1
|
Li W, Feng J, Peng J, Zhang X, Aziz AUR, Wang D. Chimeric antigen receptor-natural killer (CAR-NK) cell immunotherapy: A bibliometric analysis from 2004 to 2023. Hum Vaccin Immunother 2024; 20:2415187. [PMID: 39414236 PMCID: PMC11486046 DOI: 10.1080/21645515.2024.2415187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cells represent a breakthrough in cancer immunotherapy, making this a highly popular research area. However, comprehensive analyses of this field using bibliometric methods are rare. To our knowledge, this study has collected highest number of publications (1,259) on CAR-NK therapy from January 1, 2004, to December 31, 2023, and utilized CiteSpace and VOSviewer to analyze regions, institutions, journals, authors, and keywords to forecast the latest trends in CAR-NK therapy research. The United States and China, contributing over 60% of publications, are the primary drivers in this field. The Helmholtz Association and Harvard University are the most active institutions, with most publications appearing in Frontiers in Immunology. Winfried S. Wels is the most prolific author, while EL Liu is the most frequently co-cited author. "Immunotherapy," "T-cells," and "Cancer" are the most extensively covered topics in CAR-NK therapy research. Our study reveals current CAR-NK research trends, identifies potential research hotspots, and visualizes references through bibliometric methods, providing valuable guidance for future research in this field.
Collapse
Affiliation(s)
- Wangshu Li
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jiuxiang Feng
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jianan Peng
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aziz Ur Rehman Aziz
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Daqing Wang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| |
Collapse
|
2
|
Niu Z, Wang M, Yan Y, Jin X, Ning L, Xu B, Wang Y, Hao Y, Luo Z, Guo C, Zhi L, Zhu W. Challenges in the Development of NK-92 Cells as an Effective Universal Off-the-Shelf Cellular Therapeutic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1318-1328. [PMID: 39291926 DOI: 10.4049/jimmunol.2400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
The human-derived NK-92 cell-based CAR-NK therapy exhibits inconsistency with overall suboptimal efficacy and rapid in vivo clearance of CAR-NK92 cells in cancer patients. Analysis indicates that although pre-existing IgM in healthy individuals (n = 10) strongly recognizes both NK-92 and CAR-NK92 cells, IgG and IgE do not. However, only a subset of cancer patients (3/8) exhibit strong IgM recognition of these cells, with some (2/8) showing pre-existing IgG recognition. These results suggest a natural immunoreactivity between NK-92 and CAR-NK92 cells and pre-existing human Abs. Furthermore, the therapy's immunogenicity is evidenced by enhanced IgG and IgM recognition postinfusion of CAR-NK92 cells. We also confirmed that healthy plasma's cytotoxicity toward these cells is reduced by complement inhibitors, suggesting that Abs may facilitate the rapid clearance of CAR-NK92 cells through complement-dependent cytotoxicity. Given that NK-92 cells lack known receptors for IgG and IgM, identifying and modifying the recognition targets for these Abs on NK-92 and CAR-NK92 cells may improve clinical outcomes. Moreover, we discovered that the 72nd amino acid of the NKG2D receptor on NK-92 cells is alanine. Previous studies have demonstrated polymorphism at the 72nd amino acid of the NKG2D on human NK cells, with NKG2D72Thr exhibiting a superior activation effect on NK cells compared with NKG2D72Ala. We confirmed this conclusion also applies to NK-92 cells by in vitro cytotoxicity experiments. Therefore, reducing the immunoreactivity and immunogenicity of CAR-NK92 and directly switching NK-92 bearing NKG2D72Ala to NKG2D72Thr represent pressing challenges in realizing NK-92 cells as qualified universal off-the-shelf cellular therapeutics.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengjun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangchun Yan
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinru Jin
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linwei Ning
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingqian Xu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanfeng Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuekai Hao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhixia Luo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S. Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC. J Pharm Anal 2024; 14:100977. [PMID: 39493309 PMCID: PMC11531627 DOI: 10.1016/j.jpha.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 11/05/2024] Open
Abstract
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of "strengthening body and eliminating toxin", exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible Src homology 2 (SH2) containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Collapse
Affiliation(s)
- Feifei Li
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Youyang Shi
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Yang
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Sheng Liu
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
4
|
Kuan CY, Yang IH, Chang CT, Chen ZY, Lin JN, Kuo WT, Lin YY, Yueh A, Lin FH. Enhanced non-viral gene delivery via calcium phosphate/DNA co-precipitates with low-voltage pulse electroporation in NK-92 cells for immunocellular therapy. APL Bioeng 2024; 8:036107. [PMID: 39131207 PMCID: PMC11315581 DOI: 10.1063/5.0198191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Achieving high cell transfection efficiency is essential for various cell types in numerous disease applications. However, the efficient introduction of genes into natural killer (NK) cells remains a challenge. In this study, we proposed a design strategy for delivering exogenous genes into the NK cell line, NK-92, using a modified non-viral gene transfection method. Calcium phosphate/DNA nanoparticles (pDNA-CaP NPs) were prepared using co-precipitation methods and combined with low-voltage pulse electroporation to facilitate NK-92 transfection. The results demonstrated that the developed pDNA-CaP NPs exhibited a uniform diameter of approximately 393.9 nm, a DNA entrapment efficiency of 65.8%, and a loading capacity of 15.9%. Furthermore, at three days post-transfection, both the transfection efficiency and cell viability of NK-92 were significantly improved compared to standalone plasmid DNA (pDNA) electroporation or solely relying on the endocytosis pathway of pDNA-CaP NPs. This study provides valuable insights into a novel approach that combines calcium phosphate nanoparticles with low-voltage electroporation for gene delivery into NK-92 cells, offering potential advancements in cell therapy.
