1
|
Arreaza-Gil V, Escobar-Martínez I, Soliz-Rueda JR, Suárez M, Muguerza B, Schellekens H, Torres-Fuentes C, Arola-Arnal A. Photoperiod effects on corticosterone and seasonal clocks in cafeteria-induced obese fischer 344 rats are influenced by gut microbiota. Sci Rep 2024; 14:22560. [PMID: 39343766 PMCID: PMC11439935 DOI: 10.1038/s41598-024-73289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
Seasonal rhythms are gaining attention given their impact on metabolic disorders development such as obesity gut microbiota is emerging as a key factor in mediating this link. However, the underlying mechanisms are still poorly understood. In this regard, corticosterone may play a role as it has been shown to be affected by gut bacteria and seasonal rhythms, and has been linked to obesity. Thus, this study aimed to investigate if seasonal rhythms effects on corticosterone are influenced by gut microbiota in obese rats and whether this may be related to seasonal and clock genes expression in the pituitary gland and colon. Fischer 344 male rats fed with cafeteria diet (CAF) were housed under different photoperiods for 9 weeks and treated with an antibiotic cocktail (ABX) in drinking water during the last 4 weeks. Rats fed with standard chow and CAF-fed rats without ABX were included as controls. ABX altered gut microbiota, corticosterone levels and seasonal clock expression in the pituitary depending on photoperiod conditions. These results suggest a link between gut bacteria, seasonal rhythms and corticosterone and a novel nutrigenomic target for obesity.
Collapse
Affiliation(s)
- Verónica Arreaza-Gil
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Iván Escobar-Martínez
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Harriet Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| |
Collapse
|
2
|
McHill AW, Sano A, Barger LK, Phillips AJK, Czeisler CA, Klerman EB. Adaptation of sleep to daylight saving time is slower in people consuming a high-fat diet. iScience 2024; 27:110677. [PMID: 39252974 PMCID: PMC11381764 DOI: 10.1016/j.isci.2024.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Adaptation of the circadian clock to the environment is essential for optimal health, well-being, and performance. Animal models demonstrate that a high-fat diet impairs circadian adaptation to advances of the light-dark cycle; it is unknown whether this occurs in humans. Utilizing a natural experiment that occurs when humans must advance their behaviors to an earlier hour for daylight saving time (DST), we measured the influence of diet on sleep/wake timing relative to dim-light melatonin onset time. Students with a lower-fat diet rapidly altered their sleep-wake timing to match the imposed time change, whereas those with a high-fat diet were slower to adapt to the time change. Moreover, a faster shift in timing after DST was associated with higher general health, lower body mass index, and higher grade point average. These data suggest that diet may influence the speed of sleep and circadian adaptation, which could have implications for health and performance.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Akane Sano
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Affective Computing Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J K Phillips
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA, Australia
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Ji C, Ou Y, Yu W, Lv J, Zhang F, Li H, Gu Z, Li J, Zhong Z, Wang H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. J Genet Genomics 2024; 51:61-74. [PMID: 37328030 DOI: 10.1016/j.jgg.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Thyroid-stimulating hormone (TSH) is important for the thyroid gland, development, growth, and metabolism. Defects in TSH production or the thyrotrope cells within the pituitary gland cause congenital hypothyroidism (CH), resulting in growth retardation and neurocognitive impairment. While human TSH is known to display rhythmicity, the molecular mechanisms underlying the circadian regulation of TSH and the effects of TSH-thyroid hormone (TH) signaling on the circadian clock remain elusive. Here we show that TSH, thyroxine (T4), triiodothyronine (T3), and tshba display rhythmicity in both larval and adult zebrafish and tshba is regulated directly by the circadian clock via both E'-box and D-box. Zebrafish tshba-/- mutants manifest congenital hypothyroidism, with the characteristics of low levels of T4 and T3 and growth retardation. Loss or overexpression of tshba alters the rhythmicity of locomotor activities and expression of core circadian clock genes and hypothalamic-pituitary-thyroid (HPT) axis-related genes. Furthermore, TSH-TH signaling regulates clock2/npas2 via the thyroid response element (TRE) in its promoter, and transcriptome analysis reveals extensive functions of Tshba in zebrafish. Together, our results demonstrate that zebrafish tshba is a direct target of the circadian clock and in turn plays critical roles in circadian regulation along with other functions.
Collapse
Affiliation(s)
- Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Ou
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangjianfei Yu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxin Lv
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanmiao Zhang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huashan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyun Gu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayuan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, Coto-Montes A. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity. Antioxidants (Basel) 2023; 12:1962. [PMID: 38001815 PMCID: PMC10669624 DOI: 10.3390/antiox12111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Juan C. Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Beatriz de Luxán-Delgado
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
- Immunology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Juan J. Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
5
|
Amatobi KM, Ozbek-Unal AG, Schäbler S, Deppisch P, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition. J Lipid Res 2023; 64:100417. [PMID: 37481037 PMCID: PMC10550813 DOI: 10.1016/j.jlr.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.
Collapse
Affiliation(s)
- Kelechi M Amatobi
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Schäbler
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter Deppisch
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J Mueller
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Agnes Fekete
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Endoplasmic reticulum stress inhibition ameliorated WFS1 expression alterations and reduced pancreatic islets' insulin secretion induced by high-fat diet in rats. Sci Rep 2023; 13:1860. [PMID: 36725880 PMCID: PMC9892558 DOI: 10.1038/s41598-023-28329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the development of glucose homeostasis impairment. When ER stress occurs, the unfolded protein response (UPR) is activated to cope with it. One of the UPR components is WFS1 (Wolfram syndrome 1), which plays important roles in ER homeostasis and pancreatic islets glucose-stimulated insulin secretion (GSIS). Accordingly and considering that feeding high-fat food has a major contribution in metabolic disorders, this study aimed to investigate the possible involvement of pancreatic ER stress in glucose metabolism impairment induced by feeding high-fat diet (HFD) in male rats. After weaning, the rats were divided into six groups, and fed on normal diet and HFD for 20 weeks, then 4-phenyl butyric acid (4-PBA, an ER stress inhibitor) was administered. Subsequently, in all groups, after performing glucose tolerance test, the animals were dissected and their pancreases were removed to extract ER, islets isolation and assessment of GSIS. Moreover, the pancreatic ER stress [binding of immunoglobulin protein (BIP) and enhancer-binding protein homologous protein (CHOP)] and oxidative stress [malondialdehyde (MDA), glutathione (GSH) and catalase] biomarkers as well as WFS1 expression level were evaluated. HFD decreased pancreatic WFS1 protein and GSH levels, and enhanced pancreatic catalase activity, MDA content, BIP and CHOP protein and mRNA levels as well as Wfs1 mRNA amount. Accordingly, it increased BIP, CHOP and WFS1 protein levels in the extracted ER of pancreas. In addition, the HFD caused glucose intolerance, and decreased the islets' GSIS and insulin content. However, 4-PBA administration restored the alterations. It seems that, HFD consumption through inducing pancreatic ER stress, altered WFS1 expression levels, reduced the islets' GSIS and insulin content and finally impaired glucose homeostasis.
Collapse
|
7
|
Fernández-Mateos P, Cano-Barquilla P, Jiménez-Ortega V, Virto L, Pérez-Miguelsanz J, Esquifino AI. Effect of Melatonin on Redox Enzymes Daily Gene Expression in Perirenal and Subcutaneous Adipose Tissue of a Diet Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24020960. [PMID: 36674472 PMCID: PMC9863119 DOI: 10.3390/ijms24020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Increased adiposity is related to oxidative stress, inflammation and metabolic disorders. Our group has shown that melatonin totally or partially prevents the alterations that obesity causes in some neuroendocrine and inflammatory parameters indicative of oxidative stress. This study analyzes the effects of HFD on the relative gene expression of several redox balance enzymes on adult male Wistar rats subcutaneous (SAT) and perirenal adipose tissue (PRAT) and the possible preventive role of melatonin. Three experimental groups were established: control, high fat diet (HFD) and HFD plus 25 μg/mL melatonin in tap water. After 11 weeks, animals were sacrificed at 09:00 a.m. and 01:00 a.m. and PRAT and SAT were collected for selected redox enzymes qRT-PCR. Differential expression of redox enzyme genes, except for SODMn, GPx and catalase, was observed in the control group as a function of fat depot. HFD causes the disappearance of the temporal changes in the expression of the genes studied in the two fat depots analyzed. PRAT seems to be more sensitive than SAT to increased oxidative stress induced by obesity. Melatonin combined with a HFD intake, partially prevents the effects of the HFD on the gene expression of the redox enzymes. According to our results, melatonin selectively prevents changes in the relative gene expression of redox enzymes in PRAT and SAT of animals fed an HFD.
