1
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
2
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
3
|
Singh S, Agrawal N, Goyal A. Role of Alpha-7-Nicotinic Acetylcholine Receptor in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:384-394. [PMID: 37366362 DOI: 10.2174/1871527322666230627123426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aβ) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.
Collapse
Affiliation(s)
- Sushma Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
- Pharmacy College, Azamgarh- 276128, UP, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| |
Collapse
|
4
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
5
|
Ahmadi-Soleimani SM, Amiry GY, Khordad E, Masoudi M, Beheshti F. Omega-3 fatty acids prevent nicotine withdrawal-induced impairment of learning and memory via affecting oxidative status, inflammatory response, cholinergic activity, BDNF and amyloid-B in rat hippocampal tissues. Life Sci 2023; 332:122100. [PMID: 37722588 DOI: 10.1016/j.lfs.2023.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In the present study, the main objective was to reveal whether treatment by Omega-3 fatty acids could prevent the adverse effects of adolescent nicotine withdrawal on spatial and avoidance memory in male rats. For this purpose, Morris water maze and passive avoidance tests were performed on male Wistar rats and the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor, nitrite, amyloid-B and acetylcholinesterase (AChE) were measured. Moreover, density of dark neurons were assessed in CA1 and CA3 regions. Results showed that adolescent nicotine exposure followed by a period of drug cessation exacerbates the behavioral indices of learning and memory through affecting a variety of biochemical markers within the hippocampal tissues. These changes lead to elevation of oxidative and inflammatory markers, reduction of neurotrophic capacity and increased AChE activity in hippocampal tissues. In addition, it was observed that co-administration of nicotine with Omega-3 fatty acids significantly prevents nicotine withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. Therefore, we suggest administration of Omega-3 fatty acids as a safe, inexpensive and effective therapeutic strategy for prevention of memory dysfunctions associated with nicotine abstinence during adolescence.
Collapse
Affiliation(s)
- S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Elnaz Khordad
- Department of Anatomical Sciences, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
6
|
Chen X, Zhang C, Wei T, Chen J, Pan T, Li M, Wang L, Song J, Chen C, Zhang Y, Song Y, Su X. α7nAChR activation in AT2 cells promotes alveolar regeneration through WNT7B signaling in acute lung injury. JCI Insight 2023; 8:e162547. [PMID: 37410546 PMCID: PMC10445688 DOI: 10.1172/jci.insight.162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Reducing inflammatory damage and improving alveolar epithelium regeneration are two key approaches to promoting lung repair in acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Stimulation of cholinergic α7 nicotinic acetylcholine receptor (α7nAChR, coded by Chrna7) signaling could dampen lung inflammatory injury. However, whether activation of α7nAChR in alveolar type II (AT2) cells promotes alveolar epithelial injury repair and underlying mechanisms is elusive. Here, we found that α7nAChR was expressed on AT2 cells and was upregulated in response to LPS-induced ALI. Meanwhile, deletion of Chrna7 in AT2 cells impeded lung repair process and worsened lung inflammation in ALI. Using in vivo AT2 lineage-labeled mice and ex vivo AT2 cell-derived alveolar organoids, we demonstrated that activation of α7nAChR expressed on AT2 cells improved alveolar regeneration by promoting AT2 cells to proliferate and subsequently differentiate toward alveolar type I cells. Then, we screened out the WNT7B signaling pathway by the RNA-Seq analysis of in vivo AT2 lineage-labeled cells and further confirmed its indispensability for α7nAChR activation-mediated alveolar epithelial proliferation and differentiation. Thus, we have identified a potentially unrecognized pathway in which cholinergic α7nAChR signaling determines alveolar regeneration and repair, which might provide us a novel therapeutic target for combating ALI.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Zhang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianchang Wei
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Chinese Academy of Sciences, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Shanghai Respiratory Research Institute, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Chinese Academy of Sciences, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
9
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
10
|
Kumro J, Tripathi A, Lei Y, Sword J, Callahan P, Terry A, Lu XY, Kirov SA, Pillai A, Blake DT. Chronic basal forebrain activation improves spatial memory, boosts neurotrophin receptor expression, and lowers BACE1 and Aβ42 levels in the cerebral cortex in mice. Cereb Cortex 2023; 33:7627-7641. [PMID: 36939283 PMCID: PMC10267632 DOI: 10.1093/cercor/bhad066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aβ42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aβ42 generation and accumulation. The observation that basal forebrain activation suppresses Aβ42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aβ42, documents bidirectional antagonism between acetylcholine and Aβ42.
Collapse
Affiliation(s)
- Jacob Kumro
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
| | - Yun Lei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Patrick Callahan
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Alvin Terry
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Xin-yun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30904, United States
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
11
|
Identification of a Novel Wnt Antagonist Based Therapeutic and Diagnostic Target for Alzheimer's Disease Using a Stem Cell-Derived Model. Bioengineering (Basel) 2023; 10:bioengineering10020192. [PMID: 36829686 PMCID: PMC9952699 DOI: 10.3390/bioengineering10020192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
Currently, all the existing treatments for Alzheimer's disease (AD) fail to stall progression due to longer duration of time between onset of the symptoms and diagnosis of the disease, raising the necessity of effective diagnostics and novel treatment. Specific molecular regulation of the onset and progression of disease is not yet elucidated. This warranted investigation of the role of Wnt signaling regulators which are thought to be involved in neurogenesis. The AD model was established using amyloid beta (Aβ) in human mesenchymal stem cells derived from amniotic membranes which were differentiated into neuronal cell types. In vivo studies were carried out with Aβ or a Wnt antagonist, AD201, belonging to the sFRP family. We further created an AD201-knockdown in vitro model to determine the role of Wnt antagonism. BACE1 upregulation, ChAT and α7nAChR downregulation with synapse and functionality loss with increases in ROS confirmed the neurodegeneration. Reduced β-catenin and increased AD201 expression indicated Wnt/canonical pathway inhibition. Similar results were exhibited in the in vivo study along with AD-associated behavioural and molecular changes. AD201-knockdown rescued neurons from Aβ-induced toxicity. We demonstrated for the first time a role of AD201 in Alzheimer's disease manifestation, which indicates a promising disease target and biomarker.
