1
|
Maheswari R, Urs AB, Kumar P, Koner BC, Guru SA, Rawat G. Exploring miR-155-5p and miR-1246 as Diagnostic and Prognostic Markers in Oral Squamous cell carcinoma. Mol Biol Rep 2024; 51:341. [PMID: 38400867 DOI: 10.1007/s11033-024-09234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/09/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Oral Squamous Cell Carcinoma (OSCC) is one of the leading cancers worldwide, significantly impacting developing nations. This study aimed to explore the diagnostic and prognostic potential of miR-155-5p and miR-1246 in OSCC in the Indian population, as their comparative roles in this context remain unexplored. MATERIAL AND METHODS The present cross-sectional study comprised 50 histopathologically confirmed OSCC cases, with adjacent normal mucosa as controls. MiRNA expression was assessed via qRT-PCR and correlated with clinicopathological factors. MiRwalk and miRTargetlink were used for miRNA:mRNA interaction prediction, and gprofiler was employed to analyze validated targets for functional insights. RESULTS The expression analysis showed a significant upregulation of miR-155-5p and miR-1246 in OSCC tissues compared to adjacent controls. Receiver operating curve analysis revealed that miR-1246 exhibited excellent diagnostic accuracy (AUC = 0.94) compared to miR-155-5p (AUC = 0.69). Higher miRNA levels were associated with age and extracapsular extension while overexpression of miR-1246 was correlated significantly with increased tumor size, tumor grade, TNM staging, and depth of invasion. The analysis for target prediction unveiled a set of validated targets, among which were WNT5A, TP53INP1, STAT3, CTNNB1, PRKAR1A, and NFIB. CONCLUSION miR-155-5p and miR-1246 may be used as potential prognostic biomarkers in OSCC, with miR-1246 demonstrating superior diagnostic accuracy.
Collapse
Affiliation(s)
- R Maheswari
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Aadithya B Urs
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Priya Kumar
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, MAMC Complex, Mirdard Marg, Bahadur Shah Zafar Marg, LNJP Colony, New Delhi, 110002, India.
| | - B C Koner
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, 110002, India
| | - Sameer Ahmad Guru
- Developmental Systems Biology, Ann and Lurie Children's Hospital, Northwestern University, Chicago, IL, 60611, USA
| | - Garima Rawat
- Department of Pathology, Dharamshila Narayana Superspeciality Hospital, New Delhi, 110002, India
| |
Collapse
|
2
|
Davoodvandi A, Rafiyan M, Mansournia MA, Rajabpoor Nikoo N, Saati M, Samimi M, Asemi Z. MicroRNA and gynecological cancers: Focus on miR-195. Pathol Res Pract 2023; 249:154784. [PMID: 37639954 DOI: 10.1016/j.prp.2023.154784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Different cancer types have been shown to have down-regulated expression levels of miR-195 as an anti-tumor agent. MiR-195 family members can inhibit cancer cell proliferation, angiogenesis, epithelial-mesenchymal transition and metastases, immunosuppression, glycolysis, drug resistance, and cancer stem cell development by targeting the 3'-UTR of the mRNA of different pro-tumor genes. MiR-195 identified as a tumor suppressor miR in a variety of cancers, most notably gynecological malignancies such as cervical, endometrial, and ovarian carcinoma. As a result, restoring miR-195 expression should be regarded as a potential therapy for either prevention or treatment of gynecological cancers. This review will present the most recent data about miR-195-mediated anti-tumor effects in gynecological malignancies, emphasizing its downstream signaling pathways and target genes, as well as prospective treatment techniques.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
4
|
Rafiee R, Razmara E, Motavaf M, Mossahebi-Mohammadi M, Khajehsharifi S, Rouhollah F, Babashah S. Circulating serum miR-1246 and miR-1229 as diagnostic biomarkers in colorectal carcinoma. J Cancer Res Ther 2022; 18:S383-S390. [PMID: 36510992 DOI: 10.4103/jcrt.jcrt_752_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Although colonoscopy is considered as the "Gold Standard" technique to detect CRC, its application is invasive and cost incurred. Thus, noninvasive or minimally invasive approaches are of utmost importance. The aberrant expression of some microRNAs (miRNAs, miRs) has been suggested in association with CRC pathogenesis. This study aimed to validate if circulating serum miR-1229 and miR-1246 are diagnostic biomarkers for CRC. Materials and Methods Serum samples were isolated from 45 CRC patients and also 45 healthy controls (HC). The expression levels of circulating serum-derived miR-1229 and miR-1246 were evaluated by quantitative real-time polymerase chain reaction. Receiver operating characteristic (ROC) curves were constructed to evaluate the CRC diagnostic accuracy of selected miRNAs. Furthermore, the association of candidate miRNAs and clinicopathological characteristics were evaluated. Functional enrichment of the candidate miRNAs was applied using in silico tools. Results The expression of miR-1229 and miR-1246 was significantly higher in CRC patients than HC (P < 0.0001) and also was found in association with lymph node metastasis (P < 0.05). We demonstrated a significant up-regulation of serum-derived miR-1246 in advanced tumor-node-metastasis stage III of CRC patients (P < 0.05). Areas under the ROC curve of miR-1229 and miR-1246 were 0.81 and 0.84, respectively (P < 0.0001). Conclusion We confirmed the capability of circulating serum miR-1229 and miR-1246 as novel diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Reihaneh Rafiee
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, TarbiatModares University, Tehran, Iran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Construction of long non-coding RNA- and microRNA-mediated competing endogenous RNA networks in alcohol-related esophageal cancer. PLoS One 2022; 17:e0269742. [PMID: 35704638 PMCID: PMC9200351 DOI: 10.1371/journal.pone.0269742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to explore the lncRNA–miRNA–mRNA networks associated with alcohol-related esophageal cancer (EC). RNA-sequencing and clinical data were downloaded from The Cancer Genome Atlas and the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs, DELs), and miRNAs (DEMs) in patients with alcohol-related and non-alcohol-related EC were identified. Prognostic RNAs were identified by performing Kaplan–Meier survival analyses. Weighted gene co-expression network analysis was employed to build the gene modules. The lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks were constructed based on our in silico analyses using data from miRcode, starBase, and miRTarBase databases. Functional enrichment analysis was performed for the genes in the identified ceRNA networks. A total of 906 DEGs, 40 DELs, and 52 DEMs were identified. There were eight lncRNAs and miRNAs each, including ST7-AS2 and miR-1269, which were significantly associated with the survival rate of patients with EC. Of the seven gene modules, the blue and turquoise modules were closely related to disease progression; the genes in this module were selected to construct the ceRNA networks. SNHG12–miR-1–ST6GAL1, SNHG3–miR-1–ST6GAL1, SPAG5-AS1–miR-133a–ST6GAL1, and SNHG12–hsa-miR-33a–ST6GA interactions, associated with the N-glycan biosynthesis pathway, may have key roles in alcohol-related EC. Thus, the identified biomarkers provide a novel insight into the molecular mechanism of alcohol-related EC.
Collapse
|
6
|
Du J, Qian J, Zheng B, Xu G, Chen H, Chen C. miR-21-5p is a Biomarker for Predicting Prognosis of Lung Adenocarcinoma by Regulating PIK3R1 Expression. Int J Gen Med 2021; 14:8873-8880. [PMID: 34858053 PMCID: PMC8630376 DOI: 10.2147/ijgm.s337149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background Lung cancer (LUCA) is one of the most prevalent human malignancies, and the leading cause of cancer-related deaths worldwide. Previous reports have shown that miR-21-5p plays a vital role in development of various tumors. Here, we explored the relationship between miR-21-5p/PIK3R1 axis and prognosis of patients with lung adenocarcinoma (LUAD). Methods MiRNAseq data, deposited in The Cancer Genome Atlas (TCGA) database, was downloaded and used to determine patterns of miR-21-5p expression in both LUAD and normal lung tissues. Statistical analyses and data visualization were performed using dbDEMC v3.0 platform, starBase v3.0 database and packages implemented in R software. Next, we employed TargetScan Human, miRDB and DIANA Tools databases to predict miR-21-5p target genes, then analyzed their expression patterns as well as prognostic value in LUAD. Findings Most human cancers overexpressed miR-21-5p. Specifically, miR-21-5p was significantly upregulated in LUAD tissues relative to normal lung tissues (P < 0.001), and this high expression was significantly correlated with poor patient prognosis (hazard ratio [HR]=1.45, P = 0.014). PIK3R1 was predicted as a miR-21-5p target gene, and both were negatively correlated (r=-0.218, P < 0.01). Notably, PIK3R1 was significantly downregulated in LUAD, relative to normal lung tissues (P < 0.01), with its overexpression significantly associated with poor prognosis of LUAD patients (HR = 0.62, P = 0.0014). Conclusion miR-21-5p is a potential prognostic biomarker for LUAD patients. Moreover, it might be playing a role in LUAD progression by regulating PIK3R1 expression.
