1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Yıldırım O, Seçme M, Dodurga Y, Mete GA, Fenkci SM. In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells. Biol Trace Elem Res 2025; 203:799-809. [PMID: 38689139 PMCID: PMC11750916 DOI: 10.1007/s12011-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Medullary thyroid cancer (MTC) is a highly aggressive and chemotherapy-resistant cancer originating from the thyroid's parafollicular C cells. Due to its resistance to conventional treatments, alternative therapies such as boric acid have been explored. Boric acid, a boron-based compound, has shown anticarcinogenic effects, positioning it as a potential treatment option for MTC. TT medullary thyroid carcinoma cell line (TT cells) and human thyroid fibroblast (HThF cells) were utilized for the cell culture experiments. Cell viability was assessed using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Total RNA was extracted using Trizol reagent for gene expression and microRNA (miRNA) analysis via reverse transcription-polymerase chain reaction (RT-PCR). The extent of apoptosis induced by boric acid was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Colony formation assays were conducted to evaluate the impact of boric acid on the colony-forming ability of MTC cells. At 48 h, 50% inhibitory concentration (IC50) of boric acid was found to be 35 μM. Treatment with boric acid resulted in significant modulation of apoptosis-related genes and miRNAs, including increased expression of phorbol-12-myristate-13-acetate-induced protein 1(NOXA), apoptotic protease activating factor 1 (APAF-1), Bcl-2-associated X protein (Bax), caspase-3, and caspase-9. In contrast, the expression of B cell lymphoma 2 (Bcl2), B cell lymphoma- extra-large (Bcl-xl), and microRNA-21 (miR-21), which are linked to the aggressiveness of MTC, was significantly reduced. The TUNEL assay indicated a 14% apoptosis rate, and there was a 67.9% reduction in colony formation, as shown by the colony formation assay. Our study suggests that boric acid may have anticancer activity in MTC by modulating apoptotic pathways. These findings suggest that boric acid could be a potential therapeutic agent for MTC and possibly for other malignancies with similar pathogenic mechanisms.
Collapse
Affiliation(s)
- Onurcan Yıldırım
- Department of Internal Medicine, Ege University School of Medicine, Izmir, 35100, Turkey.
| | - Mücahit Seçme
- Department of Medical Biology, Ordu University School of Medicine, Ordu, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Gülçin Abban Mete
- Department of Histology and Embriology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Semin Melahat Fenkci
- Department of Endocrinology and Metabolism, Pamukkale University School of Medicine, Denizli, Turkey
| |
Collapse
|
3
|
Al Khalif O, Sezer G. Concentration-Dependent Effects of Boric Acid on Osteogenic Differentiation of Vascular Smooth Muscle Cells. Biol Trace Elem Res 2025; 203:953-962. [PMID: 38700634 PMCID: PMC11750887 DOI: 10.1007/s12011-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 01/22/2025]
Abstract
Vascular calcification can be triggered by oxidative stress and inflammation. Although boron possesses antioxidant and anti-inflammatory properties, its effect on osteogenic differentiation of vascular smooth muscle cells (VSMCs) has yet to be examined. Therefore, we aimed to investigate the effect of boric acid (BA), the main form of boron in body fluids, on the osteogenic differentiation of VSMCs. Following the isolation of VSMCs, the effects of BA on cell proliferation were determined by MTT. The impact of various BA concentrations on the osteogenic differentiation of VSMCs was evaluated by Alizarin red S and alkaline phosphatase (ALP) stainings and the o-cresolphthalein complexone method. In addition, mRNA expressions of osteogenic-related (Runx2 and ALP) and antioxidant system-related genes (Nrf2 and Nqo1) were detected using qRT-PCR analysis. BA treatments did not alter the proliferation of VSMCs. Osteogenic differentiation of VSMCs treated with 100 and 500 μM BA (moderate and high plasma concentrations) was no different from untreated cells. However, increased osteogenic differentiation was observed with the lowest blood level (2 μM) and extremely high BA concentration (1000 μM). Consistent with these results, mRNA expression of Runx2 increased with 2 and 1000 μM BA treatments, while Nrf2 and Nqo1 expressions increased significantly with 100 and 500 μM BA. BA has different effects on VSMCs at various concentrations. The low blood level and too high BA concentration appear detrimental as they increase the osteogenic differentiation of VSMCs in vitro. We propose to investigate BA's effects and mechanism of action on vascular calcification in vivo.