Collapse
|
12
|
Wen X, Liu HX, Chen LZ, Qu W, Yan HY, Hou LF, Zhao WH, Feng YT, Ping J. Asthma susceptibility in prenatal nicotine-exposed mice attributed to β-catenin increase during CD4 + T cell development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113572. [PMID: 35533447 DOI: 10.1016/j.ecoenv.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cigarette smoke is a common global environmental pollutant. Asthma, the most frequent allergic airway disease, is related to maternal exposure to cigarette smoke. Our previous studies demonstrated that prenatal exposure to nicotine (PNE), the major active product of smoking, impairs fetal thymopoiesis and CD4+ T cell development after birth. This study aimed to investigate whether PNE contributes to asthma susceptibility through CD4+ T cell development alterations. First, A PNE model was established by administering 3 mg/kg/day nicotine to maternal mice, and then an ovalbumin-induced asthma model was established in the offspring. Further, β-catenin and downstream pathways were inhibited in vitro to confirm the molecular mechanisms underlying the phenotype observed during the in vivo phase. The results showed that PNE induced Th2 and Th17 biases at developmental checkpoints and aggravated asthma symptoms in the offspring. In fetuses, PNE up-regulated α7 nAChR, activated PI3K-AKT, promoted β-catenin level increase, and established potential Th2- and Th17-biased gene expression patterns during thymopoiesis, which persisted after birth. Similar results were also observed in 1 μM nicotine-treated thymocytes in vitro. Moreover, inhibiting PI3K-AKT by LY294002 abrogated nicotine-mediated β-catenin level increase and thymopoiesis abnormalities, and an α7 nAChR antagonist (α-btx) also reversed nicotine-induced PI3K-AKT activation. Our findings provide strong evidence that PNE is a risk factor for T cell deviation and postnatal asthma, and revealed that nicotine-induced β-catenin level increase induces thymopoiesis abnormalities.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lan-Zhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University School of Resource and Environmental Sciences, Wuhan 430079, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi-Ting Feng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
13
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Nagu P, Sharma V, Behl T, Pathan AKA, Mehta V. Molecular Insights to the Wnt Signaling During Alzheimer's Disorder: a Potential Target for Therapeutic Interventions. J Mol Neurosci 2022; 72:679-690. [PMID: 34997460 DOI: 10.1007/s12031-021-01940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
In the adult brain, Wnt signaling is crucial for neurogenesis, and it also regulates neuronal development, neuronal maturation, neuronal differential, and proliferation. Impaired Wnt signaling pathways are associated with enhanced levels of amyloid-β, reduced β-catenin levels, and increased expression of GSK-3β enzyme, suggesting its direct association with the pathogenesis of Alzheimer's disorder (AD). These findings are consolidated by reports where activation of Wnt signaling by genetic factors and pharmacological intervention has improved the cognitive functions in animals and restored neurogenesis in the adult brain. Various natural and synthetic molecules have been identified that modulate Wnt signaling in the adult brain and promote neurogenesis and alleviate behavioral dysfunction. These molecules include lithium, valproic acid, ethosuximide, selenomethionine, curcumin, andrographolide, xanthoceraside, huperzine A, pyridostigmine, ginkgolide-B, ricinine, cannabidiol, and resveratrol. These molecules are associated with the DKK1 and GSK-3β inhibition and β-catenin stabilization along with their effects on neurogenesis, neuronal proliferation, and differentiation in the hippocampus through modulation of Wnt signaling and thereby could prove beneficial in the management of AD pathogenesis. Although modulation of the Wnt signaling seems to suggest to be promising in the management of AD, unfortunately, most of the literature available for the association of Wnt signaling and AD pathogenesis is either from preclinical studies or post-mortem brain. Therefore, it will be interesting to understand the role of Wnt signaling in AD patients, and a rigorous investigation could provide us with a better understanding of AD pathogenesis and the identification of novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.,Department of Pharmaceutics, Government College of Pharmacy, Rohru, Himachal Pradesh, India
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amjad Khan A Pathan
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India.
