1
|
Vázquez-Mera S, Martelo-Vidal L, Miguéns-Suárez P, Bravo SB, Saavedra-Nieves P, Arias P, Ferreiro-Posse A, Vázquez-Lago J, Salgado FJ, González-Barcala FJ, Nieto-Fontarigo JJ. Exploring CD26 -/lo subpopulations of lymphocytes in asthma phenotype and severity: A novel CD4 + T cell subset expressing archetypical granulocyte proteins. Allergy 2024; 79:3005-3021. [PMID: 39319599 DOI: 10.1111/all.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26-/lo, CD26int and CD26hi subsets within different lymphocyte populations. METHODS The proportion of CD26-/lo, CD26int and CD26hi subsets within CD4+ effector T cells (Teff), total CD4- lymphocytes, γδ-T cells, NK cells and NKT cells was measured in peripheral blood samples from healthy (N = 30) and asthma (N = 119) donors with different phenotypes/severities by flow cytometry. We performed K-means clustering analysis and further characterised the CD4+CD26-/lo Teff cell subset by LC-MS/MS and immunofluorescence. RESULTS Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4-CD26hi cells, which negatively correlated with systemic inflammation. Eosinophilic asthma displayed a general expansion of CD26-/lo subsets. Specifically, CD4+CD26-/lo Teff expansion was confirmed in asthma, especially in atopic patients. Proteomic characterisation of this subset with a TEM/TEMRA phenotype revealed upregulated levels of innate (e.g. MPO and RNASE2) and cytoskeleton/extracellular matrix (e.g. MMP9 and ACTN1) proteins. Immunofluorescence assays confirmed the presence of atypical proteins for CD4+ T cells, and an enrichment in 'flower-like' nuclei and MMP9/RNASE2 levels in CD4+CD26-/lo Teff compared to CD4+ T lymphocytes. CONCLUSION There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4+CD26-/loTEMRA cells expressing innate proteins specific to eosinophils/neutrophils could be determinant in sustaining long-term inflammation in adult allergic asthma.
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paula Saavedra-Nieves
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Ferreiro-Posse
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Vázquez-Lago
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Javier González-Barcala
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
2
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
3
|
Hua E, Xu D, Chen H, Zhang S, Feng J, Xu L. Development of the dipeptidyl peptidase 4 family and its association with lung diseases: a narrative review. J Thorac Dis 2023; 15:7024-7034. [PMID: 38249892 PMCID: PMC10797411 DOI: 10.21037/jtd-23-1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Dipeptidyl peptidase (DPP)4 is a member of a subfamily of serine peptidase S9. DPP4, expressed as a type II transmembrane protein, has a wide tissue distribution and is most active in the lung and small intestine. Many substrates of DPP4 have been identified, including neuropeptides, chemokines, and glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptides (GIPs). DPP4 inhibitors are clinically useful in the treatment of type 2 diabetes mellitus. DPP9, an N-terminal dipeptide targeting enzyme with proline or alanine, may have DPP4-like activity. DPP9 is ubiquitously expressed at human and rodent messenger RNA (mRNA) levels and therefore may play a role in the immune system and epithelial cells. It has been shown that DPP9 plays an important signaling role in the regulation of survival and proliferation pathways and is also involved in cell migration, apoptosis, and cell adhesion. In recent years, there has been further progress in DPP9 inhibition through activation of apoptosis by the inflammasome sensor protein Nlrp1b. This study aims to investigate the association of DPP4 family members and DPP9 with lung disease. Methods The literature search was initiated using the PubMed database. We searched for the content (DPP4) AND (Lung Diseases), (DPP9) AND (Lung Diseases), from which we filtered the literature we needed. Key Content and Findings Given the high biological activity of the DPP4 family, their involvement in various lung diseases is highly relevant. There is growing evidence for the importance of DPP4 and DPP9 of the DPP4 family in lung diseases, which are closely associated with diseases such as asthma, lung infections, pulmonary fibrosis (PF), and lung cancer. Conclusions This review summarizes most of the current evidence that DPP4/9 is associated with lung disease. Within the DPP4 family, the role of DPP4 in particular in respiratory disease is important.
Collapse
Affiliation(s)
- Ershi Hua
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Six People’s Hospital of Nantong), Nantong, China
| | - Dongmei Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Huamao Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Huang K, Li F, Wang X, Yan B, Wang M, Li S, Yu W, Liu X, Wang C, Jin J, Zhang L. Clinical and cytokine patterns of uncontrolled asthma with and without comorbid chronic rhinosinusitis: a cross-sectional study. Respir Res 2022; 23:119. [PMID: 35546400 PMCID: PMC9092818 DOI: 10.1186/s12931-022-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is significantly related to chronic rhinosinusitis (CRS) both in prevalence and severity. However, the clinical patterns of uncontrolled asthma with and without comorbid CRS are still unclear. This study aimed to explore the clinical characteristics and cytokine patterns of patients with uncontrolled asthma, with and without comorbid CRS.
Methods 22 parameters associated with demographic characteristics, CRS comorbidity, severity of airflow obstruction and airway inflammation, and inflammation type of asthma were collected and assessed in 143 patients with uncontrolled asthma. Different clusters were explored using two-step cluster analysis. Sputum samples were collected for assessment of Th1/Th2/Th17 and epithelium-derived cytokines. Results Comorbid CRS was identified as the most important variable for prediction of different clusters, followed by pulmonary function parameters and blood eosinophil level. Three clusters of patients were determined: Cluster 1 (n = 46) characterized by non-atopic patients with non-eosinophilic asthma without CRS, demonstrating moderate airflow limitation; Cluster 2 (n = 54) characterized by asthma patients with mild airflow limitation and CRS, demonstrating higher levels of blood eosinophils and immunoglobulin E (IgE) than cluster 1; Cluster 3 (n = 43) characterized by eosinophilic asthma patients with severe airflow limitation and CRS (46.5% with nasal polyps), demonstrating worst lung function, lowest partial pressure of oxygen (PaO2), and highest levels of eosinophils, fraction of exhaled nitric oxide (FeNO) and IgE. Sputum samples from Cluster 3 showed significantly higher levels of Interleukin (IL)-5, IL-13, IL-33, and tumor necrosis factor (TNF)-α than the other two clusters; and remarkably elevated IL-4, IL-17 and interferon (IFN)-γ compared with cluster 2. The levels of IL-10 and IL-25 were not significantly different among the three clusters. Conclusions Uncontrolled asthma may be endotyped into three clusters characterized by CRS comorbidity and inflammatory cytokine patterns. Furthermore, a united-airways approach may be especially necessary for management of asthma patients with Type 2 features. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02028-3.
