1
|
Bourebaba L, Bourebaba N, Galuppo L, Marycz K. Artificial mitochondrial transplantation (AMT) reverses aging of mesenchymal stromal cells and improves their immunomodulatory properties in LPS-induced synoviocytes inflammation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119806. [PMID: 39098401 DOI: 10.1016/j.bbamcr.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Nowadays, regenerative medicine techniques are usually based on the application of mesenchymal stromal cells (MSCs) for the repair or restoration of injured damaged tissues. However, the effectiveness of autologous therapy is limited as therapeutic potential of MSCs declines due to patient's age, health condition and prolonged in vitro cultivation as a result of decreased growth rate. For that reason, there is an urgent need to develop strategies enabling the in vitro rejuvenation of MSCs prior transplantation in order to enhance their in vivo therapeutic efficiency. In presented study, we attempted to mimic the naturally occurring mitochondrial transfer (MT) between neighbouring cells and verify whether artificial MT (AMT) could reverse MSCs aging and improve their biological properties. For that reason, mitochondria were isolated from healthy donor equine adipose-derived stromal cells (ASCs) and transferred into metabolically impaired recipient ASCs derived from equine metabolic syndrome (EMS) affected horses, which were subsequently subjected to various analytical methods in order to verify the cellular and molecular outcomes of the applied AMT. Mitochondria recipient cells were characterized by decreased apoptosis, senescence and endoplasmic reticulum stress while insulin sensitivity was enhanced. Furthermore, we observed increased mitochondrial fragmentation and associated PARKIN protein accumulation, which indicates on the elimination of dysfunctional organelles via mitophagy. AMT further promoted physioxia and regulated autophagy fluxes. Additionally, rejuvenated ASCs displayed an improved anti-inflammatory activity toward LPS-stimulated synoviocytes. The presented findings highlight AMT as a promising alternative and effective method for MSCs rejuvenation, for potential application in autologous therapies in which MSCs properties are being strongly deteriorated due to patients' condition.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Nabila Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95516, United States
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, United States.
| |
Collapse
|
2
|
Merlo B, Iacono E. Beyond Canine Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Transplantation: An Update on Their Secretome Characterization and Applications. Animals (Basel) 2023; 13:3571. [PMID: 38003188 PMCID: PMC10668816 DOI: 10.3390/ani13223571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
A dog is a valuable animal model and concomitantly a pet for which advanced therapies are increasingly in demand. The characteristics of mesenchymal stem/stromal cells (MSCs) have made cell therapy more clinically attractive. During the last decade, research on the MSC therapeutic effectiveness has demonstrated that tissue regeneration is primarily mediated by paracrine factors, which are included under the name of secretome. Secretome is a mixture of soluble factors and a variety of extracellular vesicles. The use of secretome for therapeutic purposes could have some advantages compared to cell-based therapies, such as lower immunogenicity and easy manufacturing, manipulation, and storage. The conditioned medium and extracellular vesicles derived from MSCs have the potential to be employed as new treatments in veterinary medicine. This review provides an update on the state-of-the-art characterization and applications of canine adipose tissue-derived MSC secretome.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Wang A, Clark K, Amador A. Convergence of human and veterinary medicine: leveraging canine naturally occurring neurological disorders to develop regenerative treatments. Neural Regen Res 2023; 18:541-542. [DOI: 10.4103/1673-5374.350195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Verstappen K, Aquarius R, Klymov A, Wever KE, Damveld L, Leeuwenburgh SCG, Bartels RHMA, Hooijmans CR, Walboomers XF. Systematic Evaluation of Spinal Cord Injury Animal Models in the Field of Biomaterials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1169-1179. [PMID: 34915758 PMCID: PMC9805871 DOI: 10.1089/ten.teb.2021.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The large number of animal models used in spinal cord injury (SCI) research complicates the objective selection of the most appropriate model to investigate the efficacy of biomaterial-based therapies. This systematic review aims to identify a list of relevant animal models of SCI by evaluating the confirmation of SCI and animal survival in all published SCI models used in biomaterials research up until April 2021. A search in PubMed and Embase based on "spinal cord injury," "animal models," and "biomaterials" yielded 4606 papers, 393 of which were further evaluated. A total of 404 individual animal experiments were identified based on type of SCI, level of SCI, and the sex, species, and strain of the animals used. Finally, a total of 149 unique animal models were comparatively evaluated, which led to the generation of an evidence-based list of well-documented mid-thoracic rat models of SCI. These models were used most often, clearly confirmed SCI, and had relatively high survival rates, and therefore could serve as a future starting point for studying novel biomaterial-based therapies for SCI. Furthermore, the review discusses (1) the possible risk of bias in SCI animal models, (2) the difficulty in replication of such experiments due to frequent poor reporting of the methods and results, and (3) the clinical relevance of the currently utilized models. Systematic review registration: The study was prospectively registered in PROSPERO, registration number CRD42019141162. Impact statement Studies on biomaterial-based therapies within the field of spinal cord injury (SCI) research show a large inconsistency concerning the selection of animal models. This review goes beyond summarizing the existing gaps between experimental and clinical SCI by systematically evaluating all animal models used within this field. The models identified by this work were used most often, clearly confirmed SCI, and had a relatively high survival rate. This evidence-based list of well-documented animal models will serve as a practical guideline in future research on innovative biomaterial-based therapies for SCI.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Aquarius
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberley E. Wever
- SYstematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lyan Damveld
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carlijn R. Hooijmans
- SYstematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Address correspondence to: X. Frank Walboomers, PhD, Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101 (309), Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
5
|
Chen CC, Yang SF, Wang IK, Hsieh SY, Yu JX, Wu TL, Huong WJ, Su MH, Yang HL, Chang PC, Teng AC, Chia-Yi C, Liang SL. The Long-Term Efficacy Study of Multiple Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cells Transplantations Combined With Surgery in Four Dogs With Lumbosacral Spinal Cord Injury. Cell Transplant 2022; 31:9636897221081487. [PMID: 35225026 PMCID: PMC8894939 DOI: 10.1177/09636897221081487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Severe lumbosacral pain, paraparesis or paraplegia, and urinary incontinence are common but frustrating problems in dogs with lumbosacral spinal cord injury (SCI). The surgical interventions including stabilization and decompression may not restore satisfying neurological functions in severe SCI. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) show benefits in immunomodulation, anti-inflammation, and promotion of axonal growth and remyelination, and also display efficacy in several diseases in veterinary medicine. In this report, four dogs presented with fracture of sacrum vertebrae or fracture of seventh lumbar and lumbosacral displacement after road traffic accidents. The clinical signs include lumbosacral pain (4/4), paraparesis (3/4), paraplegia (1/4), and urinary incontinence (4/4). All dogs were treated by surgical decompression with or without stabilization 1 to 7 weeks after trauma. Allogeneic canine Ad-MSCs (cAd-MSCs) were injected locally on nerve roots through the surgical region in all dogs. One dose of intravenous transplantation and 4 doses of local transplantation were also performed within 8 weeks after the surgery separately. All dogs showed significant neurological improvements with normal ambulatory ability (4/4) and urinary control (3/4) 3 months after the surgery and the first cAd-MSCs transplantation. No side effect was related to multiple cAd-MSCs transplantations during 6 months monitoring in all dogs. In conclusion, multiple cAd-MSCs transplantations could be a recommended treatment combined with surgery in dogs with lumbosacral SCI.
