads to alterations in the bone matrix further corroborating the radio-graphical findings. Additionally, severe microscopic alterations were recorded in the cerebrum and cerebellum of treated rats which included neuronal necrosis, gliosis, spongiosis, perivascular cuffing, congestion, and hemorrhage which correlated well with oxidative changes induced by fluoride intoxication in the brain tissue of rats.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology & Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India
| | - Pawan K Verma
- Division of Veterinary Pharmacology & Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India.
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India
| | - Rajiv Singh
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India
| | - Ajay Gupta
- Division of Veterinary Surgery & Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India
| | - Ankur Rastogi
- Division of Veterinary Animal Nutrition, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, Ranbir Singh Pura, 181102, Jammu and Kashmir, India
| |
Collapse
|
5
|
Cunningham JEA, McCague H, Malin AJ, Flora D, Till C. Fluoride exposure and duration and quality of sleep in a Canadian population-based sample. Environ Health 2021; 20:16. [PMID: 33602214 PMCID: PMC7893939 DOI: 10.1186/s12940-021-00700-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/03/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fluoride from dietary and environmental sources may concentrate in calcium-containing regions of the body such as the pineal gland. The pineal gland synthesizes melatonin, a hormone that regulates the sleep-wake cycle. We examined associations between fluoride exposure and sleep outcomes among older adolescents and adults in Canada. METHODS We used population-based data from Cycle 3 (2012-2013) of the Canadian Health Measures Survey. Participants were aged 16 to 79 years and 32% lived in communities supplied with fluoridated municipal water. Urinary fluoride concentrations were measured in spot samples and adjusted for specific gravity (UFSG; n = 1303) and water fluoride concentrations were measured in tap water samples among those who reported drinking tap water (n = 1016). We used multinomial and ordered logistic regression analyses (using both unweighted and survey-weighted data) to examine associations of fluoride exposure with self-reported sleep outcomes, including sleep duration, frequency of sleep problems, and daytime sleepiness. Covariates included age, sex, ethnicity, body mass index, chronic health conditions, and household income. RESULTS Median (IQR) UFSG concentration was 0.67 (0.63) mg/L. Median (IQR) water fluoride concentration was 0.58 (0.27) mg/L among participants living in communities supplied with fluoridated municipal water and 0.01 (0.06) mg/L among those living in non-fluoridated communities. A 0.5 mg/L higher water fluoride level was associated with 34% higher relative risk of reporting sleeping less than the recommended duration for age [unweighted: RRR = 1.34, 95% CI: 1.03, 1.73; p = .026]; the relative risk was higher, though less precise, using survey-weighted data [RRR = 1.96, 95% CI: 0.99, 3.87; p = .05]. UFSG was not significantly associated with sleep duration. Water fluoride and UFSG concentration were not significantly associated with frequency of sleep problems or daytime sleepiness. CONCLUSIONS Fluoride exposure may contribute to sleeping less than the recommended duration among older adolescents and adults in Canada.
Collapse
Affiliation(s)
| | - Hugh McCague
- Institute for Social Research, York University, Toronto, Ontario Canada
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - David Flora
- Faculty of Health, York University, Toronto, Ontario Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, Ontario Canada
| |
Collapse
|
6
|
Mrvelj A, Womble MD. Fluoride-Free Diet Stimulates Pineal Growth in Aged Male Rats. Biol Trace Elem Res 2020; 197:175-183. [PMID: 31713773 DOI: 10.1007/s12011-019-01964-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022]
Abstract
The pineal gland is a naturally calcifying endocrine organ which secretes the sleep-promoting hormone melatonin. Age-related changes of the pineal have been observed, including decreased pinealocyte numbers, increased calcification, and a reduction in melatonin production. Since fluoride is attracted to calcium within the pineal gland, this study sought to examine the effects of a fluoride-free diet on the morphology of the pineal gland of aged male rats (26 months old). All animals had previously been raised on standard fluoridated food and drinking water. These control animals were compared to other animals that were placed on a fluoride-free diet ("fluoride flush") for 4 or 8 weeks. At 4 weeks, pineal glands from fluoride-free animals showed a 96% increase in supporting cell numbers and at 8 weeks a 73% increase in the number of pinealocytes compared to control animals. In contrast, the number of pinealocytes and supporting cells in animals given an initial 4-week fluoride flush followed by a return to fluoridated drinking water (1.2 ppm NaF) for 4 weeks were not different from control animals. Our findings therefore demonstrate that a fluoride-free diet encouraged pinealocyte proliferation and pineal gland growth in aged animals and fluoride treatment inhibited gland growth. These findings suggest that dietary fluoride may be detrimental to the pineal gland.
Collapse
Affiliation(s)
- Aaron Mrvelj
- Department of Biological Sciences, Youngstown State University, 1 University Plaza, Youngstown, OH, 44555, USA
- Department of Anatomy and Neurobiology, Northeastern Ohio Medical University, Rootstown, OH, USA
| | - Mark D Womble
- Department of Biological Sciences, Youngstown State University, 1 University Plaza, Youngstown, OH, 44555, USA.
| |
Collapse
|
7
|
Jaiswal P, Mandal M, Mishra A. Effect of hesperidin on fluoride-induced neurobehavioral and biochemical changes in rats. J Biochem Mol Toxicol 2020; 34:e22575. [PMID: 32627286 DOI: 10.1002/jbt.22575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Accepted: 06/23/2020] [Indexed: 01/15/2023]
Abstract
Fluoride is the second largest contaminant of drinking water. Fluoride toxicity is a major concern in the endemic areas where a high amount of fluoride is present in ground water. Oxidative stress has been proposed to be one of the mechanisms of fluoride-induced toxicity. Antioxidant-rich food has been found to alleviate fluoride-induced toxicity. Therefore, in this study, we have examined the effect of hesperidin on fluoride-induced neurobehavioral changes in rats. In the current study, male Sprague-Dawley rats were exposed to sodium fluoride through drinking water (120 ppm). Hesperidin (200 mg kg-1 d-1 ; per os) was administered either alone or in combination with fluoride-containing drinking water. Bisphinol A diglycidyl ether (BADGE) was used as peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist and was administered (10 mg kg-1 d-1 ; intraperitoneal injection) with/without hesperidin along with fluoride-containing drinking water. The behavioral changes in the animals were assessed by analyzing rotarod test, novel object recognition test, and forced swim test (FST). After 8 weeks, animals were killed to isolate blood and brain for monitoring biochemical changes. The 8-week exposure of fluoride resulted in motor impairment as observed with reduced fall time in rotarod test, memory impairment as observed with reduced preference index in novel object recognition test, and depression-like behavior as observed with reduced mobility index in the FST. Treatment with hesperidin improved neurobehavioral impairment along with restoration in brain biochemical changes (ie, acetylcholinesterase activity and antioxidant and oxidative stress parameters). The protective effect of hesperidin was reversed by coadministration of BADGE. The neuroprotective effect of hesperidin appears to be contributed through PPAR-γ receptor.