Collapse
MESH Headings
- Boric Acids/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Osteogenesis/drug effects
- Cell Differentiation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Cell Proliferation/drug effects
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- NF-E2-Related Factor 2/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- NAD(P)H Dehydrogenase (Quinone)/metabolism
- NAD(P)H Dehydrogenase (Quinone)/genetics
- Animals
- Alkaline Phosphatase/metabolism
- Humans
Collapse
Affiliation(s)
- Osama Al Khalif
- Department of Pharmacology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Gülay Sezer
- Department of Pharmacology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey.
- Genkök Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey.
| |
Collapse
|
4
|
El-Shoura EAM, Abdelzaher LA, Ahmed AAN, Abdel-Wahab BA, Sharkawi SMZ, Mohamed SA, Salem EA. Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways. J Trace Elem Med Biol 2024; 85:127474. [PMID: 38788404 DOI: 10.1016/j.jtemb.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. METHODS Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. RESULTS PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. CONCLUSION Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmacy Practice, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A N Ahmed
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom 32511, Egypt
| |
Collapse
|
5
|
El-Shoura EAM, Sharkawi SMZ, Abdelzaher LA, Abdel-Wahab BA, Ahmed YH, Abdel-Sattar AR. Reno-protective effect of fenofibrate and febuxostat against vancomycin-induced acute renal injury in rats: Targeting PPARγ/NF-κB/COX-II and AMPK/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2024; 46:509-520. [PMID: 38918173 DOI: 10.1080/08923973.2024.2373216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Vancomycin (VCM) is used clinically to treat serious infections caused by multi-resistant Gram-positive bacteria, although its use is severely constrained by nephrotoxicity. This study investigated the possible nephroprotective effect of febuxostat (FX) and/or fenofibrate (FENO) and their possible underlying mechanisms against VCM-induced nephrotoxicity in a rat model. METHODS Male Wistar rats were randomly allocated into five groups; Control, VCM, FX, FENO, and combination groups. Nephrotoxicity was evaluated histopathologically and biochemically. The oxidative stress biomarkers (SOD, MDA, GSH, total nitrite, GPx, MPO), the apoptotic marker, renal Bcl-2 associated X protein (Bax), and inflammatory and kidney injury markers (IL-1β, IL-6, TNF-α, Nrf2, OH-1, kappa-light-chain-enhancer of activated B cells (NF-κB), NADPH oxidase, Kim-1, COX-II, NGAL, Cys-C were also evaluated. RESULTS VCM resulted in significant elevation in markers of kidney damage, oxidative stress, apoptosis, and inflammatory markers. Co-administration of VCM with either/or FX and FENO significantly mitigated nephrotoxicity and associated oxidative stress, inflammatory and apoptotic markers. In comparison to either treatment alone, a more notable improvement was observed with the FX and FENO combination regimen. CONCLUSION Our findings show that FX, FENO, and their combination regimen have a nephroprotective impact on VCM-induced kidney injury by suppressing oxidative stress, apoptosis, and the inflammatory response. Renal recovery from VCM-induced injury was accomplished by activation of Nrf2/HO-1 signaling and inhibition of NF-κB expression. This study highlights the importance of FX and FENO as effective therapies for reducing nephrotoxicity in VCM-treated patients.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
6
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, Salehen NA, Ibrahim IAA, Hassan RR, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms. Biol Trace Elem Res 2024; 202:2702-2719. [PMID: 37770673 DOI: 10.1007/s12011-023-03864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Ghassan Almaimani
- Department of surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|
7
|
Deng J, Zhang F, Fan H, Zheng Y, Zhao C, Ren M, Jin E, Gu Y. Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners. Animals (Basel) 2024; 14:1515. [PMID: 38891562 PMCID: PMC11171036 DOI: 10.3390/ani14111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Yuxuan Zheng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
8
|
Wang L, Sun W, Ma X, Griffin N, Liu H. Perfluorooctanoic acid (PFOA) exposure induces renal filtration and reabsorption disorders via down-regulation of aquaporins. Toxicol Lett 2024; 392:22-35. [PMID: 38123106 DOI: 10.1016/j.toxlet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Perfluorooctanoic acid (PFOA) exposure is associated with kidney dysfunction, however the exact mechanisms by which PFOA induces nephrotoxicity and the specific involvement of aquaporins (AQPs) in kidney tissue remains unclear. In this study, adult male Sprague-Dawley (SD) rats were exposed to PFOA by oral gavage for 28 days and compared with controls. Body weight, water intake and urine volume were recorded daily. At the end of the experiment, blood and kidney samples were collected, and serum urea, creatine and uric acid levels were assessed. The renal expression levels of water channel proteins AQP1, AQP3, AQP2 and p-AQP2 (Ser256) were observed by immunohistochemical staining, and the corresponding transcription levels were detected by Western blot and qRT-PCR. The results showed that PFOA exposure inhibited weight gain and increased water intake, urine volume, kidney weight and renal visceral index. PASM staining and transmission electron microscopy revealed pathological thickening of the glomerular capsule and basement membrane. Serum urea levels were increased, while serum creatine levels were decreased compared to controls. Additionally, the expression levels of AQP1, AQP3, AQP2 and p-AQP2 in kidney tissues were decreased, and the phosphorylation of AQP2 at Ser256 was inhibited. In conclusion, we demonstrate that PFOA exposure can damage the renal filtration barrier and reduce the expression level of AQPs in renal tissues, leading to renal filtration and reabsorption disorders.