Collapse
Affiliation(s)
| | - I-Hsuan Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | | | - Zhi-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | - Wei-Ting Kuo
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | | | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 35053, Taiwan
| | - Feng-Huei Lin
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
5
|
Li W, Wang X, Zhang X, Aziz AUR, Wang D. CAR-NK Cell Therapy: A Transformative Approach to Overcoming Oncological Challenges. Biomolecules 2024; 14:1035. [PMID: 39199421 PMCID: PMC11352442 DOI: 10.3390/biom14081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The use of chimeric antigen receptor (CAR) in natural killer (NK) cells for cancer therapy is gaining momentum, marking a significant shift in cancer treatment. This review aims to explore the potential of CAR-NK cell therapy in cancer immunotherapy, providing a fresh perspective. It discusses the innovative approaches in CAR-NK cell design and engineering, particularly targeting refractory or recurrent cancers. By comparing CAR-NK cells with traditional therapies, the review highlights their unique ability to tackle tumor heterogeneity and immune system suppression. Additionally, it explains how novel cytokines and receptors can enhance CAR-NK cell efficacy, specificity, and functionality. This review underscores the advantages of CAR-NK cells, including reduced toxicity, lower cost, and broader accessibility compared to CAR-T cells, along with their potential in treating both blood cancers and solid tumors.
Collapse
Affiliation(s)
- Wangshu Li
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiuying Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 151801, China;
| | - Aziz ur Rehman Aziz
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Daqing Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| |
Collapse
|
6
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Peng L, Renauer PA, Sferruzza G, Yang L, Zou Y, Fang Z, Park JJ, Chow RD, Zhang Y, Lin Q, Bai M, Sanchez A, Zhang Y, Lam SZ, Ye L, Chen S. In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat Biotechnol 2024:10.1038/s41587-024-02282-4. [PMID: 38918616 DOI: 10.1038/s41587-024-02282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhenghao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Angelica Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, Yale University, New Haven, CT, USA
| | - Yongzhan Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Nanjing University, Nanjing, China.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
9
|
Ozsoy F, Mohammed M, Jan N, Lulek E, Ertas YN. T Cell and Natural Killer Cell Membrane-Camouflaged Nanoparticles for Cancer and Viral Therapies. ACS APPLIED BIO MATERIALS 2024; 7:2637-2659. [PMID: 38687958 PMCID: PMC11110059 DOI: 10.1021/acsabm.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.
Collapse
Affiliation(s)
- Fatma Ozsoy
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Mahir Mohammed
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - Nasrullah Jan
- Department
of Pharmacy, The University of Chenab, Gujrat, Punjab 50700, Pakistan
| | - Elif Lulek
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
10
|
Grauwet K, Berger T, Kann MC, Silva H, Larson R, Leick MB, Bailey SR, Bouffard AA, Millar D, Gallagher K, Turtle CJ, Frigault MJ, Maus MV. Stealth transgenes enable CAR-T cells to evade host immune responses. J Immunother Cancer 2024; 12:e008417. [PMID: 38724463 PMCID: PMC11086422 DOI: 10.1136/jitc-2023-008417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.
Collapse
Affiliation(s)
- Korneel Grauwet
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Trisha Berger
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Rebecca Larson
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - David Millar
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathleen Gallagher
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cameron J Turtle
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Kong D, Kwon D, Moon B, Kim DH, Kim MJ, Choi J, Kang KS. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed Pharmacother 2024; 174:116436. [PMID: 38508081 DOI: 10.1016/j.biopha.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.
Collapse
Affiliation(s)
- Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Daekee Kwon
- Research Institute in Maru Therapeutics, Seoul 05854, Republic of Korea
| | - Bokyung Moon
- Research Institute in Maru Therapeutics, Seoul 05854, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Department of Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungju Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Hadiloo K, Taremi S, Safa SH, Amidifar S, Esmaeilzadeh A. The new era of immunological treatment, last updated and future consideration of CAR T cell-based drugs. Pharmacol Res 2024; 203:107158. [PMID: 38599467 DOI: 10.1016/j.phrs.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Cancer treatment is one of the fundamental challenges in clinical setting, especially in relapsed/refractory malignancies. The novel immunotherapy-based treatments bring new hope in cancer therapy and achieve various treatment successes. One of the distinguished ways of cancer immunotherapy is adoptive cell therapy, which utilizes genetically modified immune cells against cancer cells. Between different methods in ACT, the chimeric antigen receptor T cells have more investigation and introduced a promising way to treat cancer patients. This technology progressed until it introduced six US Food and Drug Administration-approved CAR T cell-based drugs. These drugs act against hematological malignancies appropriately and achieve exciting results, so they have been utilized widely in cell therapy clinics. In this review, we introduce all CAR T cells-approved drugs based on their last data and investigate them from all aspects of pharmacology, side effects, and compressional. Also, the efficacy of drugs, pre- and post-treatment steps, and expected side effects are introduced, and the challenges and new solutions in CAR T cell therapy are in the last speech.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Siavash Taremi
- Department of immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Salar Hozhabri Safa
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Sima Amidifar
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, the Islamic Republic of Iran.