Collapse
Affiliation(s)
- Pawan Jaiswal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Raebareli (NIPER-R), Lucknow, India
| | - Mukesh Mandal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Raebareli (NIPER-R), Lucknow, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
8
|
Abstract
The pineal gland is an endocrine gland whose main function is the biosynthesis and secretion of melatonin, a hormone responsible for regulating circadian rhythms, e.g., the sleep/wake cycle. Due to its exceptionally high vascularization and its location outside the blood–brain barrier, the pineal gland may accumulate significant amounts of calcium and fluoride, making it the most fluoride-saturated organ of the human body. Both the calcification and accumulation of fluoride may result in melatonin deficiency.
Collapse
|
9
|
OXIDATIVE STRESS, DNA DAMAGE AND APOPTOSIS LEVELS IN THOSE WHO USE BORDERLINE HIGH LEVEL FLUORIDE CONTENT DRINKING WATER. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.690968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Durappanavar PN, Nadoor P, Waghe P, Pavithra BH, Jayaramu GM. Melatonin Ameliorates Neuropharmacological and Neurobiochemical Alterations Induced by Subchronic Exposure to Arsenic in Wistar Rats. Biol Trace Elem Res 2019; 190:124-139. [PMID: 30306420 DOI: 10.1007/s12011-018-1537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
An experimental study was conducted in Wistar rats to characterize the arsenic ("As")-induced alterations in neurobiochemistry in brain and its impact on neuropharmacological activities with or without the melatonin (MLT) as an antioxidant given exogenously. Male Wistar rats were randomly divided in to four groups of six each. Group I served as untreated control, while group II received As [sodium (meta) arsenite; NaAsO2] at 10 mg/kg bw (p.o.) for a period of 56 days. Experimental rats in group III received treatment similar to group II but in addition received MLT at 10 mg/kg bw (p.o.) from day 32 onwards. Rats in group IV received MLT alone from day 32 onwards similar to group III. Sub-chronic exposure to As (group II) significantly reduced both voluntary locomotor and forced motor activities and melatonin supplementation (group III) showed a significant improvement in motor activities, when subjected to test on day 42 or 56. Rats exposed to As showed a significant increase in anxiety level and a marginal nonsignificant reduction in pain latency. Sub-chronic administration of As induced (group II) significant increase in the levels of thiobarbituric acid reactive substance (TBARS) called malondialdehyde (MDA) in the brain tissue (5.55 ± 0.57 nmol g-1), and their levels were significantly reduced by MLT supplementation (group III 3.96 ± 0.15 nmol g-1). The increase in 3-nitrotyrosine (3-NT) levels in As-exposed rats indicated nitrosative stress due to the formation of peroxynitrite (ONOO-). However, exogenously given MLT significantly reduced the 3-NT formation as well as prostaglandin (PGE2) levels in the brain. Similarly, MLT administration have suppressed the release of pro-inflammatory cytokines (viz., IL-1β, IL-6, and TNF-α) and amyloid-β1-40 (Aβ) deposition in the brain tissues of experimental rats. To conclude, exogenous administration of melatonin can overcome the sub-chronic As-induced oxidative and nitrosative stress in the CNS, suppressed pro-inflammatory cytokines, and restored certain disturbed neuropharmacological activities in Wistar rats.
Collapse
Affiliation(s)
- Prasada Ningappa Durappanavar
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University; Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| | - Prakash Nadoor
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India.
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology Veterinary College, Nandinagar, Bidar, Karnataka, 585401, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G M Jayaramu
- Department of Veterinary Pathology, Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| |
Collapse
|
11
|
Szczuko M, Splinter J, Zapałowska-Chwyć M, Ziętek M, Maciejewska D. Fluorine may intensify the mechanisms of polycystic ovary syndrome (PCOS) development via increased insulin resistance and disturbed thyroid-stimulating hormone (TSH) synthesis even at reference levels. Med Hypotheses 2019; 128:58-63. [PMID: 31203910 DOI: 10.1016/j.mehy.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/24/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
We were interested whether fluorine, at the concentrations regarded as normal, can play a role in PCOS pathogenesis. The effect was not described in PCOS. Women with PCOS were diagnosed according to Rotterdam's criteria. The average age of 40 examined women with PCOS was 26.3 ± 5.5 years, BMI-29.16 ± 0.8, WHR-0.91 ± 0.08. Main Outcome Measures: ECLIA was used to analyse testosterone, FSH, LH, oestradiol, TSH, prolactin, insulin and SHBG. Fluorine content was analysed by potentiometry using ion selective electrode. Fluorine content in serum of women with PCOS did not statistically significantly differ from that of the control group and amounted to 0.224 ± 0.043 and 0.228 ± 0.023 ppm, respectively. There were significant differences in the levels of TSH and HOMA-IR between the groups. Based on the correlation matrix, a negative correlation with the level of SHBG protein and the level of glucose on fasting was showed for the group with a lower of fluorine, and a positive correlation with HDL level was observed in the group with higher concentration of fluorine. In the phenotype with a higher level of androgens, there was a negative correlation with triglycerides level and a positive correlation with HDL. Fluorine, even in concentrations regarded as proper, takes part in PCOS pathogenesis. It increases the synthesis of TSH and increases insulin resistance. Higher insulin resistance leads to the reduced synthesis of SHBG transport protein. Therefore, the key factor in PCOS pathogenesis is testosterone, but fluorine facilitates disruptions in carbohydrates and lipids metabolism leading to increased levels of androgens in blood.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland.