Collapse
Affiliation(s)
- Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Weiqiang Sun
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China
| | - Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hui Liu
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China.
| |
Collapse
|
9
|
Guo Y, Li X, Yuan R, Ren J, Huang Y, Tian H. Compound 5 alleviated acute kidney injury without affecting the antitumor effect after cisplatin treatment. Biochem Biophys Res Commun 2023; 680:177-183. [PMID: 37742346 DOI: 10.1016/j.bbrc.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism. The results founded that compound 5 can alleviate serum urea nitrogen and serum creatinine induced by cisplatin administration in vivo. In addition, histopathological analysis of the kidneys showed that compound 5 significantly reduced cisplatin-induced (Cis-induced) renal toxicity compared with the cisplatin group. A mechanism study showed that compound 5 significantly reduces NOX4 levels, improves the activity of antioxidant enzymes (SOD and GSH-Px), reduces Malondialdehyde (MDA) levels, increases the total antioxidant level, reduces oxidative stress, and thus reduces kidney tissue damage. At the same time, compound 5 activated the Nrf2 signaling pathway. In addition, it can increase the expression of Bax, reduce the expression of Bcl-2 and caspase-3, a marker of apoptosis, which is beneficial to the survival of kidney cells. Additionally, compound 5 did not interfere with the antitumor effects of cisplatin in in vivo xenotransplantation models.
Collapse
Affiliation(s)
- Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Jingming Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
10
|
Tian P, Zhao L, Kim J, Li X, Liu C, Cui X, Liang T, Du Y, Chen X, Pan H. Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype. Bioact Mater 2023; 26:231-248. [PMID: 36936808 PMCID: PMC10020664 DOI: 10.1016/j.bioactmat.2023.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The regeneration of alveolar bone is still clinical challenge, particularly accompanied with diabetes, causing metabolic disorder with a protracted low-grade inflammatory phenotype. As a result, the anticipated loading of biomaterials is highly suspicious in spontaneous modulation of cells function, which is mostly disturbed by constant inflammation. In this study, we developed glucose and hydrogen peroxide dual-responsive borosilicate glass (BSG) scaffolds loaded with epigallocatechin gallate (EGCG) to synergistically modulate the abnormal inflammation of diabetic alveolar bone defects. It was found that the release of EGCG by BSG could directly regulate the shift of macrophages from M1 to the M2 phenotype by promoting autophagy and lessening the inhibition of autophagic flux. Moreover, EGCG can also indirectly regulate the polarization phenotype of macrophages by reducing the activation of NF-κb in stem cells and restoring its immunoregulatory capacity. Therefore, the addition of EGCG to BSG scaffold in diabetes allows for a more striking modulation of the macrophage phenotype in a timely manner. The altered macrophage phenotype reduces local inflammation and thus increases the ability to repair diabetic alveolar bone, showing promise for the treatment of alveolar defect in diabetic patients.