Collapse
Affiliation(s)
| | | | - Ing-Kae Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Sing-Ying Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Jian-Xi Yu
- United Specialists Animal Hospital, Kaohsiung City
| | - Tze-Lien Wu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Wan-Jhen Huong
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Min-Hao Su
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | | | | | - Ann-Chi Teng
- United Specialists Animal Hospital, Kaohsiung City
| | - Chen Chia-Yi
- United Specialists Animal Hospital, Kaohsiung City
| | | |
Collapse
|
6
|
Benavides FP, Pinto GBA, Heckler MCT, Hurtado DMR, Teixeira LR, Monobe MMDS, Machado GF, de Melo GD, Rodríguez-Sánchez DN, Alvarenga FDCLE, Amorim RM. Intrathecal Transplantation of Autologous and Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Dogs. Cell Transplant 2021; 30:9636897211034464. [PMID: 34427495 PMCID: PMC8388229 DOI: 10.1177/09636897211034464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The route used in the transplantation of mesenchymal stem cells (MSCs) can directly affect the treatment success. The transplantation of MSCs via the intrathecal (IT) route can be an important therapeutic strategy for neurological disorders. The objective of this study was to evaluate the safety and feasibility of the IT transplantation of autologous (Auto-MSCs) and allogeneic (Allo-MSCs) bone marrow mesenchymal stem cells (BM-MSCs) in healthy dogs. Based on neurodisability score, cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI), no significant differences from the control group were observed on day 1 or day 5 after IT Auto- or Allo-MSCs transplantation (P > 0.05). In addition, analysis of matrix metalloproteinase (MMP)-2 and MMP-9 expression in the CSF revealed no significant differences (P > 0.05) at 5 days after IT transplantation in the Auto- or Allo-MSCs group when compared to the control. Intrathecal transplantation of BM-MSCs in dogs provides a safe, easy and minimally invasive route for the use of cell-based therapeutics in central nervous system diseases.
Collapse
Affiliation(s)
- Felipe Pérez Benavides
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Marta Cristina Thomas Heckler
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Diana Milena Rodríguez Hurtado
- Department of Animal Reproduction and Veterinary Radiology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Livia Ramos Teixeira
- Department of Veterinary Surgery and Anesthesiology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Mitie de Souza Monobe
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | - Gisele Fabrino Machado
- Department of Clinics, Surgery and Animal Reproduction, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Guilherme Dias de Melo
- Department of Clinics, Surgery and Animal Reproduction, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| | | | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-681-Botucatu, SP, Brazil
| |
Collapse
|
7
|
Atkinson SP. A preview of selected articles. STEM CELLS (DAYTON, OHIO) 2021; 38:1051-1054. [PMID: 32853480 DOI: 10.1002/stem.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
|
8
|
Wood CR, Juárez EH, Ferrini F, Myint P, Innes J, Lossi L, Merighi A, Johnson WEB. Mesenchymal stem cell conditioned medium increases glial reactivity and decreases neuronal survival in spinal cord slice cultures. Biochem Biophys Rep 2021; 26:100976. [PMID: 33718633 PMCID: PMC7933697 DOI: 10.1016/j.bbrep.2021.100976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) transplantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC conditioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly decreased the prevalence of βIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were significantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a careful comparison of the different experimental conditions used to assess the potential of cell therapies for the treatment of spinal cord injury. Treatment of spinal slices with conditioned medium caused cell phenotypic changes. Resident astrocytes become hypertrophic, yet neuronal axonal outgrowth reduced. Signalling cells reduced in number but increased their signalling activity. Highlights importance of simulation systems and systemic factors in CNS models.
Collapse
Affiliation(s)
- Chelsea R Wood
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - Esri H Juárez
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.,Université Laval, Department of Psychiatry and Neuroscience, G1K 7P4, Québec, Canada
| | - Peter Myint
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - John Innes
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - William E B Johnson
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| |
Collapse
|
9
|
Hendawy H, Uemura A, Ma D, Namiki R, Samir H, Ahmed MF, Elfadadny A, El-Husseiny HM, Chieh-Jen C, Tanaka R. Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals (Basel) 2021; 11:ani11020460. [PMID: 33572472 PMCID: PMC7916364 DOI: 10.3390/ani11020460] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Adipose stromal vascular fraction (SVF) cells are freshly isolated non-cultured mesenchymal stem cells, which have been recently applied in the treatment of several musculoskeletal inflammatory conditions in dogs. However, the best adipose tissue (AT) sampling site is still challenging. This study first addressed the ideal AT harvesting site in canines ranging between middle and old age, the most susceptible age to chronic musculoskeletal problems. Our results showed that the peri-ovarian region is the best AT harvesting site, which yields high amounts of SVF cells with enough adipose-derived stem cells. These data may help the further set-up of cell-based regenerative therapies at the preclinical and experimental level in canines. Abstract Mesenchymal stem cells (MSCs) constitute a great promise for regenerative therapy, but these cells are difficultly recovered in large amounts. A potent alternative is the stromal vascular fraction (SVF), non-cultured MSCs, separated from adipose tissue (AT). We aim to evaluate AT harvesting site effect on the SVF cells’ quantity and quality in dogs. Subcutaneous abdominal fat, falciform ligament and peri-ovarian fat were sampled. After SVF isolation, the trypan blue exclusion test and a hemocytometer were used to assess the cell viability and cellular yield. SVF cells were labeled for four surface antigenic markers, clusters of differentiation CD90, CD44, CD29, and CD45, and then examined by flow cytometry. Semi-quantitative RT-PCR was used to evaluate the gene expression of the former markers in addition to OCT-4 and CD34. SVF cells in the peri-ovarian AT recorded the highest viability% (99.63 ± 0.2%), as well as a significantly higher cellular yield (36.87 ± 19.6 × 106 viable cells/gm fat, p < 0.001) and a higher expression of adipose-derived mesenchymal stem cells AD-MSCs surface markers than that of other sites. SVF cells from the peri-ovarian site revealed a higher expression of MSC markers (CD90, CD44, and CD29) and OCT-4 compared to the other sites, with weak CD45 and CD34 expressions. The positive OCT-4 expression demonstrated the pluripotency of SVF cells isolated from different sites. To conclude, the harvesting site is a strong determinant of SVF cells’ quantity and quality, and the peri-ovarian site could be the best AT sampling site in dogs.