Collapse
Affiliation(s)
- Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| | - Jiekun Qian
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| | - Hao Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
7
|
Li Q, Xu K, Tian J, Lu Z, Pu J. MiR-129-5p/DLX1 signalling axis mediates functions of prostate cancer during malignant progression. Andrologia 2021; 53:e14230. [PMID: 34472106 DOI: 10.1111/and.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
We mainly corroborated the potential mechanism of DLX1 and miR-129-5p in prostate cancer cells. DLX1 was upregulated in cancer cells according to qRT-PCR assay. We evaluated the functional changes of the transfected cells via Transwell assay, CCK-8 assay and wound healing assay. DLX1 was confirmed as a cancer promoter. In addition, qRT-PCR showed down-regulated miR-129-5p expression in prostate cancer. We further used dual-luciferase reporter detection to elucidate the targeting between these two genes. The inhibition of miR-129-5p on tumour was verified. Besides, co-transfection of oe-DLX1 and miR-129-5p mimics attenuated this inhibition. These data demonstrated functions of DLX1/miR-129-5p axis in prostate cancer: miR-129-5p hindered the biological functions of cancer cells via inhibiting DLX1 expression. We provide a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ke Xu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianguo Tian
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Zhicheng Lu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianming Pu
- Department of Urology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| |
Collapse
|
8
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Tao K, Liu J, Liang J, Xu X, Xu L, Mao W. Vascular endothelial cell-derived exosomal miR-30a-5p inhibits lung adenocarcinoma malignant progression by targeting CCNE2. Carcinogenesis 2021; 42:1056-1067. [PMID: 34128973 DOI: 10.1093/carcin/bgab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
This study tried to explore the molecular mechanism underlying progression of lung adenocarcinoma (LUAD), and discuss the extracellular communication between cancer cells and vascular endothelial cells. Roughly, differential analysis was carried out to note that miR-30a-5p was lowly expressed in LUAD while CCNE2 was highly expressed. Cell functional experiments demonstrated that overexpressed miR-30a-5p led to suppressed cell abilities in proliferation, migration and invasion. Dual-luciferase reporter gene assay and RNA immunoprecipitation verified the binding of miR-30a-5p and CCNE2, as well as decreased mRNA and protein expression of CCNE2 with miR-30a-5p overexpression. Simultaneous upregulation of miR-30a-5p and CCNE2 reversed the promotion of CCNE2 on malignant behaviors of LUAD cells. In vivo mice experiments exhibited that high miR-30a-5p expression hindered tumor growth. Additionally, miR-30a-5p was localized on the Extracellular Vesicles miRNA (EVmiRNA) database.MiR-30a-5p was abundant in exosomes derived from vascular endothelial cells. To validate that miR-30a-5p could be delivered to LUAD cells via exosomes and then make an effect, exosomes from vascular endothelial cells were firstly extracted and identified by transmission electron microscopy and detection of exosomal marker proteins (Alix, CD63, TSG101). Sequentially, the extracted exosomes were labeled with PKH67 to note that exosomes could be internalized by cancer cells. Further experiments indicated that miR-30a-5p was increased in cancer cells co-cultured with exosomes, which in turn suppressed cell malignant behaviors and made cell cycle arrest. In all, our findings clarified that exosomes derived from vascular endothelial cells delivered miR-30a-5p to LUAD cells to affect tumor malignant progression via the miR-30a-5p/CCNE2 axis.
Collapse
Affiliation(s)
- Kaiyi Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu, China, Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China, Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| | - Jinshi Liu
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences
| | - Jinxiao Liang
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences
| | - Xiaofang Xu
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences
| | - Liwei Xu
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences
| | - Weimin Mao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu, China, Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China, Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| |
Collapse
|
10
|
MicroRNA Expression Profiles in Superficial Esophageal Squamous Cell Carcinoma before Endoscopic Submucosal Dissection: A Pilot Study. Int J Mol Sci 2021; 22:ijms22094789. [PMID: 33946439 PMCID: PMC8124636 DOI: 10.3390/ijms22094789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis when diagnosed at an advanced stage, and early detection and treatment are essential to improve survival. However, intraobserver and interobserver variation make the diagnosis of superficial ESCC difficult, and suitable biomarkers are urgently needed. Here, we compared the microRNA (miRNA) expression profiles of superficial ESCC tissues and adjacent normal tissues obtained immediately before esophageal endoscopic submucosal dissection. We found that ESCC and normal tissues differed in their miRNA expression profiles. In particular, miR-21-5p and miR-146b-5p were significantly upregulated and miR-210-3p was significantly downregulated in tumor tissues compared with normal tissues. We also detected significant associations between miRNA expression and ESCC invasion depth and lymphovascular invasion. The same differential expression of miR-21-5p, miR-146b-5p, and miR-210-3p was detected in ESCC cell lines compared with normal esophageal epithelial cells in vitro. However, transfection of ESCC cells with miR-210-3p and miR-21-5p mimics or inhibitors had partial effects on cell proliferation and invasion in vitro. These results indicate that miRNA expression is significantly deregulated in superficial ESCC, and suggest that the potential contribution of differentially expressed miRNAs to the malignant phenotype should be further investigated.
Collapse
|
11
|
Wang G, Zhou Y, Chen W, Yang Y, Ye J, Ou H, Wu H. miR-21-5p promotes lung adenocarcinoma cell proliferation, migration and invasion via targeting WWC2. Cancer Biomark 2021; 28:549-559. [PMID: 32623387 DOI: 10.3233/cbm-201489] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Studies have suggested that miR-21-5p and WWC2 are key players in most cancer types, yet the underlying mechanisms in lung adenocarcinoma (LUAD) remain elusive. This study made in-depth research on the two factors-dependent mechanisms underlying LUAD occurrence and development. METHODS Bioinformatics methods were employed to identify the miRNA and its target gene of interest. In all, 20 pairs of LUAD tumor tissue samples and matched adjacent normal samples along with 5 LUAD cell lines were collected for evaluating the aberrant expression of miR-21-5p and WWC2. Dual-luciferase reporter assay was performed to validate the targeted relationship between miR-21-5p and WWC2. A series of in vitro experiments including colony formation assay, EdU, wound healing assay and Transwell were conducted for assessment of the LUAD cell biological behaviors. In addition, Western blot was carried out to determine the protein expression of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS miR-21-5p was found to be considerably increased in LUAD tissue and cells relative to that in the adjacent tissue and the human bronchial epithelial cells, whereas WWC2 was significantly decreased. Dual-luciferase reporter assay revealed that miR-21-5p targeted WWC2 and down-regulated its expression. Besides, silencing miR-21-5p or overexpressing WWC2 played an inhibitory role in PC-9 cancer cell proliferation, migration and invasion, but such effect was suppressed when miR-21-5p was overexpressed. Furthermore, Western blot uncovered that WWC2 overexpression impeded the EMT process in LUAD cells. CONCLUSION miR-21-5p facilitates LUAD cell proliferation, migration and invasion through targeting WWC2, which provides a novel therapeutic target for LUAD treatment.
Collapse
|
12
|
Bioinformatics-based analysis of the lncRNA-miRNA-mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma. Biosci Rep 2021; 40:225786. [PMID: 32662828 PMCID: PMC7441485 DOI: 10.1042/bsr20201727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a 5-year survival rate unsatisfied malignancies. The study aimed to identify the novel diagnostic and prognostic targets for ESCC. Expression profiling (GSE89102, GSE97051, and GSE59973) data were downloaded from the GEO database. Then, differentially expressed (DE) lncRNAs, DEmiRNAs, and genes (DEGs) with P-values < 0.05, and |log2FC| ≥ 2, were identified using GEO2R. Functional enrichment analysis of miRNA-related mRNAs and lncRNA co-expressed mRNA was performed. LncRNA–miRNA–mRNA, protein–protein interaction of miRNA-related mRNAs and DEGs, co-expression, and transcription factors-hub genes network were constructed. The transcriptional data, the diagnostic and prognostic value of hub genes were estimated with ONCOMINE, receiver operating characteristic (ROC) analyses, and Kaplan–Meier plotter, respectively. Also, the expressions of hub genes were assessed through qPCR and Western blot assays. The CDK1, VEGFA, PRDM10, RUNX1, CDK6, HSP90AA1, MYC, EGR1, and SOX2 used as hub genes. And among them, PRDM10, RUNX1, and CDK6 predicted worse overall survival (OS) in ESCC patients. Our results showed that the hub genes were significantly up-regulated in ESCA primary tumor tissues and cell lines, and exhibited excellent diagnostic efficiency. These results suggest that the hub genes may server as potential targets for the diagnosis and treatment of ESCC.