| | - Joanna Splinter
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland
| | - Marta Zapałowska-Chwyć
- Clinic of Gynecology and Urogynecology, Pomeranian Medical University in Szczecin, Poland; Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Poland
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
12
|
Hacıoğlu C, KAR F, Kanbak G. Rat brain synaptosomes: In vitro neuroprotective effects of betaine against fluoride toxicity. ACTA ACUST UNITED AC 2018. [DOI: 10.17546/msd.421851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2018; 347:60-69. [PMID: 29609003 DOI: 10.1016/j.taap.2018.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
There has been a great concern about the neurotoxicity of fluoride since it can pass through the blood-brain barrier and accumulate in the brain. It has been suggested that apoptosis plays a vital role in neurotoxicity of fluoride. However, whether p53-mediated apoptotic pathway is involved is still unclear. Our results showed that apoptosis was induced after treatment with 40 and 60 mg/L of NaF for 24 h in human neuroblastoma SH-SY5Y cells. Exposure to 60 mg/L of NaF for 24 h significantly upregulated the levels of p53 and apoptosis-related proteins including PUMA, cytochrome c (cyto c), cleaved caspase-3 and cleaved PARP, whereas downregulated Bcl-2 in SH-SY5Y cells. Meanwhile, fluoride increased p53 nuclear translocation, cyto c release from mitochondria to cytoplasm and mitochondrial translocation of Bax in SH-SY5Y cells. Fluoride-induced increases of apoptotic rates and apoptosis-related protein levels were significantly attenuated by inhibiting p53 transcriptional activity with pifithrin-α. In addition, fluoride inhibited the deacetylase activity of SIRT1 and increased p53 (acetyl K382) level in SH-SY5Y cells. Apoptosis and upregulation of cleaved caspase-3, cleaved PARP and p53 (acetyl K382) induced by fluoride could be ameliorated by SIRT1 overexpression or its activator resveratrol in SH-SY5Y cells. Taken together, our study demonstrates that fluoride induces apoptosis by inhibiting the deacetylase activity of SIRT1 to activate mitochondrial p53 pathway in SH-SY5Y cells, which depends on p53 transcriptional activity. Thus, SIRT1 may be a promising target to protect against neurotoxicity induced by fluoride.
Collapse
Affiliation(s)
- Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lianyong Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Panpan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
14
|
Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) 2018; 9:1623-1639. [PMID: 28657544 PMCID: PMC5509460 DOI: 10.18632/aging.101257] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
The current study was conducted to investigate the effect of sodium fluoride (NaF) on the oxidative stress and apoptosis as well as their relationship in the mouse liver by using methods of flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, biochemistry and experimental pathology. 240 four-week-old ICR mice were randomly divided into 4 groups and exposed to different concentration of NaF (0 mg/kg, 12 mg/kg, 24 mg/kg and 48 mg/kg) for a period of 42 days. The results showed that NaF caused oxidative stress and apoptosis. NaF-caused oxidative stress was accompanied by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreasing mRNA expression levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione-s-transferase (GST). NaF induced apoptosis via tumor necrosis factor recpter-1 (TNF-R1) signaling pathway, which was characterized by significantly increasing mRNA and protein expression levels of TNF-R1, Fas associated death domain (FADD), TNFR-associated death domain (TRADD), cysteine aspartate specific protease-8 (caspase-8) and cysteine aspartate specific protease-3 (caspase-3) in dose- and time-dependent manner. Oxidative stress is involved in the process of apoptotic occurrence, and can be triggered by promoting ROS production and reducing antioxidant function. NaF-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and increased serum alanine amino transferase (ALT), aspartic acid transferase (AST), alkaline phosphatase (AKP) activities and TBIL contents.
Collapse
Affiliation(s)
- Yujiao Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Qin Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
15
|
Wang C, Chen Y, Manthari RK, Wang J. Abnormal spermatogenesis following sodium fluoride exposure is associated with the downregulation of CREM and ACT in the mouse testis. Toxicol Ind Health 2018. [DOI: 10.1177/0748233718754471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
cAMP response element modulator (CREM) is involved in regulating gene expression in normal spermatogenesis. The transcriptional activity of CREM is partly regulated by activator of CREM in the testis (ACT). To investigate the effects of different concentrations of sodium fluoride (NaF) on the gene and protein expression of CREM and ACT in the mouse testis, sexually mature male Kunming mice were exposed to 50, 100, or 150 mg/L NaF in their drinking water for 90 days. NaF reduced the sperm count and viability and increased the percentage of malformed sperm in a dose-dependent manner. The mRNA expression of CREM and ACT was markedly downregulated in the NaF-treated groups. Furthermore, immunohistochemistry revealed that CREM and ACT proteins were decreased significantly in the 50, 100, and 150 mg/L NaF-treated groups compared to the control group. These findings indicate that the decreased gene and protein expression of CREM and ACT in the testis is associated with an impairment of reproductive functions by NaF.
Collapse
Affiliation(s)
- Chong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Yan Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, People’s Republic of China
| |
Collapse
|
16
|
Zhao J, Fu B, Peng W, Mao T, Wu H, Zhang Y. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:133-141. [PMID: 28728132 DOI: 10.1016/j.etap.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes.
Collapse
Affiliation(s)
- Jiamin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Beibei Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingchao Mao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Khan AM, Raina R, Dubey N, Verma PK. Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem Toxicol 2017; 41:123-127. [PMID: 28503953 DOI: 10.1080/01480545.2017.1321009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The study evaluated the effect of commercial preparation of deltamethrin, Butox®, and fluoride (F-) co-exposure on the brain antioxidant status and cholinesterase activity in rats. Group A was untreated. Group B was gavaged Butox®, providing deltamethrin at the dose rate of 1.28 mg per kg body weight per day. Group C was administered F-, as NaF, in drinking water providing 20 ppm F-. Group D received both deltamethrin and F- at the same dosages as groups B and C, respectively. Although, glutathione S-transferase activity was induced only in Butox® alone treated group, the activities of superoxide dismutase and catalase were inhibited in all treatment groups when compared to the control group. Elevated lipid peroxidation was observed in the groups exposed to F-. The activity of erythrocyte acetylcholinesterase (AChE) was inhibited in Butox® treated groups, whereas brain AChE activity was inhibited in all treatment groups. In conclusion, both deltamethrin (given as Butox®) and F- inhibit AChE activity and produce oxidative stress in brain with F- producing more oxidative damage. However, compared to the individual exposures, the co-exposure of these chemicals does not produce any exacerbated alteration in these biochemical parameters.