| |
Collapse
|
15
|
Xiang J, Ran LY, Zeng XX, He WW, Xu Y, Cao K, Dong YT, Qi XL, Yu WF, Xiao Y, Guan ZZ. LiCl attenuates impaired learning and memory of APP/PS1 mice, which in mechanism involves α7 nAChRs and Wnt/β-catenin pathway. J Cell Mol Med 2021; 25:10698-10710. [PMID: 34708522 PMCID: PMC8581309 DOI: 10.1111/jcmm.17006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
We examined the mechanism by which lithium chloride (LiCl) attenuates the impaired learning capability and memory function of dual-transgenic APP/PS1 mice. Six- or 12-month-old APP/PS1 and wild-type (WT) mice were randomized into four groups, namely WT, WT+Li (100 mg LiCl/kg body weight, gavage once daily), APP/PS1 and APP/PS1+Li. Primary rat hippocampal neurons were exposed to β-amyloid peptide oligomers (AβOs), LiCl and/or XAV939 (inhibitor of Wnt/β-catenin) or transfected with small interfering RNA against the β-catenin gene. In the cerebral zone of APP/PS1 mice, the level of Aβ was increased and those of α7 nicotinic acetylcholine receptors (nAChR), phosphor-GSK3β (ser9), β-catenin and cyclin D1 (protein and/or mRNA levels) reduced. Two-month treatment with LiCl at ages of 4 or 10 months weakened all of these effects. Similar expression variations were observed for these proteins in primary neurons exposed to AβOs, and these effects were attenuated by LiCl and aggravated by XAV939. Inhibition of β-catenin expression lowered the level of α7 nAChR protein in these cells. LiCl attenuates the impaired learning capability and memory function of APP/PS1 mice via a mechanism that might involve elevation of the level of α7 nAChR as a result of altered Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Long-Yan Ran
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Xiao-Xiao Zeng
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Wen-Wen He
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Yi Xu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Kun Cao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| | - Zhi-Zhong Guan
- Department of Pathology, Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, P.R. China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang, P.R. China
| |
Collapse
|
16
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
17
|
Kaur J, Mazzone GL, Aquino JB, Nistri A. Nicotine Neurotoxicity Involves Low Wnt1 Signaling in Spinal Locomotor Networks of the Postnatal Rodent Spinal Cord. Int J Mol Sci 2021; 22:ijms22179572. [PMID: 34502498 PMCID: PMC8431663 DOI: 10.3390/ijms22179572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysiological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5–10 µM) on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal neurons. Conversely, nicotine (0.5–1 µM) preserved neurons throughout the spinal cord and strongly activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine (10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Graciela L. Mazzone
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Jorge B. Aquino
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| |
Collapse
|
18
|
From Channels to Canonical Wnt Signaling: A Pathological Perspective. Int J Mol Sci 2021; 22:ijms22094613. [PMID: 33924772 PMCID: PMC8125460 DOI: 10.3390/ijms22094613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is an important pathway mainly active during embryonic development and controlling cell proliferation. This regulatory pathway is aberrantly activated in several human diseases. Ion channels are known modulators of several important cellular functions ranging from the tuning of the membrane potential to modulation of intracellular pathways, in particular the influence of ion channels in Wnt signaling regulation has been widely investigated. This review will discuss the known links between ion channels and canonical Wnt signaling, focusing on their possible roles in human metabolic diseases, neurological disorders, and cancer.
Collapse
|
19
|
Fan R, Cui W, Chen J, Ma Y, Yang Z, Payne TJ, Ma JZ, Li MD. Gene-based association analysis reveals involvement of LAMA5 and cell adhesion pathways in nicotine dependence in African- and European-American samples. Addict Biol 2021; 26:e12898. [PMID: 32281736 DOI: 10.1111/adb.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Nicotine dependence (ND) is a chronic brain disorder that causes heavy social and economic burdens. Although many susceptibility genetic loci have been reported, they can explain only approximately 5%-10% of the genetic variance for the disease. To further explore the genetic etiology of ND, we genotyped 242 764 SNPs using an exome chip from both European-American (N = 1572) and African-American (N = 3371) samples. Gene-based association analysis revealed 29 genes associated significantly with ND. Of the genes in the AA sample, six (i.e., PKD1L2, LAMA5, MUC16, MROH5, ATP8B1, and FREM1) were replicated in the EA sample with p values ranging from 0.0031 to 0.0346. Subsequently, gene enrichment analysis revealed that cell adhesion-related pathways were significantly associated with ND in both the AA and EA samples. Considering that LAMA5 is the most significant gene in cell adhesion-related pathways, we did in vitro functional analysis of this gene, which showed that nicotine significantly suppressed its mRNA expression in HEK293T cells (p < 0.001). Further, our cell migration experiment showed that the migration rate was significantly different in wild-type and LAMA5-knockout (LAMA5-KO)-HEK293T cells. Importantly, nicotine-induced cell migration was abolished in LAMA5-KO cells. Taken together, these findings indicate that LAMA5, as well as cell adhesion-related pathways, play an important role in the etiology of smoking addiction, which warrants further investigation.
Collapse
Affiliation(s)
- Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences University of Mississippi Medical Center Jackson Mississippi USA
| | - Jennie Z. Ma
- Department of Public Health Sciences University of Virginia Charlottesville Virginia USA
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Research Center for Air Pollution and Health Zhejiang University Hangzhou China
| |
Collapse
|
20
|
Zhang S, Zhang X, Purmann C, Ma S, Shrestha A, Davis KN, Ho M, Huang Y, Pattni R, Hung Wong W, Bernstein JA, Hallmayer J, Urban AE. Network Effects of the 15q13.3 Microdeletion on the Transcriptome and Epigenome in Human-Induced Neurons. Biol Psychiatry 2021; 89:497-509. [PMID: 32919612 PMCID: PMC9359316 DOI: 10.1016/j.biopsych.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 15q13.3 microdeletion is associated with several neuropsychiatric disorders, including autism and schizophrenia. Previous association and functional studies have investigated the potential role of several genes within the deletion in neuronal dysfunction, but the molecular effects of the deletion as a whole remain largely unknown. METHODS Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and 3 control subjects, were generated and converted into induced neurons. We analyzed the effects of the 15q13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene expression changes in induced neurons with CRISPR (clustered regularly interspaced short palindromic repeats) knockouts of individual 15q13.3 microdeletion genes. RESULTS In both induced pluripotent stem cells and induced neurons, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and epigenome, with disruptions in several neuropsychiatric disorder-associated pathways and gene families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins. Individual gene knockouts mirrored many of the observed changes in an overlapping fashion between knockouts. CONCLUSIONS Our multiomics analysis of the 15q13.3 microdeletion revealed downstream effects in pathways previously associated with neuropsychiatric disorders and indications of interactions between genes within the deletion. This molecular systems analysis can be applied to other chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Shining Ma
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Anima Shrestha
- School of Medicine, Stanford University, and Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Wing Hung Wong
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Jonathan A Bernstein
- Department of Human Biology, School of Humanities and Science, Stanford University, Stanford, California
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Alexander E Urban
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California.
| |
Collapse
|
21
|
Chen H, Wang B, Li G, Steele JR, Stayte S, Vissel B, Chan YL, Yi C, Saad S, Machaalani R, Oliver BG. Brain health is independently impaired by E-vaping and high-fat diet. Brain Behav Immun 2021; 92:57-66. [PMID: 33221488 DOI: 10.1016/j.bbi.2020.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Gerard Li
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Joel R Steele
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Sandy Stayte
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, NSW, Australia; St Vincent's Centre for Applied Medical Research, St Vincent's Health Network Sydney, NSW 2010, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, NSW, Australia; St Vincent's Centre for Applied Medical Research, St Vincent's Health Network Sydney, NSW 2010, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Chenju Yi
- Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), University of Sydney, NSW 2006, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia.
| |
Collapse
|
22
|
Brooks AC, Henderson BJ. Systematic Review of Nicotine Exposure's Effects on Neural Stem and Progenitor Cells. Brain Sci 2021; 11:172. [PMID: 33573081 PMCID: PMC7912116 DOI: 10.3390/brainsci11020172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson's disease, and later Alzheimer's disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine's effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.