Collapse
Affiliation(s)
- Hanan Hendawy
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Ryosuke Namiki
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mahmoud F. Ahmed
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, El-Beheira 22511, Egypt;
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Elqaliobiya 13736, Egypt
| | - Cheng Chieh-Jen
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Correspondence: ; Tel.: +81-042-367-5904
| |
Collapse
|
10
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Chow L, McGrath S, de Arruda Saldanha C, Whalen LR, Packer R, Dow S. Generation of Neural Progenitor Cells From Canine Induced Pluripotent Stem Cells and Preliminary Safety Test in Dogs With Spontaneous Spinal Cord Injuries. Front Vet Sci 2020; 7:575938. [PMID: 33251262 PMCID: PMC7674778 DOI: 10.3389/fvets.2020.575938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in stem cell technology, including the use of induced pluripotent stem cells (iPSC) to produce neurons and glial cells, offer new hope for patients with neurological disease and injuries. Pet dogs with spinal cord injuries provide an important spontaneous animal model for evaluating new approaches to stem cell therapy. Therefore, studies were conducted to identify optimal conditions for generating neural progenitor cells (NPC) from canine induced pluripotent stem cells (iPSC) for preliminary evaluation in animals with spinal cord injury. We found that canine NPC could be induced to differentiate into mature neural cells, including glia and neurons. In addition, canine NPC did not form teratomas when injected in NOD/SCID mice. In a pilot study, two dogs with chronic spinal cord injury underwent fluoroscopically guided intrathecal injections of canine NPC. In follow-up MRI evaluations, tumor formation was not observed at the injection sites. However, none of the animals experienced meaningful clinical or electrophysiological improvement following NPC injections. These studies provide evidence that canine iPSC can be used to generate NPC for evaluation in cellular therapy of chronic spinal cord injury in the dog spontaneous injury model. Further refinements in the cell implantation procedure are likely required to enhance stem cell treatment efficacy.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Center for Immune and Regenerative Medicine, Colorado State University, Ft. Collins, CO, United States
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Camila de Arruda Saldanha
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Center for Immune and Regenerative Medicine, Colorado State University, Ft. Collins, CO, United States
| | - Lawrence R Whalen
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Rebecca Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Center for Immune and Regenerative Medicine, Colorado State University, Ft. Collins, CO, United States.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| |
Collapse
|
12
|
Sharun K, Rawat T, Kumar R, Chandra V, Saxena AC, Pawde AM, Kinjavdekar P, Amarpal, Sharma GT. Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Vet Anim Sci 2020; 10:100152. [PMID: 33117911 PMCID: PMC7581962 DOI: 10.1016/j.vas.2020.100152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Intraspinal administration of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) along with supportive therapy can be recommended as a therapeutic strategy for managing neural defects associated with non-deviating vertebral compression fractures in canine patients. Percutaneous technique described in this communication is a non-invasive and efficient method that can be used for transplanting stem cell into the target site without the need of any imaging or guidance system. Simplified implantation protocol that can be applied in the field level.
Stem cell therapy has been extensively evaluated for its potential in managing neuronal diseases and disorders. The present study was performed to evaluate the therapeutic potential of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) for the management of neural defects associated with vertebral compression fracture (VCF) in canine. Six clinical cases presented with the history of neural defects secondary to non-deviating VCFs were included in the present study. All the animals were subjected to detailed clinical, radiological, and haematological investigations and observations were recorded. The neurological defects in each case were graded based on routine neurological examination. The aBM-MSCs were isolated, cultured, and characterized as per ISCT criteria from the bone marrow collected from healthy dogs presented for elective surgery. The prepared cell suspension containing aBM-MSC at 3rd passage was utilized for transplantation in the clinical cases of VCF. Following the intraspinal administration of aBM-MSC, the dogs were treated with methylcobalamin and gabapentin orally throughout the study period. Improvement was evaluated on the basis of a detailed neurological examination. Significant improvement in locomotor status and sensory functions was observed in all the cases. Findings of the present study suggest that intraspinal administration of aBM-MSCs along with supportive therapy can be recommended as a therapeutic strategy for managing neural defects associated with non-deviating VCFs in canine patients.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Tushar Rawat
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Abhishek Chandra Saxena
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
14
|
Fan X, Ma W, Zhang Y, Zhang L. P2X7 Receptor (P2X7R) of Microglia Mediates Neuroinflammation by Regulating (NOD)-Like Receptor Protein 3 (NLRP3) Inflammasome-Dependent Inflammation After Spinal Cord Injury. Med Sci Monit 2020; 26:e925491. [PMID: 32952148 PMCID: PMC7518010 DOI: 10.12659/msm.925491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Microglia participate in mediating neuroinflammation in which P2X7R triggered by adenosine triphosphate has a critical effect after spinal cord injury. However, how the P2X7R of microglia regulate neuroinflammation after spinal cord injury is still unclear. The aim of this study was to explore the mechanism by which the P2X7 receptor of microglia regulates neuroinflammation after spinal cord injury in NLRP3 inflammasome-dependent inflammation. Material/Methods Sixt rats were divided into 5 groups: a sham group, a model group, a BzATP group, an A-438079 group, and a BzATP+CY-09 group. Rats in the sham group were only subjected to laminectomy and rats in the other groups were subjected to spinal cord injury followed by treatment with physiological saline, BzATP, A-438079, and BzATP following CY-09, separately. Real-time polymerase chain reaction, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were used to analyze the scientific hypothesis. Results (i) P2X7R of microglia was upregulated and downregulated by BzATP, and A-438079 was upregulated after spinal cord injury. (ii) Upregulation of P2X7R on microglia is coincident with increase of neuroinflammation after spinal cord injury. (iii) P2X7R of microglia participates in spinal cord-mediated neuroinflammation via regulating NLRP3 inflammasome-dependent inflammation. Conclusions P2X7R of microglia in spinal cord mediates neuroinflammation by regulating NLRP3 inflammasome-dependent inflammation after spinal cord injury.