Collapse
Affiliation(s)
- Adil Mehraj Khan
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Rajinder Raina
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Nitin Dubey
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Pawan Kumar Verma
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| |
Collapse
|
18
|
Hyder I, Sejian V, Bhatta R, Gaughan JB. Biological role of melatonin during summer season related heat stress in livestock. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1262999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Effects of sodium fluoride on immune response in murine macrophages. Toxicol In Vitro 2016; 34:81-87. [DOI: 10.1016/j.tiv.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022]
|
20
|
Wu J, Cheng M, Liu Q, Yang J, Wu S, Lu X, Jin C, Ma H, Cai Y. Protective Role of tert-Butylhydroquinone Against Sodium Fluoride-Induced Oxidative Stress and Apoptosis in PC12 Cells. Cell Mol Neurobiol 2015; 35:1017-25. [PMID: 25911493 DOI: 10.1007/s10571-015-0196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/12/2015] [Indexed: 12/26/2022]
Abstract
The neurotoxicity of fluoride is associated with oxidative stress due to imbalance between production and removal of reactive oxygen species (ROS). In contrast, induction of detoxifying and antioxidant genes through activation of NF-E2-related factor 2 (Nrf2) has been implicated in preventing oxidative stress and apoptosis in neurodegenerative diseases. The present study aimed to investigate the possible neuroprotective role of tert-butylhydroquinone (tBHQ), a general Nrf2 activator, on sodium fluoride (NaF)-induced oxidation damage and apoptosis in neuron-like rat pheochromocytoma (PC12) cells. Pretreatment with tBHQ protected PC12 cells against NaF-induced cytotoxicity as measured by MTT assay and apoptosis detection, simultaneously, inhibited NaF-induced overproduction of intracellular ROS and reduction of total glutathione content. Furthermore, NaF or tBHQ induced the stabilization of Nrf2, and enhanced expression of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS) as a consequence of Nrf2 inducing. These findings indicated that tBHQ pretreatment conferred protective effect on PC12 cells against NaF-induced apoptotic cell death and oxidation-redox imbalance through stabilization of Nrf2 and elevation of downstream HO-1 and γ-GCS expressions.
Collapse
Affiliation(s)
- Jie Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
- Department of Occupational and Environmental Health, School of Public Health, Liaoning Medical University, Jinzhou, 121001, Liaoning, China
| | - Ming Cheng
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Qiufang Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China
| | - Honglin Ma
- Department of Occupational and Environmental Health, School of Public Health, Liaoning Medical University, Jinzhou, 121001, Liaoning, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110013, Liaoning, China.
| |
Collapse
|
21
|
Zhang KL, Lou DD, Guan ZZ. Activation of the AGE/RAGE system in the brains of rats and in SH-SY5Y cells exposed to high level of fluoride might connect to oxidative stress. Neurotoxicol Teratol 2015; 48:49-55. [PMID: 25666879 DOI: 10.1016/j.ntt.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/06/2015] [Accepted: 01/28/2015] [Indexed: 12/23/2022]
Abstract
To explore the mechanisms by which chronic fluorosis damages the brain, we determined the levels of the advanced glycation end-products (AGEs), the receptor for AGE (RAGE), NADPH oxidase-2 (NOX2), reactive oxygen species (ROS) and malondialdehyde (MDA) in the brains of rats and/or SH-SY5Y cells exposed to different levels of sodium fluoride (5 or 50 ppm in the drinking water for 3 or 6 months and in the incubation medium for as long as 48 h, respectively). The levels of AGEs, RAGE and NOX2 protein and mRNA were measured by an Elisa assay, Western blotting and real-time PCR, respectively. The ROS content was assessed by fluorescein staining and MDA by thiobarbituric acid-reactive substance assay. In comparison to the unexposed controls, the protein and mRNA levels of AGEs, RAGE and NOX2 in the brains of rats after 6 months of exposure and in SH-SY5Y cells following high-dose exposure to fluoride were elevated. In contrast, no significant changes in these parameters were detected in the rats exposed for 3 months. In addition, the levels of ROS and MDA in the SH-SY5Y cells exposed to high-dose of fluoride were elevated in a manner that correlated positively with the levels of AGE/RAGE. In conclusion, our present results indicate that excessive fluoride can activate the AGE/RAGE pathway, which might in turn enhance oxidative stress.
Collapse
Affiliation(s)
- Kai-Lin Zhang
- Department of Pathology in the Affiliated Hospital at Guiyang Medical University, Guiyang 550004, PR China
| | - Di-Dong Lou
- Department of Pathology in the Affiliated Hospital at Guiyang Medical University, Guiyang 550004, PR China
| | - Zhi-Zhong Guan
- Department of Pathology in the Affiliated Hospital at Guiyang Medical University, Guiyang 550004, PR China; Key Laboratory of Medical Molecular Biology at Guiyang Medical University, Guiyang 550004, PR China.
| |
Collapse
|
22
|
Kalisinska E, Bosiacka-Baranowska I, Lanocha N, Kosik-Bogacka D, Krolaczyk K, Wilk A, Kavetska K, Budis H, Gutowska I, Chlubek D. Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:1063-77. [PMID: 24744187 PMCID: PMC4213386 DOI: 10.1007/s10653-014-9615-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/08/2014] [Indexed: 05/23/2023]
Abstract
The aim of the study was to investigate fluoride concentrations in bone, brain and pineal gland of goosander Mergus merganser wintering in the Odra estuary (Poland) as well as in fish originating from its digestive tract. The fluoride concentrations were determined with potentiometric method. Medians of concentrations in goosander had the highest and the lowest values in pineal gland and brain (>760 and <190 mg/kg, respectively). Fluoride concentration in the pineal gland was significantly greater than in the bone and the brain of the duck. In fish, the fluoride concentration ranged from 37 to 640 mg/kg and significant correlation was revealed between the fluoride concentration and fish weight and length. Based on own results and data of other authors, a daily fluoride intake by the goosander in the Odra estuary was estimated at 15 mg. So high fluoride concentrations like in the duck have not been found in mammal brains.