| |
Collapse
|
13
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
14
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
16
|
Edri A, Ben-Haim N, Hailu A, Brycman N, Berhani-Zipori O, Rifman J, Cohen S, Yackoubov D, Rosenberg M, Simantov R, Teru H, Kurata K, Anderson KC, Hendel A, Pato A, Geffen Y. Nicotinamide-Expanded Allogeneic Natural Killer Cells with CD38 Deletion, Expressing an Enhanced CD38 Chimeric Antigen Receptor, Target Multiple Myeloma Cells. Int J Mol Sci 2023; 24:17231. [PMID: 38139060 PMCID: PMC10743602 DOI: 10.3390/ijms242417231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells are a vital component of cancer immune surveillance. They provide a rapid and potent immune response, including direct cytotoxicity and mobilization of the immune system, without the need for antigen processing and presentation. NK cells may also be better tolerated than T cell therapy approaches and are susceptible to various gene manipulations. Therefore, NK cells have become the focus of extensive translational research. Gamida Cell's nicotinamide (NAM) platform for cultured NK cells provides an opportunity to enhance the therapeutic potential of NK cells. CD38 is an ectoenzyme ubiquitously expressed on the surface of various hematologic cells, including multiple myeloma (MM). It has been selected as a lead target for numerous monoclonal therapeutic antibodies against MM. Monoclonal antibodies target CD38, resulting in the lysis of MM plasma cells through various antibody-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, significantly improving the outcomes of patients with relapsed or refractory MM. However, this therapeutic strategy has inherent limitations, such as the anti-CD38-induced depletion of CD38-expressing NK cells, thus hindering ADCC. We have developed genetically engineered NK cells tailored to treat MM, in which CD38 was knocked-out using CRISPR-Cas9 technology and an enhanced chimeric antigen receptor (CAR) targeting CD38 was introduced using mRNA electroporation. This combined genetic approach allows for an improved cytotoxic activity directed against CD38-expressing MM cells without self-inflicted NK-cell-mediated fratricide. Preliminary results show near-complete abolition of fratricide with a 24-fold reduction in self-lysis from 19% in mock-transfected and untreated NK cells to 0.8% of self-lysis in CD38 knock-out CAR NK cells. Furthermore, we have observed significant enhancements in CD38-mediated activity in vitro, resulting in increased lysis of MM target cell lines. CD38 knock-out CAR NK cells also demonstrated significantly higher levels of NK activation markers in co-cultures with both untreated and αCD38-treated MM cell lines. These NAM-cultured NK cells with the combined genetic approach of CD38 knockout and addition of CD38 CAR represent a promising immunotherapeutic tool to target MM.
Collapse
Affiliation(s)
- Avishay Edri
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Nimrod Ben-Haim
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | - Astar Hailu
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Nurit Brycman
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Orit Berhani-Zipori
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Julia Rifman
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Sherri Cohen
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Dima Yackoubov
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | | | - Hideshima Teru
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | - Aviad Pato
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Yona Geffen
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| |
Collapse
|
17
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Elahi R, Hozhabri S, Moradi A, Siahmansouri A, Jahani Maleki A, Esmaeilzadeh A. Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacol Immunotoxicol 2023; 45:639-649. [PMID: 37335770 DOI: 10.1080/08923973.2023.2215405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT AND OBJECTIVE The emerging pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has imposed significant mortality and morbidity on the world. An appropriate immune response is necessary to inhibit SARS-CoV-2 spread throughout the body. RESULTS During the early stages of infection, the pathway of stimulators of interferon genes (STING), known as the cGAS-STING pathway, has a significant role in the induction of the antiviral immune response by regulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Interferon regulatory factor 3 (IRF3), two key pathways responsible for proinflammatory cytokines and type I IFN secretion, respectively. DISCUSSION During the late stages of COVID-19, the uncontrolled inflammatory responses, also known as cytokine storm, lead to the progression of the disease and poor prognosis. Hyperactivity of STING, leading to elevated titers of proinflammatory cytokines, including Interleukin-I (IL-1), IL-4, IL-6, IL-18, and tissue necrosis factor-α (TNF-α), is considered one of the primary mechanisms contributing to the cytokine storm in COVID-19. CONCLUSION Exploring the underlying molecular processes involved in dysregulated inflammation can bring up novel anti-COVID-19 therapeutic options. In this article, we aim to discuss the role and current studies targeting the cGAS/STING signaling pathway in both early and late stages of COVID-19 and COVID-19-related complications and the therapeutic potential of STING agonists/antagonists. Furthermore, STING agonists have been discussed as a vaccine adjuvant to induce a potent and persistent immune response.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Salar Hozhabri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
19
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res 2023; 11:103. [PMID: 38017494 PMCID: PMC10685521 DOI: 10.1186/s40364-023-00537-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Today, adoptive cell therapy has many successes in cancer therapy, and this subject is brilliant in using chimeric antigen receptor T cells. The CAR T cell therapy, with its FDA-approved drugs, could treat several types of hematological malignancies and thus be very attractive for treating solid cancer. Unfortunately, the CAR T cell cannot be very functional in solid cancers due to its unique features. This treatment method has several harmful adverse effects that limit their applications, so novel treatments must use new cells like NK cells, NKT cells, and macrophage cells. Among these cells, the CAR macrophage cells, due to their brilliant innate features, are more attractive for solid tumor therapy and seem to be a better candidate for the prior treatment methods. The CAR macrophage cells have vital roles in the tumor microenvironment and, with their direct effect, can eliminate tumor cells efficiently. In addition, the CAR macrophage cells, due to being a part of the innate immune system, attended the tumor sites. With the high infiltration, their therapy modulations are more effective. This review investigates the last achievements in CAR-macrophage cells and the future of this immunotherapy treatment method.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Heidari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