Collapse
Affiliation(s)
- Xiao Fan
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland).,Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland)
| | - Wei Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Yingyu Zhang
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Li Zhang
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland).,Xiamen Medical College, Xiamen, Fujian, China (mainland)
| |
Collapse
|
15
|
Delfi IRTA, Wood CR, Johnson LDV, Snow MD, Innes JF, Myint P, Johnson WEB. An In Vitro Comparison of the Neurotrophic and Angiogenic Activity of Human and Canine Adipose-Derived Mesenchymal Stem Cells (MSCs): Translating MSC-Based Therapies for Spinal Cord Injury. Biomolecules 2020; 10:biom10091301. [PMID: 32916959 PMCID: PMC7563337 DOI: 10.3390/biom10091301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of research into the effects of mesenchymal stem cell (MSC) transplants on spinal cord injury (SCI) is performed in rodent models, which may help inform on mechanisms of action, but does not represent the scale and wound heterogeneity seen in human SCI. In contrast, SCI in dogs occurs naturally, is more akin to human SCI, and can be used to help address important aspects of the development of human MSC-based therapies. To enable translation to the clinic and comparison across species, we have examined the paracrine, regenerative capacity of human and canine adipose-derived MSCs in vitro. MSCs were initially phenotyped according to tissue culture plastic adherence, cluster of differentiation (CD) immunoprofiling and tri-lineage differentiation potential. Conditioned medium (CM) from MSC cultures was then assessed for its neurotrophic and angiogenic activity using established cell-based assays. MSC CM significantly increased neuronal cell proliferation, neurite outgrowth, and βIII tubulin immunopositivity. In addition, MSC CM significantly increased endothelial cell migration, cell proliferation and the formation of tubule-like structures in Matrigel assays. There were no marked or significant differences in the capacity of human or canine MSC CM to stimulate neuronal cell or endothelial cell activity. Hence, this study supports the use of MSC transplants for canine SCI; furthermore, it increases understanding of how this may subsequently provide useful information and translate to MSC transplants for human SCI.
Collapse
Affiliation(s)
| | - Chelsea R. Wood
- Faculty of Medicine, Dentistry and Life Sciences, University of Chester, Parkgate Road, Chester, Cheshire CH1 4BJ, UK; (C.R.W.); (L.D.V.J.)
| | - Louis D. V. Johnson
- Faculty of Medicine, Dentistry and Life Sciences, University of Chester, Parkgate Road, Chester, Cheshire CH1 4BJ, UK; (C.R.W.); (L.D.V.J.)
| | | | - John F. Innes
- Veterinary Tissue Bank, Chirk L14 5ND, UK; (J.F.I.); (P.M.)
| | - Peter Myint
- Veterinary Tissue Bank, Chirk L14 5ND, UK; (J.F.I.); (P.M.)
| | - William E. B. Johnson
- Faculty of Medicine, Dentistry and Life Sciences, University of Chester, Parkgate Road, Chester, Cheshire CH1 4BJ, UK; (C.R.W.); (L.D.V.J.)
- Correspondence: ; Tel.: +44-(0)1244-51100
| |
Collapse
|
16
|
Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen Ther 2020; 15:121-128. [PMID: 33426210 PMCID: PMC7770349 DOI: 10.1016/j.reth.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. Methods The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. Results The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. Conclusions A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs. Functional rc-bFGF was successfully synthesized. rc-bFGF induced the differentiation of canine BMSCs into neuron-like cells. rc-bFGF may aid in regenerative therapy of spinal cord injury in dogs.
Collapse
Key Words
- BMSCs, bone marrow mesenchymal stem cells
- Basic fibroblast growth factor
- Bone marrow
- Differentiation
- Dog
- EDTA, ethylenediaminetetraacetic acid
- ERK, extracellular signal-regulated kinase
- FBS, fatal bovine serum
- FGFR, basic fibroblast growth factor receptor
- GUSB, β-glucuronidase
- HEK293, human embryonic kidney cells 293
- HRP, horseradish peroxidase
- Mesenchymal stem cell
- Neuron
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- PI3K, phosphatidylinositol 3-kinase
- RT-PCR, reverse transcription-polymerase chain reaction
- bFGF, basic fibroblast growth factor
- cDNA, complementary DNA
- mRNA, messenger ribonucleic acid
- pERK, phosphorylated extracellular signal-regulated kinase
- αMEM, alpha modified eagle minimum essential medium
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Airi Fujii
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Science, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mamiko Seki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
17
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
18
|
Bach FS, Rebelatto CLK, Fracaro L, Senegaglia AC, Fragoso FYI, Daga DR, Brofman PRS, Pimpão CT, Engracia Filho JR, Montiani-Ferreira F, Villanova JA. Comparison of the Efficacy of Surgical Decompression Alone and Combined With Canine Adipose Tissue-Derived Stem Cell Transplantation in Dogs With Acute Thoracolumbar Disk Disease and Spinal Cord Injury. Front Vet Sci 2019; 6:383. [PMID: 31781580 PMCID: PMC6857468 DOI: 10.3389/fvets.2019.00383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Paraparesis and paraplegia are common conditions in dogs, most often caused by a disc herniation in the thoracolumbar spinal segments (T3-L3), which is a neurological emergency. Surgical decompression should be performed as soon as possible when spinal compression is revealed by myelography, computed tomography, or magnetic resonance imaging. Mesenchymal stem-cell therapy is a promising adjunct treatment for spinal cord injury. This study sought to compare the effects of surgical decompression alone and combined with an allogeneic transplantation of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) in the treatment of dogs with acute paraplegia. Twenty-two adult dogs of different breeds with acute paraplegia resulting from a Hansen type I disc herniation in the thoracolumbar region (T3-L3) were evaluated using computed tomography. All dogs had grade IV or V lesions and underwent surgery within 7 days after symptom onset. They were randomly assigned into two groups, 11 dogs in each. The dogs in Group I underwent hemilaminectomy, and those in Group II underwent hemilaminectomy and cAd-MSC epidural transplantation. In both groups, all dogs with grade IV lesions recovered locomotion. The median locomotion recovery period was 7 days for Group II and 21 days for Group I, and this difference was statistically significant (p < 0.05). Moreover, the median length of hospitalization after the surgery was statistically different between the two groups (Group I, 4 days; Group II, 3 days; p < 0.05). There were no statistically significant between-group differences regarding the number of animals with grade IV or V lesions that recovered locomotion and nociception. In conclusion, compared with surgical decompression alone, the use of epidural cAd-MSC transplantation with surgical decompression may contribute to faster locomotor recovery in dogs with acute paraplegia and reduce the length of post-surgery hospitalization.