Collapse
|
13
|
Islam F, Gopalan V, Lam AK. Roles of MicroRNAs in Esophageal Squamous Cell Carcinoma Pathogenesis. Methods Mol Biol 2021; 2129:241-257. [PMID: 32056182 DOI: 10.1007/978-1-0716-0377-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3'-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
14
|
Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AKY. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Curr Cancer Drug Targets 2020; 19:561-570. [PMID: 29956628 DOI: 10.2174/1568009618666180628154727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. OBJECTIVE The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. METHODS The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. RESULTS The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. CONCLUSION Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Soussan Irani
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Dental Research Centre, Research Centre for Molecular Medicine, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Arianna
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Jelena Vider
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
15
|
Hao X, Jia Q, Yuan J, Shi X, Guo H, Gao J, Guo Y. MicroRNA‑195 suppresses cell proliferation, migration and invasion in epithelial ovarian carcinoma via inhibition of the CDC42/CCND1 pathway. Int J Mol Med 2020; 46:1862-1872. [PMID: 32901852 PMCID: PMC7521559 DOI: 10.3892/ijmm.2020.4716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most common cause of gynecological cancer mortality, and poses a threat to women. MicroRNA-195 (miR-195) has been reported to induce apoptosis of human OVCAR-3 cells by inhibiting the VEGFR2/AKT pathway. However, the role of miR-195 in EOC remains unknown. A previous study reported that cell division cycle 42 (CDC42) can serve as a target gene of miR-195 and mediate malignant progression of esophageal squamous cell carcinoma (ESCC). The aim of the present study was to investigate the role of miR-195 in EOC and the regulation in CDC42/CCND1 pathway. Tissues samples and clinical materials were collected from 78 enrolled patients with EOC to analyze the expression and clinical significance of miR-195, CDC42 and cyclin D1 (CCND1). Human EOC cell lines OVCA420, OVCAR-3, A2780 and SKOV3 cell lines were used to assess the expression and function of miR-195, CDC42 and CCND1 in vitro. Cell proliferation, the cell cycle and apoptosis, as well as the cell migratory and invasive abilities were detected in vitro using BrdU incorporation, colony formation, wound healing and Transwell invasion assays, along with flow cytometry. miR-195 was downregulated, while CDC42 and CCND1 were upregulated in human EOC tissues and cells, and the aberrant expression of both was associated with increased EOC malignancy. Moreover, miR-195 expression was negatively correlated with CDC42 and CCND1 expression levels, and negatively regulated these expression levels. Thus, it was suggested that miR-195 functions as a tumor suppressor, but CDC42 and CCND1 act as tumor promoters based their abilities to enhance cell proliferation, cell cycle entry, migration and invasion, as well as decrease apoptosis in OVCAR-3 cells. the present results demonstrated that miR-195 inhibited human EOC progression by downregulating CDC42 and CCND1 expression. Furthermore, it was identified that miR-195, CDC42 and CCND1 may be effective biomarkers for EOC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoying Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingqing Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jieling Yuan
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiangrong Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Huihui Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiefang Gao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ye Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
16
|
Identification of Differentially Expressed Genes and miRNAs Associated with Esophageal Squamous Cell Carcinoma by Integrated Analysis of Microarray Data. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1980921. [PMID: 32714975 PMCID: PMC7352135 DOI: 10.1155/2020/1980921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
To identify candidate key genes and miRNAs associated with esophageal squamous cell carcinoma (ESCC) development and prognosis, the gene expression profiles and miRNA microarray data including GSE20347, GSE38129, GSE23400, and GSE55856 were downloaded from the Gene Expression Omnibus (GEO) database. Clinical and survival data were retrieved from The Cancer Genome Atlas (TCGA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes (DEGs) was analyzed via DAVID, while the DEG-associated protein-protein interaction network (PPI) was constructed using the STRING database. Additionally, the miRNA target gene regulatory network and miRNA coregulatory network were constructed, using the Cytoscape software. Survival analysis and prognostic model construction were performed via the survival (version 2.42-6) and rbsurv R packages, respectively. The results showed a total of 2575, 2111, and 1205 DEGs, and 226 differentially expressed miRNAs (DEMs) were identified. Pathway enrichment analyses revealed that DEGs were mainly enriched in 36 pathways, such as the proteasome, p53, and beta-alanine metabolism pathways. Furthermore, 448 nodes and 1144 interactions were identified in the PPI network, with MYC having the highest random walk score. In addition, 7 DEMs in the microarray data, including miR-196a, miR-21, miR-205, miR-194, miR-103, miR-223, and miR-375, were found in the regulatory network. Moreover, several reported disease-related miRNAs, including miR-198a, miR-103, miR-223, miR-21, miR-194, and miR-375, were found to have common target genes with other DEMs. Survival analysis revealed that 85 DEMs were related to prognosis, among which hsa-miR-1248, hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p were used for a prognostic survival model. Taken together, this study revealed the important roles of DEGs and DEMs in ESCC development, as well as DEMs in the prognosis of ESCC. This will provide potential therapeutic targets and prognostic predictors for ESCC.
Collapse
|
17
|
Wang H, Fu L, Wei D, Wang B, Zhang C, Zhu T, Ma Z, Li Z, Wu Y, Yu G. MiR-29c-3p Suppresses the Migration, Invasion and Cell Cycle in Esophageal Carcinoma via CCNA2/p53 Axis. Front Bioeng Biotechnol 2020; 8:75. [PMID: 32154226 PMCID: PMC7044414 DOI: 10.3389/fbioe.2020.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Objective In the present study, we tried to describe the role of miR-29c-3p in esophageal carcinoma (EC) and the relationship of miR-29c-3p with CCNA2 as well as cell cycle, accordingly revealing the potential molecular mechanism across cell proliferation, migration and invasion. Methods Expression profiles of EC miRNAs and matched clinical data were accessed from TCGA database for differential and survival analyses. Bioinformatics databases were employed to predict the downstream targets of the potential miRNA, and enrichment analysis was performed on the miRNA and corresponding target gene using GSEA software. qRT-PCR was conducted to detect the expression levels of miR-29c-3p and CCNA2 mRNA in EC tissues and cells, and Western blot was performed for the examination of CCNA2, CDK1 and p53 protein levels. Subsequently, cells were harvested for MTT, Transwell as well as flow cytometry assays to examine cell viability, migration, invasion and cell cycle. Dual-luciferase reporter gene assay and RIP were carried out to further investigate and verify the targeted relationship between miR-29c-3p and CCNA2. Results MiR-29c-3p was shown to be significantly down-regulated in EC tissues and able to predict poor prognosis. CCNA2 was found to be a downstream target of miR-29c-3p and mainly enriched in cell cycle and p53 signaling pathway, whereas miR-29c-3p was remarkably activated in cell cycle. MiR-29c-3p overexpression inhibited cell proliferation, migration and invasion, as well as arrested cells in G0/G1 phase. As suggested by dual-luciferase reporter gene assay and RIP, CCNA2 was under the regulation of miR-29c-3p, and the negative correlation between the two genes was verified. Silencing CCNA2 could suppress cell proliferation, migration and invasion, as well as activate p53 pathway, even was seen to reverse the inhibitory effect of PFTβ on p53. Besides, in the presence of low miR-29c-3p, CCNA2 was up-regulated while p53 was simultaneously inhibited, resulting in the promotion of cell migration, invasion and cell cycle arrest. Conclusion MiR-29c-3p plays a regulatory role in EC tumorigenesis and development. MiR-29c-3p can target CCNA2 to mediate p53 signaling pathway, finally attributing to the inhibition of cell proliferation, migration and invasion, and making cells arrest in G0/G1 phase.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Linhai Fu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Desheng Wei
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Bin Wang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Chu Zhang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Ting Zhu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhifeng Ma
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhupeng Li
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yuanlin Wu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guangmao Yu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
18
|
Wang W, Fu S, Lin X, Zheng J, Pu J, Gu Y, Deng W, Liu Y, He Z, Liang W, Wang C. miR-92b-3p Functions As A Key Gene In Esophageal Squamous Cell Cancer As Determined By Co-Expression Analysis. Onco Targets Ther 2019; 12:8339-8353. [PMID: 31686859 PMCID: PMC6799829 DOI: 10.2147/ott.s220823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy. The aims of the present study were to screen the critical miRNA and corresponding target genes that related to development of ESCC by weighted gene correlation network analysis (WGCNA) and investigate the functions by experimental validation. Methods Datasets of mRNA and miRNA expression data were downloaded from GEO. The R software was used for data preprocessing and differential expression gene analysis. The differentially expressed protein-coding genes (DEGs) and miRNAs (DEMs) were selected (FDR <0.05 or |Fold Change (FC)| >1.5). Meanwhile, 81 expression data of ESCC patients in TCGA combined with clinic information were applied by WGCNA to create networks. The correlational analyses between each module and clinical parameters were conducted, and enrichment analyses of GO and KEGG were subsequently performed. Then, a series of experiments were conducted in ESCC cells by use of miRNA mimics. Results In total, 4,023 DEGs and 328 DEMs were screened. After checking good genes and samples, 3,841 genes (3,696 DEGs and 145 DEMs) were used for WGCNA. As a consequence, altogether 11 gene modules were found. Among them, the brown modules were found to be strongly inversely associated with pathological grade. Meanwhile, has-mir-92b, the only miRNA in brown module, had a positive correlation with grade and negatively correlated with potential target gene (KFL4 and DCS2) in the same module. Furthermore, an increased expression of miR-92b-3p and down-regulated KLF4 and DSC2 protein was detected in the ESCC clinical samples. Up-regulated miR-92b-3p shortened G0/G1 phase and promote ESCC cells invasion and migration. Furthermore, we verified that DSC2 and KFL4 was target genes of miR-92b-3p by luciferase report assay. Conclusion WGCNA is an efficient approach to system biology. By this procedure, miR-92b-3p was identified as an ESCC-promoting gene by target KLF4 and DCS2.