Collapse
Affiliation(s)
- Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Cellular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| | - Pilar Cano-Barquilla
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Vanesa Jiménez-Ortega
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Leire Virto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University, 28037 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Ana I. Esquifino
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| |
Collapse
|
8
|
Genipin improves lipid metabolism and sperm parametersin obese mice via regulation of miR-132 expression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1278-1288. [PMID: 36082932 PMCID: PMC9827900 DOI: 10.3724/abbs.2022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Obesity has now surpassed malnutrition and infectious diseases as the most significant contributor to health problems worldwide. In particular, obesity is associated with several metabolic disorders, including hyperlipidemia, hepatic steatosis, and subfertility. Genipin (GNP), the aglycone of geniposide, is isolated from the extract of the traditional Chinese medicine Gardenia jasminoides Ellis and has been used in traditional oriental medicine against several inflammation-driven diseases. However, the effect and molecular mechanism of GNP on obesity-associated dyslipidemia and sperm dysfunction still need to be explored. In this study, we detect the effects of GNP on hyperlipidemia, hepatic lipid accumulation and sperm function using a high-fat diet (HFD)-induced obese mouse model. We find that obese mice treated with GNP show an improvement in body weight, serum triglyceride levels, serum hormone levels, serum inflammatory cytokines, hepatic steatosis and sperm function. At the molecular level, HFD/GNP diversely regulates the expression of miR-132 in a tissue-specific manner. miR-132 further targets and regulates the expression of SREBP-1c in liver cells, as well as the expressions of SREBP-1c and StAR in Leydig cells in the testis, thus modifying lipogenesis and steroidogenesis, respectively. Collectively, our data demonstrate that GNP shows a broad effect on the improvement of HFD-induced metabolic disorder and sperm dysfunction in male mice by tissue-specific regulation of miR-132. Our findings reveal the function GNP in ameliorating hepatic lipid metabolism and sperm function and suggest that this compound is a versatile drug to treat metabolic disorders.
Collapse
|
9
|
Singh T, Kwatra M, Kushwah P, Pant R, Bezbaruah BK, Jangra A. Binge alcohol consumption exacerbates high-fat diet-induced neurobehavioral anomalies: Possible underlying mechanisms. Chem Biol Interact 2022; 364:110039. [PMID: 35863473 DOI: 10.1016/j.cbi.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
The current study was aimed to validate the mice model of alcohol (ALC), high-fat diet (HFD), and HFD + ALC combination affecting neurobehavioral and neurochemical anomalies via inflammatory cascade, lowered neurogenesis, enhanced microgliosis, reactive astrogliosis, activated IDO-1 (indoleamine 2,3-dioxygenase), and reduce CHAT (choline acetyltransferase) signaling in the hippocampus (HIP). The adult male Swiss albino mice were provided with ALC (3-15%) and in-house prepared HFD for continuous 12 weeks. The HFD and HFD + ALC consumption impacted the liver and mediated HIP damage. The liver biomarkers (AST, ALT, γ-GT, TG, HDL-C, and LDL-C), oxidative stress, and proinflammatory cytokines (IL-1β and TNF-α) level were found significantly higher in the liver and HIP tissue of HFD + ALC. Furthermore, the neurobehavioral deficits that include cognitive dysfunction, depressive, and, anxiety-like behavior were found severely affected in HFD + ALC consumed mice. The overactivated HPA axis, intense oxidative insults, and increased AChE activity were seen in the HIP of HFD + ALC grouped mice. The gene and protein expression also confirmed disrupted NF-κB-mediated inflammatory and Nrf2-regulated antioxidant balance and dysregulated TrκB/BDNF signaling. Hence, our new findings explain the insight mechanism of chronic alcoholism in exacerbating the deleterious effect of chronic high-fat diet consumption on the HIP.
Collapse
Affiliation(s)
- Tavleen Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala (SJJT) University, Jhunjhunu, Churu Rd, Vidyanagari, Churela, Rajasthan, India; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pawan Kushwah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | | | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India; Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
10
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
11
|
Mirzaei K, Tangestani H, Emamat H, Yekaninejad M, Alipour M, Keshavarz S. Interaction of cry1 gene polymorphisms and dominant food patterns on obesity: A cross-sectional study. Int J Prev Med 2022; 13:51. [PMID: 35706856 PMCID: PMC9188878 DOI: 10.4103/ijpvm.ijpvm_352_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 11/04/2022] Open
Abstract
Background: Evidence suggests that there is some relationship between circadian clock gene variants and obesity. However, there are few examinations supporting this observation in human subjects. This study was aimed to investigate the interaction between Cry1 circadian gene polymorphism and major dietary patterns on obesity measurements. Methods: Healthy overweight and obese women aged 18–53 years old were recruited from health centers in Tehran, Iran by a multistage cluster random sampling method (n = 377). Major dietary patterns were elicited after assessing the intake of 16 food groups using a valid and reliable 147-item food frequency questionnaire (FFQ). Anthropometric measurements were performed for each and every participant. Body composition was analyzed using bioelectrical impedance analysis (BIA). Socio-demographic and physical activity data were also collected by a validated Farsi demographic questionnaire and the international physical activity questionnaire (IPAQ). The Cry1 rs2287161 polymorphism were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Generalized linear models were used for interaction analysis. Results: Two major dietary patterns, including healthy and unhealthy dietary pattern (HDP and UDP, respectively) were determined using factor analysis. Our study showed a significant higher weight (P = 0.003), body mass index (BMI) (P = 0.042), hip circumference (P = 0.052), and body fat mass (P = 0.028) in carriers of C allele compared with G allele. Moreover, a significant gene-diet interaction was observed between being a carrier of C allele and BMI (P = 0.099 for CC genotype; P = 0.1 for CG genotype) and fat mass (P = 0.1 for CG genotype). Conclusions: The current study suggests a significant interaction of Cry1 rs2287161 gene polymorphisms in people following a healthy dietary pattern on BMI and fat mass among carriers of C allele compared to carriers of G allele.
Collapse
|
12
|
Mirzababaei A, Daneshzad E, Shiraseb F, Pourreza S, Setayesh L, Clark CCT, Tangestani H, Abaj F, Yarizadeh H, Mirzaei K. Variants of the cry 1 gene may influence the effect of fat intake on resting metabolic rate in women with overweight of obesity: a cross-sectional study. BMC Endocr Disord 2021; 21:196. [PMID: 34610814 PMCID: PMC8493740 DOI: 10.1186/s12902-021-00860-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous studies have shown that the minor allele (C allele) for Cry 1 rs2287161, may be associated with increased risk of cardiovascular diseases (CVDs). Low resting metabolic rate (RMR) caused by the diet has been shown to have, potentially, unfavorable effects on obesity. This study sought to investigate the interactions between the Cry 1 Gene and fat intake on RMR in women with overweight of obesity. METHODS This comparative cross-sectional study was conducted on 377 Iranian women with overweight of obesity. A food frequency questionnaire (FFQ), with 147 items, was used to assess dietary intake. Individuals were categorized into two groups based on the rs2287161 genotype. Body composition, dietary intake, and RMR were assessed for all participants. RESULTS There was a significant difference between genotypes for fasting blood sugar (FBS) (P = 0.04), fat free mass (FFM) (P = 0.0009), RMR per FFM (P = 0.05), RMR per body mass index (BMI) (P = 0.02), and RMR deviation (P = 0.01). Our findings also showed significant interactions between total fat and C allele carrier group on RMR per kg body weight, RMR per body surface area (BSA), RMR per FFM, and RMR deviation (P for interaction < 0.1), in addition to a significant interaction between CC + CG group genotype and polyunsaturated fatty acids (PUFA) intake on RMR per BMI (P for interaction =0.00) and RMR per kg (P for interaction = 0.02) and RMR per BSA (P = 0.07), compared to the GG group, after control for confounder factors. CONCLUSION These results highlight that dietary compositions, gene variants, and their interaction, should be acutely considered in lower RMR.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Hadith Tangestani
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Habib Yarizadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran.