Collapse
Affiliation(s)
- Kai Huang
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Fangyuan Li
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Xuechen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Bing Yan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Ming Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Shuling Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenling Yu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Jianmin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China. .,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China. .,Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China. .,Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang A, Tang H, Zhang N, Feng X. Association between novel Glucose-Lowering drugs and risk of Asthma: A network Meta-Analysis of cardiorenal outcome trials. Diabetes Res Clin Pract 2022; 183:109080. [PMID: 34626677 DOI: 10.1016/j.diabres.2021.109080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/03/2022]
Abstract
AIMS This network meta-analysis aimed to evaluate the asthma risk associated with dipeptidyl peptidase (DPP)-4 inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium-glucose co-transporter (SGLT) 2 inhibitors. METHODS Electronic databases were systematically searched up to March 2021 to include placebo-controlled cardiovascular (or cardiorenal) outcome trials that reported the asthma incidents in patients taking DPP-4 inhibitors, GLP-1RAs, or SGLT2 inhibitors. A random-effects network meta-analysis was conducted to estimate their odds ratio (ORs) and 95% confidence intervals (CIs). RESULTS Nineteen trials including 218 asthma cases among 159,705 patients were included. Compared with placebo, SGLT2 inhibitors (OR, 0.59; 95% CI, 0.38-0.93) were significantly associated with a decreased risk of asthma while both DPP-4 inhibitors and GLP-1RAs did not significantly affect asthma risk. SGLT2 inhibitors were significantly associated with a lower risk of asthma than DPP-4 inhibitors (OR, 0.38; 95% CI, 0.18-0.79). There was no association between GLP-1RAs and DPP-4 inhibitors and between SGLT2 inhibitors and GLP-1RAs in risk of asthma. CONCLUSIONS SGLT2 inhibitors might protect against asthma while DPP-4 inhibitors and GLP-1RAs did not significantly affect the asthma incident. Given the underreporting of asthma in this study, further investigations using real-world data as well as mechanistic studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Huilin Tang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Ning Zhang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
6
|
Zorampari C, Prakash A, Rehan HS, Gupta LK. Serum dipeptidyl peptidase-4 and eosinophil cationic protein levels in patients of bronchial asthma. Pulm Pharmacol Ther 2021; 72:102109. [PMID: 34979240 DOI: 10.1016/j.pupt.2021.102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Affiliation(s)
- C Zorampari
- Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Anupam Prakash
- Department of Pharmacology, Department of Medicine, India
| | - Harmeet S Rehan
- Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Lalit K Gupta
- Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India.
| |
Collapse
|
7
|
Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, Fan H. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front Pharmacol 2021; 12:731453. [PMID: 34955820 PMCID: PMC8696080 DOI: 10.3389/fphar.2021.731453] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
CD26/Dipeptidyl peptidase 4 (DPP4) is a type II transmembrane glycoprotein that is widely expressed in various organs and cells. It can also exist in body fluids in a soluble form. DPP4 participates in various physiological and pathological processes by regulating energy metabolism, inflammation, and immune function. DPP4 inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of type 2 diabetes mellitus. More evidence has shown the role of DPP4 in the pathogenesis of lung diseases, since it is highly expressed in the lung parenchyma and the surface of the epithelium, vascular endothelium, and fibroblasts of human bronchi. It is a potential biomarker and therapeutic target for various lung diseases. During the coronavirus disease-19 (COVID-19) global pandemic, DPP4 was found to be an important marker that may play a significant role in disease progression. Some clinical trials on DPP4 inhibitors in COVID-19 are ongoing. DPP4 also affects other infectious respiratory diseases such as Middle East respiratory syndrome and non-infectious lung diseases such as pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), and asthma. This review aims to summarize the roles of DPP4 and its inhibitors in infectious lung diseases and non-infectious diseases to provide new insights for clinical physicians.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Vázquez-Mera S, Pichel JG, Salgado FJ. Involvement of IGF Proteins in Severe Allergic Asthma: New Roles for Old Players. Arch Bronconeumol 2021; 57:731-732. [PMID: 35698977 DOI: 10.1016/j.arbr.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 06/15/2023]
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, Biomedical Research Networking Center on Respiratory Diseases (CIBERES, ISCIII), Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Finding suitable biomarkers to phenotype asthma, identify individuals at risk of worsening and guide treatment is highly prioritized in asthma research. We aimed to provide an analysis of currently used and upcoming biomarkers, focusing on developments published in the past 2 years. RECENT FINDINGS Type 2 inflammation is the most studied asthma mechanism with the most biomarkers in the pipeline. Blood eosinophils and fractional exhaled nitric oxide (FeNO) are those most used clinically. Recent developments include their ability to identify individuals at higher risk of exacerbations, faster decline in lung function and more likely to benefit from anti-IL-5 and anti-IL-4/-13 treatment. Certain patterns of urinary eicosanoid excretion also relate to type 2 inflammation. Results of recent trials investigating the use of serum periostin or dipeptidyl peptidase-4 to guide anti-IL-13 therapy were somewhat disappointing. Less is known about non-type 2 inflammation but blood neutrophils and YKL-40 may be higher in patients with evidence of non-type 2 asthma. Volatile organic compounds show promise in their ability to distinguish both eosinophilic and neutrophilic asthma. SUMMARY The ultimate panel of biomarkers for identification of activated inflammatory pathways and treatment strategies in asthma patients still lies in the future, particularly for non-type 2 asthma, but potential candidates are available.