Collapse
Affiliation(s)
- Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Limin Zhao
- Shenzhen Longhua District Central Hospital, Shenzhen, 518000, PR China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tao Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yunbo Du
- Shenzhen Longhua District Central Hospital, Shenzhen, 518000, PR China
| | - Xiehui Chen
- Shenzhen Longhua District Central Hospital, Shenzhen, 518000, PR China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
- Corresponding author. Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| |
Collapse
|
11
|
Calabrese E, Pressman P, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Boron enhances adaptive responses and biological performance via hormetic mechanisms. Chem Biol Interact 2023; 376:110432. [PMID: 36878460 DOI: 10.1016/j.cbi.2023.110432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Boron is shown in the present review to induce hormetic dose responses in a broad range of biological models, organ systems and endpoints. Of particular importance is that numerous hormetic findings have been reported with whole animal studies, with extensive dose response evaluations with the optimal dosing being similar across multiple organ systems. These findings appear to be underappreciated and suggest that boron may have clinically significant systemic effects beyond that of its putative and more subtle essentiality functions. The re-exploration of boron's bioactivity as seen through hormetic mechanisms may also underscore the value of this approach to the assessment of micronutrient effects in human health and disease.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall-Room 201, Orono, ME, 04469, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
12
|
Khaliq H, Ke X, Keli Y, Lei Z, Jing W, Pengpeng S, Zhong J, Peng K. Morphological and Transcriptomic Analysis of the Supplemental Boron in the Liver of Ostrich Chicks. Biol Trace Elem Res 2023:10.1007/s12011-022-03489-9. [PMID: 36600166 DOI: 10.1007/s12011-022-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 01/06/2023]
Abstract
African ostrich chicks (Struthio camelus) were divided into six groups, and each received different levels of boric acid (source of boron) in the drinking water (0, 40, 80, 160, 320, and 640 mg/L respectively) to examine the histological, apoptotic, biochemical, and transcriptomic parameters. Morphological analysis in different groups was assessed by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and terminal deoxynucleotide transferase dUTP Nick-End Labeling (TUNEL) assay. The biochemical profile was evaluated spectrophotometrically. Detailed RNA-Seq of the data was performed using the transcriptomic method. H&E staining showed well-developed liver structure up to the 160 mg/L boric acid (BA) supplement groups, while BA doses (320 mg/L and 640 mg/L) caused changes in hepatocytes and portal triads. PAS staining showed that glycogen levels were optimal in the 80 mg/L BA dose group, but a reduction in glycogen levels was observed after this group, particularly in the 640 mg/L BA supplement group. Cellular apoptosis showed a biphasic pattern, and the BA dose above 160 mg/L enhanced cell death. In addition, serum analysis showed that doses of 80-160 mg BA were beneficial for ostrich liver. Then, the transcriptome analysis of the 80 mg dose also showed mainly positive effects on the liver. These results demonstrated that chronic BA exposure (320-640 mg) can cause significant histological, apoptotic, and biochemical changes in African ostrich liver, while the adequate dose of supplementation (particularly 80 mg BA) promotes liver growth.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Anatomy & Histology, CUVAS, Bahawalpur, 63100, Pakistan.
| | - Xiao Ke
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Keli
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Wang Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sun Pengpeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kemei Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Xu W, Huang X, Li W, Qian G, Zhou B, Wang X, Wang H. Carbon monoxide ameliorates lipopolysaccharide-induced acute lung injury via inhibition of alveolar macrophage pyroptosis. Exp Anim 2023; 72:77-87. [PMID: 36184484 PMCID: PMC9978127 DOI: 10.1538/expanim.22-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Carbon monoxide (CO) has been reported to exhibit a therapeutic effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which CO confers protection against ALI remains unclear. Pyroptosis has been recently proposed to play an essential role in the initiation and progression of ALI. Thus, we investigated whether pyroptosis is involved in the protection of CO against ALI and its underlying mechanism. First, an LPS-induced ALI mouse model was established. To determine the role of pyroptosis, we evaluated histological changes and the expression levels of cleaved caspase-11, N-gasdermin D (GSDMD), and IL-1β in lung tissues, which are the indicators of pyroptosis. Inhalation of CO exhibited protective effects on LPS-induced ALI by decreasing TNF-α and IL-10 expression and ameliorating pathological changes in lung tissue. In vitro, CO significantly reduced the expression of cleaved caspase-11, N-GSDMD, IL-1β, and IL-18. In addition, it increased nuclear factor E2-related factor 2 (NRF-2) expression in a time-dependent manner in RAW 264.7 cells and decreased N-GSDMD expression. The expression of cleaved GSDMD and release of LDH were increased after treatment with a specific NRF-2 inhibitor, ML385, indicating that NRF-2 mediates the inhibition of pyroptosis by CO. Taken together, these results demonstrated that CO upregulated NRF-2 to inhibit pyroptosis and subsequently ameliorated LPS-induced ALI.