Collapse
Affiliation(s)
- Wanpeng Wang
- Department of Radiotherapy, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Sengwang Fu
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaolu Lin
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Provincial Clinic Medical College, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jinhui Zheng
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Provincial Clinic Medical College, Fujian Medical University, Fuzhou, People's Republic of China
| | - Juan Pu
- Department of Radiotherapy, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Yun Gu
- Department of Thoracic Surgery, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Weijun Deng
- Department of Thoracic Surgery, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Yanyan Liu
- Department of Radiotherapy, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Zhongxiang He
- Department of Radiotherapy, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| | - Wei Liang
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Provincial Clinic Medical College, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chengshi Wang
- Department of Radiotherapy, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an City, JiangSu, People's Republic of China
| |
Collapse
|
19
|
Ma X, Zhou J, Mo H, Ying Y. Association of miR-100 expression with clinicopathological features and prognosis of patients with lung cancer. Oncol Lett 2019; 18:1318-1322. [PMID: 31423192 PMCID: PMC6607036 DOI: 10.3892/ol.2019.10393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
The expression of microRNA (miR)-100 in non-small cell lung cancer (NSCLC) and its association with clinicopathological features and poor prognosis were investigated. A total of 283 patients with NSCLC were enrolled in The First Hospital of Jiaxing from February 2013 to April 2015. Total RNA was extracted from cancer tissues and corresponding adjacent normal tissues. The expression of miR-100 was detected by RT-qPCR. Association between the expression level of miR-100 with clinicopathological features and prognosis of NSCLC were analyzed. The expression level of miR-100 in NSCLC tissues was lower than that in the normal tissues (P<0.05). According to the median expression level of miR-100 in cancer tissue, patients were divided into the high expression and low expression groups. Cross-tabulation analysis showed that the expression level of miR-100 was significantly associated with patients' age, TNM stage, metastasis and histological type (P<0.05), but not with sex (P>0.05). The proportion of patients with low miR-100 expression was higher in patients who died than in those who survived (P<0.05). Univariate prognostic analysis showed that miR-100 expression, age, TNM staging, and metastasis may be risk factors for poor prognosis in patients with NSCLC. Cox multivariate regression analysis showed that the downregulated miR-100 expression, advanced TNM stage, and metastasis were independent risk factors for poor prognosis of NSCLC. The relatively low expression level of miR-100 in NSCLC is associated with poor prognosis of patients. Therefore, miR-100 shows potential as a prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Xiaolong Ma
- Department of Respiration, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Jiaqi Zhou
- Department of Respiration, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Hongyan Mo
- Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Ying Ying
- Department of Respiration, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
20
|
Shen Y, Ding Y, Ma Q, Zhao L, Guo X, Shao Y, Niu C, He Y, Zhang F, Zheng D, Wei W, Liu F. Identification of Novel Circulating miRNA Biomarkers for the Diagnosis of Esophageal Squamous Cell Carcinoma and Squamous Dysplasia. Cancer Epidemiol Biomarkers Prev 2019; 28:1212-1220. [PMID: 30988139 DOI: 10.1158/1055-9965.epi-18-1199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/25/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Circulating miRNAs have been identified as diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC), but their efficacy in discovering early-stage ESCC is still unsatisfying. Esophageal squamous dysplasia (ESD) is the precursor lesion of ESCC. Notably, little is known about the role(s) of circulating miRNAs in identifying ESD. In this study, we, therefore, aimed to identify serum miRNAs as novel diagnostic markers for detecting ESD and ESCC. METHODS The genome-wide miRNA expression was profiled in 104 (52 ESCC and 52 controls) serum samples using microarray. Seven candidate miRNAs from the microarray assay were evaluated for their diagnostic performance in another cohort of 266 participants (96 ESCC, 92 ESD, and 78 healthy controls). RESULTS The serum levels of miR-16-5p, miR-197-5p, miR-451a, and miR-92a-3p were associated with ESCC; the biomarker based on the panel of these four miRNAs could efficiently distinguish patients with ESCC from the controls [AUC = 0.856; 95% confidence interval (CI), 0.794-0.905; P < 0.001]. The serum levels of miR-16-5p, miR-320c, miR-638, and miR-92a-3p were significantly higher in patients with ESD than in controls, and this four-miRNA signature could efficiently differentiate patients with ESD from the controls (AUC = 0.842; 95% CI, 0.778-0.893; P < 0.001). In addition, compared with serum carcinoembryonic antigen and carbohydrate antigen 199, miRNA-based panels had a better diagnostic performance in distinguishing patients with ESCC and ESD from healthy controls. CONCLUSIONS Our study identified two novel panels of circulating miRNAs with high efficiency in detecting ESCC and ESD, suggesting that circulating miRNAs, in particular the combination of them, might serve as noninvasive biomarkers for the early detection of ESCC. IMPACT This study suggests the feasibility of using circular miRNA-based blood tests to aid in the detection of ESD and ESCC.
Collapse
Affiliation(s)
- Yi Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yuanjie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Qing Ma
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Xudong Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yi Shao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Chen Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Wenqiang Wei
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Wang YH, Yin YW, Zhou H, Cao YD. miR-639 is associated with advanced cancer stages and promotes proliferation and migration of nasopharyngeal carcinoma. Oncol Lett 2018; 16:6903-6909. [PMID: 30546422 PMCID: PMC6256336 DOI: 10.3892/ol.2018.9512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/31/2017] [Indexed: 01/29/2023] Open
Abstract
Early detection of nasopharyngeal carcinoma (NPC) is of vital importance for improving prognosis and survival rates. MicroRNA (miRNA) are a class of short and non-coding RNA molecules that are capable of inhibiting the translation of mRNA of target genes. Previous studies have revealed that miRNA are involved in tumorigenesis and cancer development. The RNase-resistance of circulating miRNA have made them valuable non-invasive biomarkers, and has therefore drawn particular attention to their therapeutic potential. The aim of the present study was to investigate the expression of the previously uncharacterized miR-639 in NPC. In a study population of 139 patients, higher expression of miR-639 was associated with metastasis, more advanced cancer stages, and lower disease-free survival rates. In vitro experiments involving transfection of human NPC C666-1 and NPC/HK1 cell lines with miR-639 mimics and antagomir indicated that overexpressing miR-639 promoted cell proliferation and migration, suppression of miR-639 inhibited proliferation and migration. The present study provides evidence that miR-639 is differentially expressed in NPC tissues of varying cancer stages, and suggests that quantifying circulating miR-639 may be of importance for non-invasive diagnosis and prognostic evaluation, and may have potential therapeutic utility.
Collapse
Affiliation(s)
- Yun-Hui Wang
- Department of Ear, Nose and Throat, Linyi City People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yan-Wei Yin
- Department of Oncology, Linyi City People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Han Zhou
- Department of Ear, Nose and Throat, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan-Dong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
22
|
Zhu JF, Liu Y, Huang H, Shan L, Han ZG, Liu JY, Li YL, Dong X, Zeng W. MicroRNA-133b/EGFR axis regulates esophageal squamous cell carcinoma metastases by suppressing anoikis resistance and anchorage-independent growth. Cancer Cell Int 2018; 18:193. [PMID: 30479571 PMCID: PMC6251163 DOI: 10.1186/s12935-018-0684-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background Anoikis resistance has been demonstrated to facilitate distant metastases of cancers. MicroRNA-133b (miR-133b) is found to be down-regulated in various tumors, including esophageal squamous cell carcinoma (ESCC), and closely correlates with the malignant phenotype of ESCC. This study aimed to evaluate the roles of miR-133b in metastases of ESCC via regulating anoikis. Methods The expression of miR-133b and related molecules were detected in ESCC tissues and cells. The target relationship between miR-133b and epidermal growth factor receptor (EGFR) was verified by dual luciferase reporter assay. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Anoikis and anchorage-independent growth were assessed by anoikis assay and soft agar assay. Migration and invasion were evaluated by scratch and transwell assays. The expressions of related molecules were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The in vivo results were determined by tumor xenografts in nude mice. Results MiR-133b level was decreased in ESCC tissues and cells, which negatively correlated with EGFR, integrin β4 (ITGB4), and phosphorylated focal adhesion kinase levels. Moreover, miR-133b down-regulated EGFR expression in ESCC cells. Overexpression of miR-133b inhibited the anoikis resistance, migration, invasion and epithelial-mesenchymal transition of ESCC cells via targeting EGFR. Finally, miR-133b overexpression suppressed tumor growth and lung metastases of ESCC in vivo. ITGB4/FAK/growth factor receptor-bound protein 2 (Grb2), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) pathways were involved in the regulatory mechanisms of miR-133b/EGFR axis in ESCC metastases in vitro and in vivo. Conclusions The results suggested that miR-133b/EGFR axis regulated metastases of ESCC by affecting anoikis resistance via ITGB4/FAK/Grb2, AKT, and ERK pathways.