Collapse
Affiliation(s)
| | | | - Leticia Fracaro
- Nucleus of Cellular Technology, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | | | - Debora Regina Daga
- Nucleus of Cellular Technology, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | - Claudia Turra Pimpão
- Postgraduate Program in Animal Science, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | | | | | - José Ademar Villanova
- Postgraduate Program in Animal Science, Pontifical Catholic University of Paraná, Curitiba, Brazil
| |
Collapse
|
19
|
Lai B, Che M, Feng B, Bai Y, Li G, Ma Y, Wang L, Huang M, Wang Y, Jiang B, Ding Y, Zeng X, Zeng Y. Tissue-Engineered Neural Network Graft Relays Excitatory Signal in the Completely Transected Canine Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901240. [PMID: 31763143 PMCID: PMC6864506 DOI: 10.1002/advs.201901240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Indexed: 05/10/2023]
Abstract
Tissue engineering produces constructs with defined functions for the targeted treatment of damaged tissue. A complete spinal cord injury (SCI) model is generated in canines to test whether in vitro constructed neural network (NN) tissues can relay the excitatory signal across the lesion gap to the caudal spinal cord. Established protocols are used to construct neural stem cell (NSC)-derived NN tissue characterized by a predominantly neuronal population with robust trans-synaptic activities and myelination. The NN tissue is implanted into the gap immediately following complete transection SCI of canines at the T10 spinal cord segment. The data show significant motor recovery of paralyzed pelvic limbs, as evaluated by Olby scoring and cortical motor evoked potential (CMEP) detection. The NN tissue survives in the lesion area with neuronal phenotype maintenance, improves descending and ascending nerve fiber regeneration, and synaptic integration with host neural circuits that allow it to serve as a neuronal relay to transmit excitatory electrical signal across the injured area to the caudal spinal cord. These results suggest that tissue-engineered NN grafts can relay the excitatory signal in the completely transected canine spinal cord, providing a promising strategy for SCI treatment in large animals, including humans.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Yu‐Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Huan Ma
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ya‐Qiong Wang
- Department of Electron MicroscopeZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ying Ding
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
20
|
Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, Palumbo P, Lombardi F, Cimini A, Cifone MG, Crovace A, Galzio R. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon 2019; 5:e02818. [PMID: 31844735 PMCID: PMC6889232 DOI: 10.1016/j.heliyon.2019.e02818] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| | - Alberto Maria Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Samer K. Elbabaa
- Pediatric Neurosurgery, Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, 1222 S. Orange Avenue, 2nd Floor, MP 154, Orlando, FL, 32806, USA
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Annamaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Renato Galzio
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| |
Collapse
|
21
|
Boruczkowski D, Zdolińska-Malinowska I. A Retrospective Analysis of Safety and Efficacy of Wharton’s Jelly Stem Cell Administration in Children with Spina Bifida. Stem Cell Rev Rep 2019; 15:717-729. [PMID: 31222411 DOI: 10.1007/s12015-019-09902-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Ren X, Kim CY, Canavero S. Bridging the gap: Spinal cord fusion as a treatment of chronic spinal cord injury. Surg Neurol Int 2019; 10:51. [PMID: 31528389 PMCID: PMC6743693 DOI: 10.25259/sni-19-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of animal experimentation, human translation with cell grafts, conduits, and other strategies has failed to cure patients with chronic spinal cord injury (SCI). Recent data show that motor deficits due to spinal cord transection in animal models can be reversed by local application of fusogens, such as Polyethylene glycol (PEG). Results proved superior at short term over all other treatments deployed in animal studies, opening the way to human trials. In particular, removal of the injured spinal cord segment followed by PEG fusion of the two ends along with vertebral osteotomy to shorten the spine holds the promise for a cure in many cases.
Collapse
Affiliation(s)
- Xiaoping Ren
- Hand and Microsurgery Center, Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Nangang, Harbin, China
- Heilongjiang Medical Science Institute, Harbin Medical University, Nangang, Harbin, China
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sergio Canavero
- HEAVEN-GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
23
|
Olby NJ, Lim J, Wagner N, Zidan N, Early PJ, Mariani CL, Muñana KR, Laber E. Time course and prognostic value of serum GFAP, pNFH, and S100β concentrations in dogs with complete spinal cord injury because of intervertebral disc extrusion. J Vet Intern Med 2019; 33:726-734. [PMID: 30758078 PMCID: PMC6430936 DOI: 10.1111/jvim.15439] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A noninvasive biomarker is needed to predict recovery from severe spinal cord injury (SCI) because of thoracolumbar intervertebral disc extrusion (TL-IVDE). Proteins released from neural and glial cells can be detected in the blood and show promise as prognostic tools, but their concentration is influenced by time after injury. HYPOTHESIS/OBJECTIVES Serum concentrations of glial fibrillary acidic protein (GFAP), phosphorylated neurofilament heavy chain (pNFH), and S100β will follow different time courses; measurement of combinations of these proteins will predict outcome. ANIMALS Thirty-one dogs with TL-IVDE causing paralysis with no pain perception. METHODS Prospective study. Serum samples were taken at presentation and intervals over 56 days and banked at -80°C. Glial fibrillary acidic protein, pNFH, and S100β concentrations were measured using ELISA tests and plotted against time from onset of nonambulatory status. Outcome was established at 6 months. The association between biomarker concentration and outcome was examined using logistic regression, receiver operator characteristics curve analysis, and model development. RESULTS Thirty-one dogs participated, 3/31 (10%) developed progressive myelomalacia and 19/31 (62%) recovered ambulation. Glial fibrillary acidic protein and S100β concentrations rose for the first 1 to 3 days, and were undetectable by 14 and 28 days, respectively. Phosphorylated neurofilament heavy chain concentrations peaked at 14 days and were detectable at 56 days. Glial fibrillary acidic protein concentrations in the first 72 hours after onset of nonambulatory status predicted recovery with an accuracy of 76.7%-89% depending on sample timing. CONCLUSIONS AND CLINICAL IMPORTANCE Serum GFAP concentrations can be used to predict outcome in clinically complete SCI. A rapid inexpensive bedside test is needed.
Collapse
Affiliation(s)
- Natasha J. Olby
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth Carolina
| | - Ji‐Hey Lim
- Department of Veterinary Medicine and SurgeryCollege of Veterinary Medicine, University of MissouriColumbiaMO
| | - Nikki Wagner
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Natalia Zidan
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth Carolina
| | - Peter J. Early
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth Carolina
| | - Christopher L. Mariani
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth Carolina
| | - Karen R. Muñana
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNorth Carolina
| | - Eric Laber
- Department of StatisticsNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
24
|
Wilson S, Nagel SJ, Frizon LA, Fredericks DC, DeVries-Watson NA, Gillies GT, Howard MA. The Hemisection Approach in Large Animal Models of Spinal Cord Injury: Overview of Methods and Applications. J INVEST SURG 2018; 33:240-251. [PMID: 30380340 DOI: 10.1080/08941939.2018.1492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Translating basic science research into a safe and effective therapy for spinal cord injury (SCI) requires suitable large animal models for testing both implantable devices and biologic approaches to better approximate human anatomy and function. Hemisection lesions, routinely used for investigational purposes in small animals, are less frequently described in large animals that might be appropriate for translational studies. Size constraints of small animals (mice and rats) limits the predictability of the findings when scaled up. Our goal is to review the status of hemisection SCI in large animals across species and time to prepare for the testing of a novel intradural spinal cord stimulation device for control of spasticity in an ovine model. Methods and Results: We surveyed the literature on hemisection in quadrupeds and nonhuman primates, and catalogued the species, protocols and outcomes of the experimental work in this field. Feline, lapine, canine, simian, porcine, ovine and bovine models were the primary focal points. There is a consistent body of literature reporting use of the hemisection approach in large animals, but with differences in surgical technique depending on the goals and nature of the individual studies. While the injuries are not always consistent, the experimental variability is generally lower than that of the contusion-based approach. In general, as the body size of the animal increases, animal care requirements and the associated costs follow. In most cases, this is inversely correlated with the number of animals used in hemisection models. Conclusions: The hemisection approach to modeling SCI is straightforward compared with other methods such as the contusive impact and enables the transection of isolated ascending and descending tracts and segment specific cell bodies. This has certain advantages in models investigating post-injury axonal regrowth. However, this approach is not generally in line with the patho-physiologies encountered in SCI patients. Even so, the ability to achieve more control over the level of injury makes it a useful adjunct to contusive and ischemic approaches, and suggests a useful role in future translational studies.