Collapse
Affiliation(s)
- Weijie Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Xiang Huang
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai,
200433, P.R. China
| | - Wei Li
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Gang Qian
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Beiye Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Xiaofei Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Hongxiu Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| |
Collapse
|
14
|
Zhao C, Han Y, Wang C, Ren M, Hu Q, Gu Y, Ye P, Li S, Jin E. Transcriptome Profiling of Duodenum Reveals the Importance of Boron Supplementation in Modulating Immune Activities in Rats. Biol Trace Elem Res 2022; 200:3762-3773. [PMID: 34773147 DOI: 10.1007/s12011-021-02983-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
As an essential trace element, appropriate boron supplementation can promote immune function of animals. To illustrate the effects of boron in a rat model, RNA-Seq was conducted for the RNA from duodenum after treatment with different concentration of boron in which boron was given in the form of boric acid. More than 47 million reads were obtained in 0, 10, and 320 mg/L boron (0, 57.21, and 1830.66 mg/L boric acid) treatment groups that produced 58 965 402, 48 607 328, and 46 760 660 clean reads, respectively. More than 95% of the clean reads were successfully matched to the rat reference genome and assembled to generate 32 662 transcripts. A total of 624 and 391 differentially expressed candidate genes (DEGs) were found between 0 vs.10 and 0 vs. 320 mg/L boron comparison groups. We also identified transcription start site, transcription terminal site, and skipped exons as the main alternative splicing events. GO annotations revealed most of DEGs were involved in the regulation of immune activity. The DEGs were enriched in influenza A, herpes simplex infection, cytosolic DNA-sensing pathway, and antigen processing and presentation signaling pathways. The expression levels of genes enriched in these signaling pathways indicate that lower doses of boron could achieve better effects on promoting immune response in the duodenum. These effects on the immune system appear to be mediated via altering the expression patterns of genes involved in the related signaling pathways in a dose-dependent pattern. These data provide more insights into the molecular mechanisms of immune regulation in rats in response to dietary boron treatment.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Yujiao Han
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Chenfang Wang
- College of Life and Health Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| |
Collapse
|
15
|
Khalaf MM, Hassan SM, Sayed AM, Abo-Youssef AM. Ameliorate impacts of scopoletin against vancomycin-induced intoxication in rat model through modulation of Keap1-Nrf2/HO-1 and IκBα-P65 NF-κB/P38 MAPK signaling pathways: Molecular study, molecular docking evidence and network pharmacology analysis. Int Immunopharmacol 2022; 102:108382. [PMID: 34848155 DOI: 10.1016/j.intimp.2021.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Nephrotoxicity is an indication for the damage of kidney-specific detoxification and excretion mechanisms by exogenous or endogenous toxicants. Exposure to vancomycin predominantly results in renal damage and losing the control of body homeostasis. Vancomycin-treated rats (200 mg/kg/once daily, for seven consecutive days, i.p.) revealed significant increase in serum pivotal kidney function, oxidative stress, and inflammatory biomarkers. Histologically, vancomycin showed diffuse acute tubular necrosis, denudation of epithelium and infiltration of inflammatory cells in the lining tubular epithelium in cortical portion. In the existing study, the conservative consequences of scopoletin against vancomycin nephrotoxicity was investigated centering on its capacity to alleviate oxidative strain and inflammation through streamlining nuclear factor (erythroid-derived-2) like 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling and prohibiting the nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (p38 MAPK) pathway. With respect to vancomycin group, scopoletin pretreatment (50 mg/kg/once daily, i.p.) efficiently reduced kidney function, oxidative stress biomarkers and inflammatory mediators. Moreover, histological and immunohistochemical examination of scopoletin-treated group showed remarkable improvement in histological structure and reduced vancomycin-induced renal expression of iNOS, NF-κB and p38 MAPK. In addition, scopoletin downregulated (Kelch Like ECH Associated Protein1) Keap1, P38MAPK and NF-κB expression levels while upregulated renal expression levels of regulatory protein (IκBα), Nrf2 and HO-1. Furthermore, molecular docking and network approach were constructed to study the prospect interaction between scopoletin and the targeted proteins that streamline oxidative stress and inflammatory pathways. The present investigations elucidated that scopoletin co-treatment with vancomycin may be a rational curative protocol for mitigation of vancomycin-induced renal intoxication.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Samar M Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