Collapse
Affiliation(s)
- Elzbieta Kalisinska
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Irena Bosiacka-Baranowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Lanocha
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Katarzyna Krolaczyk
- Laboratory of Biology and Ecology of Parasites, West Pomeranian University of Technology, Doktora Judyma 10, 71-466 Szczecin, Poland
| | - Aleksandra Wilk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Katarzyna Kavetska
- Laboratory of Biology and Ecology of Parasites, West Pomeranian University of Technology, Doktora Judyma 10, 71-466 Szczecin, Poland
| | - Halina Budis
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
23
|
Effect of resveratrol on hematological and biochemical alterations in rats exposed to fluoride. BIOMED RESEARCH INTERNATIONAL 2014; 2014:698628. [PMID: 24995323 PMCID: PMC4068056 DOI: 10.1155/2014/698628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 11/17/2022]
Abstract
We investigated the protective effects of resveratrol on hematological and biochemical changes induced by fluoride in rats. A total of 28 rats were divided into 4 groups: control, resveratrol, fluoride, and fluoride/resveratrol (n = 7 each), for a total of 21 days of treatment. Blood samples were taken and hematological and biochemical parameters were measured. Compared to the control group, the fluoride-treated group showed significant differences in several hematological parameters, including decreases in WBC, RBC, and PLT counts and neutrophil ratio. The group that received resveratrol alone showed a decrease in WBC count compared to the control group. Furthermore, in comparison to the control group, the fluoride group showed significantly increased ALT enzyme activity and decreased inorganic phosphorus level. The hematological and biochemical parameters in the fluoride + resveratrol treated group were similar to control group. In the fluoride + resveratrol group, resveratrol restored the changes observed following fluoride treatment, including decreased counts of WBC, RBC, and PLT, decreased neutrophil ratio and inorganic phosphorus levels, and elevated ALT enzyme activity. The present study showed that fluoride caused adverse effects in rats and that resveratrol reduced hematological and biochemical alterations produced by fluoride exposure.
Collapse
|
24
|
Atmaca N, Atmaca HT, Kanici A, Anteplioglu T. Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 2014; 70:191-7. [PMID: 24857819 DOI: 10.1016/j.fct.2014.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
Abstract
Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity were studied in rats. A total of 28 Wistar albino male rats were used. Four study groups were randomly formed with seven animals in each. The groups were treated for 21days with distilled water (control group), with water containing 100ppm fluoride (fluoride group), with resveratrol (12.5mg/kg i.p., resveratrol group), or with 100ppm fluoride+12.5mg/kg resveratrol i.p. (fluoride+resveratrol group). At the end of the trial, blood samples were collected by cardiac puncture and tissue samples were taken simultaneously. The total antioxidant and oxidant status in plasma and tissues as well as plasma 8-hydroxydeoxyguanosine levels were measured. Histopathological analyses of rat liver and brain tissues were performed in all groups to identify any changes. In the fluoride group, the total oxidant levels increased in plasma, liver and brain and total antioxidant levels decreased, as did the plasma 8-hydroxy-deoxyguanosine levels. These changes were prevented by co-administration of resveratrol. In addition, fluoride-associated severe histopathological changes in brain and liver tissues were not observed in the fluoride+resveratrol group. Consequently, these data suggested that resveratrol had beneficial effects in alleviating fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Nurgul Atmaca
- Kirikkale University, Faculty of Veterinary Medicine, Department of Physiology, Kirikkale, Turkey.
| | - Hasan Tarik Atmaca
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Kirikkale, Turkey.
| | - Ayse Kanici
- Kafkas University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kars, Turkey.
| | - Tugce Anteplioglu
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Kirikkale, Turkey.
| |
Collapse
|
25
|
Geng Y, Qiu Y, Liu X, Chen X, Ding Y, Liu S, Zhao Y, Gao R, Wang Y, He J. Sodium fluoride activates ERK and JNK via induction of oxidative stress to promote apoptosis and impairs ovarian function in rats. JOURNAL OF HAZARDOUS MATERIALS 2014; 272:75-82. [PMID: 24681588 DOI: 10.1016/j.jhazmat.2014.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
The toxicity of sodium fluoride (NaF) to female fertility is currently recognized; however, the mechanisms are unclear. Previously, we reported a reduction in successful pregnancy rates, ovarian atrophy and dysfunction following exposure to NaF. The purpose of this study was to elucidate the underlying molecular mechanisms. Female Sprague-Dawley rats (10 rats/group) received 100 or 200mg/L NaF in their drinking water for 6 months or were assigned to an untreated control group. Apoptotic indices and oxidative stress indicators in blood and ovarian tissue were analyzed following sacrifice. The results confirmed the NaF-induced ovarian apoptosis, with concomitant activation of oxidative stress. Further investigations in ovarian granular cells showed that exposure to NaF activated extracellular regulated protein kinase (ERK) and c-Jun NH2 kinase (JNK), disrupting the ERK and JNK signaling pathways, while p38 and PI3K remained unchanged. These data demonstrated that oxidative stress may play a key role in NaF-induced ovarian dysfunction by activating the apoptotic ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yiwen Qiu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Shangjing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yi Zhao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
26
|
Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats. Adv Pharmacol Sci 2014; 2014:532969. [PMID: 24790596 PMCID: PMC3984810 DOI: 10.1155/2014/532969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 02/02/2023] Open
Abstract
Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F) toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis) epiphyseal (pineal) proteins (BEP) and melatonin (MEL) against F-induced oxidative stress in heart, liver, and kidney of experimental adult female rats. To accomplish this experimental objective, twenty-four adult female Wistar rats (123–143 g body weights) were divided into four groups, namely, control, F, F + BEP, and F + MEL and were administered sodium fluoride (NaF, 150 ppm elemental F in drinking water), MEL (10 mg/kg BW, i.p.), and BEP (100 µg/kg BW, i.p.) for 28 days. There were significantly (P < 0.05) high levels of lipid peroxidation and catalase and low levels of reduced glutathione, superoxide dismutase, glutathione reductase, and glutathione peroxidase in cardiac, hepatic, and renal tissues of F-treated rats. Administration of BEP and MEL in F-treated rats, however, significantly (P < 0.05) attenuated these adverse changes in all the target components of antioxidant defense system of cardiac, hepatic, and renal tissues. The present data suggest that F can induce oxidative stress in liver, heart, and kidney of female rats which may be a mechanism in F toxicity and these adverse effects can be ameliorated by buffalo (Bubalus bubalis) epiphyseal proteins and melatonin by upregulation of antioxidant defense system of heart, liver, and kidney of rats.