Collapse
Affiliation(s)
- S Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - L A Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - D C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - N A DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - G T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - M A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
25
|
Wu GH, Shi HJ, Che MT, Huang MY, Wei QS, Feng B, Ma YH, Wang LJ, Jiang B, Wang YQ, Han I, Ling EA, Zeng X, Zeng YS. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials 2018; 181:15-34. [PMID: 30071379 DOI: 10.1016/j.biomaterials.2018.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
We have reported previously that bone marrow mesenchymal stem cell (MSC)-derived neural network scaffold not only survived in the injury/graft site of spinal cord but also served as a "neuronal relay" that was capable of improving the limb motor function in a complete spinal cord injury (SCI) rat model. It remained to be explored whether such a strategy was effective for repairing the large spinal cord tissue loss as well as restoring motor function in larger animals. We have therefore extended in this study to construct a canine MSC-derived neural network tissue in vitro with the aim to evaluate its efficacy in treating adult beagle dog subjected to a complete transection of the spinal cord. The results showed that after co-culturing with neurotropin-3 overexpressing Schwann cells in a gelatin sponge scaffold for 14 days, TrkC overexpressing MSCs differentiated into neuron-like cells. In the latter, some cells appeared to make contacts with each other through synapse-like structures with trans-synaptic electrical activities. Remarkably, the SCI canines receiving the transplantation of the MSC-derived neural network tissue demonstrated a gradual restoration of paralyzed limb motor function, along with improved electrophysiological presentation when compared with the control group. Magnetic resonance imaging and diffusion tensor imaging showed that the canines receiving the MSC-derived neural network tissue exhibited robust nerve tract regeneration in the injury/graft site. Histological analysis showed that some of the MSC-derived neuron-like cells had survived in the injury/graft site up to 6.5 months. Implantation of MSC-derived neural network tissue significantly improved the microenvironment of the injury/graft site. It is noteworthy that a variable number of them had integrated with the regenerating corticospinal tract nerve fibers and 5-HT nerve fibers through formation of synapse-like contacts. The results suggest that the transplanted MSC-derived neural network tissue may serve as a structural and functional "neuronal relay" to restore the paralyzed limb motor function in the canine with complete SCI.
Collapse
Affiliation(s)
- Guo-Hui Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Juan Shi
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Meng-Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Bo Feng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Huan Ma
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lai-Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
26
|
Hansmann F, Jungwirth N, Zhang N, Skripuletz T, Stein VM, Tipold A, Stangel M, Baumgärtner W. Beneficial and detrimental impact of transplanted canine adipose-derived stem cells in a virus-induced demyelinating mouse model. Vet Immunol Immunopathol 2018; 202:130-140. [PMID: 30078587 DOI: 10.1016/j.vetimm.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 01/17/2023]
Abstract
In recent years stem cell therapies have been broadly applied in various disease models specifically immune mediated and degenerative diseases. Whether adipose-derived stem cells might represent a useful therapeutic option in virus-triggered central nervous system diseases has not been investigated so far. Theiler's murine encephalomyelitis (TME) and canine distemper encephalitis are established, virus-mediated animal models sharing many similarities with multiple sclerosis (MS). Canine adipose-derived stem cells (ASC) were selected since dogs might serve as an important translational model for further therapeutic applications. The aim of the present study was to investigate whether canine ASC influence clinical signs, axonal damage, demyelination and inflammation during TME. ASC were transplanted intravenously (iv) or intra-cerebroventricularly (icv) at 7 (early) or 42 (late) days post infection (dpi) in TME virus (TMEV) infected mice. TMEV/ASC iv animals transplanted at 7dpi displayed a transient clinical deterioration in rotarod performance compared to TMEV/control animals. Worsening of clinical signs was associated with significantly increased numbers of microglia/macrophages and demyelination in the spinal cord. In contrast, late transplantation had no influence on clinical findings of TMEV-infected animals. However, late TMEV/ASC iv transplanted animals showed reduced axonal damage compared to TMEV/control animals. Screening of spinal cord and peripheral organs for transplanted ASC revealed no positive cells. Surprisingly, iv transplanted animals showed pulmonary follicular aggregates consisting of T- and B-lymphocytes. Thus, our data suggest that following intravenous application, the lung as priming organ for lymphocytes seems to play a pivotal role in the pathogenesis of TME. Consequences of T-lymphocyte priming in the lung depend on the disease phase and may be responsible for disease modifying effects of ASC.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Nicole Jungwirth
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Ning Zhang
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Maria Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Division of Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, 3012, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| |
Collapse
|
27
|
Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son Y, Kim WH, Kweon OK. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs. Cell Transplant 2018; 27:1140-1153. [PMID: 29909686 PMCID: PMC6158544 DOI: 10.1177/0963689718779766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) (P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups (P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yongseok Yoon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ahyoung Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kwang Rae Jo
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kyeung Uk Choi
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Taeseong Jung
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Namyul Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - YeonSung Son
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Wan Hee Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Oh-Kyeong Kweon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
28
|
Hwang Y, Kim D, Chang D, Ahn B, Kim YB, Kim G. Effects of neural stem cells and 5-fluorocytosine in canine metastatic lung tumor. J Vet Sci 2018; 18:257-260. [PMID: 27515273 PMCID: PMC5489474 DOI: 10.4142/jvs.2017.18.2.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
This is the first case report to describe the tumor regressive effect of systemic human neural stem cell (NSC)/5-fluorocytosine (5-FC) therapy on canine metastatic lung tumor. The therapeutic effects appeared approximately two weeks after 5-FC administration. Thoracic radiographs revealed a reduced number of lung nodules and decreased nodule size. However, there were no significant antitumor effects on primary lesions in abdominal organs. In conclusion, human NSC/5-FC prodrug therapy can secure patient quality of life with the same or more therapeutic effects and fewer side effects than other recommended chemotherapies.