16
|
Koc K, Geyikoglu F, Yilmaz A, Yildirim S, Deniz GY. The effect of lithium tetraborate as a novel cardioprotective agent after renal ischemia-reperfusion injury. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Asli Yilmaz
- Ataturk University, Turkey; Ataturk University, Turkey
| | | | | |
Collapse
|
17
|
Yang C, Luo P, Chen SJ, Deng ZC, Fu XL, Xu DN, Tian YB, Huang YM, Liu WJ. Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress. Poult Sci 2021; 100:101459. [PMID: 34614430 PMCID: PMC8498463 DOI: 10.1016/j.psj.2021.101459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a natural antioxidant, anti-inflammatory plant extract, was found to have a protective effect in poultry subjected to heat stress. In this study, we strove to characterize resveratrol on intestinal of duck exposed to acute heat stress and investigate the underlying mechanism. A total of 120 Shan-ma ducks (60 days old) were randomly divided into 2 groups. The control group was fed a basal diet, and the resveratrol group was fed a basal diet supplemented with 400 mg/kg resveratrol. Animals in 2 groups were kept at a temperature of 24°C ± 2°C for 15 d. Then, animals of both groups were placed in an artificial climate room at 39°C. Twelve ducks of each group were sacrificed for sampling at 0, 30, and 60 min, respectively. Results indicated that resveratrol increased the ratio of villus height to crypt depth, increased the number of goblet cells, and reduced the histopathological damage of jejunum caused by acute heat stress. Furthermore, the gene expression of heat shock proteins (HSP60, HSP70, and HSP90) and tight junction proteins (CLDN1 and OCLN) was significantly increased in the resveratrol group compared to that in the control groups. Simultaneously, resveratrol significantly activated the SIRT1-NRF1/NRF2 signaling pathways, improved ATP level of jejunum, and increased SOD and CAT antioxidant enzymes activities. In addition, we found that the NF-κB/NLRP3 inflammasome signaling pathways were repressed under acute heat stress. Meanwhile, supplement resveratrol further inhibited the NLRP3 inflammasome pathway, decreased protein level of NLRP3 and caspase1 p20, reduced the secretion of IL-1β. Taken together, our results indicate that resveratrol against the oxidative damage and inflammation injury in duck jejunum induced by heat stress via active SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Chen Yang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Pei Luo
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Shi-Jian Chen
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Zhi-Chao Deng
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Xin-Liang Fu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Wen-Jun Liu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China.
| |
Collapse
|
18
|
El-Sayed RM, Abo El Gheit RE, Badawi GA. Vincamine protects against cisplatin induced nephrotoxicity via activation of Nrf2/HO-1 and hindering TLR4/ IFN-γ/CD44 cells inflammatory cascade. Life Sci 2021; 272:119224. [PMID: 33610575 DOI: 10.1016/j.lfs.2021.119224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Cisplatin is a commonly prescribed chemotherapeutic agent for the treatment of different types of solid tumors. However, the high incidence of cisplatin-induced nephrotoxicity largely restricts its clinical efficacy in absence of both preventive and treatment options to combat its serious and life-threatening effects. Therefore, the current study investigated the reno-protective molecular mechanisms of vincamine against cisplatin nephrotoxicity. Vincamine (40 mg/kg P.O.) was given for 7 days, cisplatin was injected as single dose (10 mg/kg i.p.) at the seven day of the experiments. Animals were sacrificed after 72 h of cisplatin injection to allow nephrotoxicity. Vincamine pretreatment improved kidney functions and decreased kidney function tests as urea, creatinine and kidney injury molecule-1 (KIM-1), as well as it exhibited antioxidant properties by restoring balance between pro and anti-oxidants of malondialdehyde (MDA), myeloperoxidase (MPO), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Moreover, vincamine hindered the inflammatory cascade via mediating Toll like receptor 4 (TLR4)- interferon gamma (IFNγ)-CD44 cells pathway and transforming growth factor beta (TGFβ1). Additionally, vincamine retained DNA fragmentation. In conclusion, vincamine represents a promising intervention in limiting cisplatin nephrotoxicity by its anti-oxidant, anti-inflammatory, antiapoptotic mechanistic activities. Therefore, vincamine can be used as adjunct therapy with cisplatin to mitigate cisplatin-induced-AKI.
Collapse
Affiliation(s)
- Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt.