Collapse
Affiliation(s)
- Arrin C. Brooks
- Department of Biomedical Science, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25545, USA;
| | | |
Collapse
|
23
|
Ren JM, Zhang SL, Wang XL, Guan ZZ, Qi XL. Expression levels of the α7 nicotinic acetylcholine receptor in the brains of patients with Alzheimer's disease and their effect on synaptic proteins in SH-SY5Y cells. Mol Med Rep 2020; 22:2063-2075. [PMID: 32582986 PMCID: PMC7411404 DOI: 10.3892/mmr.2020.11253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative, and abnormal aggregation of the neurotoxic β amyloid (Aβ) peptide is an early event in AD. The present study aimed to determine the correlation between the nicotinic acetylcholine receptor α7 subunit (α7 nAChR) and Aβ in the brains of patients with AD, and to investigate whether the increased expression levels of the α7 nAChR could alter the neurotoxicity of Aβ. The expression levels of α7 nAChR and Aβ in the brains of patients with AD and healthy brains were analyzed using immunofluorescence. Moreover, SH‑SY5Y cells were used to stably overexpress or silence α7 nAChR expression levels, prior to the treatment with or without 1 µmol/l Aβ1‑42 oligomer (AβO). The mRNA and protein expression levels of α7 nAChR, synaptophysin (SYP), postsynaptic density of 95 kDa (PSD‑95) and synaptosomal‑associated protein of 25 kDa (SNAP‑25) were subsequently analyzed using reverse transcription‑quantitative PCR and western blotting. In addition, the concentration of acetylcholine (ACh) and the activity of acetylcholinesterase (AChE) were analyzed using spectrophotometry, while the cell apoptotic rate was determined using flow cytometry. The expression of Aβ in the brains of patients with AD was found to be significantly increased, whereas the expression of α7 nAChR was significantly decreased compared with the healthy control group. In vitro, the expression levels of α7 nAChR were significantly increased or decreased following the overexpression or silencing of the gene, respectively. Consistent with these observations, the mRNA and protein expression levels of SYP, PSD‑95 and SNAP‑25 were also significantly increased following the overexpression of α7 nAChR and decreased following the genetic silencing of the receptor. In untransfected or negative control cells, the expression levels of these factors and the apoptotic rate were significantly reduced following the exposure to AβO, which was found to be attenuated by α7 nAChR overexpression, but potentiated by α7 nAChR RNA silencing. However, no significant differences were observed in either the ACh concentration or AChE activity following transfection. Collectively, these findings suggested that α7 nAChR may protect the brains of patients with AD against Aβ, as α7 nAChR overexpression increased the expression levels of SYP, SNAP‑25 and PSD‑95, and attenuated the inhibitory effect of Aβ on the expression of these synaptic proteins and cell apoptosis. Overall, this indicated that α7 nAChR may serve an important neuroprotective role in AD.
Collapse
Affiliation(s)
- Jia-Mou Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shu-Li Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Chinese People's Liberation Army, Secret Service Center Sanatorium of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
24
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
25
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
26
|
Cao K, Dong YT, Xiang J, Xu Y, Li Y, Song H, Yu WF, Qi XL, Guan ZZ. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY) 2020; 12:1792-1807. [PMID: 32003755 PMCID: PMC7053601 DOI: 10.18632/aging.102713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
The aim was to determine whether the neuroprotective effect of SIRT1 in Alzheimer’s disease (AD), due to inhibition of aggregation of the β-amyloid peptide (Aβ), involves activation of α7 nAChR. In present study, four-month-old APP/PS1 mice were administered resveratrol (RSV) or suramin once daily for two months, following which their spatial learning and memory were assessed using the Morris water maze test. Deposits of Aβ in vivo were detected by near-infrared imaging (NIRI) and confocal laser scanning. SH-SY5Y/APPswe cells were treated with RSV, suramin, U0126 or methyllycaconitine (MLA). Levels of proteins and mRNA were determined by Western blotting and qRT-PCR, respectively. The results show that activation of SIRT1 improved their spatial learning and memory and reduced the production and aggregation of Aβ in the hippocampus and cerebral cortex; whereas inhibition of SIRT1 had the opposite effects. In addition, activation of SIRT1 increased the levels of both α7 nAChR and αAPP in the brains these animals. Finally, activation of SIRT1 elevated the levels of pERK1/2, while inhibition of ERK1/2 counteracted the increase in α7 nAChR caused by RSV. These findings indicate that neuroprotection by SIRT1 may involve increasing levels of α7 nAChR through activation of the MAPK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Jie Xiang
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yi Xu
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Zhi-Zhong Guan
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| |
Collapse
|
27
|
Wang XL, Deng YX, Gao YM, Dong YT, Wang F, Guan ZZ, Hong W, Qi XL. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY) 2020; 12:543-570. [PMID: 31905173 PMCID: PMC6977648 DOI: 10.18632/aging.102640] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