| |
Collapse
|
13
|
Ruigrok S, Kotah J, Kuindersma J, Speijer E, van Irsen A, la Fleur S, Korosi A. Adult food choices depend on sex and exposure to early-life stress: Underlying brain circuitry, adipose tissue adaptations and metabolic responses. Neurobiol Stress 2021; 15:100360. [PMID: 34277896 PMCID: PMC8264217 DOI: 10.1016/j.ynstr.2021.100360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to early-life stress (ES) increases the risk to develop obesity later in life, and these effects may be sex-specific, but it is currently unknown what underlies the ES-induced metabolic vulnerability. We have previously shown that ES leads to a leaner phenotype under standard chow diet conditions, but to increased fat accumulation when exposed to an unhealthy obesogenic diet. However these diets were fed without a choice. An important, yet under investigated, element contributing to the development of obesity in humans is the choice of the food. There is initial evidence that ES leads to altered food choices but a thorough testing on how ES affects the choice of both the fat and sugar component, and if this is similar in males and females, is currently missing. We hypothesized that ES increases the choice for unhealthy foods, while it at the same time also affects the response to such a diet. In a mouse model for ES, in which mice are exposed to limited nesting and bedding material from postnatal day (P)2–P9, we investigated if ES exposure affected i) food choice with a free choice high-fat high-sugar diet (fcHFHS), ii) the response to such a diet, iii) the brain circuits that regulate food intake and food reward and iv) if such ES effects are sex-specific. We show that there are sex differences in food choice under basal circumstances, and that ES increases fat intake in females when exposed to a mild acute stressor. Moreover, ES impacts the physiologic response to the fcHFHS and the brain circuits regulating food intake in sex-specific manner. Our data highlight sex-specific effects of ES on metabolic functioning and food choice. Strong sex differences exist in food choice and metabolism in mice. Early-life stress (ES) increases fat intake in females after mild acute stress exposure. The physiological response to the diet is affected by ES in a sex-dependent manner. ES modulates the hedonic feeding circuitry.
Collapse
Affiliation(s)
- S.R. Ruigrok
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - J.M. Kotah
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - J.E. Kuindersma
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - E. Speijer
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - A.A.S. van Irsen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - S.E. la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry & Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, Amsterdam, Netherlands
| | - A. Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Corresponding author.
| |
Collapse
|
14
|
Arellanes-Licea EDC, Pérez-Mendoza M, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Obese Neotomodon alstoni mice exhibit sexual dimorphism in the daily profile of circulating melatonin and clock proteins PER1 and BMAL1 in the hypothalamus and peripheral oscillators. Chronobiol Int 2021; 38:584-597. [PMID: 33393371 DOI: 10.1080/07420528.2020.1860999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a global health threat and a risk factor for several metabolic conditions. Though circadian dysfunction has been considered among the multiple causes of obesity, little work has been done to explore the relationship between obesity, circadian dysfunction, and sexual dimorphism. The Neotomodon alstoni mouse is a suitable model for such research. This study employed N. alstoni mice in a chronobiological analysis to determine whether there is circadian desynchronization of relative PER1 and BMAL1 protein levels in the hypothalamus, liver, visceral white adipose tissue, kidney, and heart. It also compared differences between sexes and lean and obese N. alstoni adult mice, by recording behavior and daily circulating serum melatonin as markers of circadian output. We found that obese mice display reduced locomotor activity. Additionally, Cosinor analyses of the relative expression of PER1 and BMAL1 show differences between lean and obese mice in a sex-linked manner. The PER1 24 h rhythm was absent in all tissues of obese males and significant in the tissues of obese females. The BMAL1 24 h rhythm also was significant in most of the tissues tested in lean males, whereas it was significant and shifted the acrophase (peak time of rhythm) in most of the tissues in obese females. Both lean male and female mice showed a rhythmic 24 h pattern of circulating serum melatonin. This daily profile was not only absent in obese mice of both sexes but showed sexual dimorphism. Obese male mice showed lower circulating levels of melatonin compared to lean male mice, but they were higher in obese females compared to lean females. Our results suggest that obesity in N. alstoni is associated with an internal circadian desynchronization in a sex-dependent manner. Overall, this study reinforces the need for further research on the neuroendocrinology of obesity and circadian rhythms using this biological model.
Collapse
Affiliation(s)
- Elvira Del Carmen Arellanes-Licea
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Querétaro, México
| | - Moisés Pérez-Mendoza
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Agustín Carmona-Castro
- Departamento de Biología Celular, Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio Díaz-Muñoz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
15
|
Binayi F, Zardooz H, Ghasemi R, Hedayati M, Askari S, Pouriran R, Sahraei M. The chemical chaperon 4-phenyl butyric acid restored high-fat diet- induced hippocampal insulin content and insulin receptor level reduction along with spatial learning and memory deficits in male rats. Physiol Behav 2021; 231:113312. [PMID: 33412188 DOI: 10.1016/j.physbeh.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/18/2022]
Abstract
This study assessed the effect of a chronic high-fat diet (HFD) on plasma and hippocampal insulin and corticosterone levels, the hippocampus insulin receptor amount, and spatial learning and memory with or without receiving 4-phenyl butyric acid (4-PBA) in male rats. Rats were divided into high-fat and normal diet groups, then each group was subdivided into dimethyl sulfoxide (DMSO) and 4-PBA groups. After weaning, the rats were fed with HFD for 20 weeks. Then, 4-PBA or DMSO were injected for 3 days. Subsequently, oral glucose tolerance test was done. On the following day, spatial memory tests were performed. Then the hippocampus Bip, Chop, insulin, corticosterone, and insulin receptor levels were determined. HFD increased plasma glucose, leptin and corticosterone concentrations, hippocampus Bip, Chop and corticosterone levels, food intake, abdominal fat weight and body weight along with impaired glucose tolerance. It decreased plasma insulin, and insulin content, and its receptor amount in hippocampus. HFD lengthened escape latency and shortened the duration spent in target zone. 4-PBA administration improved the HFD- induced adverse changes. Chronic HFD possibly through the induction of endoplasmic reticulum (ER) stress and subsequent changes in the levels of hippocampal corticosterone, insulin and insulin receptor along with possible leptin resistance caused spatial learning and memory deficits.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulates glucose metabolism and insulin resistance after body weight loss secondary to biliopancreatic diversion surgery. NUTR HOSP 2020; 37:1143-1149. [PMID: 33119394 DOI: 10.20960/nh.03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Objective: the rs10830963 SNP of the MTNR1B gene may be related with biochemical changes after weight loss induced by caloric restriction. We investigated the role of this SNP on biochemical parameters after biliopancreatic diversion (BPD) surgery in morbid obese subjects. Patients and methods: one hundred and fifty-four patients with morbid obesity, without diabetes mellitus type 2, were enrolled. Their biochemical and anthropometric parameters were recorded before the procedure and after one, two, and three years of follow-up. All subjects were genotyped (rs10830963) at baseline. Results: the decrease in fasting insulin levels seen after the first year (delta: -3.9 ± 1.2 mIU/L vs. -1.8 ± 1.1 mIU/L; p = 0.03), the second year (delta: -5.0 ± 0.3 mIU/L vs. -2.3 ± 0.2 mIU/L; p = 0.01) and the third year (delta: -5.1 ± 1.9 mIU/L vs. -2.8 ± 1.1 mIU/L; p = 0.02) was higher in non-G-allele carriers than in G-allele carriers. Additionally, the improvement of HOMA-IR levels at year one (delta: -0.7 ± 0.2 mIU/L vs. -0.2 ± 0.2 mIU/L; p = 0.03), year two (delta: -1.0 ± 0.3 mIU/L vs. -0.5 ± 0.2 mIU/L; p = 0.01) and year three (delta: -1.2 ± 0.3 mIU/L vs. -0.4 ± 0.2 mIU/L; p = 0.03) was also higher in non-G-allele carriers than in G-allele carriers. Finally, basal glucose levels after the first year (delta: -10.1 ± 2.4 mg/dL vs. -3.6 ± 1.8 mg/dL; p = 0.02), the second year (delta: -16.0 ± 2.3 mg/dL vs. -8.4 ± 2.2 mg/dL; p = 0.01) and the third year (delta: -17.4 ± 3.1 mg/dL vs. -8.8 ± 2.9 mg/dL; p = 0.03) were higher in non-G-allele carriers than in G-allele carriers, too. Improvements seen in comorbidities were similar in both genotype groups. Conclusion: our study showed an association of the rs10830963 MTNR1B polymorphism after massive weight loss with lower glucose response, insulin resistance, and fasting insulin levels in G-allele carriers.