21
|
Zheng Y, Lai Z, Wang B, Wei Z, Zeng Y, Zhuang Q, Liu X, Lin K. Natural killer cells modified with a Gpc3 aptamer enhance adoptive immunotherapy for hepatocellular carcinoma. Discov Oncol 2023; 14:164. [PMID: 37665421 PMCID: PMC10477160 DOI: 10.1007/s12672-023-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Natural killer cells can attack cancer cells without prior sensitization, but their clinical benefit is limited owing to their poor selectivity that is caused by the lack of specific receptors to target tumor cells. In this study, we aimed to endow NK cells with the ability to specifically target glypican-3+ tumor cells without producing cell damage or genetic alterations, and further evaluated their therapeutic efficiency. METHODS NK cells were modified with a Gpc3 DNA aptamer on the cell surface via metabolic glycoengineering to endow NK cells with specific targeting ability. Then, the G-NK cells were evaluated for their specific targeting properties, cytotoxicity and secretion of cytokines in vitro. Finally, we investigated the therapeutic efficiency of G-NK cells against glypican-3+ tumor cells in vivo. RESULTS Compared with NK cells modified with a random aptamer mutation and unmodified NK cells, G-NK cells induced significant apoptosis/necrosis of GPC3+ tumor cells and secreted cytokines to preserve the intense cytotoxic activities. Moreover, G-NK cells significantly suppressed tumor growth in HepG2 tumor-bearing mice due to the enhanced enrichment of G-NK cells at the tumor site. CONCLUSIONS The proposed strategy endows NK cells with a tumor-specific targeting ability to enhance adoptive therapeutic efficiency in GPC3+ hepatocellular carcinoma.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| | - Kecan Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou, People's Republic of China.
| |
Collapse
|
22
|
Fang KKL, Lee J, Khatri I, Na Y, Zhang L. Targeting T-cell malignancies using allogeneic double-negative CD4-CAR-T cells. J Immunother Cancer 2023; 11:e007277. [PMID: 37678917 PMCID: PMC10496713 DOI: 10.1136/jitc-2023-007277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Patients with relapsed/refractory T-cell malignancies have limited treatment options. The use of chimeric antigen receptor (CAR)-T cell therapy for T-cell malignancies is challenging due to possible blast contamination of autologous T-cell products and fratricide of CAR-T cells targeting T-lineage antigens. Recently, allogeneic double-negative T cells (DNTs) have been shown to be safe as an off-the-shelf adoptive cell therapy and to be amendable for CAR transduction. Here, we explore the antitumor activity of allogeneic DNTs against T-cell malignancies and the potential of using anti-CD4-CAR (CAR4)-DNTs as adoptive cell therapy for T-cell malignancies. METHODS Healthy donor-derived allogeneic DNTs were ex vivo expanded with or without CAR4 transduction. The antitumor activity of DNTs and CAR4-DNTs against T-cell acute lymphoblastic leukemia (T-ALL) and peripheral T-cell lymphoma (PTCL) were examined using flow cytometry-based cytotoxicity assays and xenograft models. Mechanisms of action were investigated using transwell assays and blocking assays. RESULTS Allogeneic DNTs induced endogenous antitumor cytotoxicity against T-ALL and PTCL in vitro, but high doses of DNTs were required to attain therapeutic effects in vivo. The potency of DNTs against T-cell malignancies was significantly enhanced by transducing DNTs with a third-generation CAR4. CAR4-DNTs were manufactured without fratricide and showed superior cytotoxicity against CD4+ T-ALL and PTCL in vitro and in vivo relative to empty-vector transduced-DNTs. CAR4-DNTs eliminated T-ALL and PTCL cell lines and primary T-ALL blasts in vitro. CAR4-DNTs effectively infiltrated tumors, delayed tumor progression, and prolonged the survival of T-ALL and PTCL xenografts. Further, pretreatment of CAR4-DNTs with PI3Kδ inhibitor idelalisib promoted memory phenotype of CAR4-DNTs and enhanced their persistence and antileukemic efficacy in vivo. Mechanistically, LFA-1, NKG2D, and perforin/granzyme B degranulation pathways were involved in the DNT-mediated and CAR4-DNT-mediated killing of T-ALL and PTCL. CONCLUSIONS These results demonstrate that CAR4-DNTs can effectively target T-ALL and PTCL and support allogeneic CAR4-DNTs as adoptive cell therapy for T-cell malignancies.
Collapse
Affiliation(s)
- Karen Kai-Lin Fang
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jongbok Lee
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Jin M, Kim CA, Bae DJ, Kim SY, Kim TY, Kim WB, Shong YK, Kim WG, Jeon MJ. Changes in peripheral blood immune cell population in thyroid cancer patients treated with lenvatinib. Sci Rep 2023; 13:12765. [PMID: 37550394 PMCID: PMC10406916 DOI: 10.1038/s41598-023-39503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
This study evaluated changes in the peripheral blood immune cell population in patients with advanced thyroid cancer receiving lenvatinib treatment to confirm the immune-modulatory effect of lenvatinib. After obtaining informed consent from patients, we prospectively collected 20 ml of whole blood at 2-3 months intervals 2-4 times from each patient; peripheral blood mononuclear cells (PBMCs) were separated, and the Maxpar Direct Immune Profiling Assay was performed. A total of 10 patients were enrolled, and 31 blood samples were obtained. The median age of patients was 65 years, and all patients showed durable responses to the lenvatinib treatment. When we compared the PBMC profiles between the pre-treatment, on-treatment, and off-treatment samples, the peripheral natural killer (NK) cell proportion differed significantly. The proportion of NK cells among total live cells significantly increased from 9.3 ± 4.5 (%) in the pre-treatment samples to 20.8 ± 7.9 (%) in the on-treatment samples (P = 0.009) and decreased to 13.3 ± 3.1 (%) in the off-treatment samples (P = 0.07). There was a significant increase in the peripheral NK cell population with lenvatinib treatment in advanced thyroid cancer patients. This finding confirms the immune-modulatory effect of lenvatinib.