Collapse
|
10
|
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2021; 34:891-914. [PMID: 32746619 PMCID: PMC8035923 DOI: 10.1089/ars.2020.8169] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.
Collapse
Affiliation(s)
- Anastasia Gorelova
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mariah Berman
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imad Al Ghouleh
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Vázquez-Mera S, Pichel JG, Salgado FJ. Involvement of IGF Proteins in Severe Allergic Asthma: New Roles for Old Players. Arch Bronconeumol 2021; 57:S0300-2896(21)00094-6. [PMID: 33836863 DOI: 10.1016/j.arbres.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, Biomedical Research Networking Center on Respiratory Diseases (CIBERES, ISCIII), Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Nieto‐Fontarigo JJ, González‐Barcala FJ, Andrade‐Bulos LJ, San‐José ME, Cruz MJ, Valdés‐Cuadrado L, Crujeiras RM, Arias P, Salgado FJ. iTRAQ-based proteomic analysis reveals potential serum biomarkers of allergic and nonallergic asthma. Allergy 2020; 75:3171-3183. [PMID: 32424932 DOI: 10.1111/all.14406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Asthma is heterogeneous disease with different phenotypes, endotypes and severities. Definition of these subgroups requires the identification of biomarkers in biological samples, and serum proteomics is a useful and minimally invasive method for this purpose. Therefore, the aim of this study was to detect serum proteins whose abundance is distinctively associated with different asthma phenotypes (allergic vs nonallergic) or severities. METHODS For each group of donors (32 healthy controls, 43 allergic rhinitis patients and 192 asthmatics with different phenotypes and severities), we generated two pools of sera that were analysed by a shotgun MS approach based on combinatorial peptide ligand libraries and iTRAQ-LC-MS/MS. RESULTS MS analyses identified 18 proteins with a differential abundance. Functional/network study of these proteins identified key processes for asthma pathogenesis, such as complement activation, extracellular matrix organization, platelet activation and degranulation, or post-translational protein phosphorylation. Furthermore, our results highlighted an enrichment of the "Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)" route in allergic asthma and the lectin pathway of complement activation in nonallergic asthma. Thus, several proteins (eg IGFALS, HSPG2, FCN2 or MASP1) displayed a differential abundance between the different groups of donors. Particularly, our results revealed IGFALS as a useful biomarker for moderate-severe allergic asthma. CONCLUSION Our data suggest a set of serum biomarkers, especially IGFALS, capable of differentiating allergic from nonallergic asthma. These proteins reveal different pathophysiological mechanisms and may be useful in the future for diagnosis, prognosis or targeted therapy purposes.
Collapse
Affiliation(s)
- Juan José Nieto‐Fontarigo
- Department of Biochemistry and Molecular Biology Faculty of Biology‐Biological Research Centre (CIBUS) Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Francisco Javier González‐Barcala
- Department of Medicine Universidade de Santiago de Compostela Santiago de Compostela Spain
- Department of Respiratory Medicine University Hospital of Santiago de Compostela Santiago de Compostela Spain
- Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Spanish Biomedical Research Networking Centre‐CIBERES Madrid Spain
| | - Luis Juan Andrade‐Bulos
- Department of Biochemistry and Molecular Biology Faculty of Biology‐Biological Research Centre (CIBUS) Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - María Esther San‐José
- Clinical Analysis Service University Hospital of Santiago de Compostela Santiago de Compostela Spain
| | - María Jesús Cruz
- Spanish Biomedical Research Networking Centre‐CIBERES Madrid Spain
- Department of Respiratory Medicine‐Hospital Vall d'Hebron Universitat Autònoma de Barcelona Barcelona Spain
| | - Luis Valdés‐Cuadrado
- Department of Medicine Universidade de Santiago de Compostela Santiago de Compostela Spain
- Department of Respiratory Medicine University Hospital of Santiago de Compostela Santiago de Compostela Spain
- Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Rosa María Crujeiras
- Department of Statistics, Mathematical Analysis and Optimization Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology Faculty of Biology‐Biological Research Centre (CIBUS) Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology Faculty of Biology‐Biological Research Centre (CIBUS) Universidade de Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
13
|
Shi S, Xue L, Han S, Qiu H, Peng Y, Zhao P, Liu QH, Shen J. Anti-Contractile and Anti-Inflammatory Effects of Diacerein on Isolated Mouse Airways Smooth Muscle and Mouse Asthma Model. Front Pharmacol 2020; 11:560361. [PMID: 33013396 PMCID: PMC7498646 DOI: 10.3389/fphar.2020.560361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Characterized by abnormal smooth muscle contractility and airway inflammation, asthma is one of the most common airway diseases worldwide. Diacerein is a well-known anti-inflammatory drug, widely used in osteoarthritis. In current study, the innovative usage of diacerein in anti-contractile and anti-inflammatory treatment of asthma was studied. In vitro experiments including tension measurement and patch-clamp technique and in vivo experiments including establishment of mice model and measurement of respiratory resistance were applied to explore the role of diacerein in asthma. It turned out that agonist-precontracted mouse airway smooth muscle could be relaxed by diacerein via intracellular and extracellular calcium mobilization which was mediated by switched voltage-dependent L-type Ca2+ channels, non-selective cation channels, large-conductance Ca2+-activated K+ channel, and Na+/Ca2+ exchangers. Furthermore, diacerein could relieve bronchospasm and control airway inflammation in asthmatic mice via reduction of several inflammatory factors. Our studies elucidated the potential therapeutic property of diacerein in asthma treatment and the possible underlying mechanism. It also confirmed that new uses for already-approved drugs could be an important form of innovation.