Collapse
|
17
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
18
|
Méndez-Hernández R, Escobar C, Buijs RM. Suprachiasmatic Nucleus-Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity (Silver Spring) 2020; 28 Suppl 1:S10-S17. [PMID: 32538539 DOI: 10.1002/oby.22774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
19
|
Ibáñez-Álamo JD, Jimeno B, Gil D, Thomson RL, Aguirre JI, Díez-Fernández A, Faivre B, Tieleman BI, Figuerola J. Physiological stress does not increase with urbanization in European blackbirds: Evidence from hormonal, immunological and cellular indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137332. [PMID: 32169634 DOI: 10.1016/j.scitotenv.2020.137332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Urbanization changes the landscape structure and ecological processes of natural habitats. While urban areas expose animal communities to novel challenges, they may also provide more stable environments in which environmental fluctuations are buffered. Species´ ecology and physiology may determine their capacity to cope with the city life. However, the physiological mechanisms underlying organismal responses to urbanization, and whether different physiological systems are equally affected by urban environments remain poorly understood. This severely limits our capacity to predict the impact of anthropogenic habitats on wild populations. In this study, we measured indicators of physiological stress at the endocrine, immune and cellular level (feather corticosterone levels, heterophil to lymphocyte ratio, and heat-shock proteins) in urban and non-urban European blackbirds (Turdus merula) across 10 European populations. Among the three variables, we found consistent differences in feather corticosterone, which was higher in non-urban habitats. This effect seems to be dependent on sex, being greater in males. In contrast, we found no significant differences between urban and non-urban habitats in the two other physiological indicators. The discrepancy between these different measurements of physiological stress highlights the importance of including multiple physiological variables to understand the impact of urbanization on species' physiology. Overall, our findings suggest that adult European blackbirds living in urban and non-urban habitats do not differ in terms of physiological stress at an organismal level. Furthermore, we found large differences among populations on the strength and direction of the urbanization effect, which illustrates the relevance of spatial replication when investigating urban-induced physiological responses.
Collapse
Affiliation(s)
- Juan Diego Ibáñez-Álamo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands; Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain.
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, (MNCN-CSIC), Madrid, Spain
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa; Section of Ecology, Department of Biology, University of Turku, Finland
| | - José I Aguirre
- Departmento de Zoología y Antropología Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Alazne Díez-Fernández
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain
| | - Bruno Faivre
- UMR CNRS Biogéosciences, Université de Bourgogne Franche-Comté, Dijon, France
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), Seville, Spain; CIBER Epidemiología y Salud Publica (CIBERESP), Seville, Spain
| |
Collapse
|
20
|
de Luis DA, Izaola O, Primo D, Aller R. A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulate body weight change and insulin resistance after 9 months of a high protein/low carbohydrate vs a standard hypocaloric diet. J Diabetes Complications 2020; 34:107534. [PMID: 32057567 DOI: 10.1016/j.jdiacomp.2020.107534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The risk allele (G) of rs10830963 in the melatonin receptor 1 B (MTNR1B) gene presents an association with biochemical parameters and obesity. We study the effect of this SNP on insulin resistance and weight loss secondary to two hypocaloric diets. METHODS 270 obese subjects were randomly allocated during 9 months (Diet HP: a high protein/low carbohydrate vs. Diet S: a standard severe hypocaloric diets). Anthropometric parameters, fasting blood glucose, C-reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR), lipid profile and adipocytokines levels were measured. Genotype of MTNR1B gene polymorphism (rs10830963) was evaluated. RESULTS All adiposity parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets. This improvement of adiposity parameters was higher in non-G allele carriers than G allele carriers. After weight loss with Diet HP, (CC vs. CG + GG at 9 months); total cholesterol (delta: -9.9 ± 2.4 mg/dl vs. -4.8 ± 2.2 mg/dl:p < 0.05), LDL-cholesterol (delta: -8.3 ± 1.9 mg/dl vs. -5.1 ± 2.2 mg/dl: p < 0.05), insulin (delta: -4.7 ± 0.8 UI/L vs. -0.9 ± 1.0 UI/L: p < 0.05), triglycerides (delta: -17.7 ± 3.9 mg/dl vs. -6.1 ± 2.8 mg/dl: p < 0.05) and HOMA IR (delta: -0.8 ± 0.2 units vs. -0.2 ± 0.1 units: p < 0.05) improved only in no G allele carriers. After weight loss with Diet S in non G allele carriers, insulin levels (delta (CC vs. CG + GG): -3.4 ± 0.6 UI/L vs. -1.2 ± 0.4 UI/L: p < 0.05), triglycerides (delta: -29.2 ± 3.4 mg/dl vs. -8.2 ± 3.8 mg/dl: p < 0.05), HOMA-IR (delta (CC vs. CG + GG): -1.1 ± 0.2 units vs. -0.1 ± 0.1 units: p < 0.05), total cholesterol (delta: -15.9 ± 7.4 mg/dl vs. -5.8 ± 2.9 mg/dl:ns) and LDL-cholesterol (delta: -13.7 ± 5.9 mg/dl vs. -6.0 ± 2.9 mg/dl: ns) decreased, too. CONCLUSIONS our study detected a relationship of rs10830963 variant of MTNR1B gene with adiposity changes, cholesterol changes and insulin resistance modification induced by two different hypocaloric during 9 months.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| | - Olatz Izaola
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - David Primo
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Rocio Aller
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| |
Collapse
|
21
|
Circadian regulation of appetite and time restricted feeding. Physiol Behav 2020; 220:112873. [PMID: 32194073 DOI: 10.1016/j.physbeh.2020.112873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
The circadian system plays an important role in the temporal regulation of metabolic processes as well as food intake to ensure energy efficiency. The 'master' clock is located within the superchiasmatic nucleus and receives input from the retina so that it can be entrained by the light:dark cycle. In turn, the master clock entrains other clocks in the central nervous system, including areas involved in energy homeostasis such as the arcuate nucleus, and the periphery (e.g. adipose tissue and the gastrointestinal tract). This master clock is reinforced by other zeitgebers such as the timing of food intake and activity. If these zeitgebers desynchronise, such as occurs in high fat diet-induced obesity or shift work conditions, it can lead to a misalignment of circadian clocks, disruption of metabolic processes and the development of metabolic disorders. The timing of food intake is a strong zeitgeber, particularly in the gastrointestinal tract, and therefore time restricted feeding offers potential for the treatment of diet and shift work induced metabolic disorders. This review will focus on the role of the circadian system in food intake regulation and the effect of environment factors, such as high fat diet feeding or shift work, on the temporal regulation of food intake along with the benefits of time restricted feeding.
Collapse
|
22
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ENDOCRINOLOGÍA, DIABETES Y NUTRICIÓN (ENGLISH ED.) 2020. [DOI: 10.1016/j.endien.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
24
|
Goni L, Sun D, Heianza Y, Wang T, Huang T, Martínez JA, Shang X, Bray GA, Smith SR, Sacks FM, Qi L. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr 2019; 58:1381-1389. [PMID: 29516223 PMCID: PMC6128782 DOI: 10.1007/s00394-018-1660-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE A common variant of the melatonin receptor 1B (MTNR1B) gene has been related to increased signaling of melatonin, a hormone previously associated with body fatness mainly through effects on energy metabolism. We examined whether the MTNR1B variant affects changes of body fatness and composition in response to a dietary weight loss intervention. METHODS The MTNR1B rs10830963 variant was genotyped for 722 overweight and obese individuals, who were randomly assigned to one of four diets varying in macronutrient composition. Anthropometric and body composition measurements (DXA scan) were collected at baseline and at 6 and 24 months of follow-up. RESULTS Statistically significant interactions were observed between the MTNR1B genotype and low-/high-fat diet on changes in weight, body mass index (BMI), waist circumference (WC) and total body fat (p interaction = 0.01, 0.02, 0.002 and 0.04, respectively), at 6 months of dietary intervention. In the low-fat diet group, increasing number of the sleep disruption-related G allele was significantly associated with a decrease in weight (p = 0.004), BMI (p = 0.005) and WC (p = 0.001). In the high-fat diet group, carrying the G allele was positively associated with changes in body fat (p = 0.03). At 2 years, the associations remained statistically significant for changes in body weight (p = 0.02), BMI (p = 0.02) and WC (p = 0.048) in the low-fat diet group, although the gene-diet interaction became less significant. CONCLUSIONS The results suggest that carriers of the G allele of the MTNR1B rs10830963 may have a greater improvement in body adiposity and fat distribution when eating a low-fat diet.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Xiaoyun Shang
- Children's Hospital New Orleans, New Orleans, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Steven R Smith
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ACTA ACUST UNITED AC 2019; 67:43-52. [PMID: 30981681 DOI: 10.1016/j.endinu.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS The risk allele (G) of rs10830963 in the melatonin receptor 1 B (MTNR1B) gene presents an association with obesity. We study the effect of this SNP on cardiovascular risk factors and weight loss secondary to 2hypocaloric diets. METHODS 361 obese subjects were randomly allocated during 3 months (Diet M - high monounsaturated fat hypocaloric diet vs. Diet P - high polyunsaturated fat hypocaloric diet). Anthropometric parameters, fasting blood glucose, C-reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR), lipid profile and adipocytokines levels were measured. Genotype of MTNR1B gene polymorphism (rs10830963) was evaluated. RESULTS All anthropometric parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets. This improvement of anthropometric parameters was higher in non G allele carriers than G allele carriers. After dietary intervention with Diet M, (CC vs. CG + GG); total cholesterol (delta: -10.4 ± 2.1mg/dl vs. -6.4 ± 1.2mg/dl: P <.05), LDL-cholesterol (delta:-7.1 ± 0.9mg/dl vs. -2.8 ± 0.8mg/dl: P <.05), insulin (delta:-3.0 ± 0.8 UI/L vs. -2.0 ± 1.0 UI/L: P<.05) and HOMA-IR (delta:-3.4 ± 1.0 units vs. -2.9 ± 0.9 units: P<.05) improved in no G allele carriers. After Diet P, in the group of subjects without G allele CC, insulin levels (delta: -2.9 ± 1.0 UI/L vs. -0.6 ± 0.2 UI/L: P <.05) and HOMA-IR (delta (CC vs. CG + GG): -0.8 ± 0.2 units vs. -0.4 ± 0.3 units: P <.05) decreased, too. CONCLUSIONS Our study detected a relationship of rs10830963 MTNR1B SNP with body weight loss and insulin resistance modification induced by 2different hypocaloric. Only monounsaturated enriched hypocaloric diet and in no-G allele carriers showed a significant effect on lipoproteins.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España.