Collapse
Affiliation(s)
- Meihua Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, Dankook University College of Medicine, Cheonan, 3116, Korea
| | - Chae A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Jun Bae
- PrismCDX Co., Ltd., 593-16, Dongtan Giheung-ro, Hwaseoung-si, 18469, Gyeonggi-do, Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
24
|
Khawar MB, Gao G, Rafiq M, Shehzadi A, Afzal A, Abbasi MH, Sheikh N, Afzal N, Ashraf MA, Hamid SE, Shahzaman S, Kawish N, Sun H. Breaking down barriers: The potential of smarter CAR-engineered NK cells against solid tumors. J Cell Biochem 2023; 124:1082-1104. [PMID: 37566723 DOI: 10.1002/jcb.30460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Natural killer (NK) cells are considered to be the foremost fighters of our innate immune system against foreign invaders and thus tend to promptly latch onto the virus-infected and tumor/cancerous cells, killing them through phagocytosis. At present, the application of genetically engineered Chimeric antigen receptor (CAR) receptors ensures a guaranteed optimistic response with NK cells and would not allow the affected cells to dodge or escape unchecked. Hence the specificity and uniqueness of CAR-NK cells over CAR-T therapy make them a better immunotherapeutic choice to reduce the load of trafficking of numerous tumor cells near the healthy cell populations in a more intact way than offered by CAR-T immunotherapy. Our review mainly focuses on the preclinical, clinical, and recent advances in clinical research trials and further strategies to achieve an augmented and efficient cure against solid tumors.
Collapse
Affiliation(s)
- Muhammad B Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Noncoding RNA Research, Yangzhou, China
- Department of Zoology, Applied Molecular Biology and Biomedicine Lab, University of Narowal, Narowal, Pakistan
| | - Guangzhong Gao
- Department of Physiatry, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Anila Shehzadi
- Department of Zoology, Molecular Medicine and Cancer Therapeutics Lab, University of Central Punjab, Lahore, Pakistan
| | - Ali Afzal
- Department of Zoology, Molecular Medicine and Cancer Therapeutics Lab, University of Central Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nimra Afzal
- Department of Zoology, Molecular Medicine and Cancer Therapeutics Lab, University of Central Punjab, Lahore, Pakistan
| | | | - Syeda E Hamid
- Department of Zoology, Molecular Medicine and Cancer Therapeutics Lab, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Department of Zoology, Molecular Medicine and Cancer Therapeutics Lab, University of Central Punjab, Lahore, Pakistan
| | - Naseer Kawish
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and, Translational Noncoding RNA Research, Yangzhou, China
| |
Collapse
|
25
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
26
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
27
|
Peng L, Renauer PA, Ye L, Yang L, Park JJ, Chow RD, Zhang Y, Lin Q, Bai M, Sanchez A, Zhang Y, Lam SZ, Chen S. Perturbomics of tumor-infiltrating NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532653. [PMID: 36993337 PMCID: PMC10055047 DOI: 10.1101/2023.03.14.532653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Natural killer (NK) cells are an innate immune cell type that serves at the first level of defense against pathogens and cancer. NK cells have clinical potential, however, multiple current limitations exist that naturally hinder the successful implementation of NK cell therapy against cancer, including their effector function, persistence, and tumor infiltration. To unbiasedly reveal the functional genetic landscape underlying critical NK cell characteristics against cancer, we perform perturbomics mapping of tumor infiltrating NK cells by joint in vivo AAV-CRISPR screens and single cell sequencing. We establish a strategy with AAV-SleepingBeauty(SB)- CRISPR screening leveraging a custom high-density sgRNA library targeting cell surface genes, and perform four independent in vivo tumor infiltration screens in mouse models of melanoma, breast cancer, pancreatic cancer, and glioblastoma. In parallel, we characterize single-cell transcriptomic landscapes of tumor-infiltrating NK cells, which identifies previously unexplored sub-populations of NK cells with distinct expression profiles, a shift from immature to mature NK (mNK) cells in the tumor microenvironment (TME), and decreased expression of mature marker genes in mNK cells. CALHM2, a calcium homeostasis modulator that emerges from both screen and single cell analyses, shows both in vitro and in vivo efficacy enhancement when perturbed in chimeric antigen receptor (CAR)-NK cells. Differential gene expression analysis reveals that CALHM2 knockout reshapes cytokine production, cell adhesion, and signaling pathways in CAR- NKs. These data directly and systematically map out endogenous factors that naturally limit NK cell function in the TME to offer a broad range of cellular genetic checkpoints as candidates for future engineering to enhance NK cell-based immunotherapies.
