1
|
Chen Y, Song S, Wang Y, Wu L, Wu J, Jiang Z, Li X. Topical application of magnolol ameliorates psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism. Bioorg Chem 2024; 154:108059. [PMID: 39693920 DOI: 10.1016/j.bioorg.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO4-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhengmeng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
2
|
Zhang ZH, Zhan ZY, Jiang M, Wang XY, Quan SL, Wu YL, Nan JX, Lian LH. Casting NETs on Psoriasis: The modulation of inflammatory feedback targeting IL-36/IL-36R axis. Int Immunopharmacol 2024; 142:113190. [PMID: 39306890 DOI: 10.1016/j.intimp.2024.113190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
NETosis happens when neutrophils are activated and neutrophil extracellular traps (NETs) are formed synchronously, which is a hallmark of psoriasis. However, the specific trigger that drives NET formation and the distinct contents and interaction with interleukin-36 receptor (IL-36R) of NETs remain to be further elucidated. This work identified NET formation driven by toll-like receptor (TLR) 3 ligand (especially polyinosinic-polycytidylic acid (Poly(I:C)) were enhanced by purinergic receptor P2X ligand-gated ion channel 7 receptor (P2X7R) ligands (especially adenosine 5'-triphosphate (ATP)). NET formation was accompanied by the secretion of inflammatory cytokines and characterized by IL-1β decoration. NET formation blockade decreased expressions of inflammatory cytokines and chemokines, which consequently improved inflammatory responses. Additionally, imiquimod (IMQ)-induced psoriasiform symptoms including neutrophilic infiltration tended to be time-sensitive. Mouse primary keratinocytes and mice deficient in Il1rl2, which encodes IL-36R, mitigated inflammatory responses and NET formation, thereby delaying the pathophysiology of psoriasis. Together, the findings provided the therapeutic potential for IL-36 targeting NET inhibitors in psoriasis treatment.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shu-Lin Quan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
3
|
Wang ZY, Zhao ZQ, Sheng YJ, Chen KJ, Chen BZ, Guo XD, Cui Y. Dual-Action Psoriasis Therapy: Antiproliferative and Immunomodulatory Effects via Self-Locking Microneedles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409359. [PMID: 39473371 DOI: 10.1002/advs.202409359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Indexed: 12/28/2024]
Abstract
Psoriasis is a chronic, immune-mediated disorder characterized by immune regulation disorders and abnormal keratinocyte proliferation. Deucravacitinib (Deu), a selective oral Tyrosine Kinase 2 (TYK2) inhibitor, shows promise in treating psoriasis but may cause systemic side effects and fail to address persistent localized thickened lesions. Herein, a self-locking microneedle (MN) patch with a polyvinyl alcohol (PVA) inner ring loaded with Deu is developed, designed to penetrate the transdermal barriers and dissolve rapidly, downregulating the IL-23/IL-17 pathway and serve as the first line of defense against the spread of skin-originated inflammation. Additionally, Calcipotriol (Cal), a vitamin D derivative, is incorporated into a methacrylated hyaluronic acid (HAMA) backing layer and outer ring that mimics occlusive administration, maintaining localized skin surface retention for prolonged anti-proliferative therapy. The Deu@Cal MN demonstrates satisfactory adhesiveness due to swelling-mediated mechanical interlocking via the outer ring, ensuring targeted drug release at lesion site. Besides its effectiveness in alleviating both skin inflammation and proliferation, it inhibits the differentiation of Th17 cells in the spleen, suggesting potential to reduce systemic inflammation. These findings offer a new therapeutic approach for treating psoriasis and other autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Zi Yi Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Jun Sheng
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ke Jun Chen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yong Cui
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
4
|
Han L, Gan Y, Du J, Hu Y, Chen Y, Huang Q, Zhang Z, Yawalkar N, Yan K, Wang Z. Evaluation of β2-microglobulin in the condition and prognosis of psoriasis patients. J DERMATOL TREAT 2024; 35:2377665. [PMID: 39069294 DOI: 10.1080/09546634.2024.2377665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Numerous studies have linked the inflammatory pathway in psoriasis and metabolic disease, while no specific marker defined it. It is worth exploring the association of β2-microglobulin (β2M) in psoriasis severity and comorbidities. OBJECTIVES To investigate the correlation between blood β2M level and psoriasis severity, to explore the inflammatory factors influencing the occurrence of psoriasis comorbidities such as arthritis, diabetes, and hypertension. METHODS Ninety-seven psoriasis patients were analyzed in the cohort retrospective study during 12 weeks. RESULTS Significantly higher levels of blood β2M and ESR were observed in the group that patients' PASI ≥10 than in the group that PASI <10. Blood β2M level had strong significantly positive correlations with the PASI in Pearson's correlation analysis. In the model that systemic inflammatory factors to find psoriasis comorbidity risk factors, logistic regression analysis showed that blood β2M level was the significant risk factor associated with diabetes and hypertension. High-sensitivity C-reactive protein (hsCRP) was the significant risk factor associated with arthritis. CONCLUSIONS Patients with a severer psoriasis tended to have higher blood β2M levels and severer inflammatory state. In the systemic inflammation indexes, the level of blood β2M affected the risk of hypertension and diabetes, and hsCRP affected the risk of arthritis in patients with psoriasis.
Collapse
Affiliation(s)
- Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wei Z, Zhong H, Yuan S, Chen C. Daturataturin A Ameliorates Psoriasis by Regulating PPAR Pathway. Biochem Genet 2024; 62:4952-4966. [PMID: 38379039 DOI: 10.1007/s10528-024-10680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a kind of severe immune-mediated systemic skin disorder, becoming a worldwide public health concern. Daturataturin A (DTA), a withanolide compound, exerts excellent anti-inflammatory and anti-proliferative properties. The objective of this study is to elucidate the effect of DTA on psoriasis and its potential mechanism. We established psoriasis-like keratinocytes model by stimulating HaCaT cells with M5 cocktail cytokines including Interleukin (IL)-17A, IL-22, oncostatin M, IL-1α, and tumor necrosis factor-α (TNF-α), followed by intervention with DTA. The potential effects and mechanisms of DTA on psoriasis were evaluated in vitro. DTA was found to be able to inhibit hyperproliferation, promote apoptosis, decrease the release of pro-inflammatory cytokines, downregulate keratin expression, and improve lipid metabolism via regulating the peroxisome proliferator-activated receptor (PPAR) signaling pathway by M5 cocktail cytokines stimulation in HaCaT cells. DTA ameliorated lipid metabolism of psoriasis and exerted the potential anti-psoriasis effects by regulating PPAR pathway in vitro, suggesting that DTA may act as a new therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Zheng Wei
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Hongfa Zhong
- Trauma Center, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Shanmin Yuan
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Cong Chen
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
6
|
Liu W, Tao YH, Chen J, Lu CP, Zhang L, Lin ZH. Transcriptomic analysis of liver immune response in Chinese spiny frog ( Quasipaa spinosa) infected with Proteus mirabilis. Open Life Sci 2024; 19:20221003. [PMID: 39588112 PMCID: PMC11588007 DOI: 10.1515/biol-2022-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
The expansion of Chinese spiny frog (Quasipaa spinosa) aquaculture has increased the prevalence and severity of diseases such as "skin rot" disease, which is triggered by harmful bacteria. Previous studies have mainly focused on pathogen identification and vaccine development. However, frog immune responses following pathogenic bacterial infection have hardly been investigated. We thus examined the immune response of Chinese spiny frog to skin rot disease caused by Proteus mirabilis. The liver transcriptomes of Chinese spiny frog infected with P. mirabilis were sequenced using the MGISEQ-2000 platform. We identified a total of 138,936 unigenes, of which 32.35% were known genes. After infection with P. mirabilis, 801 genes showed differential expression, with 507 upregulated and 294 downregulated genes. These differentially expressed genes were enriched in pathways related to cytokine-cytokine receptor interaction, TNF signaling, and toll-like receptor signaling, according to Kyoto Encyclopedia of Genes and Genomes analysis. Following P. mirabilis infection, immune genes, including H2-Aa, hamp1, LYZ, CXCL10, and IRAK3, were significantly upregulated, while NLRP3, ADAM19, TYK2, FETUB, and MSR1 were significantly downregulated. The results provide important information on how the immune system of Chinese spiny frog responds to P. mirabilis infection and help understand the development of skin rot in cultured frog species.
Collapse
Affiliation(s)
- Wei Liu
- College of Medicine, Lishui University, Lishui, 323000, China
- Lishui City Forestry Bureau,
Lishui, 323000, China
| | - Yu-Hui Tao
- Jinyun County Forestry Bureau,
Lishui, 321400, China
| | - Jie Chen
- College of Ecology, Lishui University,
Lishui, 323000, China
| | - Cheng-Pu Lu
- College of Ecology, Lishui University,
Lishui, 323000, China
| | - Le Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University,
Lishui, 323000, China
| |
Collapse
|
7
|
Giraulo C, De Palma G, Plaitano P, Cicala C, Morello S. Insight into adenosine pathway in psoriasis: Elucidating its role and the potential therapeutical applications. Life Sci 2024; 357:123071. [PMID: 39307180 DOI: 10.1016/j.lfs.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Psoriasis is an inflammatory skin disease, that can manifest as different phenotypes, however its most common form is psoriasis vulgaris (plaque psoriasis), characterized by abnormal keratinocyte proliferation, leading to characteristic histopathological signs of acanthosis, hyperkeratosis and parakeratosis. For many years, there has been a debate regarding whether keratinocyte dysfunction leads to immune system dysregulation in psoriasis or vice versa. It is now understood that epidermal hyperplasia results from immune system activation. Besides epidermal hyperplasia, psoriatic skin shows leukocyte infiltration, evident angiogenesis in the papillary dermis, characterized by tortuous, dilated capillaries, as well as oedema. There is substantial early evidence that adenosine is a key mediator of the immune response; it derives from ATP hydrolysis and accumulates into tissue in response to systemic and local stress conditions, hypoxia, metabolic stress, inflammation. Adenosine controls several cell functions by signalling through its 4 receptor subtypes, A1, A2A, A2B and A3. Evidence suggests that adenosine may play a role in psoriasis pathogenesis by controlling several immune cell functions, keratinocyte proliferation, neo-angiogenesis. Expression of adenosine receptor varies in psoriatic skin, and this can significantly impact on tissue homeostasis. Indeed, an altered adenosine receptor profile may contribute to the dysregulation observed in psoriasis, affecting immune responses and inflammatory pathways. Here, we discuss the role of adenosine in regulating the functions of the main cell populations implied in the pathogenesis of psoriasis. Furthermore, we give evidence for adenosine signalling pathway as target for therapeutic intervention in psoriasis.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Giacomo De Palma
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy; PhD Program in Nutraceuticals, Functional Foods and Human Health, University of Naples "Federico II", Napoli, NA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy.