Collapse
Affiliation(s)
- Shunbo Shi
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuhui Han
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Haiting Qiu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
Liu Y, Qi Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int Immunopharmacol 2020; 87:106774. [PMID: 32731178 DOI: 10.1016/j.intimp.2020.106774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a debilitating lung disease. CD26/DPP4 plays promotive roles in pulmonary damage and fibrosis. This study aimed to explore the roles of vildagliptin in bleomycin-induced pulmonary fibrosis, and to address its ameliorative effect on the extracellular matrix (ECM). METHODS Idiopathic pulmonary fibrosis mice models were induced by intratracheal injection of bleomycin. DPP4 activity was evaluated, and the fibrosis was investigated by Hematoxylin-eosin, Masson's trichrome staining and hydroxyproline assay. Expression of extracellular matrix proteins including α-SMA, collagen IV, collagen I, FN and TGF-β were analyzed by immunochemistry and western blot. Percentages of the numbers of monocytes, leukocytes, basophils and lymphocytes were classified, and inflammatory factors in plasma as well as lung tissues were examined by enzyme-linked immunosorbent assay and western blot. The influences of vildagliptin on TGF-β1-induced cell proliferation, differentiation and inflammatory factors in MRC-5 cells were detected. RESULTS Vildagliptin effectively attenuated inflammation and fibrosis in bleomycin-induced pulmonary tissue via inhibiting the activity of CD26/DPP4. extracellular matrix proteins were suppressed by vildagliptin. Thus, lung tissue fibrosis was efficiently alleviated by vildagliptin. CONCLUSION As an inhibitor of CD26/DPP4, Vildagliptin could be a promising therapeutic candidate for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yang Liu
- Medical College of Pingdingshan University, Chongwen Road, Xinhua District, Pingdingshan City, Henan 467000, China
| | - Yongchao Qi
- Department of Cardiothoracic Surgery (907 Inpatient Ward), Nanjing First Hospital Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
15
|
Liao SY, Showalter MR, Linderholm AL, Franzi L, Kivler C, Li Y, Sa MR, Kons ZA, Fiehn O, Qi L, Zeki AA, Kenyon NJ. l-Arginine supplementation in severe asthma. JCI Insight 2020; 5:137777. [PMID: 32497023 PMCID: PMC7406254 DOI: 10.1172/jci.insight.137777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDDysregulation of l-arginine metabolism has been proposed to occur in patients with severe asthma. The effects of l-arginine supplementation on l-arginine metabolite profiles in these patients are unknown. We hypothesized that individuals with severe asthma with low fractional exhaled nitric oxide (FeNO) would have fewer exacerbations with the addition of l-arginine to their standard asthma medications compared with placebo and would demonstrate the greatest changes in metabolite profiles.METHODSParticipants were enrolled in a single-center, crossover, double-blind l-arginine intervention trial at UCD. Subjects received placebo or l-arginine, dosed orally at 0.05 mg/kg (ideal body weight) twice daily. The primary end point was moderate asthma exacerbations. Longitudinal plasma metabolite levels were measured using mass spectrometry. A linear mixed-effect model with subject-specific intercepts was used for testing treatment effects.RESULTSA cohort of 50 subjects was included in the final analysis. l-Arginine did not significantly decrease asthma exacerbations in the overall cohort. Higher citrulline levels and a lower arginine availability index (AAI) were associated with higher FeNO (P = 0.005 and P = 2.51 × 10-9, respectively). Higher AAI was associated with lower exacerbation events. The eicosanoid prostaglandin H2 (PGH2) and Nα-acetyl-l-arginine were found to be good predictors for differentiating clinical responders and nonresponders.CONCLUSIONSThere was no statistically significant decrease in asthma exacerbations in the overall cohort with l-arginine intervention. PGH2, Nα-acetyl-l-arginine, and the AAI could serve as predictive biomarkers in future clinical trials that intervene in the arginine metabolome.TRIAL REGISTRATIONClinicalTrials.gov NCT01841281.FUNDINGThis study was supported by NIH grants R01HL105573, DK097154, UL1 TR001861, and K08HL114882. Metabolomics analysis was supported in part by a grant from the University of California Tobacco-Related Disease Research Program program (TRDRP).