Collapse
|
27
|
Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies. Food Chem Toxicol 2014; 66:224-36. [PMID: 24468673 DOI: 10.1016/j.fct.2014.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/23/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage.
Collapse
|
28
|
A role of fluoride on free radical generation and oxidative stress in BV-2 microglia cells. Mediators Inflamm 2012; 2012:102954. [PMID: 22933830 PMCID: PMC3425889 DOI: 10.1155/2012/102954] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 01/15/2023] Open
Abstract
The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide anions (O2∙−), nitric oxide synthase (NOS), nitrotyrosine (NT) and nitric oxide (NO), NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2∙− increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species.
Collapse
|
29
|
Nabavi SF, Habtemariam S, Jafari M, Sureda A, Nabavi SM. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:73-77. [PMID: 22531840 DOI: 10.1007/s00128-012-0645-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/06/2012] [Indexed: 05/31/2023]
Abstract
Gallic acid is known as a potent antioxidant active compound of the edible and medicinal plant Peltiphyllum peltatum. The main objective of this study was to evaluate the neuroprotective effects of gallic acid against sodium fluoride induced oxidative stress in rat brain. Gallic acid (10 and 20 mg/kg) and vitamin C (10 mg/kg) were intraperitoneally administrated for 1 week prior to sodium fluoride intoxication. After the treatment period, brain tissues were collected and homogenized, and antioxidant parameters were measured in the homogenates. The level of thiobarbituric acid reactive substances in sodium fluoride intoxicated rats (42.04 ± 2.14 nmol MDA eq/g tissue, p < 0.01 vs. normal) increased compared to the normal rats (35.99 ± 1.08 nmol MDA eq/g tissue). Pretreatment with gallic acid at 20 mg/kg was exhibited significant reduction in the thiobarbituric acid reactive substances level (37.06 ± 1.4 nmol MDA eq/g tissue, p > 0.05 vs. normal). This increasing in thiobarbituric acid reactive substances level was accompanied with a decrease in the level of reduced glutathione (6.74 ± 0.28 μg/mg of protein, p < 0.001 vs. normal), superoxide dismutase (53.24 ± 1.62 U/mg of protein, p < 0.001 vs. normal) and catalase (70.73 ± 2.94 μmol/min/mg of protein p < 0.001 vs. normal) activities in sodium fluoride intoxicated rat. Gallic acid at 20 mg/kg was significantly modified the level of reduced glutathione (11.02 ± 0.53 μg/mg of protein, p < 0.05 vs normal) and catalase activity (89.22 ± 3.67 μmol/min/mg of protein, p > 0.05 vs. normal) in rat brain. However, gallic acid at 20 mg/kg was significantly more effective in retrieving superoxide dismutase (124.78 ± 5.7 U/mg of protein) activity than vitamin C (115.5 ± 4.97 U/mg of protein).
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
30
|
Bharti VK, Srivastava RS, Sharma B, Malik JK. Buffalo (Bubalus bubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats. Biol Trace Elem Res 2012; 146:224-9. [PMID: 22095291 DOI: 10.1007/s12011-011-9245-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Arsenic (As) toxicity through induction of oxidative stress is a well-known mechanism of organ toxicity. To address this problem, buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. for 28 days) were administered intraperitoneally to female Wistar rats exposed to As (100 ppm sodium arsenite via drinking water for 28 days). Arsenic exposure resulted in marked elevation in lipid peroxidation in brain, cardiac, and hepatic tissues, whereas significant (p < 0.05) adverse change in catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione level were observed in cardiac, hepatic, and brain tissues of As-administered animals. BEP significantly (p < 0.05) counteracted all the adverse changes in antioxidant defense system brought about by As administration. Based on these results, we consider BEP as a potent antioxidant to be used for protection from arsenic-induced oxidative stress related damage of vital organs.
Collapse
Affiliation(s)
- Vijay K Bharti
- Neurophysiology Laboratory Division of Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh, India.
| | | | | | | |
Collapse
|
31
|
Haojun Z, Yaoling W, Ke Z, Jin L, Junling W. Effects of NaF on the expression of intracellular Ca2+ fluxes and apoptosis and the antagonism of taurine in murine neuron. Toxicol Mech Methods 2012; 22:305-8. [PMID: 22356551 DOI: 10.3109/15376516.2012.657259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium fluoride (NaF) has been shown to be cytotoxic and produces inflammatory responses in humans. However, the cellular mechanisms underlying the neurotoxicity of fluoride are unclear. The present study aims to define a possible mechanism of NaF-induced neurotoxicity with respect to apoptosis and intracellular Ca(2+) fluxes. Meanwhile, the cytoprotective role of taurine in intervention, the toxic effects of NaF on neurons, is also investigated. The primary mouse hippocampal neurons were incubated with 5.0, 10.0, 15.0, 20.0, and 40.0 mg NaF/L in vitro and Kunming mice were exposed to 0.7, 2.8, and 11.2 mg NaF/kg and 7.5 and 15.0 mg taurine/kg in vivo. Intracellular Ca(2+) fluxes and apoptosis were assayed. Compared with the control, the significant differences of intracellular Ca(2+) concentration and apoptotic peaks were found in 5.0-40.0 mg NaF/L groups in vitro (p < 0.01) and in the groups of 0.7-11.2 mg NaF/kg in vivo (p < 0.01). Instantaneously, taurine can minimize F-induced neurotoxicity significantly at doses of 7.5 and 15.0 mg/kg (p < 0.01). The present study herein suggested that NaF could increase intercellular Ca(2+) concentration leading to apoptosis. Meanwhile, taurine could minimize neurotoxicity caused by fluoride through decreasing intercellular Ca(2+) concentration and cell apoptosis.