Collapse
Affiliation(s)
- Yawon Hwang
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongwook Kim
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongwoo Chang
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Byeongwoo Ahn
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Yun-Bae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.,Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Gonhyung Kim
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
29
|
Abstract
STUDY DESIGN Review of literature. OBJECTIVES This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. METHODS A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. RESULTS Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell-based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro-computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. CONCLUSIONS It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion.
Collapse
Affiliation(s)
- Michael A. Robbins
- University of California Davis Medical Center, Sacramento, CA, USA,Michael A. Robbins, Department of Orthopaedic Surgery, Mail Code MP240, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | - Adam M. Wegner
- University of California Davis Medical Center, Sacramento, CA, USA
| | | |
Collapse
|
30
|
Functional Test Scales for Evaluating Cell-Based Therapies in Animal Models of Spinal Cord Injury. Stem Cells Int 2017; 2017:5160261. [PMID: 29109741 PMCID: PMC5646345 DOI: 10.1155/2017/5160261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Recently, spinal cord researchers have focused on multifaceted approaches for the treatment of spinal cord injury (SCI). However, as there is no cure for the deficits produced by SCI, various therapeutic strategies have been examined using animal models. Due to the lack of standardized functional assessment tools for use in such models, it is important to choose a suitable animal model and precise behavioral test when evaluating the efficacy of potential SCI treatments. In the present review, we discuss recent evidence regarding functional recovery in various animal models of SCI, summarize the representative models currently used, evaluate recent cell-based therapeutic approaches, and aim to identify the most precise and appropriate scales for functional assessment in such research.
Collapse
|
31
|
Levine JM, Cohen ND, Fandel TM, Levine GJ, Mankin J, Griffin JF, Kerwin SC, Boudreau CE, Trivedi A, Noble-Haeusslein LJ. Early Blockade of Matrix Metalloproteinases in Spinal-Cord–Injured Dogs Results in a Long-Term Increase in Bladder Compliance. J Neurotrauma 2017; 34:2656-2667. [DOI: 10.1089/neu.2017.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jonathan M. Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Thomas M. Fandel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Gwendolyn J. Levine
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joseph Mankin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John F. Griffin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sharon C. Kerwin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - C. Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Steffensen N, Lehmbecker A, Gerhauser I, Wang Y, Carlson R, Tipold A, Baumgärtner W, Stein VM. Generation and characterization of highly purified canine Schwann cells from spinal nerve dorsal roots as potential new candidates for transplantation strategies. J Tissue Eng Regen Med 2017; 12:e422-e437. [DOI: 10.1002/term.2478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Nicole Steffensen
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Annika Lehmbecker
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Ingo Gerhauser
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
| | - Yimin Wang
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Wolfgang Baumgärtner
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Veronika M. Stein
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| |
Collapse
|
33
|
Long C, Lankford L, Kumar P, Grahn R, Borjesson DL, Farmer D, Wang A. Isolation and characterization of canine placenta-derived mesenchymal stromal cells for the treatment of neurological disorders in dogs. Cytometry A 2017; 93:82-92. [DOI: 10.1002/cyto.a.23171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Robert Grahn
- Veterinary Genetics Laboratory; University of California; Davis California
| | - Dori L. Borjesson
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology, Immunology; University of California, Davis School of Veterinary Medicine; Davis California
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| |
Collapse
|
34
|
Safety of Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cell Intraspinal Transplantation in Dogs with Chronic Spinal Cord Injury. Stem Cells Int 2017; 2017:3053759. [PMID: 28611846 PMCID: PMC5458383 DOI: 10.1155/2017/3053759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023] Open
Abstract
This is a pilot clinical study primarily designed to assess the feasibility and safety of X-ray-guided percutaneous intraspinal injection of allogeneic canine adipose tissue-derived mesenchymal stem cells in dogs with chronic spinal cord injury. Six dogs with chronic paraplegia (≥six months) were intraparenchymally injected with allogeneic cells in the site of lesion. Cells were obtained from subcutaneous adipose tissue of a healthy dog, cultured to passage 3, labeled with 99mTechnetium, and transplanted into the lesion by percutaneous X-ray-guided injection. Digital X-ray efficiently guided cell injection as 99mTechnetium-labeled cells remained in the injection site for at least 24 hours after transplantation. No adverse effects or complications (infection, neuropathic pain, or worsening of neurological function) were observed during the 16-week follow-up period after transplantation. Three animals improved locomotion as assessed by the Olby scale. One animal walked without support, but no changes in deep pain perception were observed. We conclude that X-ray-guided percutaneous intraspinal transplantation of allogeneic cells in dogs with chronic spinal cord injury is feasible and safe. The efficacy of the treatment will be assessed in a new study involving a larger number of animals.
Collapse
|
35
|
Moore SA, Granger N, Olby NJ, Spitzbarth I, Jeffery ND, Tipold A, Nout-Lomas YS, da Costa RC, Stein VM, Noble-Haeusslein LJ, Blight AR, Grossman RG, Basso DM, Levine JM. Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury. J Neurotrauma 2017; 34:2007-2018. [PMID: 28230415 DOI: 10.1089/neu.2016.4745] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process.
Collapse
Affiliation(s)
- Sarah A Moore
- 1 Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine , Columbus Ohio.,2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI)
| | - Nicolas Granger
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,3 Faculty of Health Sciences, University of Bristol , Langford, North Somerset, United Kingdom
| | - Natasha J Olby
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,4 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,5 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| | - Ingo Spitzbarth
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,6 Department of Pathology, University of Veterinary Medicine , Hannover, Germany .,7 Center for Systems Neuroscience , Hannover, Germany
| | - Nick D Jeffery
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,8 Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| | - Andrea Tipold
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,7 Center for Systems Neuroscience , Hannover, Germany.,9 Department of Small Animal Medicine and Surgery, University of Veterinary Medicine , Hannover, Germany
| | - Yvette S Nout-Lomas
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,10 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Ronaldo C da Costa
- 1 Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine , Columbus Ohio.,2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI)
| | - Veronika M Stein
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,11 Department of Clinical Veterinary Sciences, University of Bern , Bern, Switzerland
| | - Linda J Noble-Haeusslein
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,12 Departments of Physical Therapy and Rehabilitation Sciences and Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Andrew R Blight
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,13 Acorda Therapeutics, Inc. Ardsley, New York
| | - Robert G Grossman
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,14 Department of Neurosurgery, Houston Methodist Neurological Institute , Houston, Texas
| | - D Michele Basso
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,15 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio
| | - Jonathan M Levine
- 2 The Canine Spinal Cord Injury Consortium (CANSORT-SCI).,8 Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| |
Collapse
|
36
|
Gabel BC, Curtis EI, Marsala M, Ciacci JD. A Review of Stem Cell Therapy for Spinal Cord Injury: Large Animal Models and the Frontier in Humans. World Neurosurg 2016; 98:438-443. [PMID: 27876663 DOI: 10.1016/j.wneu.2016.11.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To review the literature of spinal cord injury and stem cell therapy for large animal models and incorporate those results into an understanding of stem cell therapy for human cord injury. METHODS Review of the literature. RESULTS Eleven canine studies were identified and 3 sub-human primate studies were identified showing variable results. CONCLUSIONS Stem cell therapy is a promising therapeutic option for patients with spinal cord injury; however, the technology has many un-answered questions and further research is needed.