| | - Olatz Izaola
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - David Primo
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - Rocio Aller
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
26
|
Jaimes-Hoy L, Romero F, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Maternal Separation and Palatable Diet. Front Endocrinol (Lausanne) 2019; 10:445. [PMID: 31354623 PMCID: PMC6637657 DOI: 10.3389/fendo.2019.00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal stress contributes to the development of obesity and has long-lasting effects on elements of the hypothalamus-pituitary-thyroid (HPT) axis. Given the importance of thyroid hormones in metabolic regulation, we studied the effects of maternal separation and a high-fat/high-carbohydrate diet (HFC), offered from puberty or adulthood, on HPT axis activity of adult male and female Wistar rats. Pups were non-handled (NH) or maternally separated (MS) 3 h/day at postnatal days (Pd) 2-21. In a first experiment, at Pd60, rats had access to chow or an HFC diet (cookies, peanuts, chow) for 1 month. Male and female NH and MS rats that consumed the HFC diet increased their caloric intake, body weight, and serum insulin levels; fat weight increased in all groups except in MS males, and serum leptin concentration increased only in females. Mediobasal hypothalamus (MBH) Pomc expression increased in NH-HFC females and Npy decreased in NH-HFC males. MS males showed insulinemia and hypercortisolemia that was attenuated by the HFC diet. The HPT axis activity response to an HFC diet was sex-specific; expression of MBH thyrotropin-releasing hormone-degrading ectoenzyme (Trhde) increased in NH and MS males; serum TSH concentration decreased in NH males, and T4 increased in NH females. In a second experiment, rats were fed chow or an HFC diet from Pd30 or 60 until Pd160 and exposed to 1 h restraint before sacrifice. Regardless of neonatal stress, age of diet exposition, or sex, the HFC diet increased body and fat weight and serum leptin concentration; it induced insulinemia in males, but in females only in Pd30 rats. The HFC diet's capacity to curtail the hypothalamus-pituitary-adrenal axis response to restraint was impaired in MS males. In restrained rats, expression of Trh in the paraventricular nucleus of the hypothalamus, Dio2 and Trhde in MBH, and serum thyroid hormone concentration were altered differently depending on sex, age of diet exposition, and neonatal stress. In conclusion, metabolic alterations associated to an HFC-diet-induced obesity are affected by sex or time of exposition, while various parameters of the HPT axis activity are additionally altered by MS, pointing to the complex interplay that these developmental influences exert on HPT axis activity in adult rats.
Collapse
|
27
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
28
|
Virto L, Haugen HJ, Fernández-Mateos P, Cano P, González J, Jiménez-Ortega V, Esquifino AI, Sanz M. Melatonin expression in periodontitis and obesity: An experimental in-vivo investigation. J Periodontal Res 2018; 53:825-831. [PMID: 29900537 DOI: 10.1111/jre.12571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Melatonin deficiency has been associated with obesity and systemic inflammation. This study aims to evaluate whether melatonin could interfere with the mechanisms of co-morbidity linking obesity and periodontitis. MATERIAL AND METHODS Twenty-eight male Wistar rats were randomly divided in 4 groups: control group (Con) (fed with standard diet); high-fat diet group (HFD) (fed with a diet containing 35.2% fat); Con group with induced periodontitis (Con-Perio) and HFD group with induced periodontitis (HFD-Perio). To induce periodontitis, the method of oral gavages with Porphyromonas gingivalis ATCC W83K1 and Fusobacterium nucleatum DMSZ 20482 was used. Circulating melatonin levels were analyzed by multiplex immunoassays. Periodontitis was assessed by alveolar bone loss (micro-computed tomography and histology) and by surrogate inflammatory outcomes (periodontal pocket depth, modified gingival index and plaque dental index). RESULTS Plasma melatonin levels were significantly decreased (P < .05) in the obese rats with periodontitis when compared with controls or with either obese or periodontitis rats. Alveolar bone loss increased 27.71% (2.28 µm) in HFD-Perio group compared with the Con group. The histological analysis showed marked periodontal tissue destruction with osteoclast activity, particularly in the HFD-Perio group. A significant negative correlation (P < .05) was found between periodontal pocket depth, modified gingival index and circulating melatonin levels. CONCLUSION Obese and periodontitis demonstrated significantly lower melatonin concentrations when compared with controls, but in obese rats with periodontitis these concentrations were even significantly lower when compared with either periodontitis or obese rats. These results may indicate that melatonin deficiency could be a key mechanism explaining the co-morbidity effect in the association between obesity and periodontitis.
Collapse
Affiliation(s)
- L Virto
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - H J Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - P Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Cellular Biology, University Complutense, Madrid, Spain
| | - P Cano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - J González
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - V Jiménez-Ortega
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - A I Esquifino
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Biochemistry and Molecular Biology III, University Complutense, Madrid, Spain
| | - M Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
29
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|
30
|
Shi WJ, Jiang YX, Huang GY, Zhao JL, Zhang JN, Liu YS, Xie LT, Ying GG. Dydrogesterone Causes Male Bias and Accelerates Sperm Maturation in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8903-8911. [PMID: 30004691 DOI: 10.1021/acs.est.8b02556] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic progestins are widely used in human and veterinary medicine. They can enter aquatic environments mainly via wastewater discharge and agricultural runoff, thus affecting fish populations in receiving waters. Here, we investigated the chronic effects of dydrogesterone (DDG) on zebrafish from 21 to 140 days post-fertilization (dpf) at 3.39, 33.1, and 329 ng L-1. The results showed that the male ratio increased with the exposure concentration, and after 120 days of exposure to 329 ng L-1, 98% of the fish were males. The DDG exposure during sex differentiation significantly increased the transcription of dmrt1 (1.83-fold) and apoptosis-related genes but suppressed the transcription of cyp19a1a (3.16-fold). Histological analysis showed that the exposure to DDG at 329 ng L-1 caused 61.5% of mature spermatocytes in males, while the exposure to DDG at 33.1 ng L-1 resulted in 14.7% of atretic follicles in females. Microarray analysis identified spermatogenesis-related gene ontology (endothelial barrier and immune response) in the testes at all concentrations. Genes from phagosome, lysosome, and sphingolipid metabolism pathways were enriched and could be responsible for sperm maturation. The findings from this study demonstrate that DDG in the aquatic environment can cause male bias and accelerate sperm maturation in zebrafish, resulting in potential high ecological risks to fish populations.
Collapse
Affiliation(s)
- Wen-Jun Shi
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
- State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences (CAS) Research Centre of Pearl River Delta (PRD) Environmental Pollution and Control, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Yu-Xia Jiang
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
- State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences (CAS) Research Centre of Pearl River Delta (PRD) Environmental Pollution and Control, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Guo-Yong Huang
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Jian-Liang Zhao
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Jin-Na Zhang
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
- State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences (CAS) Research Centre of Pearl River Delta (PRD) Environmental Pollution and Control, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - You-Sheng Liu
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Ling-Tian Xie
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Guang-Guo Ying
- The Environmental Research Institute, Ministry of Education Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou , Guangdong 510006 , People's Republic of China
| |
Collapse
|
31
|
Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes. Int J Mol Sci 2018; 19:ijms19051325. [PMID: 29710834 PMCID: PMC5983658 DOI: 10.3390/ijms19051325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.