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
8
|
Hu Y, Li Y, Yan W, Zhou Y. Association of psoriasis with geographic and fissured tongue in the Han population in southwestern China. An Bras Dermatol 2024; 99:826-832. [PMID: 39112287 PMCID: PMC11551244 DOI: 10.1016/j.abd.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Psoriasis is a common immune-mediated skin disease that can involve other organs and tissues, including the oral mucosa. Some studies have found an increased proportion of geographic tongue (GT) and fissured tongue (FT) in patients with psoriasis, which appears to be region-specific. OBJECTIVES The association of psoriasis with GT/FT in Eastern Asian populations remains unknown. Thus, the authors aimed to investigate the association of psoriasis with GT/FT in the Han population in southwestern China. METHODS This study was conducted on 230 psoriatics and 230 healthy controls at West China Hospital. The authors compared the proportion of subjects with GT/FT in the two groups and compared age, gender, smoking, alcohol consumption, age at onset of psoriasis, duration of psoriasis, nail and joint involvement, Psoriasis Area and Severity Index, Body Surface Area, Dermatology Life Quality Index, and proportion using biologics in psoriatics with or without GT /FT. RESULTS The authors have found a strong association between psoriasis and FT (p < 0.001), and a non-significant association between psoriasis and GT (p = 0.760). Compared to psoriasis patients without FT, the authors found that psoriasis patients with FT were older (p = 0.021) and had an increased frequency of late-onset psoriasis (p = 0.014); they also had more severe psoriasis (p = 0.047) and poorer quality of life (p = 0.045). STUDY LIMITATIONS GT has periods of exacerbation and remission, so the authors cannot avoid a deviation of the prevalence of GT in this study from the true prevalence rate. Also, biologics have been found to lead to remission of GT and FT, which may have influenced the GT/FT ratio in the case group in this study. CONCLUSIONS Psoriasis was associated with FT in the Han population in southwestern China, attention must be paid to the treatment of psoriatics with FT and skin diseases in patients with FT.
Collapse
Affiliation(s)
- Yuting Hu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Yan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Fernández-Ávila DG, Prada-Vanegas JD, De la Espriella MC, Barahona-Correa JE, Charry LP, Cuellar I. Frequency of use and annual costs of biological therapy for psoriasis in Colombia in 2019. Int J Dermatol 2024; 63:e296-e301. [PMID: 39031993 DOI: 10.1111/ijd.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Evidence describing the types and annual costs of biological treatments for psoriasis in Latin America is scarce. This study aimed to estimate the frequency of use and costs of biologic therapy for psoriasis in Colombia in 2019. METHODS This secondary data analysis uses the International Classification of Diseases terms associated with psoriasis, excluding those related to psoriatic arthritis, based on data from the registry of the Colombian Ministry of Health. We estimated the prevalence of psoriasis per 100,000 inhabitants; then, we retrieved the frequency of use of biologic therapy in patients with psoriasis and estimated the cost per year of each and overall therapies in 2019 in US dollars (USD). RESULTS There were 100,823 patients with psoriasis in Colombia in 2019, which amounts to a prevalence of 0.2% in the general population. Of those patients, 4.9% received biologic therapy, most frequently males (60%). The most commonly used biological therapies for psoriasis in Colombia in 2019 were ustekinumab (35.2%), with an annual cost per patient of $12,880 USD; adalimumab (26%), with a yearly cost per patient of $7130 USD; and secukinumab (19.8%), with an annual cost per patient of $6825 USD. CONCLUSION This is the first study to describe the use and cost of biological therapy for psoriasis in Colombia. It provides valuable cost-awareness information for the Colombian health system.
Collapse
Affiliation(s)
- Daniel G Fernández-Ávila
- Division of Rheumatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Jennifer D Prada-Vanegas
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Division of Dermatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| | - María C De la Espriella
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Division of Dermatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| | - Julián E Barahona-Correa
- Division of Rheumatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Laura P Charry
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Division of Dermatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| | - Isabel Cuellar
- School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Division of Dermatology, Hospital Universitario San Ignacio, Bogotá D.C., Colombia
| |
Collapse
|
10
|
Liu H, Chen Y, Xu S, Chen H, Qiu F, Liang CL, Mo X, Liu J, Lu C, Dai Z. Electroacupuncture and methotrexate cooperate to ameliorate psoriasiform skin inflammation by regulating the immune balance of Th17/Treg. Int Immunopharmacol 2024; 140:112702. [PMID: 39094355 DOI: 10.1016/j.intimp.2024.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Psoriasis is an autoinflammatory dermatosis, while methotrexate (MTX) is an immunosuppressant used to treat psoriasis. However, conventional immunosuppressants may cause various side effects. Acupuncture has potential benefits in treating psoriasis based on its anti-inflammatory effects. However, the immune mechanisms underlying its effects remain unclear. In this study, imiquimod-induced psoriatic mice were used to investigate the effects and mechanisms of electroacupuncture (EA) and, in particular, its joint treatment with MTX. We found that treatment with either EA or MTX ameliorated psoriasiform skin lesions, improved skin pathology and reduced proinflammatory cytokines in the skin, while joint treatment with both EA and MTX further alleviated the skin lesions and inflammation compared to either one alone. Moreover, percentages of CD4+ IL-17A+ Th17 cells in the skin and lymph nodes were decreased by EA or MTX and further lowered by combined EA+MTX treatment. Similarly, EA or MTX also reduced their RORγt expression. On the contrary, CD4+ FoxP3+ Treg frequency in psoriatic mice was augmented by EA or MTX and further increased by the joint treatment. However, depleting Tregs mostly reversed the therapeutic effects of EA or EA plus MTX. Additionally, the phosphorylated NF-κB (p65) expression was suppressed by treatment with EA, MTX or better with EA+MTX. Meanwhile, the anti-inflammatory effects of EA plus MTX were offset by an NF-κB agonist. Thus, this study has revealed that EA cooperates with MTX to balance Th17/Treg responses and to ameliorate psoriasiform skin inflammation through suppressing NF-κB activation. Our findings may be implicated for treating human psoriasis.
Collapse
Affiliation(s)
- Huazhen Liu
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haiming Chen
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiumei Mo
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junfeng Liu
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Chuanjian Lu
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
11
|
Krajewski PK, Złotowska A, Szepietowski JC. The Therapeutic Potential of GLP-1 Receptor Agonists in the Management of Hidradenitis Suppurativa: A Systematic Review of Anti-Inflammatory and Metabolic Effects. J Clin Med 2024; 13:6292. [PMID: 39518431 PMCID: PMC11547001 DOI: 10.3390/jcm13216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Glucagon-like peptide-1 receptor agonists (GLP1-RAs) are synthetic peptides that mimic the natural activity of GLP-1, widely known for lowering blood glucose levels and promoting weight reduction. These characteristics make them a valuable tool in managing type 2 diabetes and obesity-related conditions. Recent findings indicate that GLP1-RAs may also offer therapeutic benefits in managing hidradenitis suppurativa (HS), a chronic inflammatory skin disorder closely associated with metabolic abnormalities, including obesity, diabetes, and dyslipidemia. This review explores the potential role of GLP1-RAs in managing HS. Methods: A systematic review was conducted by searching electronic databases, including MEDLINE and Google Scholar, without date limitations. Key search terms included "GLP-1" or "GLP-1 agonists" combined with "hidradenitis suppurativa" or "acne inversa". Inclusion criteria were set for studies reporting on the use of GLP1-RAs as a treatment for HS, with articles discussing theoretical applications excluded. Data synthesis included findings from 25 relevant studies. Results: The analysis revealed that GLP1-RAs, specifically liraglutide and semaglutide, led to significant reductions in weight and systemic inflammation in HS patients. Notably, improvements in lesion severity and quality of life were reported. The anti-inflammatory effects of GLP1-RAs were attributed to the suppression of key inflammatory pathways involving TNF-α, IL-17, and NF-κB. Conclusions: GLP1-RAs demonstrate significant potential as an adjunct therapy for HS, addressing both the metabolic and inflammatory aspects of the condition. While early results are promising, further research is necessary to determine their long-term efficacy in managing HS.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.K.); (A.Z.)
| | - Aleksandra Złotowska
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.K.); (A.Z.)