| | - Rehab E Abo El Gheit
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Ghada A Badawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| |
Collapse
|
19
|
The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021; 167:105526. [DOI: 10.1016/j.phrs.2021.105526] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
|
20
|
Alak G, Ucar A, Parlak V, Yeltekin AÇ, Özgeriş FB, Atamanalp M, Türkez H. Antioxidant Potential of Ulexite in Zebrafish Brain: Assessment of Oxidative DNA Damage, Apoptosis, and Response of Antioxidant Defense System. Biol Trace Elem Res 2021; 199:1092-1099. [PMID: 32557103 DOI: 10.1007/s12011-020-02231-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
In recent years, because of its significant biological roles, the usage of boron has been started in animal feeding. In this research, it was aimed to investigate the ulexite's action mechanism on the zebrafish brain with an evaluation of the oxidative parameters. The adult zebrafish were exposed to four ulexite doses (5, 10, 20, and 40 mg/l) in a static test apparatus for 96 h. For assessing the oxidative responses, multiple biochemical analyses were performed in brain tissues. The results indicated the supporting potential of low ulexite doses on the antioxidant system (< 40 mg/l) and that low-dose ulexite does not lead to oxidative stress in the zebrafish brain. Again, our results showed that low ulexite concentrations did not cause DNA damage or apoptosis. As a final result, in aquatic environments, ulexite (a boron compound) can be used in a safe manner, but it would be useful at higher concentrations to consider the damages of the cells that are probable to develop because of the oxidative stress.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, TR-25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, TR-25240, Erzurum, Turkey
| |
Collapse
|
21
|
Tombuloglu A, Copoglu H, Aydin-Son Y, Guray NT. In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration. J Trace Elem Med Biol 2020; 62:126573. [PMID: 32534377 DOI: 10.1016/j.jtemb.2020.126573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Boron is a prominent part of the human diet and one of the essential trace elements for humans. Dietary boron is mostly transformed into boric acid within the body and has been associated with desirable health outcomes. Non-dietary resources of boron, such as boron-based drugs and occupational exposure, might lead to excessive boron levels in the blood and provoke health adversities. The liver might be particularly sensitive to boron intake with ample evidence suggesting a relation between boron and liver function, although the underlying molecular processes remain largely unknown. METHODS In order to better understand boron-related metabolism and molecular mechanisms associated with a cytotoxic level of boric acid, the half-maximal inhibitory concentration (IC50) of boric acid for the hepatoma cell line (HepG2) was determined using the XTT assay. Cellular responses followed by boric acid treatment at this concentration were investigated using genotoxicity assays and microarray hybridizations. Enrichment analyses were carried out to find out over-represented biological processes using the list of differentially expressed genes identified within the gene expression analysis. RESULTS DNA breaks were detected in HepG2 cells treated with 24 mM boric acid, the estimated IC50-level of boric acid. On the other hand, pleiotropic transcriptomic effects, including cell cycle arrest, DNA repair, and apoptosis as well as altered expression of Phase I and Phase II enzymes, amino acid metabolism, and lipid metabolism were discerned in microarray analyses. CONCLUSION HepG2 cells treated with a growth-inhibitory concentration of boric acid for 24 h exhibited a senescence-like transcriptomic profile along with DNA damage. Further studies might help in understanding the concentration-dependent effects and mechanisms of boric acid.
Collapse
Affiliation(s)
- Aysegul Tombuloglu
- Middle East Technical University, Graduate School of Informatics, Health Informatics Department, Ankara, Turkey
| | - Hulya Copoglu
- Middle East Technical University, Graduate School of Arts and Sciences, Department of Biological Sciences, Ankara, Turkey
| | - Yesim Aydin-Son
- Middle East Technical University, Graduate School of Informatics, Health Informatics Department, Ankara, Turkey
| | - N Tulin Guray
- Middle East Technical University, Graduate School of Arts and Sciences, Department of Biological Sciences, Ankara, Turkey.
| |
Collapse
|
22
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
23
|
Alak G, Yeltekin AÇ, Uçar A, Parlak V, Türkez H, Atamanalp M. Borax Alleviates Copper-Induced Renal Injury via Inhibiting the DNA Damage and Apoptosis in Rainbow Trout. Biol Trace Elem Res 2019; 191:495-501. [PMID: 30612301 DOI: 10.1007/s12011-018-1622-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine the therapeutic potential of borax against copper in the kidney tissue of the rainbow trout fed with added borax (BX) (1.25, 2.5, and 5 mg/kg) and/or copper (Cu) (500,1000 mg/kg) contents. For this purpose, two treatment groups had designed, and glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) enzyme activities were determined. Besides, oxidative DNA damage (8-hydroxy-2'-deoxyguanosine, 8-OHdG), caspase-3, and malondialdehyde (MDA) levels were assessed in kidneys of all treatment groups. In molecular pathway, hsp70, CYP1A, and antioxidant gene expression levels were determined. In the results of the analysis, antioxidant enzyme activity and gene expression were increased; 8-OHdG, caspase-3, and MDA levels were decreased in groups fed with borax supplemented feeds compared to the copper-treated group. The alterations among the groups were found as significant (p < 0.05). CYP1A and hsp70 gene expressions were upregulated in copper and copper combined groups (p < 0.05). The findings of present research showed that borax had alleviative effect on copper-induced toxicity and could be used as an antidote in fish nutrition.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240, Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yüzüncü Yıl, TR-65080, Van, Turkey
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240, Erzurum, Turkey
| | - Hasan Türkez
- Department of Molecular Biology and Genetic, Faculty of Science, University of Erzurum Technical, TR-25240, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240, Erzurum, Turkey.