Collapse
|
32
|
Ibáñez CA, Erthal RP, Ogo FM, Peres MNC, Vieira HR, Conejo C, Tófolo LP, Francisco FA, da Silva Silveira S, Malta A, Pavanello A, Martins IP, da Silva PHO, Jacinto Saavedra LP, Gonçalves GD, Moreira VM, Alves VS, da Silva Franco CC, Previate C, Gomes RM, de Oliveira Venci R, Dias FRS, Armitage JA, Zambrano E, Mathias PCF, Fernandes GSA, Palma-Rigo K. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise. Front Physiol 2017; 8:807. [PMID: 29163186 PMCID: PMC5673641 DOI: 10.3389/fphys.2017.00807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023] Open
Abstract
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Rafaela P Erthal
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda M Ogo
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Maria N C Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Henrique R Vieira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Camila Conejo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Laize P Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Flávio A Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Isabela P Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Paulo H O da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessica D Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Veridiana M Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Vander S Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Claudinéia C da Silva Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Rodrigo M Gomes
- Laboratory of Endocrinology and Metabolism, Department of Physiological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renan de Oliveira Venci
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Francielle R S Dias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - James A Armitage
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paulo C F Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | - Glaura S A Fernandes
- Laboratory of Toxicology and Reproductive Metabolic Disorders, Department of General Biology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
33
|
Abstract
Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is expected to reach 21%. In order to promote the well-being of the elderly and to reduce the costs associated with health care demands, increased longevity should be accompanied by ageing attenuation. Energy restriction, which limits the amount of energy consumed to 60–70% of the daily intake, and intermittent fasting, which allows the food to be available ad libitum every other day, extend the life span of mammals and prevent or delay the onset of major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown that well-being can be achieved by resetting of the circadian clock and induction of robust catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates metabolism and major metabolic proteins are key factors in the core clock mechanism. Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation. This review will explore the present data in the field of circadian rhythms, ageing and metabolism.
Collapse
|
34
|
Hryhorczuk C, Décarie-Spain L, Sharma S, Daneault C, Rosiers CD, Alquier T, Fulton S. Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour. Psychoneuroendocrinology 2017. [PMID: 28623763 DOI: 10.1016/j.psyneuen.2017.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overconsumption of dietary fat can elicit impairments in emotional processes and the response to stress. While excess dietary lipids have been shown to alter hypothalamus-pituitary-adrenal (HPA) axis function and promote anxiety-like behaviour, it is not known if such changes rely on elevated body weight and if these effects are specific to the type of dietary fat. The objective of this study was to investigate the effect of a saturated and a monounsaturated high-fat diet (HFD) on HPA axis function and anxiety-like behaviour in rats. Biochemical, metabolic and behavioural responses were evaluated following eight weeks on one of three diets: (1) a monounsaturated HFD (50%kcal olive oil), (2) a saturated HFD (50%kcal palm oil), or (3) a control low-fat diet. Weight gain was similar across the three diets while visceral fat mass was elevated by the two HFDs. The saturated HFD had specific actions to increase peak plasma levels of corticosterone and tumour-necrosis-factor-alpha and suppress mRNA expression of glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase-1 in the paraventricular nucleus of the hypothalamus. Both HFDs enhanced the corticosterone-suppressing response to dexamethasone administration without affecting the physiological response to a restraint stress and failed to increase anxiety-like behaviour as measured in the elevated-plus maze and open field tests. These findings demonstrate that prolonged intake of saturated fat, without added weight gain, increases CORT and modulates central HPA feedback processes. That saturated HFD failed to affect anxiety-like behaviour can suggest that the anxiogenic effects of prolonged high-fat feeding may rely on more pronounced metabolic dysfunction.
Collapse
Affiliation(s)
- Cecile Hryhorczuk
- CRCHUM and Montreal Diabetes Research Center, Montreal, QC, Canada; Departments of Physiology, Université de Montréal, QC, Canada
| | - Léa Décarie-Spain
- CRCHUM and Montreal Diabetes Research Center, Montreal, QC, Canada; Departments of Neuroscience, Université de Montréal, QC, Canada
| | - Sandeep Sharma
- CRCHUM and Montreal Diabetes Research Center, Montreal, QC, Canada
| | | | - Christine Des Rosiers
- Departments of Nutrition, Université de Montréal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montreal, QC, Canada; Departments of Medicine, Université de Montréal, QC, Canada.
| | - Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Montreal, QC, Canada; Departments of Nutrition, Université de Montréal, QC, Canada
| |
Collapse
|
35
|
Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: Sex differences in C57BL6/J mice. Brain Behav 2017; 7:e00708. [PMID: 28638713 PMCID: PMC5474711 DOI: 10.1002/brb3.708] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Animal studies can be a great tool to investigate sex differences in a variety of different ways, including behavioral and physiological responses to drug treatments and different "lifestyle variables" such as diets. Consumption of both high-fat diets and alcohol is known to affect anxiety behaviors and overall health. This project investigated how high-fat diet and alcohol access and its combination affected the behavior and physiology of male and female C57BL/6J mice. METHOD Mice were separated into three food groups: high-fat diet, 10% fat diet, and regular chow, and each group was paired with either water or 10% alcohol. Behavioral assays included diet and alcohol preference, light-dark box, open field, and feeding and drinking measurements. Physiological measures included glucose tolerance tests and measurement of brain-derived neurotrophic factor, insulin, and leptin levels. RESULTS Females and males differed in the open field, as male mice decreased activity, while females increased activity when consuming high-fat diet. While females consumed more ethanol than males, alcohol consumption was able to improve glucose tolerance and increase anxiety in both sexes. Lastly, females were more resistant to the physiological changes caused by high-fat diet than males, as females consuming high-fat diet exhibited decreased insulin secretion, less change to brain-derived neurotrophic factor levels, and better glucose tolerance than males consuming high-fat diet. CONCLUSION These results suggest that the response to high-fat diet and alcohol consumption is sex dependent and that males are more affected both behaviorally and physiologically by high-fat diet compared to females.
Collapse
Affiliation(s)
- Rachel R Gelineau
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Nicole L Arruda
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Jasmin A Hicks
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | | | - Aikaterini Hatzidis
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Joseph A Seggio
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| |
Collapse
|
36
|
Luppi M, Al-Jahmany AA, Del Vecchio F, Cerri M, Di Cristoforo A, Hitrec T, Martelli D, Perez E, Zamboni G, Amici R. Wake-sleep and cardiovascular regulatory changes in rats made obese by a high-fat diet. Behav Brain Res 2017; 320:347-355. [PMID: 28011172 DOI: 10.1016/j.bbr.2016.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Obesity is known to be associated with alterations in wake-sleep (WS) architecture and cardiovascular parameters. This study was aimed at assessing the possible influence of diet-induced obesity (DIO) on sleep homeostasis and on the WS state-dependent levels of arterial pressure (AP) and heart rate in the rat. Two groups of age-matched Sprague-Dawley rats were fed either a high-fat hypercaloric diet, leading to DIO, or a normocaloric standard diet (lean controls) for 8 weeks. While under general anesthesia, animals were implanted with instrumentation for the recording of electroencephalogram, electromyogram, arterial pressure, and deep brain temperature. The experimental protocol consisted of 48h of baseline, 12h of gentle handling, enhancing wake and depressing sleep, and 36-h post-handling recovery. Compared to lean controls, DIO rats showed: i) the same amount of rapid-eye movement (REM) and non-REM (NREM) sleep in the rest period, although the latter was characterized by more fragmented episodes; ii) an increase in both REM sleep and NREM sleep in the activity period; iii) a comparable post-handling sleep homeostatic response, in terms of either the degree of Delta power increase during NREM sleep or the quantitative compensation of the REM sleep loss at the end of the 36-h recovery period; iv) significantly higher levels of AP, irrespectively of the different WS states and of the changes in their intensity throughout the experimental protocol. Overall, these changes may be the reflection of a modification in the activity of the hypothalamic areas where WS, autonomic, and metabolic regulations are known to interact.