Ligands of nicotinic acetylcholine receptors (nAChRs) are widely considered as potential therapeutic agents. The present study used primary hippocampus cells and APPswe/PSEN1dE9 double-transgenic mice models to study the possible therapeutic effect and underlying mechanism of the specific activation of α7 nAChR by PNU-282987 in the pathogenesis of Alzheimer’s disease. The results indicated that activation of α7 nAChR attenuated the Aβ-induced cell apoptosis, decreased the deposition of Aβ, increased the expression of synaptic-associated proteins, and maintained synaptic morphology. Furthermore, in the APP/PS1_DT mice model, activation of α7 nAChR attenuated Aβ-induced synaptic loss, reduced the deposition of Aβ in the hippocampus, maintained the integral structure of hippocampus-derived synapse, and activated the calmodulin (CaM)-calmodulin-dependent protein kinase II (CaMKII)-cAMP response element-binding protein signaling pathway by upregulation of its key signaling proteins. In addition, activation of α7 nAChR improved the learning and memory abilities of the APP/PS1_DT mice. Collectively, the activation of α7 nAChR by PNU-282987 attenuated the toxic effect of Aβ in vivo and in vitro, which including reduced deposition of Aβ in the hippocampus, maintained synaptic morphology by partially reversing the expression levels of synaptic-associated proteins, activation of the Ca2+ signaling pathway, and improvement of the cognitive abilities of APP/PS1_DT mice.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Xin Deng
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Mei Gao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Fan Wang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University , Guiyang 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
28
|
Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019; 8:cells8080771. [PMID: 31349637 PMCID: PMC6721525 DOI: 10.3390/cells8080771] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cholinergic dysfunction in Alzheimer’s disease (AD) can be mediated by the neuronal α7 nicotinic acetylcholine receptor (α7nAChR). Beta-amyloid peptide (Aβ) binds to the α7nAChR, disrupting the receptor’s function and causing neurotoxicity. In vivo not only Aβ but also its modified forms can drive AD pathogenesis. One of these forms, iso-Aβ (containing an isomerized Asp7 residue), shows an increased neurotoxicity in vitro and stimulates amyloidogenesis in vivo. We suggested that such effects of iso-Aβ are α7nAChR-dependent. Here, using calcium imaging and electrophysiology, we found that iso-Aβ is a more potent inhibitor of the α7nAChR-mediated calcium current than unmodified Aβ. However, Asp7 isomerization eliminated the ability of Aβ to decrease the α7nAChR levels. These data indicate differences in the interaction of the peptides with the α7nAChR, which we demonstrated using computer modeling. Neither Aβ nor iso-Aβ competed with 125I-α-bungarotoxin for binding to the orthosteric site of the receptor, suggesting the allosteric binging mode of the peptides. Further we found that increased neurotoxicity of iso-Aβ was mediated by the α7nAChR. Thus, the isomerization of Asp7 enhances the inhibitory effect of Aβ on the functional activity of the α7nAChR, which may be an important factor in the disruption of the cholinergic system in AD.
Collapse
|
29
|
Torres VI, Godoy JA, Inestrosa NC. Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther 2019; 198:34-45. [DOI: 10.1016/j.pharmthera.2019.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
30
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
31
|
Nicotine Acts on Cholinergic Signaling Mechanisms to Directly Modulate Choroid Plexus Function. eNeuro 2019; 6:eN-NWR-0051-19. [PMID: 31119189 PMCID: PMC6529591 DOI: 10.1523/eneuro.0051-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Neuronal cholinergic circuits have been implicated in cognitive function and neurological disease, but the role of cholinergic signaling in other cellular populations within the brain has not been as fully defined. Here, we show that cholinergic signaling mechanisms are involved in mediating the function of the choroid plexus, the brain structure responsible for generating CSF and releasing various factors into the brain. The choroid plexus was found to express markers of endogenous cholinergic signaling, including multiple nicotinic acetylcholine receptor (nAChR) subtypes in a region-specific manner, and application of nicotine was found to induce cellular activation, as evidenced by calcium influx in primary tissue. During intravenous nicotine self-administration in male rats, nicotine increased expression of transthyretin, a protein selectively produced and released by the choroid plexus, and microRNA-204 (mir-204), a transcript found in high levels in the choroid plexus and CSF. Finally, human choroid plexus tissue from both sexes was found to exhibit similar nAChR, transthyretin and mir-204 expression profiles, supporting the translational relevance of the findings. Together, these studies demonstrate functionally active cholinergic signaling mechanisms in the choroid plexus, the resulting effects on transthyretin and mir-204 expression, and reveal the direct mechanism by which nicotine modulates function of this tissue.
Collapse
|
32
|
Lasala M, Fabiani C, Corradi J, Antollini S, Bouzat C. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides. Front Cell Neurosci 2019; 13:37. [PMID: 30800059 PMCID: PMC6376857 DOI: 10.3389/fncel.2019.00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β peptide (Aβ) is a key player in the development of Alzheimer's disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aβ soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aβ1-40 and Aβ1-42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aβ α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aβ changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aβ and Carb. At 100 nM Aβ, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aβ is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aβ is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aβ concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aβ directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aβ to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aβ concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.