| |
Collapse
|
24
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
25
|
Chen X, Wei W, Li Y, Huang J, Ci X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem Biol Interact 2019; 308:269-278. [PMID: 31153982 DOI: 10.1016/j.cbi.2019.05.040] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 01/22/2023]
Abstract
Although cisplatin is an effective anticancer drug, its clinical application is limited due to various side effects, especially nephrotoxicity. In this study, we investigated the protective effects and possible mechanisms of hesperetin on cisplatin-induced kidney damage. In vitro, hesperetin significantly attenuated oxidative stress-induced apoptosis by reducing ROS levels in cisplatin-treated HK-2 cells. Simultaneously, hesperetin activated the Nrf2 signaling pathway and regulated its downstream genes, including NQO1 and HO-1. In vivo, hesperetin could significantly attenuate cisplatin-induced nephrotoxicity, blood urea nitrogen (BUN) and serum creatinine (SCr). Furthermore, hesperetin clarifies cisplatin-induced oxidative stress by reducing MDA/MPO levels and increasing SOD/GSH levels. In addition, from the histopathological analysis of the kidney, hesperetin significantly reduced the nephrotoxicity caused by cisplatin compared with the cisplatin group. Moreover, western blotting of renal tissue revealed that hesperetin activates Nrf2 in a dose-dependent manner, attenuates the MAPK signaling pathway against inflammation, and inhibits the expression of apoptotic proteins to protect kidneys from AKI caused by cisplatin. Altogether, these findings suggest that hesperetin may be a potential protectant against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xinliang Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yazhen Li
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jingbo Huang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
26
|
Yamada KE, Eckhert CD. Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status. Biol Trace Elem Res 2019; 188:2-10. [PMID: 30196486 DOI: 10.1007/s12011-018-1498-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Boron is abundant in vegetables, nuts, legumes, and fruit and intake is associated with reduced risk of cancer and DNA damage and increased antioxidant status. Blood boric acid (BA) levels are approximately 10 μM BA in men at the mean US boron intake. Treatment of DU-145 human prostate cancer cells with 10 μM BA stimulates phosphorylation of elongation initiation factor 2α (eIF2α) at Ser51 leading to activation of the eIF2α/ATF4 pathway which activates the DNA damage-inducible protein GADD34. In the present study, we used MEF WT and MEF PERK (±) cells to test the hypothesis that BA-activated eIF2α phosphorylation requires protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activates Nrf2 and the antioxidant response element (ARE). BA (10 μM) increased phosphorylation of eIF2α Ser51 in MEF WT cells at 1 h, but not in MEF Perk -/- cells exposed for as long as 6 h. GCN2 kinase-dependent phosphorylation of eIF2α Ser51 was activated in MEF PERK -/- cells by amino acid starvation. Nrf2 phosphorylation is PERK dependent and when activated is translocated from the cytoplasm to the nucleus where it acts as a transcription factor for ARE. DU-145 cells were treated with 10 μM BA and Nrf2 measured by immunofluorescence. Cytoplasmic Nrf2 was translocated to the nucleus at 1.5-2 h in DU-145 and MEF WT cells, but not MEF PERK -/- cells. Real-time PCR was used to measure mRNA levels of three ARE genes (HMOX-1, NQO1, and GCLC). Treatment with 10 μM BA increased the mRNA levels of all three genes at 1-4 h in DU-145 cells and HMOX1 and GCLC in MEF WT cells. These results extend the known boric acid signaling pathway to ARE-regulated genes. The BA signaling pathway can be expressed using the schematic [BA + cADPR → cADPR-BA → [[ER]i Ca2+↓] → 3 pathways: PERK/eIF2αP → pathways ATF4 and Nrf2; and [[ER]i Ca2+↓] → ER stress → ATF6 pathway. This signaling pathway provides a framework that links many of the molecular changes that underpin the biological effects of boron intake.
Collapse
Affiliation(s)
- Kristin E Yamada
- Interdepartmental Program in Molecular Toxicology, University of California, Los Angeles, 90095, CA, USA
| | - Curtis D Eckhert
- Interdepartmental Program in Molecular Toxicology, University of California, Los Angeles, 90095, CA, USA.
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, 650 Charles E. Young Dr., Los Angeles, CA, 90095, USA.
| |
Collapse
|