Collapse
Affiliation(s)
- Zhang Haojun
- People's Hospital of Gansu Province, Lanzhou, China
| | | | | | | | | |
Collapse
|
32
|
Bharti VK, Srivastava RS, Malik JK, Spence DW, Pandi-Perumal SR, Brown GM. Evaluation of blood antioxidant defense and apoptosis in peripheral lymphocytes on exogenous administration of pineal proteins and melatonin in rats. J Physiol Biochem 2011; 68:237-45. [DOI: 10.1007/s13105-011-0136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 12/03/2011] [Indexed: 11/28/2022]
|
33
|
Varol E, Icli A, Aksoy F, Bas HA, Sutcu R, Ersoy IH, Varol S, Ozaydin M. Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health 2011; 29:175-80. [PMID: 22155887 DOI: 10.1177/0748233711428641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to determine the plasma total oxidative status (TOS) and total antioxidant capacity (TAC) in patients with endemic fluorosis. A total of 79 (35 males and 44 females; mean age 44.0 ± 11.9 years) patients with endemic fluorosis and 55 (23 males and 32 females; mean age 48.3 ± 8.5 years) age-, sex- and body mass index-matched healthy controls were included in this study. The urine fluoride levels and plasma TOS and TAC levels were measured. The urine fluoride levels of fluorosis patients were significantly higher than control subjects as expected (1.91 ± 0.15 vs. 0.49 ± 0.13 mg/L, respectively; p < 0.001). TOS was significantly higher in fluorosis group than in control group (17.55 ± 3.82 vs. 15.06 ± 4.31 μmol H(2)O(2) Eq/L, respectively; p = 0.001). TAC was significantly lower in fluorosis group than in control group (1.60 ± 0.36 vs. 1.82 ± 0.51 mmol Trolox Eq/L, respectively; p = 0.004). Oxidative stress index (OSI) was significantly higher in fluorosis group than in control group (11.5 ± 3.8 vs. 8.8 ± 3.7, respectively; p < 0.001). Correlation analysis in all the groups indicated that TAC was negatively correlated with urine fluoride (r = -0.25, p = 0.003), TOS was positively correlated with urine fluoride (r = 0.34, p < 0.001) and OSI was positively correlated with urine fluoride (r = 0.36, p < 0.001). The results of our study demonstrate that oxidative stress plays an important role in the pathogenesis of the endemic fluorosis.
Collapse
Affiliation(s)
- Ercan Varol
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ersoy IH, Koroglu BK, Varol S, Ersoy S, Varol E, Aylak F, Tamer MN. Serum copper, zinc, and magnesium levels in patients with chronic fluorosis. Biol Trace Elem Res 2011; 143:619-24. [PMID: 21080101 DOI: 10.1007/s12011-010-8892-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Although there are many studies on effect of fluoride on trace elements in experimental animals, few studies exist on serum trace elements levels in patients with endemic fluorosis. We aimed to determine the serum levels of trace elements including serum copper (Cu), zinc (Zn), and serum levels of minerals including calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), potassium (K) in patients with endemic fluorosis. The study group consisted of 30 patients with endemic fluorosis (17 females, 13 males, mean age 33.53±9.85 years). An age, gender, and body mass index matched 30 healthy volunteers comprised control group (21 females, ten males with a mean age 33.93±7.39 years). Urine fluoride levels of chronic fluorosis patients were significantly higher than that of control subjects as expected (1.92±0.10 mg/l vs. 0.41±0.09 mg/l, respectively; P<0.001). Serum Cu levels (89.14±16.77 μg/dL vs. 102.69±25.04 μg/dL, respectively, P=0.017), serum Zn levels (77.98±20.58 μg/dL vs. 94.57±35.87μg/dL, respectively, P=0.032), and serum Mg levels (1.92±0.18 mg/dL vs. 2.07±0.31 mg/dL, respectively, p=0.022) was significantly lower in chronic fluorosis patients than in controls. There were no statistically significant differences between the fluorosis group and control group with respect to serum levels of Na, K, Ca, and P. We concluded that chronic fluorosis is associated with reduced serum levels of Cu, Zn, and Mg.
Collapse
Affiliation(s)
- Ismail Hakki Ersoy
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Suleyman Demirel University, and Division of Intensive Care Unit, Gulkent State Hospital, Isparta, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bharti VK, Srivastava RS, Anand AK, Kusum K. Buffalo (Bubalus bubalis) epiphyseal proteins give protection from arsenic and fluoride-induced adverse changes in acetylcholinesterase activity in rats. J Biochem Mol Toxicol 2011; 26:10-5. [DOI: 10.1002/jbt.20407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 11/10/2022]
|
36
|
Bharti VK, Srivastava RS. Effect of pineal proteins at different dose level on fluoride-induced changes in plasma biochemicals and blood antioxidants enzymes in rats. Biol Trace Elem Res 2011; 141:275-82. [PMID: 20509005 DOI: 10.1007/s12011-010-8733-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Pineal glands secrets melatonin and various proteins and peptides which has many physiological functions. In keeping with this view, present experiment was conducted to know the effect of buffalo (Bubalus bubalis) pineal proteins (PP) at different dose level on fluoride-induced changes in plasma biochemicals and blood antioxidants enzymes in female rats. For this, we took 30 adult female Wistar rats (133-145 g body weights, BW) and divided into five groups (control, group I; 150 ppm fluoride (F), group II; F+ 50 µg pineal proteins, group III; F+ 100 µg PP, group IV; F+ 200 µg PP, group V). We administered fluoride (150 ppm, drinking water) and F+ pineal proteins at 50, 100, and 200 µg/kg BW, i.p. daily for 21 days. Blood samples were collected at the end of the experiments to estimate plasma glucose, proteins, F, lipid peroxidation (LPO), alkaline phosphatase (ALP), and acetyl cholinesterase (AChE) activity. Red blood cells (RBCs) were separated for analysis of LPO, AChE, catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR) in different groups of animals. Total plasma glucose and protein level did not significantly change in F-treated rats. Plasma ALP and F level were significantly (p < 0.05) high in group II as compared with control and groups III, IV, and V. Administration of PP at different dose level significantly (p < 0.05) reduced the F concentration and ALP activity. Plasma and RBCs AChE activity was significantly (p < 0.05) reduced in F-treated animals as compared with control rats and significantly (p < 0.05) elevated on exogenous administration of PP (groups III and IV). Plasma and RBCs LPO level was significantly (p < 0.05) high in F-alone-treated rats, and PP caused significant (p < 0.05) reduction of LPO in groups IV and V. However, PP treatment in group IV brought better amelioration of F-induced high LPO than in groups III and V. At no dose level, PP-ameliorated F-induced depression of RBCs GSH, CAT, GR, and GPx level. Interestingly, SOD activity was elevated in dose-dependent manner at different dose level of PP in groups III, IV, and V than control and F-administered rats. These findings clearly indicate the beneficial effects of buffalo pineal proteins on fluoride-induced adverse changes in certain plasma biochemical and blood antioxidant systems of rats. It further indicates that PP has dose-dependent ameliorative function against F-induced adverse effects in plasma and blood.