Collapse
Affiliation(s)
- Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
33
|
Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease. Neuropeptides 2019; 73:96-106. [PMID: 30579679 DOI: 10.1016/j.npep.2018.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 12/16/2018] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is one of the major disabling and lethal diseases for aged individuals worldwide. To date, there are more than 10 hypotheses proposed for AD pathology. The beta-amyloid (Aβ) cascade hypothesis is the most widely accepted and proposes that the accumulation of Aβ in the brain is one potential mechanism for AD pathogenesis. Because some Aβ-overloaded patients do not have AD syndrome, this hypothesis is challenged from time to time. More recently, it has been shown that intracellular Aβ plays a key role in AD pathology. Aβ is internalized by receptors distributed on the cell membrane. Among these receptors, the alpha7 nicotinic acetylcholine receptor (α7 nAChR) has been shown to play an important role in AD. The α7 nAChR is a ligand-gated ion channel and is expressed in pivotal brain regions (e.g., the cerebral cortex and hippocampus) responsible for cognitive functions. The α7 nAChR is localized both presynaptically and postsynaptically, where it activates intracellular signaling cascades. Its agonist has been investigated in clinical studies to improve cognitive functions in AD. Although many studies have shown the importance of the α7 nAChR in AD, little is known regarding its role in AD pathology. Therefore, in the current review, we summarized the basic information regarding the structures and functions of the α7 nAChR, the distribution and expression of the α7 nAChR, and the role of the α7 nAChR in mediating Aβ internalization. We subsequently focused on introducing the comprehensive α7 nAChR related signaling pathways and how these signaling pathways are integrated with the α7 nAChR to play a role in AD. Finally, we stressed the AD therapy that targets the α7 nAChR.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
34
|
Zhou Y, Xu Z, Yu Y, Cao J, Qiao Y, Qiao H, Suo G. Comprehensive analysis of the lncRNA-associated ceRNA network identifies neuroinflammation biomarkers for Alzheimer's disease. Mol Omics 2019; 15:459-469. [DOI: 10.1039/c9mo00129h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has highlighted the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yuanshuai Zhou
- Jiangsu Key Lab of Medical Optics
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Jiangsu
- China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Junjun Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Yong Qiao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| | - Hong Qiao
- Department of Molecular Biosciences
- the University of Texas at Austin
- Austin
- USA
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Jiangsu 215123
- China
| |
Collapse
|
35
|
ArunSundar M, Shanmugarajan TS, Ravichandiran V. 3,4-Dihydroxyphenylethanol Assuages Cognitive Impulsivity in Alzheimer's Disease by Attuning HPA-Axis via Differential Crosstalk of α7 nAChR with MicroRNA-124 and HDAC6. ACS Chem Neurosci 2018; 9:2904-2916. [PMID: 29901389 DOI: 10.1021/acschemneuro.7b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cognitive impulsivity, a form of suboptimal cost-benefit decision making, is an illustrious attribute of an array of neurodegenerative diseases including Alzheimer's disease (AD). In this study, a delay discounting paradigm was used to assess the effect of 3,4-dihydroxyphenylethanol (DOPET) on cognitive impulsivity, in an oA42i (oligomeric amyloid β1-42 plus ibotenic acid) induced AD mouse model, using a nonspatial T-maze task. The results depicted that oA42i administration elevated cognitive impulsivity, whereas DOPET treatment attenuated the impulsive behavior and matched the choice of the sham-operated controls. In addition, DOPET treatment has ameliorated the anxiety-like behavior in the oA42i-challenged mice. Probing the molecular signaling cascades underpinning these functional ramifications in the oA42i-challenged mice revealed reduced cholinergic (α7 nAChR; alpha 7 nicotinic acetylcholine receptor) function, dysregulated hypothalamic-pituitary-adrenal (HPA) axis (manifested by amplified glucocorticoid receptor expression and plasma corticosterone levels), and also aberrations in the neuroepigenetic (microRNA-124, HDAC6 (histone deacetylase 6), and HSP90 (heat-shock protein 90) expressions) as well as nucleocytoplasmic (importin-α1 expression and nuclear ultra-architecture) continuum. Nonetheless, DOPET administration ameliorated these perturbations and the observations were in line with that of the sham-operated mice. Further validation of the results with organotypic hippocampal slice cultures (OHSCs) confirmed the in vivo findings. We opine that HPA-axis attunement by DOPET might be orchestrated through the α7 nAChR-mediated pathway. Based on these outcomes, we posit that 3,4-dihydroxyphenylethanol might be a potential multimodal agent for the management of cognitive impulsivity and neuromolecular quagmire in AD.
Collapse
Affiliation(s)
- Mohanasundaram ArunSundar
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai-600117, India
| | | | | |
Collapse
|
36
|
Tega Y, Yamazaki Y, Akanuma SI, Kubo Y, Hosoya KI. Impact of Nicotine Transport across the Blood-Brain Barrier: Carrier-Mediated Transport of Nicotine and Interaction with Central Nervous System Drugs. Biol Pharm Bull 2018; 41:1330-1336. [PMID: 30175770 DOI: 10.1248/bpb.b18-00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotine, an addictive substance, is absorbed from the lungs following inhalation of tobacco smoke, and distributed to various tissues such as liver, brain, and retina. Recent in vivo and in vitro studies suggest the involvement of a carrier-mediated transport process in nicotine transport in the lung, liver, and inner blood-retinal barrier. In addition, in vivo studies of influx and efflux transport of nicotine across the blood-brain barrier (BBB) revealed that blood-to-brain influx transport of nicotine is more dominant than brain-to-blood efflux transport of nicotine. Uptake studies in TR-BBB13 cells, which are an in vitro model cell line of the BBB, suggest the involvement of H+/organic cation antiporter, which is distinct from typical organic cation transporters, in nicotine transport at the BBB. Moreover, inhibition studies in TR-BBB13 cells showed that nicotine uptake was significantly reduced by central nervous system (CNS) drugs, such as antidepressants, anti-Alzheimer's disease drugs, and anti-Parkinson's disease drugs, suggesting that the nicotine transport system can recognize these molecules. The cumulative evidence would be helpful to improve our understanding of smoking-CNS drug interaction for providing appropriate medication.