Collapse
Affiliation(s)
- Jin-Feng Zhu
- 2Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Yi Liu
- 3Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, 518055 People's Republic of China
| | - He Huang
- 4Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013 People's Republic of China.,5Department of Histology and Embryology, Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Li Shan
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Zhi-Gang Han
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Jun-Yuan Liu
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Ying-Long Li
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Xiang Dong
- 6Institute of Cancer Prevention and Treatment, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Wei Zeng
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China.,7Department of Hematology and Oncology, Shenzhen University General Hospital, No.1098, Xueyuan Avenue, Shenzhen, 518055 Guangdong People's Republic of China
| |
Collapse
|
23
|
Yu W, Liang X, Li X, Zhang Y, Sun Z, Liu Y, Wang J. MicroRNA-195: a review of its role in cancers. Onco Targets Ther 2018; 11:7109-7123. [PMID: 30410367 PMCID: PMC6200091 DOI: 10.2147/ott.s183600] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to the 3′-UTR of target mRNAs. Recently, increasing evidence has highlighted their profound roles in various pathological processes, including human cancers. Deregulated miRNAs function as either oncogenes or tumor suppressor genes in multiple cancer types. Among them, miR-195 has been reported to significantly impact oncogenicity in various neoplasms by binding to critical genes and signaling pathways, enhancing or inhibiting the progression of cancers. In this review, we focus on the expression of miR-195 in regulatory mechanisms and tumor biological processes and discuss the future potential therapeutic implications of diverse types of human malignancies.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Zhenqing Sun
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Liu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Jianxun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| |
Collapse
|
24
|
Wei C, Li Y, Huang K, Li G, He M. Exosomal miR-1246 in body fluids is a potential biomarker for gastrointestinal cancer. Biomark Med 2018; 12:1185-1196. [PMID: 30235938 DOI: 10.2217/bmm-2017-0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM The aim was to systematically evaluate whether exosomal miRNAs could be regarded as potential minimally invasive biomarkers of diagnosis for gastrointestinal cancer. METHODS A systematic review and meta analysis of exosomal miRNA expression in gastrointestinal cancer were performed. RESULTS A total of 370 articles were retrieved from PubMed and EMBASE. The summary receiver operating characteristic curves of three miRNAs (miR-21, miR-1246 and miR-4644) were drawn, miR-21, miR-1246 and miR-4644 exhibited sensitivities of 0.66, 0.920 and 0.750, respectively; specificities were 0.87, 0.958 and 0.769, respectively; and areas under the curve for discriminating gastrointestinal cancer patients from control subjects were 0.876, 0.969 and 0.827, respectively. CONCLUSION Exosome miR-1246 had the highest level of diagnostic efficiency, which indicated that miR-1246 could be a biomarker.
Collapse
Affiliation(s)
- Chunmeng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yasi Li
- College of Arts & Sciences, Stony Brook University, NY 11790, USA
| | - Kaiming Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China.,Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, PR China
| |
Collapse
|
25
|
Zhang J, Zhang Y, Tan X, Zhang Q, Liu C, Zhang Y. MiR-23b-3p induces the proliferation and metastasis of esophageal squamous cell carcinomas cells through the inhibition of EBF3. Acta Biochim Biophys Sin (Shanghai) 2018; 50:605-614. [PMID: 29750239 DOI: 10.1093/abbs/gmy049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs), some small non-coding RNAs that regulate gene expression at the posttranscriptional level, are always aberrantly expressed in carcinomas. In this study, we found that miR-23b-3p was remarkably up-regulated in human esophageal squamous cell carcinoma cells and tissues. Moreover, miR-23b-3p could induce the proliferation, invasion, and metastasis in vitro. EBF3 was identified as the direct downstream target gene of miR-23b-3p and ectogenic EBF3 could strongly inhibit the proliferation, invasion, and metastasis in vitro. Furthermore, it was found that miR-23b-3p could regulate epithelial-to-mesenchymal transition progress by blocking EBF3. Therefore, it was concluded that miR-23b-3p targeted EBF3 to accelerate the proliferation, invasion, and metastasis in ESCC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Medical School of Yangtze University, Jingzhou 434023, China
| | - Yan Zhang
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Xiaoping Tan
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Qing Zhang
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Chaoyong Liu
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Yali Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2018; 8:50193-50208. [PMID: 28422730 PMCID: PMC5564843 DOI: 10.18632/oncotarget.16745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, −133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.
Collapse
|
27
|
Liu W, Li M, Chen X, Zhu S, Shi H, Zhang D, Cheng C, Li B. MicroRNA-1 suppresses proliferation, migration and invasion by targeting Notch2 in esophageal squamous cell carcinoma. Sci Rep 2018; 8:5183. [PMID: 29581534 PMCID: PMC5979967 DOI: 10.1038/s41598-018-23421-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play an important role in the migration and invasion of tumors, and lower expression of microRNA-1 (miR-1) has been proven in a variety of malignant tumors, including esophageal squamous cell carcinoma (ESCC). In this study, we found that miR-1 expression levels in tumor tissues and preoperative serum from esophageal carcinoma patients were lower than those in non-tumorous tissues and healthy volunteers. miR-1 expression in tissues and plasma was closely related to invasion, lymph node metastasis and TNM staging. Additionally, miR-1 expression levels in tissues and plasma were positively correlated. miR-1 inhibited cell proliferation, migration and invasion. Overexpression of miR-1 in ESCC cells reduced Notch2 protein but not mRNA levels, whereas suppression of miR-1 led to an increase in Notch2 protein but not mRNA levels. A dual-luciferase experiment validated that Notch2 was a direct target of miR-1. Introducing Notch2 mRNA into cells over-expressing miR-1 partially abrogated the effects of miR-1 on migration and invasion. Further studies verified that miR-1 regulates EMT signalling pathways directly through Notch2. Therefore, these results confirm that, as a tumor suppressor gene, miR-1 may be a potential tumor marker for the early diagnosis of ESCC and a new drug target.
Collapse
Affiliation(s)
- Wenzhi Liu
- Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong Province, P. R. China
| | - Mengkao Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong Province, P. R. China
| | - Xiangming Chen
- Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong Province, P. R. China
| | - Shan Zhu
- Department of Oncology, Shandong Provincial Western Hospital, Jinan, Shandong Province, P. R. China
| | - Hailong Shi
- Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong Province, P. R. China
| | - Dawei Zhang
- Trauma orthopedics ward, Zibo Central Hospital, Zibo, Shandong Province, P. R. China
| | - Cheng Cheng
- Cardiovascular department ward, Zibo Central Hospital, Zibo, Shandong Province, P. R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong Province, P. R. China. .,Shandong Academy of Medical Sciences, Jinan, Shandong Province, P. R. China.
| |
Collapse
|
28
|
A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:34468-34480. [PMID: 28380431 PMCID: PMC5470983 DOI: 10.18632/oncotarget.16519] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
The differential expression of microRNAs (miRNAs) in plasma of esophageal squamous cell carcinoma (ESCC) patients may serve as a diagnostic biomarker. A four-stage study was conducted to identify plasma miRNAs with potential in detecting ESCC. Exiqon panels (2 ESCC pools vs. 1 normal control (NC) pool) were applied in the screening phase to obtain miRNA profiles. The identified miRNAs were further evaluated through training (36 ESCC VS. 42 NCs) and testing stages (101 ESCC VS. 113 NCs) with qRT-PCR assays. A six-miRNA signature including up-regulated miR-106a, miR-18a, miR-20b, miR-486-5p, miR-584 and down-regulated miR-223-3p in ESCC was identified. The signature could accurately discriminate ESCC patients from NCs with areas under the receiver operating characteristic curve of 0.935, 0.959 and 0.966 for the training, testing and the additional validation stage (41 ESCC VS. 50 NCs), respectively. MiR-106a and miR-584 were significantly up-regulated in tumor tissues with qRT-PCR assays. And miR-584 was also up-regulated in ESCC tissues from TCGA database. In addition, exosomal miR-223-3p and miR-584 were consistently dysregulated with those in plasma and could also act as biomarkers in diagnosis of ESCC. In conclusion, we identified a six-miRNA signature in plasma which could act as a non-invasive biomarker in detection of ESCC.
Collapse
|
29
|
Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels. Oncotarget 2018; 7:68170-68178. [PMID: 27626688 PMCID: PMC5356547 DOI: 10.18632/oncotarget.11906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy is generally applied in the treatment of esophageal squamous cell carcinoma (ESCC). However, the radioresistance of ESCC still remains an obstacle for the curative effect of this treatment. We hypothesized that diisopropylamine dichloroacetate (DADA), an inhibitor of pyruvate dehydrogenase kinase (PDK), might enhance radiosensitizationin resistant ESCC. The clonogenic survival assay revealed that DADA sensitized ESCC cells to radiotherapy in vitro; furthermore, the combination of DADA and radiotherapy increased the expression of γ-H2AX, which is a hallmark of DNA double-strand breaks. Arrest at G2/M phase as well as the induction of apoptosis of ESCC cells were also observed in the cells treated with the combination of DADA and radiotherapy. Notably, xenograft tumor growth was significantly suppressed in vivo by combined radiotherapy and DADA administration. It has been proven that glycolysis is highly correlated with radioresistance, which could be reversed by the shift from glycolysis to mitochondrial oxidation. In our present study, we found that DADA could modulate oxidative phosphorylation as well as increase the intracellular levels of reactive oxygen species (ROS). Collectively, we concluded that DADA-induced intracellular ROS accumulation was identified as the key factor of radiotherapy sensitization of ESCC.