Collapse
Affiliation(s)
- Brandon C Gabel
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA.
| | - Erik I Curtis
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA
| | - Martin Marsala
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA
| | - Joseph D Ciacci
- Department of Neurosurgery, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
37
|
Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One 2016; 11:e0164079. [PMID: 27701459 PMCID: PMC5049760 DOI: 10.1371/journal.pone.0164079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
Collapse
Affiliation(s)
- Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Sylvi Graupner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
38
|
Papanna R, Mann LK, Snowise S, Morales Y, Prabhu SP, Tseng SCG, Grill R, Fletcher S, Moise KJ. Neurological Outcomes after Human Umbilical Cord Patch for In Utero Spina Bifida Repair in a Sheep Model. AJP Rep 2016; 6:e309-17. [PMID: 27621952 PMCID: PMC5017885 DOI: 10.1055/s-0036-1592316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of our study was to test the hypothesis that in utero repair of surgically created spina bifida in a sheep model using cryopreserved human umbilical cord (HUC) patch improves neurological outcome. METHODS Spina bifida with myelotomy was surgically created in timed pregnant ewes at gestational day (GD) 75. The fetuses were randomly assigned to unrepaired versus HUC and treated at GD 95 and then delivered at GD 140. Neurological evaluation was performed using the Texas Spinal Cord Injury Scale (TSCIS), bladder control using ultrasound, and the hindbrain herniation. RESULTS Three lambs without the spina bifida creation served as controls. There were four lambs with spina bifida: two were unrepaired and two underwent HUC repair. The control lambs had normal function. Both unrepaired lambs had nonhealed skin lesions with leakage of cerebrospinal fluid, a 0/20 TSCIS score, no bladder control, and the hindbrain herniation. In contrast, both HUC lambs had a completely healed skin defect and survived to day 2 of life, a 3/20 and 4/20 TSCIS score (nociception), partial bladder control, and normal hindbrain anatomy. CONCLUSIONS Cryopreserved HUC patch appears to improve survival and neurological outcome in this severe form of the ovine model of spina bifida.
Collapse
Affiliation(s)
- Ramesha Papanna
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Lovepreet K Mann
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Saul Snowise
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Yisel Morales
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Sanjay P Prabhu
- Department of Radiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| | - Scheffer C G Tseng
- The Ocular Surface Center, Miami, Florida; TissueTech, Inc., Miami, Florida
| | - Raymond Grill
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stephen Fletcher
- Division of Pediatric Neurosurgery, The Department of Pediatrics, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School, Houston, Texas; Department of Pediatric Surgery, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School, Houston, Texas
| | - Kenneth J Moise
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| |
Collapse
|
39
|
Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 2016; 83:233-48. [DOI: 10.1016/j.biomaterials.2015.11.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
40
|
McMahill BG, Spriet M, Sisó S, Manzer MD, Mitchell G, McGee J, Garcia TC, Borjesson DL, Sieber-Blum M, Nolta JA, Sturges BK. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs. Stem Cells Transl Med 2015; 4:1173-86. [PMID: 26273065 DOI: 10.5966/sctm.2015-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED This pilot feasibility study aimed to determine the outcome of canine epidermal neural crest stem cell (cEPI-NCSC) grafts in the normal spinal cords of healthy bred-for-research dogs. This included developing novel protocols for (a) the ex vivo expansion of cEPI-NCSCs, (b) the delivery of cEPI-NCSCs into the spinal cord, and (c) the labeling of the cells and subsequent tracing of the graft in the live animal by magnetic resonance imaging. A total of four million cEPI-NCSCs were injected into the spinal cord divided in two locations. Differences in locomotion at baseline and post-treatment were evaluated by gait analysis and compared with neurological outcome and behavioral exams. Histopathological analyses of the spinal cords and cEPI-NCSC grafts were performed at 3 weeks post-transplantation. Neurological and gait parameters were minimally affected by the stem cell injection. cEPI-NCSCs survived in the canine spinal cord for the entire period of investigation and did not migrate or proliferate. Subsets of cEPI-NCSCs expressed the neural crest stem cell marker Sox10. There was no detectable expression of markers for glial cells or neurons. The tissue reaction to the cell graft was predominantly vascular in addition to a degree of reactive astrogliosis and microglial activation. In the present study, we demonstrated that cEPI-NCSC grafts survive in the spinal cords of healthy dogs without major adverse effects. They persist locally in the normal spinal cord, may promote angiogenesis and tissue remodeling, and elicit a tissue response that may be beneficial in patients with spinal cord injury. SIGNIFICANCE It has been established that mouse and human epidermal neural crest stem cells are somatic multipotent stem cells with proved innovative potential in a mouse model of spinal cord injury (SCI) offering promise of a valid treatment for SCI. Traumatic SCI is a common neurological problem in dogs with marked similarities, clinically and pathologically, to the syndrome in people. For this reason, dogs provide a readily accessible, clinically realistic, spontaneous model for evaluation of epidermal neural crest stem cells therapeutic intervention. The results of this study are expected to give the baseline data for a future clinical trial in dogs with traumatic SCI.
Collapse
Affiliation(s)
- Barbara G McMahill
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Mathieu Spriet
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sílvia Sisó
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Michael D Manzer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gaela Mitchell
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jeannine McGee
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tanya C Garcia
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Dori L Borjesson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Maya Sieber-Blum
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Beverly K Sturges
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
41
|
Sakaue M, Sieber-Blum M. Human epidermal neural crest stem cells as a source of Schwann cells. Development 2015; 142:3188-97. [PMID: 26251357 PMCID: PMC4582175 DOI: 10.1242/dev.123034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. Summary: Human epidermal neural crest stem cells isolated from the bulge of hair follicles are used to derive Schwann cells that could be useful for regenerative therapies, disease modelling and drug discovery.
Collapse
Affiliation(s)
- Motoharu Sakaue
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Maya Sieber-Blum
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|