Collapse
Affiliation(s)
- Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuhei Yamazaki
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
37
|
Ohshima Y, Iwata K, Ibi M, Matsumoto M, Katsuyama M, Yabe-Nishimura C. Nicotine and methyl vinyl ketone, major components of cigarette smoke extracts, increase protective amyloid-β peptides in cells harboring amyloid-β precursor protein. J Toxicol Sci 2018; 43:257-266. [PMID: 29618714 DOI: 10.2131/jts.43.257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The increased ratio of longer amyloid-β (Aβ1-42)/shorter amyloid-β (Aβ1-40) peptides, generated from amyloid precursor protein (APP), is known to promote the development of Alzheimer's disease (AD). To investigate the role of smoking in Aβ production, we determined the production of Aβ species in the presence of nicotine or methyl vinyl ketone (MVK), major components of cigarette smoke extracts, in Flp-In™ T-REx™-293 (T-REx293) cells harboring a single copy of human APP. While treatment with nicotine or MVK did not affect the amount of APP, the levels of Aβ1-40 in the culture media were significantly increased. On the other hand, the levels of Aβ1-42 were unaltered by nicotine or MVK treatment. The Aβ1-42/Aβ1-40 ratio was therefore attenuated by cigarette smoke extracts. Similar results were obtained in T-REx293 cells harboring APP of Swedish- or London-type mutation linked to familial AD. T-REx293 cells expressed the nicotinic acetylcholine receptor (nAchR) and tubocurarine, an nAChR antagonist, completely blocked the effects of nicotine. Treatment with nicotine significantly elevated cellular levels of β-secretase that cleaves APP prior to Aβ generation. Taken together, a protective role of nicotine against AD pathology was suggested by enhanced extracellular Aβ1-40 production, which may suppress Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Yoichi Ohshima
- Department of Pharmacology, Kyoto Prefectural University of Medicine.,Department of Neurology, Kyoto Yamashiro General Medical Center
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine
| | | | | |
Collapse
|
38
|
Tirgar F, Rezayof A, Alijanpour S, Yazdanbakhsh N. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:62-68. [PMID: 29203303 DOI: 10.1016/j.pnpbp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors.
Collapse
Affiliation(s)
- Fatemeh Tirgar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Nima Yazdanbakhsh
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 2018; 57:1017-1039. [PMID: 27662312 DOI: 10.3233/jad-160623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Collapse
|
40
|
Cai H, Wang Y, He J, Cai T, Wu J, Fang J, Zhang R, Guo Z, Guan L, Zhan Q, Lin L, Xiao Y, Pan H, Wang Q. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget 2017; 8:92621-92634. [PMID: 29190943 PMCID: PMC5696209 DOI: 10.18632/oncotarget.21515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease.
Collapse
Affiliation(s)
- Haobin Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yijie Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiayang He
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tiantian Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhouke Guo
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Li Guan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qinkai Zhan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Li Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Xiao
- Guangzhou Medical University, Guangzhou 510182, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
41
|
Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SKTS. Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7:14423. [PMID: 29089568 PMCID: PMC5663743 DOI: 10.1038/s41598-017-13759-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is a significant risk factor for Alzheimer's disease (AD), which is associated with extracellular brain deposits of amyloid plaques containing aggregated amyloid-β (Aβ) peptides. Aβ aggregation occurs via multiple pathways that can be influenced by various compounds. Here, we used AFM imaging and NMR, fluorescence, and mass spectrometry to monitor in vitro how Aβ aggregation is affected by the cigarette-related compounds nicotine, polycyclic aromatic hydrocarbons (PAHs) with one to five aromatic rings, and the metal ions Cd(II), Cr(III), Pb(II), and Pb(IV). All PAHs and metal ions modulated the Aβ aggregation process. Cd(II), Cr(III), and Pb(II) ions displayed general electrostatic interactions with Aβ, whereas Pb(IV) ions showed specific transient binding coordination to the N-terminal Aβ segment. Thus, Pb(IV) ions are especially prone to interact with Aβ and affect its aggregation. While Pb(IV) ions affected mainly Aβ dimer and trimer formation, hydrophobic toluene mainly affected formation of larger aggregates such as tetramers. The uncharged and hydrophilic nicotine molecule showed no direct interactions with Aβ, nor did it affect Aβ aggregation. Our Aβ interaction results suggest a molecular rationale for the higher AD prevalence among smokers, and indicate that certain forms of lead in particular may constitute an environmental risk factor for AD.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jinghui Luo
- Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford Ox, 1 3TA, UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St.Göran Hospital, St.Göransplan 1, 112 19, Stockholm, Sweden
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
42
|
Revisiting nicotine’s role in the ageing brain and cognitive impairment. Rev Neurosci 2017; 28:767-781. [DOI: 10.1515/revneuro-2017-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
AbstractBrain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative stress, excitotoxicity, amyloid-β toxicity, apoptosis, neuroinflammation, and perturb neurotrophic factors in the brain. Nicotine is an exogenous agonist of nicotinic acetylcholine receptors (nAChRs) and acts as a pharmacological chaperone in the regulation of nAChR expression, potentially intervening in age-related changes in diverse molecular pathways leading to pathology. Although nicotine has therapeutic potential, paradoxical effects have been reported, possibly due to its inverted U-shape dose-response effects or pharmacokinetic factors. Additionally, nicotine administration should result in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment.
Collapse
|
43
|
Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns LH. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging 2017; 55:99-114. [DOI: 10.1016/j.neurobiolaging.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
|
44
|
Godoy JA, Zolezzi JM, Inestrosa NC. INT131 increases dendritic arborization and protects against Aβ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochem Biophys Res Commun 2017; 490:955-962. [PMID: 28655613 DOI: 10.1016/j.bbrc.2017.06.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
In previous studies, we have demonstrated the beneficial effects of classic PPARγ agonists on neuroprotection against Aβ oligomer neurotoxicity in a double transgenic mouse model of Alzheimer' disease (AD). INT-131, a novel, non-thiazolidinedione compound that belongs to a new family of drugs, selective PPARγ modulators (SPPARMs), has provided an emerging opportunity for the treatment of type 2 diabetes mellitus and metabolic syndrome. However, its role in the central nervous system has not been studied. The aim of this study was to evaluate the putative neuroprotective role of INT131 in hippocampal neurons. We found that INT131 increased dendritic branching, promoted neuronal survival against Aβ amyloid, increased expression of PGC1-1α and modulated neuronal mitochondrial dynamics. Our results suggest that INT131, a drug that has been shown to be safe and effective in metabolic disorders, may constitute a new therapeutic alternative for AD.