Collapse
Affiliation(s)
- Marco Luppi
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Abed A Al-Jahmany
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Flavia Del Vecchio
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Alessia Di Cristoforo
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia.
| | - Emanuele Perez
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Giovanni Zamboni
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| |
Collapse
|
37
|
Blancas-Velazquez A, Mendoza J, Garcia AN, la Fleur SE. Diet-Induced Obesity and Circadian Disruption of Feeding Behavior. Front Neurosci 2017; 11:23. [PMID: 28223912 PMCID: PMC5293780 DOI: 10.3389/fnins.2017.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Feeding behavior shows a rhythmic daily pattern, which in nocturnal rodents is observed mainly during the dark period. This rhythmicity is under the influence of the hypothalamic suprachiasmatic nucleus (SCN), the main biological clock. Nevertheless, various studies have shown that in rodent models of obesity, using high-energy diets, the general locomotor activity and feeding rhythms can be disrupted. Here, we review the data on the effects of diet-induced obesity (DIO) on locomotor activity and feeding patterns, as well as the effect on the brain sites within the neural circuitry involved in metabolic and rewarding feeding behavior. In general, DIO may alter locomotor activity by decreasing total activity. On the other hand, DIO largely alters eating patterns, producing increased overall ingestion and number of eating bouts that can extend to the resting period. Furthermore, within the hypothalamic areas, little effect has been reported on the molecular circadian mechanism in DIO animals with ad libitum hypercaloric diets and little or no data exist so far on its effects on the reward system areas. We further discuss the possibility of an uncoupling of metabolic and reward systems in DIO and highlight a gap of circadian and metabolic research that may help to better understand the implications of obesity.
Collapse
Affiliation(s)
- Aurea Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR-3212, University of StrasbourgStrasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR-3212, University of Strasbourg Strasbourg, France
| | - Alexandra N Garcia
- Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
38
|
Palmisano BT, Stafford JM, Pendergast JS. High-Fat Feeding Does Not Disrupt Daily Rhythms in Female Mice because of Protection by Ovarian Hormones. Front Endocrinol (Lausanne) 2017; 8:44. [PMID: 28352249 PMCID: PMC5348546 DOI: 10.3389/fendo.2017.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. Female mice retained robust rhythms of eating behavior and locomotor activity during high-fat feeding that were similar to chow-fed females. In addition, the phase of the liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in females. To determine if ovarian hormones protected daily rhythms in female mice from high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, the amplitudes of the eating behavior and locomotor activity rhythms were reduced in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by high-fat feeding, but not chow, in ovariectomized females. Together these data show circulating ovarian hormones protect the integrity of daily rhythms in female mice during high-fat feeding.
Collapse
Affiliation(s)
- Brian T. Palmisano
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John M. Stafford
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Julie S. Pendergast
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
- *Correspondence: Julie S. Pendergast,
| |
Collapse
|
39
|
Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet. Sci Rep 2016; 6:36801. [PMID: 27857215 PMCID: PMC5114685 DOI: 10.1038/srep36801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes.
Collapse
|
40
|
Pinto-Fochi ME, Pytlowanciv EZ, Reame V, Rafacho A, Ribeiro DL, Taboga SR, Góes RM. A high-fat diet fed during different periods of life impairs steroidogenesis of rat Leydig cells. Reproduction 2016; 152:795-808. [PMID: 27679864 DOI: 10.1530/rep-16-0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/27/2016] [Indexed: 01/22/2023]
Abstract
This study evaluated the impact of a high-fat diet (HFD) during different stages of rat life, associated or not with maternal obesity, on the content of sex steroid hormones and morphophysiology of Leydig cells. The following periods of development were examined: gestation (O1), gestation and lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), gestation to adulthood (O5), and after sexual maturation (O6). The HFD contained 20% unsaturated fat, whereas the control diet had 4% fat. Maternal obesity was induced by feeding HFD 15 weeks before mating. All HFD groups presented increased body weight, hyperinsulinemia and reduced insulin sensitivity. Except for O1, all HFD groups exhibited a higher adiposity index, hyperleptinemia, reduced testosterone and estradiol testicular levels, and decreased testicular 17β-HSD enzyme . Morphometrical analyses indicated atrophy of Leydig cells in the O2 group. Myelin vesicles were observed in the mitochondrial matrix of Leydig cells in O3, O4, O5 and O6, and autophagosomes containing mitochondria were found in O5 and O6. In conclusion, HFD feeding, before or after sexual maturation, reduces the functional capacity of rat Leydig cells. Maternal obesity associated with HFD during pregnancy/lactation prejudices Leydig cell steroidogenesis and induces its atrophy in adulthood, even if it is replaced by a conventional diet at later stages of life. Regardless of the life period of exposure to HFD, deregulation of leptin is the main factor related to steroidogenic impairment of Leydig cells, and, in groups exposed for longer periods (O3, O4, O5 and O6), this is worsened by structural damage and mitochondrial degeneration of these cells.
Collapse
Affiliation(s)
- Maria Etelvina Pinto-Fochi
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Eloísa Zanin Pytlowanciv
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil.,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| | - Vanessa Reame
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Alex Rafacho
- Department of Physiological SciencesFederal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daniele Lisboa Ribeiro
- Department of Histology- ICBIMFederal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Sebastião Roberto Taboga
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil.,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of BiologyInstitute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil .,Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas, IB/UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Zeman M, Molcan L, Herichova I, Okuliarova M. Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats. Chronobiol Int 2016; 33:1148-1160. [PMID: 27459109 DOI: 10.1080/07420528.2016.1203332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disturbances in regular circadian oscillations can have negative effects on cardiovascular function, but epidemiological data are inconclusive and new data from animal experiments elucidating critical biological mechanisms are needed. To evaluate the consequences of chronic phase shifts of the light/dark (LD) cycle on hormonal and cardiovascular rhythms, two experiments were performed. In Experiment 1, male rats were exposed to either a regular 12:12 LD cycle (CONT) or rotating 8-h phase-delay shifts of LD every second day (SHIFT) for 10 weeks. During this period, blood pressure (BP) was monitored weekly, and daily rhythms of melatonin, corticosterone, leptin and testosterone were evaluated at the end of the experiment. In Experiment 2, female rats were exposed to the identical shifted LD schedule for 12 weeks, and daily rhythms of BP, heart rate (HR) and locomotor activity were recorded using telemetry. Preserved melatonin rhythms were found in the pineal gland, plasma, heart and kidney of SHIFT rats with damped amplitude in the plasma and heart, suggesting that the central oscillator can adapt to chronic phase-delay shifts. In contrast, daily rhythms of corticosterone, testosterone and leptin were eliminated in SHIFT rats. Exposure to phase shifts did not lead to increased body weight and elevated BP. However, a shifted LD schedule substantially decreased the amplitude and suppressed the circadian power of the daily rhythms of BP and HR, implying weakened circadian control of physiological and behavioural processes. The results demonstrate that endocrine and cardiovascular rhythms can differentially adapt to chronic phase-delay shifts, promoting internal desynchronization between central and peripheral oscillators, which in combination with other negative environmental stimuli may result in negative health effects.
Collapse
Affiliation(s)
- Michal Zeman
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University , Bratislava , Slovak Republic
| | - Lubos Molcan
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University , Bratislava , Slovak Republic
| | - Iveta Herichova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University , Bratislava , Slovak Republic
| | - Monika Okuliarova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University , Bratislava , Slovak Republic
| |
Collapse
|
42
|
Naturil-Alfonso C, Lavara R, Millán P, Rebollar P, Vicente J, Marco-Jiménez F. Study of failures in a rabbit line selected for growth rate. WORLD RABBIT SCIENCE 2016. [DOI: 10.4995/wrs.2016.4016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>Selection for growth rate is negatively related with reproductive fitness. The aim of this work was to analyse the causes of fertility failure in rabbit does selected for growth rate and characterised for reproductive deficiencies (line R). In the experiment, 82 does were divided into 2 groups: naturally mated (NM) and artificially inseminated (AI), to relate luteinizing hormone (LH) concentration with ovulation induction and pregnancy rate by laparoscopic determination. Additionally, in 38 of these females ovulation rate and metabolites determination (leptin, NEFA, BOHB and glucose) were analysed and perirenal fat thickness measurement and live body weight (LBW) determined. The results showed that all ovulated does (both NM and AI) presented higher concentrations of LH than non-ovulated females. In addition, non-ovulated females showed high levels of leptin and BOHB, as well as LBW. Females from line R have an inherit reduced fertility due to ovulation failure as a consequence of a reduction in LH release, which could be explained by a heavier body weight and higher leptin concentrations.</p>
Collapse
|
43
|
Ristic N, Stevanovic D, Nesic D, Ajdzanovic V, Rakocevic R, Jaric I, Milosevic V. Diet-Induced Obesity and Ghrelin Effects on Pituitary Gonadotrophs: Immunohistomorphometric Study in Male Rats. CELL JOURNAL 2016; 17:711-9. [PMID: 26862530 PMCID: PMC4746421 DOI: 10.22074/cellj.2016.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/24/2015] [Indexed: 11/12/2022]
Abstract
Objective The close relationship between energy metabolism, nutritional state, and
reproductive physiology suggests that nutritional and metabolic disorders can disrupt
normal reproductive function and fertility. Considering the importance of leptin and
ghrelin effects in regulation of the hypothalamic-pituitary-gonadal axis, the objective
of this study was to investigate the influence of obesity and centrally applied ghrelin
on immunohistochemical appearance and quantitative morphology of the pituitary
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) producing cells in
adult male rats. Materials and Methods In this experimental study, animals were given two differ-
ent diets: normal-fat (NF) and high-fat (HF), for 4 weeks, corresponding to normal
and positive energy balance (n=2×14), respectively. Each group was subsequently
divided into two subgroups (n=7) receiving intracerebroventricular (ICV) injections of
either ghrelin [G, 1 µg/5 µL phosphate buffered saline (PBS)] or vehicle (5 µL PBS,
control group) every 24 hours for five consecutive days.