Collapse
|
30
|
Expression Level of miR-34a in Tumor Tissue from Patients with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2018; 50:304-307. [DOI: 10.1007/s12029-018-0060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Zhao L, Li R, Xu S, Li Y, Zhao P, Dong W, Liu Z, Zhao Q, Tan B. Tumor suppressor miR-128-3p inhibits metastasis and epithelial-mesenchymal transition by targeting ZEB1 in esophageal squamous-cell cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50:171-180. [PMID: 29329360 DOI: 10.1093/abbs/gmx132] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are some short RNAs that regulate multiple biological functions at post-transcriptional levels, such as tumorigenic processes, inflammatory lesions and cell apoptosis. Zinc finger E-box binding homeobox factor 1 (ZEB1) is a crucial mediator of epithelial-mesenchymal transition (EMT). It induces malignant progression of various cancers including human esophageal squamous-cell carcinoma (ESCC). In this study, we found that miR-128-3p was downregulated in ESCC tissues and cells by using PCR. Moreover, down-regulated expression of miR-128-3p was testified to be associated with poor prognosis of ESCC patients and might be regarded as an independent prognostic factor. Then, we examined the role of miR-128-3p in ESCC cells, and found that miR-128-3p could suppress the cell migration and invasion in vitro. Furthermore, ZEB1 was confirmed to be a direct target of miR-128-3p by luciferase reporter assay. Rescue experiments proved that EMT was regulated by miR-128-3p via suppression of ZEB1. Taken all together, we conclude that miR-128-3p suppresses EMT and metastasis via ZEB1, and miR-128-3p may be a critical mediator in ESCC.
Collapse
Affiliation(s)
- Lili Zhao
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Rui Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Shanling Xu
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Yi Li
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Pei Zhao
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Wei Dong
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Zhenjun Liu
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Qian Zhao
- Intensive Care Unit, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| | - Bo Tan
- Department of Ultrasonic Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu 610000, China
| |
Collapse
|
32
|
Xiaoyu H, Yiru Y, Shuisheng S, Keyan C, Zixing Y, Shanglin C, Yuan W, Dongming C, Wangliang Z, Xudong B, Jie M. The mTOR Pathway Regulates PKM2 to Affect Glycolysis in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2018; 17:1533033818780063. [PMID: 29916308 PMCID: PMC6024499 DOI: 10.1177/1533033818780063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Esophageal squamous cell carcinoma is a highly prevalent cancer withpoor survival rate and prognosis. Increasing evidence suggests an important role for metabolic regulation in treating esophageal squamous cell carcinoma, but the underlying mechanism remains unclear. The pyruvate kinase M2 isoform is a key enzyme in the energy production process, and the upregulation of pyruvate kinase M2 isoform also plays a crucial role in gene transcription and tumorigenesis. The mammalian target of rapamycin pathway regulates an array of cellular functions, including protein synthesis, metabolism, and cell proliferation. The pyruvate kinase M2 isoform and mammalian target of rapamycin pathways both affect metabolism in cancers, and evidence also suggests that the mammalian target of rapamycin downstream transcription factor hypoxia-inducible factor-1α regulates pyruvate kinase M2 isoform. We therefore investigated the regulatory mechanism among pyruvate kinase M2 isoform, mammalian target of rapamycin, and aerobic glycolysis in esophageal squamous cell carcinoma, hoping to prove that mammalian target of rapamycin pathway regulates pyruvate kinase M2 isoform to affect glycolysis in esophageal squamous cell carcinoma. METHODS Immunohistochemical staining was used to compare pyruvate kinase M2 isoform and phospho-mammalian target of rapamycin expression in 30 human pathological esophageal squamous cell carcinoma sections and 30 nontumoral esophageal tissues. Short hairpin RNA was used to inhibit pyruvate kinase M2 isoform and activate mammalian target of rapamycin, after which we monitored changes in glucose consumption and lactate production. Finally, we determined the expression of pyruvate kinase M2 isoform and the mammalian target of rapamycin downstream transcription factor hypoxia-inducible factor-1α, as well as glucose consumption and lactate production, following the modification of mammalian target of rapamycin expression. RESULTS Immunohistochemical staining showed that both phospho-mammalian target of rapamycin and pyruvate kinase M2 isoform expression were higher in esophageal squamous cell carcinoma than in nontumor tissues. Glucose consumption and lactate production measurements demonstrated that altering mammalian target of rapamycin and pyruvate kinase M2 isoform levels caused corresponding changes in glycolysis in esophageal squamous cell carcinoma cells. When mammalian target of rapamycin was activated or inhibited, expression of pyruvate kinase M2 isoform and hypoxia-inducible factor-1α as well as glycolysis were altered, indicating that mammalian target of rapamycin regulates pyruvate kinase M2 isoform via the downstream transcription factor hypoxia-inducible factor-1α, thereby affecting glycolysis in esophageal squamous cell carcinoma. CONCLUSION Mammalian target of rapamycin pathway promotes aerobic glycolysis in esophageal squamous cell carcinoma by upregulating pyruvate kinase M2 isoform. Both proteins can serve as molecular targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- He Xiaoyu
- Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yin Yiru
- Translational Medicine Research Center, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shi Shuisheng
- Endoscopy Center, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng Keyan
- Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Zixing
- Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng Shanglin
- Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wang Yuan
- Endoscopy Center, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng Dongming
- Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhang Wangliang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bai Xudong
- Cardiothoracic Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, China
| | - Ma Jie
- Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Tűzesi Á, Kling T, Wenger A, Lunavat TR, Jang SC, Rydenhag B, Lötvall J, Pollard SM, Danielsson A, Carén H. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget 2017; 8:90164-90175. [PMID: 29163818 PMCID: PMC5685739 DOI: 10.18632/oncotarget.21621] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas (HGGs) are very aggressive brain tumors with a cancer stem cell component. Cells, including cancer stem cells, release vesicles called exosomes which contain small non-coding RNAs such as microRNAs (miRNAs). These are thought to play an important role in cell-cell communication. However, we have limited knowledge of the types of exosomal miRNAs released by pediatric HGG stem cells; a prerequisite for exploring their potential roles in HGG biology. Here we isolated exosomes released by pediatric glioma stem cells (GSCs) and compared their repertoire of miRNAs to genetically normal neural stem cells (NSCs) exosomes, as well as their respective cellular miRNA content. Whereas cellular miRNAs are similar, we find that the exosomal miRNA profiles differ between normal and tumor cells, and identify several differentially expressed miRNAs. Of particular interest is miR-1290 and miR-1246, which have previously been linked to 'stemness' and invasion in other cancers. We demonstrate that GSC-secreted exosomes influence the gene expression of receiving NSCs, particularly targeting genes with a role in cell fate and tumorigenesis. Thus, our study shows that GSCs and NSCs have similar cellular miRNA profiles, yet differ significantly in the repertoire of exosomal miRNAs and these could influence malignant features of HGG.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wenger
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Taral R. Lunavat
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Rydenhag
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Steven M. Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Danielsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Liu X, Ma W, Yan Y, Wu S. Silencing HMGN5 suppresses cell growth and promotes chemosensitivity in esophageal squamous cell carcinoma. J Biochem Mol Toxicol 2017; 31. [PMID: 28914995 DOI: 10.1002/jbt.21996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
Previous study has demonstrated that high mobility group nucleosome-binding domain 5 (HMGN5) is involved in tumorigenesis and the development of multidrug resistance in several human cancers. However, the role of HMGN5 in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we showed that HMGN5 was significantly upregulated in ESCC cells. Knockdown of HMGN5 significantly inhibited cell growth and induced cell apoptosis of ESCC cells. Moreover, knockdown of HMGN5 increased the sensitivity of ESCC cells towards cisplatin. By contrast, overexpression of HMGN5 showed the opposite effects. Further experiments demonstrated that HMGN5 regulated the expression of multidrug resistance 1, cyclin B1, and Bcl-2. Overall, our results reveal that HMGN5 promotes tumor progression of ESCC and is also an important regulator of chemoresistance. Our study suggests that inhibition of HMGN5 may be a potential strategy for improving effectiveness of ESCC treatment.