Collapse
Affiliation(s)
- Shu-Yi Liao
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, UCD, Sacramento, California, USA
- VA Northern California Health Care System (VANCHCS), Mather, California, USA
| | | | - Angela L. Linderholm
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, UCD, Sacramento, California, USA
| | - Lisa Franzi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, UCD, Sacramento, California, USA
| | | | - Yao Li
- Department of Public Health Sciences, UCD, Davis, California, USA
| | | | | | | | - Lihong Qi
- Department of Public Health Sciences, UCD, Davis, California, USA
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, UCD, Sacramento, California, USA
- VA Northern California Health Care System (VANCHCS), Mather, California, USA
| | - Nicholas J. Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, UCD, Sacramento, California, USA
- VA Northern California Health Care System (VANCHCS), Mather, California, USA
| |
Collapse
|
16
|
Zou H, Zhu N, Li S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin Ther Targets 2020; 24:147-153. [PMID: 31971463 DOI: 10.1080/14728222.2020.1721468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Dipeptidyl-peptidase-4 (DPP-4) is a surface bound ectopeptidase that is commonly known as CD26 or adenosine deaminase binding protein. DPP-4 is membrane anchored but it can be cleaved by numerous proteases including matrix-metalloproteinases (MMPs). DPP-4 is expressed by endothelial and epithelial cells, the kidney, intestine and cells of the immune system; it has a broad spectrum of biological functions in immune regulation, cancer biology and glucose metabolism.Areas covered: This article sheds light on the functions of DPP-4, the molecular mechanisms that govern its expression, it's role in the pathogenesis of common respiratory illnesses and potential as a therapeutic target.Expert opinion: DPP-4 has a deleterious role in respiratory disease. Its biological functions, key molecular pathways, interactions and associations are slowly being elucidated. Progressing our knowledge of the role of this multi-faceted molecule may yield vital and novel therapies for respiratory diseases such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hai Zou
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zhang Y, Li B. Effects of montelukast sodium plus budesonide on lung function, inflammatory factors, and immune levels in elderly patients with asthma. Ir J Med Sci 2020; 189:985-990. [PMID: 31900843 DOI: 10.1007/s11845-019-02167-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma in elderly patients causes excessive suffering and inconvenience. Regimens with better efficacy and less adverse events are still in need of researches. AIMS To investigate the effect of montelukast sodium plus budesonide on lung function, inflammatory factors, and immune levels in elderly asthma patients. METHODS A total of 180 patients with asthma were assigned into the control group and the observation group. The control group was given aerosol inhalation of budesonide suspension, while the observation group was given budesonide inhalation and oral montelukast sodium. The treatment effect, lung function (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF)%), inflammatory factors (interleukin (IL)-4, IL-6, and tumor necrosis factor-α (TNF-α)), and immune level (immunoglobulin (Ig) A, and IgE) were analyzed and compared between the two groups. RESULTS After treatment, the effective rate was significantly higher in the observation group. The lung function and serum inflammatory factors were improved in both groups. The FEV1, FVC, and PEF% in the observation group were better, and the inflammatory factors IL-4, IL-6, and TNF-α were lower. Patients in both groups showed elevated IgA level and reduced IgE level, and the improvements were more significant in the observation group. There was no significant difference between the two groups in terms of adverse reaction. CONCLUSIONS Montelukast sodium plus budesonide has a promising clinical effect on asthma in elderly patients, effectively improves lung function and immunocompetence, and controls inflammatory response, without increasing the adverse reaction.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Respiratory, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, 734000, Gansu, China
| | - Baohong Li
- Department of Respiratory, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, 734000, Gansu, China.
| |
Collapse
|
18
|
Wagener I, Jungen M, von Hörsten S, Stephan M, Schmiedl A. Postnatal morphological lung development of wild type and CD26/DPP4 deficient rat pups in dependency of LPS exposure. Ann Anat 2019; 229:151423. [PMID: 31654734 DOI: 10.1016/j.aanat.2019.151423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Rodents are born with morphological immature lungs and an intact surfactant system. CD26/DPP4 is a multifactorial transmembrane integral type II protein, which is involved in physiological and pathophysiological processes and is already expressed during development. CD26/DPP4, called CD26 in the following, is able to enhance or dampen differently triggered inflammation. LPS exposure often used to simulate perinatal infection delays lung development. OBJECTIVE A perinatal LPS rat model was used to test the hypothesis that CD26 deficiency modulates LPS-induced retardation in morphological lung development. METHODS New born Fischer CD26 positive (CD26+) and deficient (CD26-) rats were exposed to LPS on postnatal day (day post partum, dpp) 3 and 5. Morphological parameters of lung development were determined stereologically. Lung development was analysed in 7, 10 14 and 21day old rats. RESULTS Compared to controls LPS application resulted (1) in a mild inflammation independent of the strain, (2) in significantly lower total surface and volume of alveolar septa combined with significantly higher total volume of airspaces and alveolar size on dpp 7 in both substrains. However, compared to controls in LPS treated CD26- rats significant lower values of total septal surface and volume combined with higher values of total parenchymal airspaces and alveolar size were found until the end of classical alveolarization (dpp14). In LPS treated CD26+ rat pups the retardation was abolished already on dpp 10. CONCLUSION In absence of CD26, LPS enhances the delay of morphological lung development. Morphological recovery was slower after the end of LPS exposure in CD26 deficient lungs.
Collapse
Affiliation(s)
- Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Stephan von Hörsten
- Franz-Penzoldt-Centre, Experimental Therapy, Friedrich-Alexander-University of Erlangen, Germany.
| | - Michael Stephan
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
19
|
Lin SR, Chang CH, Tsai MJ, Cheng H, Chen JC, Leong MK, Weng CF. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Ther Adv Chronic Dis 2019; 10:2040622319875305. [PMID: 31555430 PMCID: PMC6753520 DOI: 10.1177/2040622319875305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4), an incretin glucagon-like peptide-1 (GLP-1) degrading enzyme, contains two forms and it can exert various physiological functions particular in controlling blood glucose through the action of GLP-1. In diabetic use, the DPP-4 inhibitor can block the DDP-4 to attenuate GLP-1 degradation and prolong GLP-1 its action and sensitize insulin activity for the purpose of lowering blood glucose. Nonetheless the adverse effects of DPP-4 inhibitors severely hinder their clinical applications, and notably there is a clinical demand for novel DPP-4 inhibitors from various sources including chemical synthesis, herbs, and plants with fewer side effects. In this review, we highlight various strategies, namely computational biology (in silico), in vitro enzymatic and cell assays, and in vivo animal tests, for seeking natural DPP-4 inhibitors from botanic sources including herbs and plants. The pros and cons of all approaches for new inhibitor candidates or hits will be under discussion.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - Chia-Hsiang Chang
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Jian-Chyi Chen
- Department of Biotechnology, Southern Taiwan
University of Science and Technology, Yungkang, Tainan
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa
University, No.1, Sec.2, Da-Hsueh Road, Shoufeng, Hualien, 97401,
Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Center for
Transitional Medicine, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
20
|
Expansion of different subpopulations of CD26 -/low T cells in allergic and non-allergic asthmatics. Sci Rep 2019; 9:7556. [PMID: 31101830 PMCID: PMC6525268 DOI: 10.1038/s41598-019-43622-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
CD26 displays variable levels between effector (TH17 ≫ TH1 > TH2 > Treg) and naïve/memory (memory > naïve) CD4+ T lymphocytes. Besides, IL-6/IL−6R is associated with TH17-differentiation and asthma severity. Allergic/atopic asthma (AA) is dominated by TH2 responses, while TH17 immunity might either modulate the TH2-dependent inflammation in AA or be an important mechanism boosting non-allergic asthma (NAA). Therefore, in this work we have compared the expression of CD26 and CD126 (IL-6Rα) in lymphocytes from different groups of donors: allergic (AA) and non-allergic (NAA) asthma, rhinitis, and healthy subjects. For this purpose, flow cytometry, haematological/biochemical, and in vitro proliferation assays were performed. Our results show a strong CD26-CD126 correlation and an over-representation of CD26− subsets with a highly-differentiated effector phenotype in AA (CD4+CD26−/low T cells) and NAA (CD4−CD26− γδ-T cells). In addition, we found that circulating levels of CD26 (sCD26) were reduced in both AA and NAA, while loss of CD126 expression on different leukocytes correlated with higher disease severity. Finally, selective inhibition of CD26-mRNA translation led to enhanced T cell proliferation in vitro. These findings support that CD26 down-modulation could play a role in facilitating the expansion of highly-differentiated effector T cell subsets in asthma.