Collapse
|
28
|
Shin S, Lee P, Han J, Kim SN, Lim J, Park DH, Paik T, Min J, Park CG, Park W. Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy. Tissue Eng Regen Med 2023; 20:371-387. [PMID: 36867402 PMCID: PMC9983528 DOI: 10.1007/s13770-022-00515-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 03/04/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy. Owing to their unique physicochemical properties, nanoparticles can not only serve as a delivery platform for drugs but also target specific cells. Nanoparticle-based CAR therapy can be applied not only to T cells but also to CAR-natural killer and CAR-macrophage, compensating for some of their limitations. This review focuses on the introduction of nanoparticle-based advanced CAR immune cell therapy and future perspectives on immune cell reprogramming.
Collapse
Affiliation(s)
- Seungyong Shin
- grid.264381.a0000 0001 2181 989XDepartment of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Pyunghwajun Lee
- grid.264381.a0000 0001 2181 989XDepartment of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Jieun Han
- grid.264381.a0000 0001 2181 989XDepartment of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- grid.31501.360000 0004 0470 5905Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jaesung Lim
- grid.264381.a0000 0001 2181 989XDepartment of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419 Republic of Korea
| | - Dae-Hwan Park
- grid.254229.a0000 0000 9611 0917Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Taejong Paik
- grid.254224.70000 0001 0789 9563School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Chun Gwon Park
- Department of Global Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
29
|
Iyoda T, Yamasaki S, Ueda S, Shimizu K, Fujii SI. Natural Killer T and Natural Killer Cell-Based Immunotherapy Strategies Targeting Cancer. Biomolecules 2023; 13:biom13020348. [PMID: 36830717 PMCID: PMC9953375 DOI: 10.3390/biom13020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Both natural killer T (NKT) and natural killer (NK) cells are innate cytotoxic lymphoid cells that produce inflammatory cytokines and chemokines, and their role in the innate immune response to tumors and microorganisms has been investigated. Especially, emerging evidence has revealed their status and function in the tumor microenvironment (TME) of tumor cells. Some bacteria producing NKT cell ligands have been identified to exert antitumor effects, even in the TME. By contrast, tumor-derived lipids or metabolites may reportedly suppress NKT and NK cells in situ. Since NKT and NK cells recognize stress-inducible molecules or inhibitory molecules on cancer cells, their status or function depends on the balance between inhibitory and activating receptor signals. As a recent strategy in cancer immunotherapy, the mobilization or restoration of endogenous NKT or NK cells by novel vaccines or therapies has become a focus of research. As a new biological evidence, after activation, effector memory-type NKT cells lasted in tumor-bearing models, and NK cell-based immune checkpoint inhibition potentiated the enhancement of NK cell cytotoxicity against cancer cells in preclinical and clinical trials. Furthermore, several new modalities based on the characteristics of NKT and NK cells, including artificial adjuvant vector cells, chimeric antigen receptor-expressing NK or NKT cell therapy, or their combination with immune checkpoint blockade have been developed. This review examines challenges and future directions for improving these therapies.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| |
Collapse
|
30
|
Peng Y, Zhang W, Chen Y, Zhang L, Shen H, Wang Z, Tian S, Yang X, Cui D, He Y, Chang X, Feng Z, Tang Q, Mao Y. Engineering c-Met-CAR NK-92 cells as a promising therapeutic candidate for lung adenocarcinoma. Pharmacol Res 2023; 188:106656. [PMID: 36640859 DOI: 10.1016/j.phrs.2023.106656] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Mesenchymal-epithelial transition factor (C-Met) has been acknowledged as a significant therapeutic target for treating lung adenocarcinoma (LUAD). However, the potential application of chimeric antigen receptors (CAR)-modified natural killer (NK) cells targeting c-Met in LUAD is rarely explored. In this study, bioinformatic databases were searched and a tissue microarray (TMA) was enrolled to investigate expression status and prognostic role of c-Met in LUAD. Then, four types of c-Met-CAR structures were designed and prepared. The engineering CAR-NK cells containing c-Met-CARs were transfected, verified and characterized. The tumor-inhibitory role of c-Met-CAR-NK cells was finally evaluated in vitro and in vivo. The results demonstrated that c-Met expression elevated and confirmed that high c-Met expression was significantly associated with unfavorable prognosis in LUAD. Then, C-Met-CAR-NK cells were successfully constructed and DAP10 designed in CAR structure was a favorable stimulator for NK cell activation. CCN4 containing DAP10 co-stimulator exhibited the strongest cytotoxicity compared with other CAR-NK cells. Furthermore, CCN4 cells also exerted the prominent tumor-inhibitory effect on xenograft tumor growth. Collectively, this study suggests that DAP10 is a potent stimulator in CAR structure for NK cell activation, and CCN4-based immunotherapy may represent a promising strategy for the treatment of c-Met-positive LUAD.