| | - Jacek C. Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland
| |
Collapse
|
12
|
Wu R, Tian H, Zhao T, Tian Y, Jin X, Zhu M. A Mendelian randomization analysis of inflammatory skin disease risk due to mineral deficiencies. Front Nutr 2024; 11:1404117. [PMID: 39469328 PMCID: PMC11513277 DOI: 10.3389/fnut.2024.1404117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Mineral deficiencies, such as iron (Fe), zinc (Zn), and selenium (Se), play crucial roles in inflammation and immune responses and are linked to chronic inflammatory skin diseases. This study used genome-wide association study (GWAS) data and Mendelian randomization (MR) to investigate the genetic causality among serum levels of five minerals (Fe, Cu, Zn, Se, Ca), three iron metabolism indicators (TSAT, TIBC, ferritin), and three chronic inflammatory skin diseases [psoriasis (PS), atopic dermatitis (AD), acne vulgaris (AV)]. Methods Two-sample MR analyses using the "TwoSample MR" package in R were conducted with aggregate outcome data from the FinnGen database. The inverse-variance-weighted (IVW) method was applied to assess causal relationships between mineral levels and disease outcomes. Robustness was examined via heterogeneity and pleiotropy tests. Results IVW analysis showed significant association between blood transferrin saturation (TSAT) and PS (p = 0.004, OR = 1.18). Serum Zn and Se levels showed inverse correlation with AD (p = 0.039, OR = 0.92). However, due to limited SNPs, robustness was reduced. Conclusion TSAT is genetically linked to PS, highlighting iron homeostasis in disease development. Zn and Se intake may reduce AD risk.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianqi Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Tian
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianhua Jin
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Yu X, Pu H, Voss M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br J Nutr 2024; 132:898-918. [PMID: 39411832 PMCID: PMC11576095 DOI: 10.1017/s0007114524001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 11/20/2024]
Abstract
An anti-inflammatory diet is characterised by incorporating foods with potential anti-inflammatory properties, including fruits, vegetables, whole grains, nuts, legumes, spices, herbs and plant-based protein. Concurrently, pro-inflammatory red and processed meat, refined carbohydrates and saturated fats are limited. This article explores the effects of an anti-inflammatory diet on non-communicable diseases (NCD), concentrating on the underlying mechanisms that connect systemic chronic inflammation, dietary choices and disease outcomes. Chronic inflammation is a pivotal contributor to the initiation and progression of NCD. This review provides an overview of the intricate pathways through which chronic inflammation influences the pathogenesis of conditions including obesity, type II diabetes mellitus, CVD, autoinflammatory diseases, cancer and cognitive disorders. Through a comprehensive synthesis of existing research, we aim to identify some bioactive compounds present in foods deemed anti-inflammatory, explore their capacity to modulate inflammatory pathways and, consequently, to prevent or manage NCD. The findings demonstrated herein contribute to an understanding of the interplay between nutrition, inflammation and chronic diseases, paving a way for future dietary recommendations and research regarding preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu610106, People’s Republic of China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Margaret Voss
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY13244, USA
| |
Collapse
|
14
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
15
|
Khalil RM, Abdelhameed MF, Abou Taleb S, El-Saied MA, Shalaby ES. Preparation and characterisation of esculetin-loaded nanostructured lipid carriers gels for topical treatment of UV-induced psoriasis. Pharm Dev Technol 2024; 29:886-898. [PMID: 39315459 DOI: 10.1080/10837450.2024.2407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
SIGNIFICANCE As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis. OBJECTIVE The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption. METHODS The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by in vitro release and in vivo effectiveness on a rat model of UV-induced psoriasis. RESULTS Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis. CONCLUSION As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.
Collapse
Affiliation(s)
- Rawia M Khalil
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Zhou L, Zhong Y, Li C, Zhou Y, Liu X, Li L, Zou Z, Zhong Z, Ye J. MAPK14 as a key gene for regulating inflammatory response and macrophage M1 polarization induced by ferroptotic keratinocyte in psoriasis. Inflammation 2024; 47:1564-1584. [PMID: 38441793 DOI: 10.1007/s10753-024-01994-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 11/09/2024]
Abstract
Psoriasis is a prevalent condition characterized by chronic inflammation, immune dysregulation, and genetic alterations, significantly impacting the well-being of affected individuals. Recently, a novel aspect of programmed cell death, ferroptosis, linked to iron metabolism, has come to light. This research endeavors to unveil novel diagnostic genes associated with ferroptosis in psoriasis, employing bioinformatic methods and experimental validation. Diverse analytical strategies, including "limma," Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were employed to pinpoint pivotal ferroptosis-related diagnostic genes (FRDGs) in the training datasets GSE30999, testing dataset GSE41662 and GSE14905. The discriminative potential of FRDGs in distinguishing between normal and psoriatic patients was gauged using Receiver Operating Characteristic (ROC) curves, while the functional pathways of FRDGs were scrutinized through Gene Set Enrichment Analysis (GSEA). Spearman correlation and ssGSEA analysis were applied to explore correlations between FRDGs and immune cell infiltration or oxidative stress-related pathways. The study identified six robust FRDGs - PPARD, MAPK14, PARP9, POR, CDCA3, and PDK4 - which collectively formed a model boasting an exceptional AUC value of 0.994. GSEA analysis uncovered their active involvement in psoriasis-related pathways, and substantial correlations with immune cells and oxidative stress were noted. In vivo, experiments confirmed the consistency of the six FRDGs in the psoriasis model with microarray results. In vitro, genetic knockdown or inhibition of MAPK14 using SW203580 in keratinocytes attenuated ferroptosis and reduced the expression of inflammatory cytokines. Furthermore, the study revealed that intercellular communication between keratinocytes and macrophages was augmented by ferroptotic keratinocytes, increased M1 polarization, and recruitment of macrophage was regulated by MAPK14. In summary, our findings unveil novel ferroptosis-related targets and enhance the understanding of inflammatory responses in psoriasis. Targeting MAPK14 signaling in keratinocytes emerges as a promising therapeutic approach for managing psoriasis.
Collapse
Affiliation(s)
- Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yingdong Zhong
- Department of Dermatology, Dongguan Liaobu Hospital, Dongguan, 523430, Guangdong, People's Republic of China
| | - Chaowei Li
- Department of Dermatology, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, People's Republic of China
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, 525200, China.
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
17
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
18
|
Zhao Y, Bai YP, Li LF. Association Between Systemic Immune-Inflammation Index and Psoriasis, Psoriasis Comorbidities, and All-Cause Mortality: A Study Based on NHANES. Immun Inflamm Dis 2024; 12:e70050. [PMID: 39467182 PMCID: PMC11515906 DOI: 10.1002/iid3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE The relationship between systemic immune-inflammation index (SII) and psoriasis and its prognosis is not yet clear. In this study, the correlation between SII and psoriasis, psoriasis comorbidities, and all-cause mortality was investigated based on the National Health and Nutrition Examination Survey (NHANES). METHODS The study population was derived from five NHANES cycles: 2003-2006, 2009-2014, and survival follow-up was as of December 31, 2019. The association between SII and psoriasis and its comorbidities was analyzed using weighted multivariate logistic regression models. Weighted COX regression was used to calculate hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs). Restricted cubic spline, subgroup and sensitivity analyses were also used. Logarithmic conversion was performed on SII(log2SII) to reduce the impact of outliers. RESULTS A total of 21,431 participants were included in this study. As a continuous variable, log2SII was significantly associated with psoriasis in the fully adjusted model [OR = 1.20(1.04-1.39), p = .01]. log2SII remained positively associated with psoriasis after excluding participants with a history of cancer or cardiovascular disease (CVD), or non-Hispanic black participants. Among psoriasis patients, log2SII was significantly associated with metabolic syndrome (MetS) [OR = 1.68(1.19,2.38), p = .004] and all-cause mortality [HR = 1.48(1.09,1.99), p = .01]. Similar results were consistently observed when SII was analyzed as a categorical variable (in quartiles). CONCLUSION This study suggested a positive association between SII and the prevalence of psoriasis. Among psoriasis patients, SII was positively correlated with MetS and all-cause mortality.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Dermatology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yan Ping Bai
- Department of DermatologyChina‐Japan Friendship HospitalBeijingChina
| | - Lin Feng Li
- Department of Dermatology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Tomar Y, Baidya M, Chadokiya J, Bhatt S, Singhvi G. An overview of Skp2: a promising new therapeutic target of psoriasis. Expert Opin Ther Targets 2024; 28:689-700. [PMID: 39086205 DOI: 10.1080/14728222.2024.2387604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Psoriasis is a chronic immune-mediated disorder affecting over 2-3% of the population worldwide, significantly impacting quality of life. Despite the availability of various therapeutic interventions, concerns persist regarding lesion recurrence and potential alterations in immune surveillance promoting cancer progression. Recent advancements in understanding cellular and molecular pathways have unveiled key factors in psoriasis etiology, including IL-17, 22, 23, TNF-α, PDE-4, JAK-STAT inhibitors, and AhR agonists. This work explores the potential of S-phase kinase-associated protein 2 (Skp2) as a therapeutic target in psoriasis. AREA COVERED This review covers the current understanding of psoriasis pathophysiology, including immune dysregulation, and the role of keratinocytes and ubiquitin. It also delves into Skp2 role in cell cycle regulation, and its correlation with angiogenesis and ubiquitin in psoriasis. The evolving therapeutic approaches targeting Skp2, including small molecule inhibitors, are also discussed. EXPERT OPINION Targeting Skp2 holds promise for developing novel therapeutic approaches for psoriasis. By modulating Skp2 activity or expression, it may be possible to intervene in inflammatory and proliferative processes underlying the disease. Further research into Skp2 inhibitors and their efficacy in preclinical and clinical settings is warranted to harness the full potential of Skp2 as a therapeutic target in psoriasis management.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Moushumi Baidya
- Department of Pharmacy, Milestones Institute of Pharmaceutical Sciences, Udaipur, Tripura, India
| | - Jay Chadokiya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
21
|
Das G, Mathur M, Shrestha A, Jaiswal S, Maharjan S. Palmoplantar psoriasis: A clinicopathological correlation in a tertiary care hospital. Skin Res Technol 2024; 30:e13882. [PMID: 39099444 PMCID: PMC11298709 DOI: 10.1111/srt.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Palmoplantar psoriasis is a clinical variant of psoriasis characterized by well-defined erythematous desquamating plaques on palms and soles, which may or may not include pustules. Hyperkeratotic lesions of palm and sole commonly include Psoriasis, Eczema and Tinea. These conditions often present with overlapping clinical and histopathological features requiring clinicohistopathological correlation for a conclusive diagnosis. The presence of munro's microabscess or spongiform pustule of kogoj differentiates psoriasis of palm and sole from other hyperkeratotic lesions of palm and sole. The objective of this study was to study the clinical and histopathological profile of palmoplantar psoriasis and correlate clinical diagnosis with histopathological diagnosis. METHOD A hospital-based, descriptive study was conducted from January 1, 2020, to December 31, 2020. Fifty-two patients were clinically diagnosed as palmoplantar psoriasis with or without involving other parts of body and routine histopathological evaluation was carried out as per standard protocols. RESULT Clinically diagnosed 52 cases of palmoplantar psoriasis showed varied histopathology with hyperkeratosis (100%), parakeratosis (100%), regular acanthosis (75%), Supra-papillary thinning (44.2%), spongiosis (65.4%), tortuous vessels in the papillary dermis (78.8%) and mixed inflammatory infiltrates (predominantly lymphocytic-100%), which were observed to be prominent findings in skin biopsies of our patients. Clinicopathological correlation was achieved in 88.5% of cases. CONCLUSION This study shows clinically diagnosed palmoplantar psoriasis with histopathological features consistent with palmoplantar psoriasis in 88.5% cases. Thus, clinically inconclusive hyperkeratotic lesions with palmoplantar psoriasis can be diagnosed with histopathological correlation improving the therapeutic intervention.