Collapse
Affiliation(s)
- Xiaoping Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Weiping Ma
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yanli Yan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Suge Wu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| |
Collapse
|
35
|
Liu X, Yan Y, Ma W, Wu S. Knockdown of frizzled-7 inhibits cell growth and metastasis and promotes chemosensitivity of esophageal squamous cell carcinoma cells by inhibiting Wnt signaling. Biochem Biophys Res Commun 2017; 490:1112-1118. [DOI: 10.1016/j.bbrc.2017.06.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
|
36
|
Zhang HC, Tang KF. Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med 2017; 6:1893-1903. [PMID: 28707457 PMCID: PMC5548877 DOI: 10.1002/cam4.1129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression in tumorigenesis and are of great interest to researchers, but miRNA profiles are often inconsistent between studies. The aim of this study was to confirm candidate miRNA biomarkers for esophageal cancer from integrated‐miRNA expression profiling data and TCGA (The Cancer Genome Atlas) data in tissues. Here, we identify five significant miRNAs by a comprehensive analysis in esophageal cancer, and two of them (hsa‐miR‐100‐5p and hsa‐miR‐133b) show better prognoses with significant difference for both 3‐year and 5‐year survival. Additionally, they participate in esophageal cancer occurrence and development according to KEGG and Panther enrichment analyses. Therefore, these five miRNAs may serve as miRNA biomarkers in esophageal cancer. Analysis of differential expression for target genes of these miRNAs may also provide new therapeutic alternatives in esophageal cancer.
Collapse
Affiliation(s)
- Heng-Chao Zhang
- Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.,Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Kai-Fu Tang
- Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.,Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| |
Collapse
|
37
|
Downregulation of miR-214-3p May Contribute to Pathogenesis of Ulcerative Colitis via Targeting STAT6. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8524972. [PMID: 28752100 PMCID: PMC5511677 DOI: 10.1155/2017/8524972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/30/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRs) are small noncoding RNA molecules and recently have demonstrated that altered expression and functions are their tight association with ulcerative colitis (UC). Previous microarray study reported that miR-214 was downregulated in the sigmoid colon of patients with active UC, but the roles of miR-214 in the pathogenesis of UC remain to be elucidated. In this study, significant lower level of miR-214-3p and higher level of STAT6 in the intestinal mucosa of active UC patients compared with the health controls were confirmed by quantitative real-time PCR. Results of luciferase reporter assays and western blot demonstrated that miR-214-3p directly targets STAT6 and negatively regulates the expression of STAT6 at the posttranscriptional level. Furthermore, the expression of miR-214-3p was decreased in TNF-α treated HT29 cells and STAT6 protein level was increased in a time-dependent manner. Silenced STAT6 and upregulation of miR-214-3p could decrease the level of INF-γ in TNF-α treated HT29 cells. Additionally, the results of the present study indicate that miR-214-3p and STAT6 axis may be a novel therapeutic target for intestinal inflammation of patients with active UC.
Collapse
|
38
|
Dai F, Mei L, Meng S, Ma Z, Guo W, Zhou J, Zhang J. The global expression profiling in esophageal squamous cell carcinoma. Genomics 2017; 109:241-250. [PMID: 28442363 DOI: 10.1016/j.ygeno.2017.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
|
39
|
Jiang L, Zhao Z, Zheng L, Xue L, Zhan Q, Song Y. Downregulation of miR-503 Promotes ESCC Cell Proliferation, Migration, and Invasion by Targeting Cyclin D1. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:208-217. [PMID: 28602785 PMCID: PMC5487524 DOI: 10.1016/j.gpb.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of microRNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Further investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpression of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1.
Collapse
Affiliation(s)
- Lanfang Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
40
|
Deng X, Luo M. Expression of miR-944 in esophageal squamous cell carcinoma and its role in cell proliferation and invasion in human esophageal carcinoma cell line Eca109. Shijie Huaren Xiaohua Zazhi 2017; 25:684-690. [DOI: 10.11569/wcjd.v25.i8.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of miRNA-944 in esophageal squamous cell carcinoma (ESCC), and to explore its role in cell proliferation and migration in human esophageal cancer cell line Eca109.
METHODS ESCC and matched tumor adjacent noncancerous tissue samples were obtained from 36 patients who underwent surgical treatment and were pathologically diagnosed with ESCC. Real-time quantitative PCR (qRT-PCR) was used to detect the expression levels of miRNA-944, and the relationship between miRNA-944 and clinical and pathological parameters were then analyzed. Eca109 cells were transfected with miR-944 mimic, inhibitor and negative control using LipofectamineTM2000, and then the expression level of miR-944 was detected by qRT-PCR. Cell proliferation and invasion were assessed by MTT assay and transwell assay, respectively.
RESULTS The expression level of miR-944 in ESCC tissues was significantly higher than that in tumor adjacent non-cancerous tissues (P < 0.01).The up-regulation of miR-944 expression in ESCC was correlated with advanced TNM stage (P < 0.01) and lymph node metastasis (P < 0.01). Compared to control cells, transfection of miR-944 mimic and inhibitor up- and down-regulated miR-944 expression in Eca109 cells, respectively (P < 0.01). Furthermore, transfection of miR-944 mimic enhanced cell proliferation and invasion, while transfection of miR-944 inhibitor inhibited cell proliferation and invasion (P < 0.01).
CONCLUSION The expression of miR-944 is up-regulated in ESCC and associated with TNM stage and lymph node metastasis, indicating that miR-944 may facilitate ESCC occurrence possibly by promoting the proliferation and invasion of ESCC cells.
Collapse
|
41
|
Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:159-169. [PMID: 28069583 DOI: 10.1093/abbs/gmw131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type in China. MicroRNAs are endogenously expressed in mammals and play a significant role in tumor invasion and metastasis by targeting potential downstream genes. In the present study, microarray analysis showed that miR-375 expression was distinctly downregulated in ESCC compared with that in normal esophageal epithelium tissues. Then, luciferase reporter assay showed that SHOX2 was the direct downstream target of miR-375 and this interaction was confirmed by the rescue experiments. Quantitative polymerase chain reaction results also showed that SHOX2 expression was upregulated in ESCC cells and tissues. Further analysis showed that SHOX2 induced proliferation, invasion, and metastasis of ESCC both in vivo and in vitro. Moreover, the interaction between miR-375 and SHOX2 affected the epithelial-to-mesenchymal transition. We conclude that miR-375 may suppress invasion and metastasis of ESCC by directly targeting SHOX2. The miR-375/SHOX2 axis may be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
42
|
Qin Y, Zhang Y, Tang Q, Jin L, Chen Y. SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:138-148. [PMID: 28069586 DOI: 10.1093/abbs/gmw127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that microRNAs, which control gene expression at the post-transcriptional level, are aberrantly expressed in cancers and play significant roles in carcinogenesis and cancer progression. In this study, we show differential miR-133b down-expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. In addition, squalene epoxidase (SQLE), a key enzyme of cholesterol synthesis, is identified as the direct downstream target gene of miR-133b by luciferase gene reporter assay. Furthermore, ectogenic miR-133b expression and SQLE knockdown can inhibit proliferation, invasion, and metastasis, and diminish epithelial-to-mesenchymal transition (EMT) traits of ESCC in vitro, implying that miR-133b-dependent SQLE can induce tumorigenicity and that SQLE is an EMT inducer. Xenograft experiment results also proved the biological function of SQLE in vivo. Therefore, we conclude that miR-133b-dependent SQLE plays a critical role in the potential metastasis mechanisms in ESCC.
Collapse
Affiliation(s)
- Yi Qin
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng 224001, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Qinting Tang
- College of Nursing, Yancheng Vocational Institute of Health Sciences, Yancheng 224006, China
| | - Li Jin
- Sichuan Cancer Hospital, Chengdu 610041, China
| | - Yong'an Chen
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| |
Collapse
|
43
|
Wang J, Yu M, Guan S, Zhang G, Wang J, Cheng Y. Prognostic significance of microRNA-100 in solid tumors: an updated meta-analysis. Onco Targets Ther 2017; 10:493-502. [PMID: 28176958 PMCID: PMC5271396 DOI: 10.2147/ott.s122774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to identify prognostic significance of microRNA-100 (miR-100) in solid tumor. Methods Literature search was conducted in databases such as PubMed, Embase, and Web of Science, using the following words “(microRNA-100 OR miR-100 OR mir100) AND (tumor OR neoplasm OR cancer OR carcinoma OR malignancy).” The search was updated up until July 10, 2016. Newcastle–Ottawa scale was used to evaluate the quality of studies. Pooled hazard ratio (HR) with 95% confidence interval (CI) for patients’ survival was calculated by using a fixed-effects or a random-effects model on the basis of heterogeneity. Subgroup analysis, sensitive analysis, and meta-regression were used to investigate the sources of heterogeneity. Publication bias was evaluated by using Begg’s and Egger’s tests. Results A total of 16 articles with 1,501 patients were included in the present meta-analysis. It was demonstrated that a lower expression of miR-100 plays a negative role in the overall survival (OS) of patients with solid tumor (HR =1.92; 95% CI =1.25–2.94). In addition, the association between miR-100 and prognosis was also revealed in the following subgroups: non-small-cell lung cancer (NSCLC; HR =2.46; 95% CI =1.98–3.06), epithelial ovarian cancer (EOC; HR =2.29, 95% CI =1.72–3.04), and bladder cancer (BC; HR =4.14, 95% CI =1.85–9.27). Conclusion This meta-analysis indicates that lower expression of miR-100 is related to poorer OS in patients with solid tumor, especially in those with NSCLC, EOC, and BC. MiR-100 is a promising prognosis predictor and may be a potential target for therapy in the future.