Collapse
Affiliation(s)
- Yan Peng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Wenqing Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Yufeng Chen
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongyu Shen
- Gusu School, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheyue Wang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Shuning Tian
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaohui Yang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Daixun Cui
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Yiting He
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Xinxia Chang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China; Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Qi Tang
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China; Department of Pathology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Oncology, Geriatric Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Moran J, Mylod E, Kane LE, Marion C, Keenan E, Mekhaeil M, Lysaght J, Dev KK, O’Sullivan J, Conroy MJ. Investigating the Effects of Olaparib on the Susceptibility of Glioblastoma Multiforme Tumour Cells to Natural Killer Cell-Mediated Responses. Pharmaceutics 2023; 15:360. [PMID: 36839682 PMCID: PMC9959685 DOI: 10.3390/pharmaceutics15020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain malignancy, with dismal survival rates of ~14.6 months. The current standard-of-care consists of surgical resection and chemoradiotherapy, however the treatment response is limited by factors such as tumour heterogeneity, treatment resistance, the blood-brain barrier, and immunosuppression. Several immunotherapies have undergone clinical development for GBM but demonstrated inadequate efficacy, yet future combinatorial approaches are likely to hold more promise. Olaparib is FDA-approved for BRCA-mutated advanced ovarian and breast cancer, and clinical studies have revealed its utility as a safe and efficacious radio- and chemo-sensitiser in GBM. The ability of Olaparib to enhance natural killer (NK) cell-mediated responses has been reported in prostate, breast, and lung cancer. This study examined its potential combination with NK cell therapies in GBM by firstly investigating the susceptibility of the GBM cell line T98G to NK cells and, secondly, examining whether Olaparib can sensitise T98G cells to NK cell-mediated responses. Here, we characterise the NK receptor ligand profile of T98G cells and demonstrate that Olaparib does not dampen T98G susceptibility to NK cells or elicit immunomodulatory effects on the function of NK cells. This study provides novel insights into the potential combination of Olaparib with NK cell therapies for GBM.
Collapse
Affiliation(s)
- Jennifer Moran
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Laura E. Kane
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Caroline Marion
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Emily Keenan
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Marianna Mekhaeil
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kumlesh K. Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Melissa J. Conroy
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
32
|
Zhao D, Zhu D, Cai F, Jiang M, Liu X, Li T, Zheng Z. Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technol Cancer Res Treat 2023; 22:15330338231204198. [PMID: 38037341 PMCID: PMC10693217 DOI: 10.1177/15330338231204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| |
Collapse
|
33
|
Wang X, Yang X, Wang Y, Chen Y, Yang Y, Shang S, Wang W, Wang Y. Combination of Expanded Allogeneic NK Cells and T Cell-Based Immunotherapy Exert Enhanced Antitumor Effects. Cancers (Basel) 2022; 15:cancers15010251. [PMID: 36612246 PMCID: PMC9818244 DOI: 10.3390/cancers15010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Immunotherapies based on immune checkpoint blockade, neoantigen-reactive tumor-infiltrating lymphocytes and T cell receptor-engineered T cells (TCR-T) have achieved favorable clinical outcomes in tumor treatment. However, sustained immune response and tumor regression have been observed only in a few patients due to immune escape. Natural killer (NK) cells can mediate direct tumor lysis and target cancer cells with low or no expression of human leukocyte antigen class I (HLA-I) that are no longer recognized by T cells during immune escape. Therefore, the combination of T cell-based immunotherapy and NK cell therapy is a promising strategy for improving antitumor response and response rate. However, allogeneic NK cells for adoptive cell therapy have been limited by both the required cell number and quality. Here, we developed an efficient manufacturing system that relies on genetically modified K562 cells for the expansion of high-quality NK cells derived from peripheral blood mononuclear cells. NK cells with the optimal expansion and activity were identified by comparing the different culture systems. Furthermore, we demonstrated that the cooperation of NK cells with tumor-reactive T cells or with NY-ESO-1-specific TCR-T cells further enhanced tumors lysis, especially against tumors with downregulated HLA-I expression. The advantages of HLA-mismatch and non-rejection by other allogeneic immune cells demonstrated the potential of "off-the-shelf" NK cells with the capacity to target tumors for immunotherapy. Our results indicate that the combination strategy based on T cell and allogeneic NK cell immunotherapy might have potential for overcoming the barrier of immune incompetence caused by HLA-I downregulation.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuejiao Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueping Wang
- Institute of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunshuo Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siqi Shang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- LeaLing Biopharma Company, Ltd., Suzhou 215000, China
- Correspondence: (W.W.); (Y.W.)
| | - Yueying Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (W.W.); (Y.W.)
| |
Collapse
|
34
|
Kirchhammer N, Trefny MP, Auf der Maur P, Läubli H, Zippelius A. Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment. Sci Transl Med 2022; 14:eabo3605. [DOI: 10.1126/scitranslmed.abo3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, resistance to ICB occurs frequently due to tumor-intrinsic alterations or extrinsic factors in the tumor microenvironment. This Viewpoint aims to give an update on recent developments in immunotherapy for solid tumors and highlights progress in translational research and clinical practice.