Collapse
Affiliation(s)
- Gautam Das
- Department of DermatologyCollege of Medical Sciences (COMS)BharatpurNepal
- Department of DermatologyKulhudhuffushi Regional Hospital (KRH)KulhudhuffushiMaldives
| | - Mahesh Mathur
- Department of DermatologyCollege of Medical Sciences (COMS)BharatpurNepal
| | - Ayasha Shrestha
- Department of Community MedicineCollege of Medical Sciences (COMS)BharatpurNepal
| | - Sunil Jaiswal
- Department of DermatologyCollege of Medical Sciences (COMS)BharatpurNepal
| | - Sailuja Maharjan
- Department of PathologyKulhudhuffushi Regional Hospital (KRH)KulhudhuffushiMaldives
| |
Collapse
|
22
|
Hasan AM, Gatea FK. Novel effect of topical Roquinimex and its combination with Clobetasol on an imiquimod-induced model of psoriasis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5219-5232. [PMID: 38265682 DOI: 10.1007/s00210-024-02947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Psoriasis is a chronic inflammatory skin condition affecting multiple systems and the skin, with topical therapy representing the fundamental treatment modality for psoriasis. Investigate the effect of topical Roquinimex (ROQ) alone and combined with Clobetasol propionate (CLO) on imiquimod (IMQ)-induced mouse model as a novel approach to treating psoriasis. Sixty male Swiss Albino mice were divided into six groups of ten mice; all groups except the negative control received IMQ cream 5% (62.5 mg) as a once-daily topical application for six days. On the seventh day, five groups (except negative control) received one of the following treatments for eight days: no treatment (positive control), Petrolatum gel 15% as a twice-daily topical application (Petrolatum control), CLO 0.05% ointment once daily, ROQ ointment 1% w/w twice daily topically, topical preparation of 0.025% CLO ointment combined with ROQ ointment 0.5% w/w twice daily; the total duration of the study is 14 days. The clinical, pathological, and laboratory effects were then measured. The use of ROQ ointment alone or combined with CLO resulted in significant improvement in psoriasis lesions (measured by Baker's and PASI scores) compared to positive control groups (2.15±1.08, 1.60±0.61, 9.00±0.00, and 7.60±0.84, respectively for Baker's score) (1.50±1.08, 1.30±0.95, 11.70±0.48, 9.30±0.67, respectively for PASI score), a similar improvement seen for various inflammatory markers, including interleukin (IL)-10 (140.53±60.68, 285.63±92.16, 31.83±3.03, and 92.50±27.13 pg/ml, respectively), IL-17 (126.58±40.98, 124.26±61.40, 553.04±141.32, and 278.52±100.27 pg/ml, respectively), tumor necrosis factor-α (72.34±23.40, 30.11±7.01, 807.13±500.06, and 281.79±240.17 pg/ml, respectively), and vascular endothelial growth factor (109.71±29.35, 80.96±24.58, 552.20±136.63, 209.56±73.31 pg/ml and respectively). Roquinimex exerts its antipsoriatic effect through multiple mechanisms; its combination treatment with Clobetasol is a promising therapy for managing psoriasis.
Collapse
Affiliation(s)
- Abeer Mohammed Hasan
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Fouad Kadhim Gatea
- Department of Pharmacology and Therapeutics, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
23
|
Yan F, Wang L, Zhang J, Liu Z, Yu B, Li W, Guo Z, Shi D, Zhang H, Xiong H. Cornuside alleviates psoriasis-like skin lesions in mice by relieving inflammatory effects. Int Immunopharmacol 2024; 134:112183. [PMID: 38705031 DOI: 10.1016/j.intimp.2024.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease substantially affecting the quality of life, with no complete cure owing to its complex pathogenesis. Cornuside, a major bioactive compound present in Cornus officinalis Sieb. et Zucc., which is a well-known traditional Chinese medicine with a variety of biological and pharmacological activities, such as anti-apoptotic, antioxidant, and anti-inflammatory properties. However, its effects on psoriasis remain unclear. Our preliminary analysis of network pharmacology showed that cornuside may be involved in psoriasis by regulating the inflammatory response and IL-17 signaling pathway. Thus, we investigated the protective role and mechanism of cornuside in the pathogenesis of psoriasis in an imiquimod (IMQ)-induced psoriasis mouse model. In-vivo experiments demonstrated that cornuside-treated mice had reduced skin erythema, scales, thickness, and inflammatory infiltration. The Psoriasis Area Severity Index score was significantly lower than that of the IMQ group. Flow cytometry analysis indicated that cornuside effectively inhibited Th1- and Th17-cell infiltration and promoted aggregation of Th2 cells in skin tissues. Cornuside also inhibited the infiltration of macrophages to the skin. Furthermore, in-vitro experiments indicated that cornuside also decreased the polarization of M1 macrophages and reduced the levels of associated cytokines. Western blotting demonstrated that cornuside suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular receptor kinase (ERK) in bone marrow-derived macrophages. Our findings indicate that cornuside has a protective effect against IMQ-induced psoriasis by inhibiting M1 macrophage polarization through the ERK and JNK signaling pathways and modulating the infiltration of immune cells as well as the expression of inflammatory factors.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhengran Guo
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Department of Dermatology, Jining First People's Hospital, Jining, China.
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| |
Collapse
|
24
|
Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV, Ionescu RA, Vreju FA. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med 2024; 14:535. [PMID: 38793117 PMCID: PMC11122105 DOI: 10.3390/jpm14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a chronic recurrent inflammatory autoimmune pathology with a significant genetic component and several interferences of immunological cells and their cytokines. The complex orchestration of psoriasis pathogenesis is related to the synergic effect of immune cells, polygenic alterations, autoantigens, and several other external factors. The major act of the IL-23/IL-17 axis, strongly influencing the inflammatory pattern established during the disease activity, is visible as a continuous perpetuation of the pro-inflammatory response and keratinocyte activation and proliferation, leading to the development of psoriatic lesions. Genome-wide association studies (GWASs) offer a better view of psoriasis pathogenic pathways, with approximately one-third of psoriasis's genetic impact on psoriasis development associated with the MHC region, with genetic loci located on chromosome 6. The most eloquent genetic factor of psoriasis, PSORS1, was identified in the MHC I site. Among the several factors involved in its complex etiology, dysbiosis, due to genetic or external stimulus, induces a burst of pro-inflammatory consequences; both the cutaneous and gut microbiome get involved in the psoriasis pathogenic process. Cutting-edge research studies and comprehensive insights into psoriasis pathogenesis, fostering novel genetic, epigenetic, and immunological factors, have generated a spectacular improvement over the past decades, securing the path toward a specific and targeted immunotherapeutic approach and delayed progression to inflammatory arthritis. This review aimed to offer insight into various domains that underline the pathogenesis of psoriasis and how they influence disease development and evolution. The pathogenesis mechanism of psoriasis is multifaceted and involves an interplay of cellular and humoral immunity, which affects susceptible microbiota and the genetic background. An in-depth understanding of the role of pathogenic factors forms the basis for developing novel and individualized therapeutic targets that can improve disease management.