Results Morphometric analyses showed that in HF control group, the percentage of
FSH cells per unit volume of total pituitary gland tissue (in μm3), i.e. volume density
(Vvc), was increased (P<0.05) by 9.1% in comparison with the NF controls. After
ICV treatment with ghrelin, volume (Vc) and volume density (Vvc) of FSH cells in
ghrelin+NF (GNF) and ghrelin+HF (GHF) groups remained unchanged in comparison
with NF and HF controls. Volume of LH cells in HF control group was increased by
17% (P<0.05), but their Vvc was decreased by 8.3% (P<0.05) in comparison with
NF controls. In GNF group, the volume of LH cells increased by 7% (P<0.05), in
comparison with the NF controls, but in GHF group, the same parameter remained
unchanged when compared with HF controls. The central application of ghrelin de-
creased the Vvc of LH cells only in GNF group by 38.9% (P<0.05) in comparison with
the NF control animals.
Conclusion The present study has shown that obesity and repetitive ICV administra-
tion of low doses of ghrelin, in NF and HF rats, modulated the immunohistomorphometric
features of gonadotrophs, indicating the importance of obesity and ghrelin in regulation of
the reproductive function.
Collapse
Affiliation(s)
- Natasa Ristic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Darko Stevanovic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejan Nesic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdzanovic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Rastko Rakocevic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Jaric
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Verica Milosevic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Namvar S, Gyte A, Denn M, Leighton B, Piggins HD. Dietary fat and corticosterone levels are contributing factors to meal anticipation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R711-23. [PMID: 26818054 PMCID: PMC4867411 DOI: 10.1152/ajpregu.00308.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
Abstract
Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content.
Collapse
Affiliation(s)
- Sara Namvar
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Amy Gyte
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Mark Denn
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Brendan Leighton
- AstraZeneca Research and Development, Mereside, Alderley Park, Macclesfield, United Kingdom
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| |
Collapse
|
45
|
Szewczyk-Golec K, Woźniak A, Reiter RJ. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. J Pineal Res 2015; 59:277-91. [PMID: 26103557 DOI: 10.1111/jpi.12257] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
Abstract
Obesity and its medical complications represent a significant problem throughout the world. In recent decades, mechanisms underlying the progression of obesity have been intensively examined. The involvement of both the behavioral aspects, such as calorie-rich diet, low physical activity and sleep deprivation, and the intrinsic factors, including adipose tissue deregulation, chronic inflammation, oxidative stress, and chronodisruption, has been identified. The circadian disturbances of the adipose tissue endocrine function have been correlated with obesity. Leptin and adiponectin are adipokines strongly associated with glucose and lipid metabolism and with energy balance. Their synthesis and secretion display circadian rhythms that are disturbed in the obese state. Hyperleptinemia resulting in leptin resistance, and hypo-adiponectinemia have been linked to the pathophysiology of the obesity-related disorders. A deficiency of melatonin, one of the consequences of sleep deprivation, has also been demonstrated to correlate with obesity. Melatonin is a pineal secretory product involved in numerous actions, such as regulation of internal biological clocks and energy metabolism, and it functions as an antioxidant and as an anti-inflammatory agent. There exists a substantial amount of evidence supporting the beneficial effects of melatonin supplementation on obesity and its complications. In the current review, the results of studies related to the interactions between melatonin, and both leptin and adiponectin are discussed. Despite the existence of some inconsistencies, melatonin has been found to normalize the expression and secretion patterns of both adipokines. These results support the concept of melatonin as a potential therapeutic agent for obesity and related disorders.
Collapse
Affiliation(s)
- Karolina Szewczyk-Golec
- The Chair of Medical Biology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Alina Woźniak
- The Chair of Medical Biology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
46
|
Decreased rates of operant food self-administration are associated with reward deficits in high-fat feeding mice. Eur J Nutr 2015; 55:1615-22. [DOI: 10.1007/s00394-015-0980-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
47
|
Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr Res 2015; 35:891-900. [PMID: 26250620 DOI: 10.1016/j.nutres.2015.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 07/03/2015] [Indexed: 01/01/2023]
Abstract
The increasing incidence of obesity, leading to metabolic complications, is now recognized as a major public health problem. The adipocytes are not merely energy-storing cells, but they play crucial roles in the development of the so-called metabolic syndrome due to the adipocyte-derived bioactive factors such as adipokines, cytokines, and growth factors. The dysregulated production and secretion of adipokines seen in obesity is linked to the pathogenesis of the metabolic disease processes. In this study, we hypothesized that dietary melatonin administration would support an anti-inflammatory response and play an important role in energy metabolism in subcutaneous and visceral adipose tissues of obese mice and so may counteract some of the disruptive effects of obesity. Lean and obese mice (ob/ob) received melatonin or vehicle in drinking water for 8 weeks. Thereafter, they were evaluated for morphologic alteration, inflammatory cell infiltration, and the adipokine patterns in visceral and subcutaneous white fat depots. In obese mice treated with vehicle, we observed a significant increase in fat depots, inflammation, and a dysregulation of the adipokine network. In particular, we measured a significant reduction of adiponectin and an increase of tumor necrosis factor α, resistin, and visfatin in adipose tissue deposits. These changes were partially reversed when melatonin was supplemented to obese mice. Melatonin supplementation by regulating inflammatory infiltration ameliorates obesity-induced adipokine alteration, whereas melatonin administration in lean mice was unaffected. Thus, it is likely that melatonin would be provided in supplement form to control some of the disruptive effects on the basis of obesity pathogenic process.
Collapse
|
48
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Abstract
Melatonin is a small, highly conserved indole with numerous receptor-mediated and receptor-independent actions. Receptor-dependent functions include circadian rhythm regulation, sleep, and cancer inhibition. The receptor-independent actions relate to melatonin's ability to function in the detoxification of free radicals, thereby protecting critical molecules from the destructive effects of oxidative stress under conditions of ischemia/reperfusion injury (stroke, heart attack), ionizing radiation, and drug toxicity, among others. Melatonin has numerous applications in physiology and medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Dun Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico D.F., Mexico
| |
Collapse
|
50
|
Lemini M, Ruiz-Herrera X, Ledesma-Colunga MG, Díaz-Lezama N, De los Ríos EA, López-Barrera F, Méndez I, Martínez de la Escalera G, Macotela Y, Clapp C. Prolactin anterior pituitary expression and circulating levels are reduced in obese and diabetic rats: role of TGF-β and TNF-α. Am J Physiol Regul Integr Comp Physiol 2015; 308:R792-9. [PMID: 25715833 DOI: 10.1152/ajpregu.00327.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
The levels of the hormone prolactin (PRL) are reduced in the circulation of patients with Type 2 diabetes and in obese children, and lower systemic PRL levels correlate with an increased prevalence of diabetes and a higher risk of metabolic syndrome. The secretion of anterior pituitary (AP) PRL in metabolic diseases may be influenced by the interplay between transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α), which inhibit and can stimulate AP PRL synthesis, respectively, and are known contributors to insulin resistance and metabolic complications. Here, we show that TGF-β and TNF-α antagonize the effect of each other on the expression and release of PRL by the GH4C1 lactotrope cell line. The levels of AP mRNA and circulating PRL decrease in high-fat diet-induced obese rats in parallel with increased and reduced AP levels of TGF-β and TNF-α mRNA, respectively. Likewise, AP expression and circulating levels of PRL are reduced in streptozotocin-induced diabetic rats and are associated with higher AP expression and protein levels of TGF-β and TNF-α. The opposing effects of the two cytokines on cultured AP cells, together with their altered expression in the AP of obese and diabetic rats suggest they are linked to the reduced PRL production and secretion characteristics of metabolic diseases.
Collapse
Affiliation(s)
- María Lemini
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - María G. Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ericka A. De los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Fernando López-Barrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Isabel Méndez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|