Collapse
Affiliation(s)
- Nicole Kirchhammer
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Marcel P. Trefny
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University and University Hospital of Basel, Basel 4031, Switzerland
| | - Heinz Läubli
- Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
35
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
37
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Focaccetti C, Benvenuto M, Pighi C, Vitelli A, Napolitano F, Cotugno N, Fruci D, Palma P, Rossi P, Bei R, Cifaldi L. DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Front Immunol 2022; 13:886319. [PMID: 35967339 PMCID: PMC9367496 DOI: 10.3389/fimmu.2022.886319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Adoptive transfer of engineered NK cells, one of clinical approaches to fight cancer, is gaining great interest in the last decade. However, the development of new strategies is needed to improve clinical efficacy and safety of NK cell-based immunotherapy. NK cell-mediated recognition and lysis of tumor cells are strictly dependent on the expression of ligands for NK cell-activating receptors NKG2D and DNAM-1 on tumor cells. Of note, the PVR/CD155 and Nectin-2/CD112 ligands for DNAM-1 are expressed primarily on solid tumor cells and poorly expressed in normal tissue cells. Here, we generated human NK cells expressing either the full length DNAM-1 receptor or three different DNAM-1-based chimeric receptor that provide the expression of DNAM-1 fused to a costimulatory molecule such as 2B4 and CD3ζ chain. Upon transfection into primary human NK cells isolated from healthy donors, we evaluated the surface expression of DNAM-1 and, as a functional readout, we assessed the extent of degranulation, cytotoxicity and the production of IFNγ and TNFα in response to human leukemic K562 cell line. In addition, we explored the effect of Nutlin-3a, a MDM2-targeting drug able of restoring p53 functions and known to have an immunomodulatory effect, on the degranulation of DNAM-1-engineered NK cells in response to human neuroblastoma (NB) LA-N-5 and SMS-KCNR cell lines. By comparing NK cells transfected with four different plasmid vectors and through blocking experiments, DNAM-1-CD3ζ-engineered NK cells showed the strongest response. Furthermore, both LA-N-5 and SMS-KCNR cells pretreated with Nutlin-3a were significantly more susceptible to DNAM-1-engineered NK cells than NK cells transfected with the empty vector. Our results provide a proof-of-concept suggesting that the combined use of DNAM-1-chimeric receptor-engineered NK cells and Nutlin-3a may represent a novel therapeutic approach for the treatment of solid tumors, such as NB, carrying dysfunctional p53.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | | | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Dipartimento Pediatrico Universitario Ospedaliero (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Loredana Cifaldi,
| |
Collapse
|
39
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
40
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
41
|
Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int Immunopharmacol 2022; 106:108587. [PMID: 35149294 DOI: 10.1016/j.intimp.2022.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
CAR-T (chimeric antigen receptor T cell) technology, which has recently showed successful results in the treatment of hematological tumors, has been the focus of attention as one of the most potent approaches in tumor immunotherapy. However, side effects and limitations of this application, such as the risk of graft versus host disease (GvHD), make it challenging to be as accessible as other treatments. Natural killer cells (NK) could be transplanted without alloreactivity, making them as an off-the-shelf product. CAR-NK (chimeric antigen receptor NK cell) therapy can circumvent some serious limitations of CAR-T cell therapy. Application of CAR-NK cells have some considerable advantages over CAR-T cells. These include lack of cytokine release syndrome (CRS), neurotoxicity, and GvHD when using allogenic CAR-T cell. These features lessen the risk of tumor antigen loss and disease relapse. Moreover, NK cells which were derived from different sources, can make the CAR therapy more feasible. In this narrative review, we outlined the key features of CAR-NK cells as an alternative to CAR-T cell therapy in cancer immunotherapy and highlighted the main advantages.
Collapse
|
42
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
43
|
Lu Y. Natural Killer (NK) cells in immunotherapy and perspectives in antitumour approaches. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural Killer (NK) cells comprise a group of specialized innate lymphoid cells endowed with multiple cytotoxicity mechanisms while also harnessed with the ability to enhance other immune cells with cytokine production. This exclusive advantage of them to recognize and eliminate virally infected cells and tumour cells has been unmasked for decades, and previous clinical trials are also successfully tested for both efficacy and safety. With the emerging strategies in CAR-T cell therapy, such technologies can also be capable of further enhancing the viability of NK cell immunotherapy through cytokine armouring, chimeric antigen receptor (CAR) transduction, checkpoint inhibition, and co-stimulatory signals. Other than the conventional approach of engineering CAR to target tumour antigens, they are also capable of acting as blockers to the inhibitory compartments on tumour cells within the harsh environment to reduce the negative effects. Despite all these aspects, the tumour microenvironment (TME) is another essential facet when discussing cancer therapy owing to its characteristic setting that contributes immensely to immune evasion and immune function inhibition. In this review, I introduce the foundational mechanism for NK cytotoxicity and its signalling routes, discuss the impacts of TME on immune cells and their antitumour effects, evaluate possible strategies that overcome the current challenges, and propose a few potentially adoptive measures for future research in general immunotherapy from a perspective of molecular biology.
Collapse
|
44
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
45
|
Tang L, He S, Yin Y, Liu H, Hu J, Cheng J, Wang W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13111888. [PMID: 34834304 PMCID: PMC8621332 DOI: 10.3390/pharmaceutics13111888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based drug delivery systems have shown tremendous advantages in cancer treatment due to their distinctive properties. For instance, delivery of therapeutics using tumor-tropic cells like neutrophils, lymphocytes and mesenchymal stem cells can achieve specific tumor targeting due to the "Trojan Horse" effect. Other circulatory cells like erythrocytes and platelets can greatly improve the circulation time of nanoparticles due to their innate long circulation property. Adipocytes, especially cancer-associated adipocytes, play key roles in tumor development and metabolism, therefore, adipocytes are regarded as promising bio-derived nanoplatforms for anticancer targeted drug delivery. Nanomaterials are important participants in cell-based drug delivery because of their unique physicochemical characteristics. Therefore, the integration of various nanomaterials with different cell types will endow the constructed delivery systems with many attractive properties due to the merits of both. In this review, a number of strategies based on nanomaterial-involved cell-mediated drug delivery systems for cancer treatment will be summarized. This review discusses how nanomaterials can be a benefit to cell-based therapies and how cell-derived carriers overcome the limitations of nanomaterials, which highlights recent advancements and specific biomedical applications based on nanomaterial-mediated, cell-based drug delivery systems.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (J.C.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.T.); (S.H.); (Y.Y.); (H.L.); (J.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.C.); (W.W.)
| |
Collapse
|