Collapse
Affiliation(s)
- Rucsandra Cristina Dascălu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Cristina Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| |
Collapse
|
25
|
Man S, Ma W, Jiang H, Haider A, Shi S, Li X, Wu Z, Song Y. Evaluating the efficacy and mechanisms of Hua-Zhuo-Ning-Fu-Decoction on psoriasis using integrated bioinformatics analysis and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117856. [PMID: 38316220 DOI: 10.1016/j.jep.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hua Zhuo Ning Fu Decoction (HZD) is an empirical prescription from traditional Chinese medicine that shows excellent clinical results for psoriasis patients. Uncertainty lingered over HZD's potential anti-psoriasis mechanisms. AIM OF THE STUDY The study's objective is to investigate the pharmacological processes and therapeutic effects of HZD on psoriasis. MATERIALS AND METHODS In the initial phase of the study, an investigation was conducted to assess the effects of HZD on psoriasis-afflicted mice using an imiquimod (IMQ)-induced murine model. The experimental mice were randomly allocated to different groups, including the IMQ-induced model group, the control group, the HZD therapy groups with varying dosage levels (low, medium, and high), and Dexamethasone (DEX, the positive control medicine) group. Bioinformatics analysis and molecular docking were subsequently employed to identify the primary components and molecular targets associated with the therapeutic action of HZD in the context of psoriasis. Additionally, to find the impacts on metabolite regulation, plasma metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used. It's interesting to note that the combined mechanisms from metabolomics were examined in tandem with the targets. In vivo tests were the last step in validating the potential mechanism. Throughout the trial, the following data were recorded: body weight, psoriasis area and severity index (PASI). The molecular targets connected to HZD's anti-psoriasis activities were revealed using histological examination, western blot (WB), and ELISA investigation. RESULTS In mice induced with IMQ, HZD shown good anti-psoriasis effects in terms of PASI score and epidermal acanthosis. 95 HZD targets and 77 bioactive chemicals connected to psoriasis were found by bioinformatics research; of these, 7 key targets (EPHX2, PLA2G2A, TBXAS1, MAOA, ALDH1A3, ADH1A, and ADH1B) were linked to the mechanisms of HZD, the combination degree of which was finally expressed by the score of docking. In addition, HZD regulated nine metabolites. In line with this, HZD modified three metabolic pathways. Additionally, a combined examination of 7 key targets and 9 metabolites suggested that the metabolism of arachidonic acid might be the key metabolic route, which was identified by ELISA analysis. The in vivo investigation shown that HZD could control cytokines associated to inflammation (IL-10, TGF-β, IL-17A, and IL-23), as well as important antioxidant system markers (ROS, GSH, and MDA). Moreover, HZD controlled iron levels and the expression of ferroptosis-related proteins (ACSL4 and GPX4), suggesting that ferroptosis played a crucial role in this process. CONCLUSIONS Our findings demonstrated the whole mechanism and anti-psoriasis effectiveness of HZD, which will promote its clinical application and aid in the investigation of new bioactive components of HZD against psoriasis.
Collapse
Affiliation(s)
- Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenke Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Jiang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Shasha Shi
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhuzhu Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongmei Song
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
26
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
28
|
Han Y, Xi L, Leng F, Xu C, Zheng Y. Topical Delivery of microRNA-125b by Framework Nucleic Acids for Psoriasis Treatment. Int J Nanomedicine 2024; 19:2625-2638. [PMID: 38505169 PMCID: PMC10950082 DOI: 10.2147/ijn.s441353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose Psoriasis is a chronic and recurrent inflammatory dermatitis characterized by T cell imbalance and abnormal keratinocyte proliferation. MicroRNAs (miRNAs) hold promise as therapeutic agents for this disease; however, their clinical application is hindered by poor stability and limited skin penetration. This study demonstrates the utilization of Framework Nucleic Acid (FNA) for the topical delivery of miRNAs in psoriasis treatment. Methods By utilizing miRNA-125b as the model drug, FNA-miR-125b was synthesized via self-assembly. The successful synthesis and stability of FNA-miR-125b in bovine fetal serum (FBS) were verified through gel electrophoresis. Subsequently, flow cytometry was employed to investigate the cell internalization on HaCaT cells, while qPCR determined the effects of FNA-miR-125b on cellular functions. Additionally, the skin penetration ability of FNA-miR-125b was assessed. Finally, a topical administration study involving FNA-miR-125b cream on imiquimod (IMQ)-induced psoriasis mice was conducted to evaluate its therapeutic efficacy. Results The FNA-miR-125b exhibited excellent stability, efficient cellular internalization, and potent inhibition of keratinocyte proliferation. In the psoriasis mouse model, FNA-miR-125b effectively penetrated the skin tissue, resulting in reduced epidermal thickness and PASI score, as well as decreased levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Yunfeng Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Fang Leng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China
| |
Collapse
|
29
|
Lambadiari V, Katsimbri P, Kountouri A, Korakas E, Papathanasi A, Maratou E, Pavlidis G, Pliouta L, Ikonomidis I, Malisova S, Vlachos D, Papadavid E. The Effect of a Ketogenic Diet versus Mediterranean Diet on Clinical and Biochemical Markers of Inflammation in Patients with Obesity and Psoriatic Arthritis: A Randomized Crossover Trial. Int J Mol Sci 2024; 25:2475. [PMID: 38473723 DOI: 10.3390/ijms25052475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The effect of different diet patterns on psoriasis (PSO) and psoriatic arthritis (PSA) is unknown. Τhe aim of our study was to evaluate the effectiveness of a Mediterranean diet (MD) and Ketogenic diet (KD), in patients with PSO and PSA. Twenty-six patients were randomly assigned to start either with MD or KD for a period of 8 weeks. After a 6-week washout interval, the two groups were crossed over to the other type of diet for 8 weeks. At the end of this study, MD and KD resulted in significant reduction in weight (p = 0.002, p < 0.001, respectively), in BMI (p = 0.006, p < 0.001, respectively), in waist circumference (WC) (p = 0.001, p < 0.001, respectively), in total fat mass (p = 0.007, p < 0.001, respectively), and in visceral fat (p = 0.01, p < 0.001, respectively), in comparison with baseline. After KD, patients displayed a significant reduction in the Psoriasis Area and Severity Index (PASI) (p = 0.04), Disease Activity Index of Psoriatic Arthritis (DAPSA) (p = 0.004), interleukin (IL)-6 (p = 0.047), IL-17 (p = 0.042), and IL-23 (p = 0.037), whereas no significant differences were observed in these markers after MD (p > 0.05), compared to baseline. The 22-week MD-KD diet program in patients with PSO and PSA led to beneficial results in markers of inflammation and disease activity, which were mainly attributed to KD.
Collapse
Affiliation(s)
- Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Pelagia Katsimbri
- Rheumatology and Clinical Immunology Unit, Fourth Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Argyro Papathanasi
- Second Department of Dermatology and Venereology, University of Athens Medical School, 12462 Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - George Pavlidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Loukia Pliouta
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | | | - Evangelia Papadavid
- Second Department of Dermatology and Venereology, University of Athens Medical School, 12462 Athens, Greece
| |
Collapse
|
30
|
Yuan X, Xin T, Yu H, Huang J, Xu Y, Ou C, Chen Y. Transcription Factor IRF7 is Involved in Psoriasis Development and Response to Guselkumab Treatment. J Inflamm Res 2024; 17:1039-1055. [PMID: 38375022 PMCID: PMC10876010 DOI: 10.2147/jir.s450048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Purpose Guselkumab is a highly effective biologic agent for treating psoriasis. This study aimed to explore potential transcription factors involved in psoriasis pathogenesis and response to guselkumab treatment, aiming to provide new therapeutic strategies for psoriasis. Patients and Methods We analyzed gene expression and single-cell RNA-seq data from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) that upregulated in psoriasis and downregulated after guselkumab treatment were subjected to enrichment analyses. Single-cell regulatory network inference and clustering (SENIC) and regulon module analyses identified different regulon activities between the lesion and non-lesion skin of psoriasis. Cell-cell communication analysis revealed interactions among specific cell clusters. Transcription factor (TF) regulons were identified from the guselkumab-specific regulon network. Gene set enrichment analysis (GSEA) confirmed the IRF7 regulon in the validation cohort. Finally, the expression level of IRF7 was identified in plaque psoriasis before and after 12 weeks of guselkumab therapy by immunohistochemical experiment. Results 799 DEGs were downregulated after guselkumab treatment. Enrichment analyses highlighted the interleukin-17 (IL-17) pathway in this gene set. The M2 module exhibited the primary difference in regulon activity. Strong cell-cell interactions were observed between keratinocytes and immune cells. IRF7 regulon had significant roles in psoriasis and treatment response, as validated by GSEA analysis using the IL-17 signaling pathway as a reference. The immunohistochemical analysis unveiled substantial differences in the expression levels of IRF7 in psoriatic skin samples before and after 12 weeks of guselkumab treatment. Conclusion IRF7 may be the key player in psoriasis pathogenesis and the therapeutic process involving guselkumab. Targeting IRF7 might offer new therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Tiantian Xin
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Huanhuan Yu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Huang
- Department of Dermatology, Guangdong College of Clinical Dermatology, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yaohan Xu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Caixin Ou
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
31
|
Zhang Y, Dong S, Ma Y, Mou Y. Burden of psoriasis in young adults worldwide from the global burden of disease study 2019. Front Endocrinol (Lausanne) 2024; 15:1308822. [PMID: 38414821 PMCID: PMC10897041 DOI: 10.3389/fendo.2024.1308822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background To determine the global burden of psoriasis in young adults, i.e., those aged 15-49, from 1990 to 2019 and predict trends in this burden for 2020 to 2030. Methods Age-standardized disease burden indicators and their estimated annual percentage changes were assessed and used to compare the estimated burden between regions. In addition, generalized additive models were used to predict the burden in this population from 2020 to 2030. Results From 1990 to 2019, the overall burden of psoriasis in young adults worldwide trended downward, as the age-standardized incidence rate and the age-standardized disability-adjusted life year rate decreased. From 1990 to 2019, there were gender differences in the burden of psoriasis between regions with different Socio-demographic index. Specifically, there was a smaller increase in the burden in young men than in young women in middle- and low-middle-Socio-demographic index areas. In 2019, Western Europe, Australasia, and Southern Latin America had the highest age-standardized incidence rate of psoriasis in young adults, whereas age-standardized disability-adjusted life year rates of psoriasis in young adults were highest in high-income North America. In 2019, the psoriasis burden in young adults was the highest in high-Socio-demographic index areas and the lowest in low-Socio-demographic index regions. We predict that from 2020 to 2030, the incidence rate and disability-adjusted life year rate of psoriasis in all age groups of young adults will continue to decline, but the burden in those aged 30-39 will increase. Conclusion From 1990 to 2019, the overall burden of psoriasis in each age group trended downward in this period. We predict that from 2020 to 2030, the burden of psoriasis in those aged 30-39 will increase.