Collapse
Affiliation(s)
- Vijay K Bharti
- Neurophysiology Laboratory, Division of Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, 243122, U.P., India.
| | | |
Collapse
|
37
|
Bharti VK, Srivastava RS, Subramaian P, Warren Spence D, Pandi-Perumal SR, Brown GM. Cerebral epiphyseal proteins and melatonin modulate the hepatic and renal antioxidant defense of rats. Int J Nephrol 2011; 2011:142896. [PMID: 21660111 PMCID: PMC3106360 DOI: 10.4061/2011/142896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 12/21/2022] Open
Abstract
The cerebral epiphysis (pineal gland) secrets melatonin and number of other proteins and peptides. It was thus hypothesized that antioxidant properties of epiphyseal proteins and melatonin could potentially benefit from exogenous therapies. In view of the therapeutic potential of these proteins, the present experiment was conducted to investigate the effect of buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p.) and melatonin (MEL, at 10 mg/kg BW, i.p) on changes in hepatic and renal antioxidant enzymes of adult female Wistar rats. Buffalo epiphyseal proteins significantly (P < .05) increased hepatic lipid peroxidation (LPO), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), reduced glutathione (GSH), and renal LPO, catalase (CAT), GR, GSH, GPx levels as compared to control animals. Similarly, MEL treatment significantly (P < .05) up-regulated hepatic SOD and GPx activity, whereas CAT, GR, GPx, and GSH levels in renal tissues were increased while SOD and LPO remained unaffected. Buffalo epiphyseal protein treatment produced greater effects on hepatic GPx and renal CAT and GSH levels than did MEL. These findings support the conclusion that buffalo epiphyseal proteins and melatonin activate a number of antioxidant mechanisms in hepatic and renal tissues.
Collapse
Affiliation(s)
- Vijay K Bharti
- Neurophysiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | | | | | | | | | | |
Collapse
|
38
|
Bharti VK, Srivastava RS. Pineal proteins upregulate specific antioxidant defense systems in the brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:88-92. [PMID: 20357930 PMCID: PMC2763250 DOI: 10.4161/oxim.2.2.8361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 11/20/2022]
Abstract
The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL), the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis) pineal proteins (PP) on the antioxidant defense system in the brain of female rats. The twenty-four rats were taken in present study and were divided into four groups: control (0 day), control (28 day), vehicle control and buffalo PP. The PP was injected 100 µg/kg BW intraperitoneal (i.p.) daily for 28 days. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) and reduced glutathione (GSH) concentration and the levels of lipid peroxidation (LPO) in the brain tissue were measured to assess the antioxidant systems. These enzymes protect from adverse effects of free radicals and help in amelioration of oxidative stress. Buffalo pineal proteins administration did not cause any effect on brain LPO, whereas GPx, GR and GSH were significantly (p < 0.05) decreased. However, SOD and CAT activities were increased to significant levels than the control in PP treated rats. Our study herein suggested that buffalo (Bubalus bubalis) pineal proteins upregulates specific antioxidant defense systems and can be useful in control of various oxidative stress-induced neuronal diseases.
Collapse
Affiliation(s)
- Vijay K Bharti
- Neurophysiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar (U.P.), India.
| | | |
Collapse
|
39
|
Bharti VK, Srivastava RS. Effects of Epiphyseal Proteins and Melatonin on Blood Biochemical Parameters of Fluoride-Intoxicated Rats. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9158-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Murawska-CiaŁowicz E, Jethon Z, Magdalan J, Januszewska L, Podhorska-OkoŁów M, Zawadzki M, Sozański T, Dzięgiel P. Effects of melatonin on lipid peroxidation and antioxidative enzyme activities in the liver, kidneys and brain of rats administered with benzo(a)pyrene. ACTA ACUST UNITED AC 2011; 63:97-103. [DOI: 10.1016/j.etp.2009.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 09/30/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
41
|
Chen T, Cui H, Cui Y, Bai C, Gong T. Decreased antioxidase activities and oxidative stress in the spleen of chickens fed on high-fluorine diets. Hum Exp Toxicol 2010; 30:1282-6. [DOI: 10.1177/0960327110388538] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three hundred one-day-old avian broilers were divided into four equal groups of 75 animals that were fed for 42 days as follows: a control diet containing 23 mg fluorine (F)/kg and three high F diets containing 400, 800, and 1200 mg F/kg, respectively, for high F groups I, II, and III. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were greatly decreased, while the malondialdehyde (MDA) contents were markedly increased in high F groups II and III. At the same time, mitochondrial injury and expanded endocytoplasmic reticulum were obviously observed in high F groups II and III, and the fluoride contents both in spleen and serum were significantly increased in the three high F groups when compared with those of control group. The results showed that excess dietary F in the range of 800−1200 mg/kg caused obvious oxidative stress, which provided a possible pathway for the apoptosis of splenocytes in chickens.
Collapse
Affiliation(s)
- Tao Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
- WestChina-Frontier PharmaTech/GLP Center, Chengdu, Sichuan, China
| | - Hengmin Cui
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yun Cui
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Caimin Bai
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tao Gong
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
42
|
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact 2010; 188:319-33. [DOI: 10.1016/j.cbi.2010.07.011] [Citation(s) in RCA: 638] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 01/27/2023]
|