Collapse
|
21
|
Chen HH, Li SY, Chen W, Kao CH. Association between Dipeptidyl Peptidase-4 Inhibitors and Allergic Rhinitis in Asian Patients with Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081323. [PMID: 31013793 PMCID: PMC6518223 DOI: 10.3390/ijerph16081323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
In this retrospective study, we attempted to evaluate the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and allergic rhinitis in patients with diabetes. We analyzed the Longitudinal Health Insurance Database 2000 subdatabase. Our study population included patients with type 2 diabetes (ICD-9-CM 250) between 2009 and 2012, and the study groups were DPP-4 inhibitor users and nonusers. Propensity scores were estimated in a multivariable logistic regression model for the analysis of allergic rhinitis (ICD-9-CM 477.9). Each group consisted of 6204 patients. DPP-4 inhibitor users had a reduced risk of allergic rhinitis (aHR = 0.74, 95% confidence interval (CI) = 0.61-0.90) in all stratifications. Among women, DPP-4 inhibitor users had a lower risk of allergic rhinitis (aHR = 0.67, 95% CI = 0.50-0.90). Among patients aged older than 40 years, DPP-4 inhibitor users had a decreased risk of allergic rhinitis (those aged 40-59: aHR = 0.75, 95% CI = 0.56-0.99; those aged ≧60: aHR = 0.73, 95% CI = 0.54-0.97). Among patients with comorbidities, the risk of allergic rhinitis for DPP-4 inhibitor users was 0.73 (95% CI = 0.60-0.90). High-dose (cumulative defined daily dose ≧648mg) DPP-4 inhibitor users had a decreased risk of allergic rhinitis (aHR = 0.23, 95% CI = 0.15-0.35). Our study revealed that Asian patients with diabetes who used DPP-4 inhibitors had decreased risk of allergic rhinitis, especially for DPP-4 inhibitor treatment in patients who were women, were older than 40 years, had higher diabetes severity scores, were taking higher doses of DPP-4 inhibitors, and had diabetes with comorbidities.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Institute of Medicine and Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
- College of Nursing and Health Sciences, Dayeh University, Changhua 515, Taiwan.
- Division of Metabolism Endocrinology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Division of Metabolism Endocrinology, Nantou Christian Hospital, Nantou 540, Taiwan.
| | - Shang-Yi Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Weishan Chen
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan.
- College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
22
|
Xu J, Gaddis NC, Bartz TM, Hou R, Manichaikul AW, Pankratz N, Smith AV, Sun F, Terzikhan N, Markunas CA, Patchen BK, Schu M, Beydoun MA, Brusselle GG, Eiriksdottir G, Zhou X, Wood AC, Graff M, Harris TB, Ikram MA, Jacobs DR, Launer LJ, Lemaitre RN, O’Connor GT, Oelsner EC, Psaty BM, Vasan RS, Rohde RR, Rich SS, Rotter JI, Seshadri S, Smith LJ, Tiemeier H, Tsai MY, Uitterlinden AG, Voruganti VS, Xu H, Zilhão NR, Fornage M, Zillikens MC, London SJ, Barr RG, Dupuis J, Gharib SA, Gudnason V, Lahousse L, North KE, Steffen LM, Cassano PA, Hancock DB. Omega-3 Fatty Acids and Genome-Wide Interaction Analyses Reveal DPP10-Pulmonary Function Association. Am J Respir Crit Care Med 2019; 199:631-642. [PMID: 30199657 PMCID: PMC6396866 DOI: 10.1164/rccm.201802-0304oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; βSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; βSNP×DHA interaction = 36.2 ml). CONCLUSIONS We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.