Collapse
Affiliation(s)
| | | | | | - Yan Mou
- Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Portugal-Cohen M, Oron M, Cohen D, Ma'or Z, Soroka Y, Frusic-Zlotkin M, Kohen R. Advancements in non-invasive skin sampling: Clinical conditions characterization via the assessment of skin surface cytokine biomarkers. Exp Dermatol 2024; 33:e15037. [PMID: 38389180 DOI: 10.1111/exd.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
The skin is increasingly recognized as a biological active organ interacting with the immune system. Given that the epidermal skin layer actively releases various cytokines, non-invasive skin sampling methods could detect these cytokines, offering insights into clinical conditions. This study aims non-invasively measuring cytokine levels directly from the skin surface to characterize different inflammatory chronic disorders in the adult and elderly population: psoriasis, diabetes type 2, rosacea, chronic kidney disease (CKD) and aging. Cytokines IL-1β, IL-8 and IL-10 were sampled from healthy subjects and patients aged 18-80 using skin surface wash technique. A well with sterile phosphate-buffered saline solution was placed on the skin for 30 min, and the extracted solution was collected from the well for further cytokine levels analysis using ELISA assay. Results show distinct cytokine profiles in different pathological processes, healthy controls, affected and unaffected areas. Aging was associated with increased IL-1β, IL-8, and IL-10 levels in skin. In diabetes, IL-1β and IL-8 levels were elevated in lesional areas, while IL-10 levels were decreased in non-lesional skin. Psoriatic lesions showed elevated levels of IL-1β and IL-8. Rosacea patients had lower IL-10 levels in both lesional and non-lesional areas. CKD patients exhibited significantly lower IL-10 levels compared to healthy individuals. In conclusion, skin surface wash-derived cytokine profiles could serve as "alert biomarkers" for disease prediction, enabling early detection. Additionally, this method's cost-effectiveness allows pre-screening of molecules in clinical studies and holds potential as a tool for biomarkers and omics analysis, enhancing disorder characterization and disease management.
Collapse
Affiliation(s)
| | | | - Dror Cohen
- DermAb.io, Haifa, Israel
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ze'evi Ma'or
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Israel
| | - Yoram Soroka
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marina Frusic-Zlotkin
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Chaudet KM, Russell-Goldman E, Horn TD, Schuler AM, Chan MP, Nazarian RM. Characterization of T-Helper Immune Phenotype in Symmetrical Drug-Related Intertriginous and Flexural Exanthema (SDRIFE) Endorses a Delayed-Type Hypersensitivity Reaction. Am J Dermatopathol 2024; 46:71-78. [PMID: 38133537 DOI: 10.1097/dad.0000000000002455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ABSTRACT Symmetrical drug-related intertriginous and flexural exanthema (SDRIFE) is a cutaneous drug eruption with a characteristic distribution of erythema on the gluteal/inguinal region and intertriginous areas with unclear pathogenesis. In this study, we aimed to characterize the T-helper immune phenotype in SDRIFE in comparison with psoriasis and eczema to further the understanding of the pathophysiology and immune response of this rare disorder. Immunohistochemical staining was performed on 9 skin biopsies each from SDRIFE, psoriasis, and eczema using immunohistochemistry for CD3 and dual CD4/T-bet, CD4/GATA3, and CD4/RORC to quantify the percentage of Th1, Th2, and Th17 cells, respectively. A significant difference was detected in the average percentage of Th1 between all 3 groups with the highest percentage of Th1 cells seen in psoriasis, followed by SDRIFE and eczema. SDRIFE showed significantly lower Th2 expression as compared to both psoriasis and eczema. There was a trend towards a higher average percentage of Th17 in psoriasis and SDRIFE, and the ratio of Th17:Th2 was significantly higher in samples of SDRIFE compared with both eczema and psoriasis. The findings characterize SDRIFE as a Th1 and possibly Th17-driven process, which could inform future therapeutic options and substantiate the model of SDRIFE as a delayed-type hypersensitivity reaction.
Collapse
Affiliation(s)
- Kristine M Chaudet
- Pathologist, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Eleanor Russell-Goldman
- Pathologist, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Thomas D Horn
- Pathologist, Departments of Dermatology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Amy M Schuler
- Pathologist, Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - May P Chan
- Pathologist, Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Rosalynn M Nazarian
- Pathologist, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Li L, Lu J, Liu J, Wu J, Zhang X, Meng Y, Wu X, Tai Z, Zhu Q, Chen Z. Immune cells in the epithelial immune microenvironment of psoriasis: emerging therapeutic targets. Front Immunol 2024; 14:1340677. [PMID: 38239345 PMCID: PMC10794746 DOI: 10.3389/fimmu.2023.1340677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease characterized by erroneous metabolism of keratinocytes. The development of psoriasis is closely related to abnormal activation and disorders of the immune system. Dysregulated skin protective mechanisms can activate inflammatory pathways within the epithelial immune microenvironment (EIME), leading to the development of autoimmune-related and inflammatory skin diseases. In this review, we initially emphasized the pathogenesis of psoriasis, paying particular attention to the interactions between the abnormal activation of immune cells and the production of cytokines in psoriasis. Subsequently, we delved into the significance of the interactions between EIME and immune cells in the emergence of psoriasis. A thorough understanding of these immune processes is crucial to the development of targeted therapies for psoriasis. Finally, we discussed the potential novel targeted therapies aimed at modulating the EIME in psoriasis. This comprehensive examination sheds light on the intricate underlying immune mechanisms and provides insights into potential therapeutic avenues of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Yu Meng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Özköse F. Modeling of psoriasis by considering drug influence: A mathematical approach with memory trace. Comput Biol Med 2024; 168:107791. [PMID: 38056205 DOI: 10.1016/j.compbiomed.2023.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Psoriasis is an immune-mediated genetic disease, characterized by its manifestation on the skin, the joints, or both. In this paper, our primary aim is to increase awareness about the intricate nature of this multifaceted condition, highlight the potential of therapeutic approaches, and examine the factors affecting the future course of psoriasis. This paper introduces a mathematical model for psoriasis, formulated by fractional order differential equations (FODE) with Caputo sense. The model also includes the drug effect of immune-boosting drugs on psoriasis. It has been shown that the solution of the proposed system exists and is unique, and its positivity and boundedness have been proven. Additionally, the local stability and global stability of the co-existing equilibrium point have been investigated. Numerical solutions have been conducted using the Adams Bashforth PECE method to analyze the influence of fractional order derivatives (FODs) and distinct parameters on population dynamics. The graphics have been acquired using the L1 scheme, incorporating a memory trace (MT) mechanism capable of comprehensively capturing and amalgamating historical system dynamics to visualize the memory trace in detail. One of the results deduced from this paper is that the MT disappears when α equals 1. Upon decreasing the fractional order α from 1, the MT experiences a non-linear augmentation starting from zero. This observed MT emphasizes the distinction between derivatives of fractional and integer orders. Within the proposed model, our findings suggest that introducing the immune booster drug efficiently controls psoriasis. Furthermore, when appropriate clinical patient data are available, the proposed results can be used for a specific psoriasis patient. Our study suggests that treatment with the drug may be a new insight into psoriasis treatment and may be proposed as a treatment policy for future clinical trials.
Collapse
Affiliation(s)
- Fatma Özköse
- Centre for Environmental Mathematics, Faculty of Environment, Science and Economy, University of Exeter, TR10 9FE, United Kingdom; Erciyes University, Department of Mathematics, Faculty of Science, Kayseri, Turkey.
| |
Collapse
|
36
|
Singh N, Yadav SD, Gupta P, Ali F, Arora S. Dermal Delivery of Hypericum perforatum (L.) Loaded Nanogel: Formulation to Preclinical Psoriasis Assessment. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:138-154. [PMID: 38808393 DOI: 10.2174/0126673878288239240415041832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Nanophytosomes represent an effective choice for topical drug delivery systems thanks to their small size, general non-toxicity, ease of functionalization and high surface to volume ratio. The goal of the current study was to investigate the potential benefits of using Hypericum perforatum extract nanogel as a means of improving skin penetration and prolonging skin deposition in dermatitis similar to psoriasis. METHODS Nanophytosomes (NPs) were developed, optimised and thoroughly characterised. The optimised NPs were then placed in a Carbopol gel base matrix and tested ex-vivo (skin penetration and dermatokinetic) and in-vivo (antipsoriatic activity in an Imiquimod-induced psoriatic rat model). RESULTS The optimised NPs had a spherical form and entrapment efficiency of 69.68% with a nanosized and zeta potential of 168 nm and -10.37mV, respectively. XRD spectra and transmission electron microscopy tests confirmed the plant botanical encapsulation in the NPs. Following 60 days of storage at 40 ± 2°C/75 ± 5% RH, the optimised formula remained relatively stable. As compared to extract gel, nano-gel showed a much-improved ex vivo permeability profile and considerable drug deposition in the viable epidermal-dermal layers. When developed nano-gel was applied topically to a rat model of psoriasis, it demonstrated distinct in vivo anti-psoriatic efficacy in terms of drug activity and reduction of epidermal thickness in comparison to other formulations and the control. ELISA and histopathologic studies also demonstrated that nano-organogel had improved skin integrity and downregulated inflammatory markers (IL-17, IL-6, IFN-γ and MCP-1). CONCLUSION Findings suggest that a developed plant botanicals-based nanogel has a potential for the treatment of psoriasis-like dermatitis with better skin retention and effectiveness.