Collapse
Affiliation(s)
- Juan A Godoy
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan M Zolezzi
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
45
|
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. [PMID: 28652219 DOI: 10.1016/j.brainres.2017.06.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
The aims of this review are: 1) to describe which cholinergic neurons are affected in brain neurodegenerative diseases leading to dementia; 2) to discuss the possible causes of the degeneration of the cholinergic neurons, 3) to summarize the functional consequences of the cholinergic deficit. The brain cholinergic system is basically constituted by three populations of phenotypically similar neurons forming a series of basal forebrain nuclei, the midpontine nuclei and a large population of striatal interneurons. In Alzheimer's disease there is an extensive loss of forebrain cholinergic neurons accompanied by a reduction of the cholinergic fiber network of the cortical mantel and hippocampus. The midpontine cholinergic nuclei are spared. The same situation occurs in the corticobasal syndrome and dementia following alcohol abuse and traumatic brain injury. Conversely, in Parkinson's disease, the midpontine nuclei degenerate, together with the dopaminergic nuclei, reducing the cholinergic input to thalamus and forebrain whereas the forebrain cholinergic neurons are spared. In Parkinson's disease with dementia, Lewis Body Dementia and Parkinsonian syndromes both groups of forebrain and midpontine cholinergic nuclei degenerate. In Huntington's disease a dysfunction of the striatal cholinergic interneurons without cell loss takes place. The formation and accumulation of misfolded proteins such as β-amyloid oligomers and plaques, tau protein tangles and α-synuclein clumps, and aggregated mutated huntingtin play a crucial role in the neuronal degeneration by direct cellular toxicity of the misfolded proteins and through the toxic compounds resulting from an extensive inflammatory reaction. Evidences indicate that β-amyloid disrupts NGF metabolism causing the degeneration of the cholinergic neurons which depend on NGF for their survival, namely the forebrain cholinergic neurons, sparing the midpontine and striatal neurons which express no specific NGF receptors. It is feasible that the latter cholinergic neurons may be damaged by direct toxicity of tau, α-synuclein and inflammations products through mechanisms not fully understood. Attention and learning and memory impairment are the functional consequences of the forebrain cholinergic neuron dysfunction, whereas the loss of midpontine cholinergic neurons results primarily in motor and sleep disturbances.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
46
|
Burns LH, Wang HY. Altered filamin A enables amyloid beta-induced tau hyperphosphorylation and neuroinflammation in Alzheimer's disease. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2017; 4:263-271. [PMID: 34295950 PMCID: PMC8294116 DOI: 10.20517/2347-8659.2017.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the amyloid and tau pathologies in AD. Altered FLNA is pervasive in AD brain and without apparent aggregation. In a striking interdependence, altered FLNA is both induced by Aβ and required for two prominent pathogenic signaling pathways of Aβ. Aβ monomers or small oligomers signal via the α7 nicotinic acetylcholine receptor (α7nAChR) to activate kinases that hyperphosphorylate tau to cause neurofibrillary lesions and formation of neurofibrillary tangles. Altered FLNA also enables a persistent activation of toll-like-receptor 4 (TLR4) by Aβ, leading to excessive inflammatory cytokine release and neuroinflammation. The novel AD therapeutic candidate PTI-125 binds and reverses the altered FLNA conformation to prevent Aβ’s signaling via α7nAChR and aberrant activation of TLR4, thus reducing multiple AD-related neuropathologies. As a regulator of Aβ’s signaling via α7nAChR and TLR4, altered FLNA represents a novel AD therapeutic target.
Collapse
Affiliation(s)
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY 10031, USA.,Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
47
|
Hippocampal network dynamics in response to α7 nACh receptors activation in amyloid-β overproducing transgenic mice. Neurobiol Aging 2016; 45:161-168. [DOI: 10.1016/j.neurobiolaging.2016.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 12/18/2022]
|
48
|
Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol 2016; 144:142-57. [DOI: 10.1016/j.pneurobio.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
49
|
Weng PH, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen YC. CHRNA7 Polymorphisms and Dementia Risk: Interactions with Apolipoprotein ε4 and Cigarette Smoking. Sci Rep 2016; 6:27231. [PMID: 27249957 PMCID: PMC4890170 DOI: 10.1038/srep27231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptor (α7nAChR, encoded by CHRNA7) is involved in dementia pathogenesis through cholinergic neurotransmission, neuroprotection and interactions with amyloid-β. Smoking promotes atherosclerosis and increases dementia risk, but nicotine exerts neuroprotective effect via α7nAChR in preclinical studies. No studies explored the gene-gene, gene-environment interactions between CHRNA7 polymorphism, apolipoprotein E (APOE) ε4 status and smoking on dementia risk. This case-control study recruited 254 late-onset Alzheimer’s disease (LOAD) and 115 vascular dementia (VaD) cases (age ≥65) from the neurology clinics of three teaching hospitals in Taiwan during 2007–2010. Controls (N = 435) were recruited from health checkup programs and volunteers during the same period. Nine CHRNA7 haplotype-tagging single nucleotide polymorphisms representative for Taiwanese were genotyped. Among APOE ε4 non-carriers, CHRNA7 rs7179008 variant carriers had significantly decreased LOAD risk after correction for multiple tests (GG + AG vs. AA: adjusted odds ratio = 0.29, 95% confidence interval = 0.13–0.64, P = 0.002). Similar findings were observed for carriers of GT haplotype in CHRNA7 block4. A significant interaction was found between rs7179008, GT haplotype in block4 and APOE ε4 on LOAD risk. rs7179008 variant also reduced the detrimental effect of smoking on LOAD risk. No significant association was found between CHRNA7 and VaD. These findings help to understand dementia pathogenesis.
Collapse
Affiliation(s)
- Pei-Hsuan Weng
- Department of Family Medicine, Taiwan Adventist Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ping-Keung Yip
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Center of Neurological Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Genes, Environment and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Phosphoinositides: Two-Path Signaling in Neuronal Response to Oligomeric Amyloid β Peptide. Mol Neurobiol 2016; 54:3236-3252. [DOI: 10.1007/s12035-016-9885-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
|