Collapse
Affiliation(s)
- Jiangfeng Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Miao Yu
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Guangyu Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
44
|
Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1629236. [PMID: 27597954 PMCID: PMC5002303 DOI: 10.1155/2016/1629236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/26/2016] [Indexed: 11/17/2022]
Abstract
Background. Epicardial adipose tissue (EAT) is identified as an atypical fat depot surrounding the heart with a putative role in the involvement of metabolic disorders, including obesity, type-2 diabetes mellitus, and atherosclerosis. We profiled miRNAs in EAT of metabolic patients with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM) versus metabolically healthy patients by microarray. Compared to metabolically healthy patients, we identified forty-two miRNAs that are differentially expressed in patients with CAD and T2DM from Xinjiang, China. Eleven miRNAs were selected as potential novel miRNAs according to P value and fold change. Then the potential novel miRNAs targeted genes were predicted via TargetScan, PicTar, and miRTarbase, and the function of the target genes was predicted via Gene Ontology (GO) analysis while the enriched KEGG pathway analyses of the miRNAs targeted genes were performed by bioinformatics software DAVID. Then protein-protein interaction networks of the targeted gene were conducted by online software STRING. Finally, using microarray, bioinformatics approaches revealed the possible molecular mechanisms pathogenesis of CAD and T2DM. A total of 11 differentially expressed miRNAs were identified and among them, hsa-miR-4687-3p drew specific attention. Bioinformatics analysis revealed that insulin signaling pathway is the central way involved in the progression of metabolic disorders. Conclusions. The current findings support the fact that miRNAs are involved in the pathogenesis of metabolic disorders in EAT of CAD patients with T2DM, and validation of the results of these miRNAs by independent and prospective study is certainly warranted.
Collapse
|
45
|
Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (Review). Oncol Rep 2016; 36:1191-8. [PMID: 27349337 DOI: 10.3892/or.2016.4908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xianzi Wen
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNA) are 22-nucleotide non-coding RNAs that post-transcriptionally regulate gene expression by base pairing to partially complementary sequences in the 3'-untranslated region of their target messenger RNA. Altered miRNA expression also changes the expression of oncogenes and tumor suppressors, affecting the proliferation, apoptosis, motility and invasibility of gastrointestinal cancer cells, including the cells of esophageal squamous cell carcinoma (ESCC). It has been suggested that various miRNA expression profiles may provide useful biomarkers and therapeutic targets, but to date few studies have been published on the role of miRNA in ESCC. In this review we summarize the identification and characterization of miRNAs involved in ESCC and discuss their potential as biomarkers and therapeutic targets.
Collapse
|
47
|
Jiang S, Zhao C, Yang X, Li X, Pan Q, Huang H, Wen X, Shan H, Li Q, Du Y, Zhao Y. miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression. Int J Mol Med 2016; 38:113-22. [PMID: 27247259 PMCID: PMC4899011 DOI: 10.3892/ijmm.2016.2619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/10/2016] [Indexed: 12/28/2022] Open
Abstract
Several aberrant microRNAs (miRNAs or miRs) have been implicated in esophageal cancer (EC), which is widely prevalent in China. However, their role in EC tumorigenesis has not yet been fully elucidated. In the present study, we determined that miR-1 was downregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent non-neoplastic tissues using RT-qPCR, and confirmed this using an ESCC cell line. Using a nude mouse xenograft model, we confirmed that the re-expression of miR-1 significantly inhibited ESCC tumor growth. A tetrazolium assay and a trypan blue exclusion assay revealed that miR-1 suppressed ESCC cell proliferation and increased apoptosis, whereas the silencing of miR-1 promoted cell proliferation and decreased apoptosis, suggesting that miR-1 is a novel tumor suppressor. To elucidate the molecular mechanisms of action of miR-1 in ESCC, we investigated putative targets using bioinformatics tools. MET, cyclin D1 and cyclin-dependent kinase 4 (CDK4), which are involved in the hepatocyte growth factor (HGF)/MET signaling pathway, were found to be targets of miR-1. miR-1 expression inversely correlated with MET, cyclin D1 and CDK4 expression in ESCC cells. miR-1 directly targeted MET, cyclin D1 and CDK4, suppressing ESCC cell growth. The newly identified miR-1/MET/cyclin D1/CDK4 axis provides new insight into the molecular mechanisms of ESCC pathogenesis and indicates a novel strategy for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Sen Jiang
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Chao Zhao
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Xiaodi Yang
- Department of Gastroenterology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Xiangyang Li
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Qing Pan
- Department of Laboratory Medicine, Huaiyin Hospital of Huaian city, Huaian, Jiangsu 233004, P.R. China
| | - Haijin Huang
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Xuyang Wen
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Husheng Shan
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Qianwen Li
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Yunxiang Du
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| | - Yaping Zhao
- The 82nd Hospital of the People's Liberation Army, Huaian, Jiangsu 223001, P.R. China
| |
Collapse
|
48
|
Gomez IG, Nakagawa N, Duffield JS. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol 2016; 310:F931-44. [PMID: 26911854 PMCID: PMC5002060 DOI: 10.1152/ajprenal.00523.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRs), a class of small noncoding RNAs that act as post-transcriptional regulators of gene expression, have attracted increasing attention as critical regulators of organogenesis, cancer, and disease. Interest has been spurred by development of a novel class of synthetic RNA oligonucleotides with excellent drug-like properties that hybridize to a specific miR, preventing its action. In kidney disease, a small number of miRs are dysregulated. These overlap with regulated miRs in nephrogenesis and kidney cancers. Several dysregulated miRs have been identified in fibrotic diseases of other organs, representing a "fibrotic signature," and some of these fibrotic miRs contribute remarkably to the pathogenesis of kidney disease. Chronic kidney disease, affecting ∼10% of the population, leads to kidney failure, with few treatment options. Here, we will explore the pathological mechanism of miR-21, whose pre-eminent role in amplifying kidney disease and fibrosis by suppressing mitochondrial biogenesis and function is established. Evolving roles for miR-214, -199, -200, -155, -29, -223, and -126 in kidney disease will be discussed, and we will demonstrate how studying functions of distinct miRs has led to new mechanistic insights for kidney disease progression. Finally, the utility of anti-miR oligonucleotides as potential novel therapeutics to treat chronic disease will be highlighted.
Collapse
Affiliation(s)
- Ivan G Gomez
- Research and Development, Biogen, Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and Division of Nephrology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Jeremy S Duffield
- Research and Development, Biogen, Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and
| |
Collapse
|
49
|
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, Li JT, Sheng W, Zeng Y. miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep 2016; 35:3453-9. [PMID: 27035873 DOI: 10.3892/or.2016.4701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are highly conserved non-coding RNAs that regulate gene expression at the post-transcriptional level, and play pivotal roles in cancer development and progression. miR-100 has been reported to be significantly downregulated in a variety of cancers, including esophageal cancer. However, the role of miR-100 in human esophageal cancer has not been fully elucidated. We demonstrated that overexpression of miR-100 in esophageal cancer cells markedly inhibited cell proliferation, migration and invasion as well as tumor growth. We subsequently showed that CXCR7 is a direct target gene of miR-100. Our results indicated that miR-100 plays a tumor-suppressor role in esophageal cancer and suggest its potential application for esophageal cancer treatment.
Collapse
Affiliation(s)
- Shao-Mei Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Fang Zhang
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xue-Bin Chen
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Cao-Ming Jun
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xin Jing
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Deng-Xiong Wei
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yang Xia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yu-Bai Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xiang-Qian Xiao
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Run-Qing Jia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Jing-Tao Li
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Wang Sheng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yi Zeng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| |
Collapse
|
50
|
Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 2016; 6:6001-13. [PMID: 25749389 PMCID: PMC4467417 DOI: 10.18632/oncotarget.3469] [Citation(s) in RCA: 561] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs with exonic sequences represent a special form of non-coding RNAs, discovered by analyzing a handful of transcribed genes. It has been observed that circular RNAs function as microRNA sponges. In the present study, we investigated whether the expression of circular RNAs is altered during the development of esophageal squamous cell carcinoma (ESCC). Using a TaqMan-based reverse transcriptase polymerase chain reaction assay, the relationship between cir-ITCH and ESCC was analyzed in a total of 684 ESCC and paired adjacent non-tumor tissue samples from eastern and southern China. We found that cir-ITCH expression was usually low in ESCC compared to the peritumoral tissue. The functional relevance of cir-ITCH was further examined by biochemical assays. As sponge of miR-7, miR-17, and miR-214, cir-ITCH might increase the level of ITCH. ITCH hyper expression promotes ubiquitination and degradation of phosphorylated Dvl2, thereby inhibiting the Wnt/β-catenin pathway. These results indicate that cir-ITCH may have an inhibitory effect on ESCC by regulating the Wnt pathway.
Collapse
Affiliation(s)
- Fang Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Liyuan Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jieqiong Deng
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jian Zheng
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Mingxing An
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| |
Collapse
|