Collapse
Affiliation(s)
- Neelam Singh
- Department of Pharmacy, I.T.S. College of Pharmacy, Delhi-Meerut Road, Ghaziabad -201206, India
| | - Shubh Deep Yadav
- Department of Pharmacy, I.T.S. College of Pharmacy, Delhi-Meerut Road, Ghaziabad -201206, India
| | - Puneet Gupta
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida-201313, India
| | - Faraat Ali
- Department of Regulatory, Botswana Medicines Regulatory Authority, Plot 112, Gaborone International Finance Park Gaborone, Botswana
| | - Sandeep Arora
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida-201313, India
| |
Collapse
|
37
|
Ahmad A, Akhtar J, Ahmad M, Islam A, Badruddeen, Khan MI, Siddiqui S, Srivastava A. Curcumin Nanogel Preparations: A Promising Alternative for Psoriasis Treatment. Curr Drug Metab 2024; 25:179-187. [PMID: 38757314 DOI: 10.2174/0113892002312605240508042634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Curcumin is a naturally occurring polyphenolic compound extracted from the rhizomes of Curcuma longa, commonly known as turmeric. It has been used for centuries in traditional medicine and is gaining increasing attention in modern medicine owing to its potential therapeutic benefits. Psoriasis is a chronic inflammatory disease characterized by red scaly patches on the skin. Curcumin has been found to be effective in treating psoriasis by inhibiting the activity of various enzymes and proteins involved in the inflammation and proliferation of psoriatic skin cells. Nanogel preparation of curcumin has been found to be a promising approach for the delivery of compounds to treat psoriasis. Nanogels are composed of biocompatible and biodegradable crosslinked hydrogels. The nanogel formulation of curcumin increases its solubility, stability, and bioavailability, indicating that a lower dose is needed to achieve the same therapeutic effect. This review article suggests that the nanogel preparation of curcumin can be a better alternative for psoriasis treatment as it increases the bioavailability and stability of curcumin and also reduces the required dosage. This study suggests that curcumin nanogel preparations are promising alternatives to traditional psoriasis treatments and could potentially be used as a more effective and safe treatment option. This article highlights the need for further research to fully understand the potential of curcumin nanogel preparations for psoriasis treatment in humans.
Collapse
Affiliation(s)
- Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Shaiber Siddiqui
- Faculty of Pharmacy, Integral University, Lucknow, Dasauli Kursi Road, Lucknow, 226026, India
| | - Akash Srivastava
- Department of Pharmaceutics, Hygia Institute of Pharmaceutical Education and Research, Lucknow, 226026, India
| |
Collapse
|
38
|
Wang R, Yang L, Zhen Y, Li X, Huang S, Wen H, Sun Q. eIF4E plays the role of a pathogenic gene in psoriasis, and the inhibition of eIF4E phosphorylation ameliorates psoriasis-like skin damage. Exp Dermatol 2024; 33:e14997. [PMID: 38284198 DOI: 10.1111/exd.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Psoriasis is a complex inflammatory skin disease with uncertain pathogenesis. eIF4E (eukaryotic translation initiation factor 4E) and its phosphorylation state p-eIF4E are highly expressed in psoriatic tissues. However, the role eIF4E played in psoriasis is still unclear. To investigate the function of eIF4E and p-eIF4E in psoriasis and to figure out whether eFT-508 (Tomivosertib, eIF4E phosphorylation inhibitor) can relieve the disease severity and become a promising candidate for the psoriasis treatment. We first verified the expression of eIF4E and p-eIF4E in psoriasis patients' lesional skin. Then, we demonstrated the effect of eIF4E and p-eIF4E on the abnormal proliferation and inflammatory state of keratinocytes by using eIF4E-specific small interfering RNA (si-eIF4E) and eFT-508. In this study, all cell experiments were performed under the psoriasis-model condition. Moreover, the external application of eFT-508 on imiquimod (IMQ)-induced psoriasis mice was performed to explore its potential clinical value. Results showed that eIF4E and p-eIF4E were significantly overexpressed in skin lesions of psoriasis patients. Knocking down eIF4E or adding eFT-508 can relieve the abnormal proliferation and the excessive inflammatory state of keratinocytes by reducing the expression of cyclin D1, IL-1β, CXCL10, IL23, Wnt 5a, NBS1 and p-AKT from mRNA or protein levels. Furthermore, these results were consistent with those obtained from the in vitro experiments. Then, we conclude that eIF4E plays the role of the pathogenic gene in psoriasis, and eFT-508 may be a promising candidate for anti-prosoriasis drugs.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Luan Yang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - He Wen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Ghorbani R, Hosseinzadeh S, Azari A, Taghipour N, Soleimani M, Rahimpour A, Abbaszadeh HA. The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders. Curr Stem Cell Res Ther 2024; 19:351-366. [PMID: 37073662 DOI: 10.2174/1574888x18666230418121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Azari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Zhao Y, Wang C, Zou B, Fu L, Ren S, Zhang X. Design and Evaluation of Tretinoin Fatty Acid Vesicles for the Topical Treatment of Psoriasis. Molecules 2023; 28:7868. [PMID: 38067597 PMCID: PMC10708007 DOI: 10.3390/molecules28237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The goal of the current study was to explore the potential benefits of Tretinoin (Tre) fatty acid vesicles (Tre-FAV) as a prospective antipsoriatic topical delivery system. This promising system can counteract the drug challenges in terms of its extremely low aqueous solubility, instability, skin irritation, and serious systemic adverse effects. Tre-loaded fatty acid vesicles were successfully developed and entirely characterised. The selected formulation was investigated for in vitro release, ex vivo skin retention and psoriasis efficacy studies. The characterisation results of Tre-FAV showed it has a globular shape with a particle size of 126.37 ± 1.290 nm (0.188 ± 0.019 PDI). The entrapment efficiency and zeta potential were discovered to be 84.26 ± 0.816% and -28.9 ± 1.92 mV, respectively. Encapsulation of the drug in the fatty acid vesicles was also strengthened by differential scanning calorimetric and powder FTIR diffraction studies. In vitro release results showed that Tre-FAV significantly increased skin absorption and retention in comparison to the Tre solution. The topical application of Tre-FAV to a mouse model confirmed that it has superior in vivo antipsoriatic properties in terms of well-demarcated papules, erythema and reduced epidermal thickness in comparison to other treatments. The weight of the spleen and the levels of the cytokines IL-17 and IL-6 decreased after treatment. In conclusion, FAV dramatically increased the water solubility and skin permeability of Tre and its anti-psoriasis activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Z.); (C.W.); (B.Z.); (L.F.); (S.R.)
| |
Collapse
|
41
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
42
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
43
|
Dadwal N, Amisha, Singh D, Singh A. Quality-by-Design Approach for Investigating the Efficacy of Tacrolimus and Hyaluronic Acid-Loaded Ethosomal Gel in Dermal Management of Psoriasis: In Vitro, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:220. [PMID: 37914839 DOI: 10.1208/s12249-023-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Psoriasis is an auto-immune condition with high keratinocyte hyperproliferation due to lower p53 and p22 levels. Tacrolimus, an immune suppressor, is considered one of the most effective drugs in suppressing psoriasis. Systematic administration of tacrolimus often leads to challenging side effects, namely increased infection risk, renal toxicity, neurological symptoms such as tremors and headaches, gastrointestinal disturbances, hypertension, skin-related problems, etc. To address this, a nanocarrier-based formulation of tacrolimus along with inclusion of hyaluronic acid was developed. The optimization and formulation of ethosomes via the ethanol injection technique were done based on the Box-Behnken experimental design. The results revealed hyaluronic acid-based tacrolimus ethosomes (HA-TAC-ETH) had nanometric vesicle size (315.7 ± 2.2 nm), polydispersity index (PDI) (0.472 ± 0.07), and high entrapment efficiency (88.3 ± 2.52%). The findings of drug release and skin permeation showed sustained drug release with increased dermal flux and enhancement ratio. The effectiveness of HA-TAC-ETH was confirmed in an imiquimod (5%)-prompted psoriasis model. The skin irritation score and Psoriasis Area and Severity Index (PASI) score indicated that HA-TAC-ETH gel has validated a decline in the entire factors (erythema, edema, and thickness) in the imiquimod-induced psoriasis model in contrast with TAC-ETH gel and TAC ointment. The fabricated HA-TAC-ETH opt gel proved to be safe and effective in in vivo studies and could be employed to treat psoriasis further.
Collapse
Affiliation(s)
- Nikhil Dadwal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
44
|
Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:584-592. [PMID: 37989697 DOI: 10.1016/j.joim.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation. METHODS Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9. RESULTS EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. CONCLUSION Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.