Collapse
Affiliation(s)
- Jiayi Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | | | - Traci M. Bartz
- Department of Biostatistics
- Cardiovascular Health Research Unit
| | - Ruixue Hou
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Natalie Terzikhan
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology
| | - Christina A. Markunas
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, and
| | - Bonnie K. Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Matthew Schu
- Genomics in Public Health and Medicine Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina
| | - May A. Beydoun
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Guy G. Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology
- Department of Respiratory Medicine
| | | | - Xia Zhou
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamara B. Harris
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | | | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Lenore J. Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit
- Department of Medicine
- Department of Epidemiology
- Department of Health Services, and
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Ramachandran S. Vasan
- Division of Cardiology and Preventive Medicine, Department of Medicine, and
- Boston University’s and NHLBI’s Framingham Heart Study, Framingham, Massachusetts
| | - Rebecca R. Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor–UCLA Medical Center, Torrance, California
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Glenn Biggs Institute of Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas
| | - Lewis J. Smith
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Henning Tiemeier
- Department of Epidemiology
- Department of Psychiatry
- Department of Child and Adolescent Psychiatry, and
| | | | | | - V. Saroja Voruganti
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | | | - Myriam Fornage
- Institute of Molecular Medicine and
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative–sponsored Netherlands Consortium for Healthy Aging, Leiden, the Netherlands
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - R. Graham Barr
- Department of Medicine, Columbia University, New York, New York
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Sina A. Gharib
- Department of Medicine
- Center for Lung Biology, University of Washington, Seattle, Washington
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Lies Lahousse
- Department of Epidemiology
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Patricia A. Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York
| | - Dana B. Hancock
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, and
| |
Collapse
|
23
|
Khateeb J, Fuchs E, Khamaisi M. Diabetes and Lung Disease: A Neglected Relationship. Rev Diabet Stud 2019; 15:1-15. [PMID: 30489598 DOI: 10.1900/rds.2019.15.1] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a systemic disorder associated with inflammation and oxidative stress which may target many organs such as the kidney, retina, and the vascular system. The pathophysiology, mechanisms, and consequences of diabetes on these organs have been studied widely. However, no work has been done on the concept of the lung as a target organ for diabetes and its implications for lung diseases. AIM In this review, we aimed to investigate the effects of diabetes and hypoglycemic agent on lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis, pulmonary hypertension, and lung cancer. We also reviewed the potential mechanisms by which these effects may affect lung disease patients. RESULTS Our results suggest that diabetes can affect the severity and clinical course of several lung diseases. CONCLUSIONS Although the diabetes-lung association is epidemiologically and clinically well-established, especially in asthma, the underlying mechanism and pathophysiology are not been fully understood. Several mechanisms have been suggested, mainly associated with the pro-inflammatory and proliferative properties of diabetes, but also in relation to micro- and macrovascular effects of diabetes on the pulmonary vasculature. Also, hypoglycemic drugs may influence lung diseases in different ways. For example, metformin was considered a potential therapeutic agent in lung diseases, while insulin was shown to exacerbate lung diseases; this suggests that their effects extend beyond their hypoglycemic properties.
Collapse
Affiliation(s)
- Jasmin Khateeb
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| | - Eyal Fuchs
- Pulmonary Division, Rambam Health Care Campus, Haifa, Israel
| | - Mogher Khamaisi
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
24
|
Casrouge A, Sauer AV, Barreira da Silva R, Tejera-Alhambra M, Sánchez-Ramón S, ICAReB, Cancrini C, Ingersoll MA, Aiuti A, Albert ML. Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin Exp Immunol 2018; 194:166-179. [PMID: 30251416 PMCID: PMC6194339 DOI: 10.1111/cei.13163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4, CD26) is a serine protease that is expressed constitutively by many haematopoietic and non-haematopoietic tissues. It exists as a membrane-associated protein, as well as in an active, soluble form (herein called sDPP4), present at high concentrations in bodily fluids. Despite the proposed use of sDPP4 as a biomarker for multiple diseases, its cellular sources are not well defined. Here, we report that individuals with congenital lymphocyte immunodeficiency had markedly lower serum concentrations of sDPP4, which were restored upon successful treatment and restoration of lymphocyte haematopoiesis. Using irradiated lymphopenic mice and wild-type to Dpp4-/- reciprocal bone marrow chimeric animals, we found that haematopoietic cells were a major source of circulating sDPP4. Furthermore, activation of human and mouse T lymphocytes resulted in increased sDPP4, providing a mechanistic link between immune system activation and sDPP4 concentration. Finally, we observed that acute viral infection induced a transient increase in sDPP4, which correlated with the expansion of antigen-specific CD8+ T cell responses. Our study demonstrates that sDPP4 concentrations are determined by the frequency and activation state of lymphocyte populations. Insights from these studies will support the use of sDPP4 concentration as a biomarker for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- A Casrouge
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - A V Sauer
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - R Barreira da Silva
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, CA, USA
| | - M Tejera-Alhambra
- Servicio de Inmunología. Hospital Clínico San Carlos, Madrid, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - S Sánchez-Ramón
- Servicio de Inmunología. Hospital Clínico San Carlos, Madrid, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - ICAReB
- IcareB Platform of the Center for Translational Science, Institut Pasteur, Paris, France
| | - C Cancrini
- Ospedale Pediatrico, Bambino Gesù, Roma, Italy
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù-University of Torvergata Rome, Rome, Italy
| | - M A Ingersoll
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - A Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - M L Albert
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
25
|
Emson C, Pham TH, Manetz S, Newbold P. Periostin and Dipeptidyl Peptidase-4: Potential Biomarkers of Interleukin 13 Pathway Activation in Asthma and Allergy. Immunol Allergy Clin North Am 2018; 38:611-628. [PMID: 30342583 DOI: 10.1016/j.iac.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Periostin and dipeptidyl peptidase-4 (DPP-4) are proteins induced by type 2 cytokines interleukin (IL)-4 and IL-13 and show increased expression in asthma and diseases with type 2 inflammation, including atopic dermatitis and chronic rhinosinusitis. Both proteins can also be induced by other stimuli, such as profibrotic factors, which may confound their specificity as biomarkers of IL-13 pathway activation and type 2-driven disease. DPP-4 is important in glucose metabolism; therefore, serum concentrations may be confounded by the presence of concomitant metabolic disease. This review evaluates the potential of these biomarkers for anti-IL-13-directed therapy in asthma and diseases with type 2 inflammation.