Collapse
Affiliation(s)
- Ya Zhong
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Bo-Wen Zhang
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Jin-Tao Li
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Xin Zeng
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Jun-Xia Pei
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Ya-Mei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Yi-Xi Yang
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Deng
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Basic Medical Sciences, Chengdu University, Chengdu 610106, Sichuan Province, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China.
| |
Collapse
|
45
|
Kowalczyk T, Merecz-Sadowska A, Ghorbanpour M, Szemraj J, Piekarski J, Bijak M, Śliwiński T, Zajdel R, Sitarek P. Enhanced Natural Strength: Lamiaceae Essential Oils and Nanotechnology in In Vitro and In Vivo Medical Research. Int J Mol Sci 2023; 24:15279. [PMID: 37894959 PMCID: PMC10607815 DOI: 10.3390/ijms242015279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 93-513 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
46
|
Metin Z, Tur K, Durmaz K, Akogul S, Akca HM, Imren IG, Demir NBO, Ozkoca D. A comprehensive investigation of novel and traditional inflammatory and metabolic markers as predictive indicators in psoriasis. Int J Dermatol 2023; 62:1272-1280. [PMID: 37610067 DOI: 10.1111/ijd.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory and papulosquamous dermatological disorder. While previous studies have discussed certain inflammatory markers for diagnosing and monitoring psoriasis, there is an absence of comprehensive research encompassing both novel and traditional inflammatory markers, as well as metabolic markers, in relation to psoriasis. METHODS A total of 209 individuals participated, including 54 psoriasis patients and 155 controls. Psoriasis Area Severity Index (PASI) was calculated for the patient group. Potential predictive markers for psoriasis were identified: Uric acid/HDL ratio (UHR), D-dimer/albumin ratio (DAR), fibrinogen/albumin ratio (FAR), erythrocyte sedimentation rate, CRP, WBC, HOMA-IR, and vitamin D levels. Differences between groups and correlations with PASI and each other were analyzed using the Mann-Whitney U test and Spearman correlation coefficient. RESULTS The results indicate that the patient group exhibited statistically significantly higher levels of UHR, FAR, CRP, WBC, and HOMA-IR. Upon analyzing the correlations between PASI and the identified markers, statistically significant positive correlation with WBC and negative correlation with vitamin D were observed. The correlations of PASI with other markers did not reach statistical significance. It should be underlined that our study was conducted in a predominantly mild-to-moderate patient population. CONCLUSIONS The absence of specificity of these markers for psoriasis limits their practical application. However, the development of new objective measures by using them in combination with specific data such as PASI will provide significant benefits in terms of disease diagnosis, follow-up, and treatment.
Collapse
Affiliation(s)
- Zuhal Metin
- Department of Dermatology, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Kagan Tur
- Department of Internal Medicine, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Koray Durmaz
- Department of Dermatology, Lokman Hekim Etlik Hospital, Ankara, Turkey
| | - Serkan Akogul
- Department of Statistics, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Hanife M Akca
- Department of Dermatology, Faculty of Medicine, Karamanoglu Mehmet Bey University, Karaman, Turkey
| | - Işıl G Imren
- Department of Dermatology, Denizli State Hospital, Denizli, Turkey
| | - Nazime B O Demir
- Department of Dermatology, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Defne Ozkoca
- Department of Dermatology, Zonguldak Ataturk State Hospital, Zonguldak, Turkey
| |
Collapse
|
47
|
Gao Y, Na M, Yao X, Li C, Li L, Yang G, Li Y, Hu Y. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis. Front Immunol 2023; 14:1265517. [PMID: 37822943 PMCID: PMC10562854 DOI: 10.3389/fimmu.2023.1265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Psoriasis is a complex, chronic autoimmune disorder predominantly affecting the skin. Accumulating evidence underscores the critical role of localized cellular inflammation in the development and persistence of psoriatic skin lesions, involving cell types such as keratinocytes, mesenchymal cells, and Schwann cells. However, the underlying mechanisms remain largely unexplored. Long non-coding RNAs (lncRNAs), known to regulate gene expression across various cellular processes, have been particularly implicated in immune regulation. We utilized our neural-network learning pipeline to integrate 106,675 cells from healthy human skin and 79,887 cells from psoriatic human skin. This formed the most extensive cell transcriptomic atlas of human psoriatic skin to date. The robustness of our reclassified cell-types, representing full-layer zonation in human skin, was affirmed through neural-network learning-based cross-validation. We then developed a publicly available website to present this integrated dataset. We carried out analysis for differentially expressed lncRNAs, co-regulated gene patterns, and GO-bioprocess enrichment, enabling us to pinpoint lncRNAs that modulate localized cellular inflammation in psoriasis at the single-cell level. Subsequent experimental validation with skin cell lines and primary cells from psoriatic skin confirmed these lncRNAs' functional role in localized cellular inflammation. Our study provides a comprehensive cell transcriptomic atlas of full-layer human skin in both healthy and psoriatic conditions, unveiling a new regulatory mechanism that governs localized cellular inflammation in psoriasis and highlights the therapeutic potential of lncRNAs in this disease's management.
Collapse
Affiliation(s)
- Yuge Gao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengxue Na
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Yao
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Chao Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyu Yang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol 2023; 14:1259515. [PMID: 37809065 PMCID: PMC10556469 DOI: 10.3389/fimmu.2023.1259515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The skin is exposed to environmental challenges and contains heterogeneous cell populations such as epithelial cells, stromal cells, and skin-resident immune cells. As the most abundant type of stromal cells, fibroblasts have been historically considered silent observers in the immune responses of the cutaneous epithelial immune microenvironment (EIME), with little research conducted on their heterogeneity and immune-related functions. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome the limitations of bulk RNA sequencing and help recognize the functional and spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of cells in the cutaneous EIME. Recently, emerging single-cell sequencing data have demonstrated that fibroblasts notably participate in the immune responses of the EIME and impact the initiation and progression of inflammatory skin diseases. Here, we summarize the latest advances in the role of fibroblasts in the cutaneous EIME of inflammatory skin diseases and discuss the distinct functions and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and non-fibrotic inflammatory skin diseases. This review help unveil the multiple roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic strategies for the management of inflammatory skin diseases by targeting fibroblasts or the fibroblast-centered EIME.
Collapse
Affiliation(s)
| | | | | | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
49
|
Yang L, Zhou Y, Zhang L, Wang Y, Zhang Y, Xiao Z. Aryl hydrocarbon receptors improve migraine-like pain behaviors in rats through the regulation of regulatory T cell/T-helper 17 cell-related homeostasis. Headache 2023; 63:1045-1060. [PMID: 37539825 DOI: 10.1111/head.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To investigate the effect of the aryl hydrocarbon receptor (AHR)/regulatory T cell (Treg)/T-helper 17 (Th17) cell pathway on the pathogenesis of migraine. BACKGROUND Migraine is a disabling neurovascular disease that imposes an enormous burden on both individuals and society. The pathophysiological mechanisms of migraine remain controversial. Recent studies have suggested that immune dysfunction may be involved in the pathogenesis of migraine. The AHR, a receptor expressed on most immune cells, has been implicated in the occurrence of many autoimmune diseases; however, whether it is involved in the pathogenesis of migraine is unclear. METHODS A chronic migraine rat model was established through repeated intraperitoneal injection of nitroglycerin (NTG). The mechanical and thermal pain thresholds were assessed using von Frey filaments and radiant heat. Next, the protein expression levels of AHR in the trigeminal nucleus caudalis (TNC) region of chronic migraine (CM)-like rats were quantified and the changes in Treg/Th17-related transcription factors and inflammatory factors in the TNC were explored. To determine the role of AHR in CM, we examined the effects of the AHR agonist 2-(1'-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and AHR antagonist CH-223191 on pain behavior, c-Fos, calcitonin gene-related peptide (CGRP), AHR, and Treg/Th17-related factor expression in CM-like rats. RESULTS Repeated administration of NTG significantly enhanced nociceptive hypersensitivity and increased expression of c-Fos and CGRP in rats, while AHR was significantly decreased in the TNC. In addition, the expression of the transcription factor forkhead box protein P3 and the signal transducer and activator of transcription 5 decreased significantly. In contrast, the expression of the transcription factor retinoic acid receptor-related orphan receptor γ t and signal transducer and activator of transcription 3 were significantly increased. Moreover, the mRNA level of transforming growth factor beta-1 was decreased, while that of interleukin (IL)-10 and IL-22 was increased in the TNC. The AHR agonist ITE alleviated migraine-like pain behaviors in rats, activated the AHR signaling pathway, and improved the imbalance of Treg/Th17-related transcription factors and inflammatory factors. Conversely, the AHR antagonist CH-223191 did not alleviate migraine-like pain behaviors in rats; and even exacerbated them. CONCLUSIONS The AHR participates in the development of CM by regulating Treg/Th17-related homeostasis. Therefore, treatments targeting the AHR/Treg/Th17 signaling pathway could be new effective interventions for CM treatment.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yue Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Wang A, Ma X, Wei F, Li Y, Liu Q, Zhang H. Evidence on the therapeutic role of thiolutin in imiquimod-induced psoriasis-like skin inflammation in mice. Immun Inflamm Dis 2023; 11:e877. [PMID: 37506136 PMCID: PMC10336655 DOI: 10.1002/iid3.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION A recent study confirmed that thiolutin (THL), as a potent inflammasome inhibitor, plays a promising therapeutic role in multiple inflammatory disease models. However, the effect of THL on psoriasis has not been reported so far. METHODS A psoriasiform dermatitis model was prepared by applying 5% imiquimod (IMQ) cream on mice. A total of 36 mice were randomly divided into six groups: control, model, model + THL-L/M/H (THL, 1/2.5/5 mg/kg/day), model + methotrexate (1 mg/kg/day). Psoriasis area and severity index (PASI) scores were observed and calculated. The histological changes in skin, liver, and kidney tissues were observed by hematoxylin and eosin staining. Alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and blood creatinine were measured by automatic biochemistry analyzer. The size of the spleens was determined, and the proportion of Foxp3 + CD4+ regulatory T (Treg) cells in the spleens was tested by flow cytometry. The proinflammatory factors and nucleotide oligomerization domain nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome protein levels were examined by reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry, respectively. RESULTS THL administration preeminently reduced the thickness, scaling, and erythema of the skin lesions, alleviated IMQ-induced psoriasiform lesions in mice, reduced the PASI score, and ameliorated histopathological changes in mouse skin. The spleen index was decreased by almost half and the proportion of Foxp3 + CD4+ Treg cells was increased after intervention by THL. THL intervention did not affect liver and kidney function, but decreased the expression levels of proinflammatory factors and NLRP3 inflammasome in the skin of psoriatic mice. CONCLUSIONS THL may alleviate IMQ-induced psoriasis-like manifestations in mice by inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Aixue Wang
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xixing Ma
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Feng Wei
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanling Li
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qiang Liu
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Huanhuan Zhang
- Department of DermatologyThe Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|