Collapse
Affiliation(s)
- Claire Emson
- MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA.
| | | | - Scott Manetz
- MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Paul Newbold
- MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
26
|
Colice G, Price D, Gerhardsson de Verdier M, Rabon-Stith K, Ambrose C, Cappell K, Irwin DE, Juneau P, Vlahiotis A. The effect of DPP-4 inhibitors on asthma control: an administrative database study to evaluate a potential pathophysiological relationship. Pragmat Obs Res 2017; 8:231-240. [PMID: 29238240 PMCID: PMC5716303 DOI: 10.2147/por.s144018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rationale DPP-4 may regulate immunological pathways implicated in asthma. Assessing whether DPP-4 inhibitor (DPP-4i) use might affect asthma control is clinically important because DPP-4i use in type 2 diabetes mellitus management (T2DM) is increasing. This study evaluated associations between DPP-4i use and asthma control. Methods This was a retrospective, observational, matched cohort study using administrative claims in the MarketScan® Commercial Claims and Encounters (Commercial) and Medicare Supplemental and Coordination of Benefits (Medicare Supplemental) databases. Adult asthma patients initiating an oral DPP-4i or a non-DPP-4i between November 1, 2006 and March 31, 2014 were included. Patients were followed for asthma-related outcomes for 12 months after initiation of the antidiabetes medication. Outcomes included risk-domain asthma control (RDAC), defined as no asthma hospitalizations, no lower respiratory tract infections, and no oral corticosteroid (OCS) prescriptions; overall asthma control (RDAC criteria plus limited short-acting beta agonist use); treatment stability (RDAC criteria plus no increase of ≥50% in inhaled corticosteroid dose or addition of other asthma therapy); and severe asthma exacerbation rates (asthma-related hospitalizations, emergency room visits, or acute treatments with OCS). Comparisons were made between two matched cohorts (DPP-4i vs. non-DPP-4i initiators) using multivariable logistic regression and generalized linear modeling. Covariates included baseline demographic and clinical characteristics related to asthma and T2DM. Results The adjusted odds of achieving RDAC (odds ratio [OR]: 1.05; 95% CI: 0.964 to 1.147), overall asthma control (OR: 1.04; 95% CI: 0.956 to 1.135), and treatment stability (OR: 1.04; 95% CI: 0.949 to 1.115) did not differ between the DPP-4i and non-DPP-4i cohorts. A difference was not found between cohorts in severe asthma exacerbation rates during the 12 months following initiation of antidiabetes treatment (mean = 0.32 vs. 0.34 exacerbations per subject-year, respectively; p=0.064). Conclusion Asthma control was similar between patients initiating DPP-4i and non-DPP-4i antidiabetes medications, suggesting no association between DPP-4i use and asthma control.
Collapse
Affiliation(s)
- Gene Colice
- Global Medicines Development, AstraZeneca, Gaithersburg, MD, USA
| | - David Price
- Observational & Pragmatic Research Institute, Singapore.,Centre of Academic Primary Care, University of Aberdeen, Aberdeen, UK
| | | | | | | | - Katherine Cappell
- Custom Data Analytics, Life Sciences, Truven Health Analytics, an IBM Watson Health Company, Ann Arbor, MI, USA
| | - Debra E Irwin
- Outcomes Research, Life Sciences, Truven Health Analytics, an IBM Watson Health Company, Bethesda, MD, USA
| | - Paul Juneau
- Outcomes Research, Life Sciences, Truven Health Analytics, an IBM Watson Health Company, Bethesda, MD, USA
| | - Anna Vlahiotis
- Outcomes Research, Life Sciences, Truven Health Analytics, an IBM Watson Health Company, Bethesda, MD, USA
| |
Collapse
|
27
|
Nguyen DV, Linderholm A, Haczku A, Kenyon N. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther 2017; 180:139-143. [PMID: 28648831 PMCID: PMC5677567 DOI: 10.1016/j.pharmthera.2017.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma.
Collapse
Affiliation(s)
- Dan-Vinh Nguyen
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States.
| | - Angela Linderholm
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Angela Haczku
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Nicholas Kenyon
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| |
Collapse
|
28
|
Suzuki T, Tada Y, Gladson S, Nishimura R, Shimomura I, Karasawa S, Tatsumi K, West J. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res 2017; 18:177. [PMID: 29037205 PMCID: PMC5644255 DOI: 10.1186/s12931-017-0660-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. METHODS A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. RESULTS Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune cells or GLP-1. CONCLUSIONS Inhibiting DPP-4 signaling by vildagliptin could ameliorate pulmonary fibrosis by downregulating EndMT in systemic LPS-induced lung injury.
Collapse
Affiliation(s)
- Toshio Suzuki
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Iwao Shimomura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Karasawa
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - James West
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. RECENT FINDINGS Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.
Collapse
|
30
|
Gao Y, Xiao H, Wang Y, Xu F. Association of single-nucleotide polymorphisms in toll-like receptor 2 gene with asthma susceptibility: A meta-analysis. Medicine (Baltimore) 2017; 96:e6822. [PMID: 28514297 PMCID: PMC5440134 DOI: 10.1097/md.0000000000006822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND An increasing number of studies have been carried out on the relationship between polymorphisms in toll-like receptor 2 (TLR2) gene and asthma risk. However, the results were controversial. With the purpose of yielding a more reliable estimation of the association, we conducted the present meta-analysis. METHODS Multiple electronic databases up to August 22, 2016 were searched for literature retrieval. The association between the asthma susceptibility and the rs5743708 polymorphism, rs3804099 polymorphism, rs3804100 polymorphism, and rs4696480 polymorphism in TLR2 gene was appraised. The odds ratios (ORs) with 95% confidence intervals (CIs) under different genetic models were calculated. RESULTS A total of 13 studies were eligible in our meta-analysis according to the predefined inclusion and exclusion criteria. There was no significant association between asthma risk and rs5743708, rs3804099, and rs3804100 polymorphisms in TLR2 gene under any genetic model. With respect to the TLR2 rs4696480 polymorphism, significant association was detected between asthma susceptibility and TLR2 rs4696480 polymorphism under dominant model (OR = 2.455, 95% CI = 1.235-4.88, P = .01) and codominant 3 model (OR = 2.776, 95% CI = 1.199-6.427, = 0.017). CONCLUSIONS Our meta-analysis reveals that the TLR2 rs4696480 polymorphism is significantly associated with asthma susceptibility, and the TLR2 rs4696480 polymorphism is a risk factor for asthma.
Collapse
Affiliation(s)
| | - Hanyan Xiao
- Department of Neurology, Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang Province, China
| | | | | |
Collapse
|
31
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|